ISL22323UFR16Z [INTERSIL]

Dual Digitally Controlled Potentiometer XDCP; 双路数字电位XDCP
ISL22323UFR16Z
型号: ISL22323UFR16Z
厂家: Intersil    Intersil
描述:

Dual Digitally Controlled Potentiometer XDCP
双路数字电位XDCP

文件: 总18页 (文件大小:697K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL22323  
®
Dual Digitally Controlled Potentiometer (XDCP™)  
Data Sheet  
March 13, 2008  
FN6422.1  
2 ®  
Low Noise, Low Power, I C Bus,  
256 Taps  
Features  
• Two potentiometers in one package  
• 256 resistor taps  
The ISL22323 integrates two digitally controlled  
potentiometers (DCP), control logic and non-volatile memory  
on a monolithic CMOS integrated circuit.  
2
• I C serial interface  
- Three address pins, up to eight devices per bus  
• Non-volatile EEPROM storage of wiper position  
• 13 General Purpose non-volatile registers  
The digitally controlled potentiometer is implemented with a  
combination of resistor elements and CMOS switches. The  
position of the wipers are controlled by the user through the  
2
I C bus interface. The potentiometer has an associated  
• High reliability  
volatile Wiper Register (WRi) and a non-volatile Initial Value  
Register (IVRi) that can be directly written to and read by the  
user. The contents of the WRi control the position of the  
corresponding wiper. At power up the device recalls the  
contents of the DCP’s IVRi to the correspondent WRi.  
- Endurance: 1,000,000 data changes per bit per register  
- Register data retention: 50 years @ T +55°C  
• Wiper resistance: 70Ω typical @ 1mA  
• Standby current <4µA max  
• Shut-down current <4µA max  
• Dual power supply  
The ISL22323 also has 13 general purpose non-volatile  
registers that can be used as storage of lookup table for  
multiple wiper position or any other valuable information.  
- V  
CC  
- V- = -2.25V to -5.5V  
= 2.25V to 5.5V  
The ISL22323 features a dual supply, that is beneficial for  
applications requiring a bipolar range for DCP terminals  
between V- and VCC.  
• 10kΩ, 50kΩ or 100kΩ total resistance  
• Extended industrial temperature range: -40 to +125°C  
• 14 Ld TSSOP or 16 Ld QFN  
Each DCP can be used as three-terminal potentiometers or  
as two-terminal variable resistors in a wide variety of  
applications including control, parameter adjustments, and  
signal processing.  
• Pb-free (RoHS compliant)  
Ordering Information  
RESISTANCE  
TEMPERATURE  
PART NUMBER  
(Notes 1, 2)  
OPTION  
(kΩ)  
RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
PART MARKING  
22323 TFVZ  
PKG. DWG. #  
M14.173  
ISL22323TFV14Z  
ISL22323TFR16Z  
ISL22323UFV14Z  
ISL22323UFR16Z  
ISL22323WFV14Z  
ISL22323WFR16Z  
NOTES:  
100  
100  
50  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
14 Ld TSSOP  
223 23TFRZ  
16 Ld QFN  
L16.4x4A  
M14.173  
L16.4x4A  
M14.173  
L16.4x4A  
22323 UFVZ  
223 23UFRZ  
22323 WFVZ  
223 23WFRZ  
14 Ld TSSOP  
16 Ld QFN  
50  
10  
14 Ld TSSOP  
16 Ld QFN  
10  
1. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte  
tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.  
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J  
STD-020.  
2. Add “-TK” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) and XDCP are registered trademarks of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2007, 2008. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
ISL22323  
Block Diagram  
RH0  
RH1  
V-  
VCC  
SCL  
POWER UP  
SDA  
A2  
INTERFACE,  
CONTROL  
AND  
STATUS  
LOGIC  
2
I C  
INTERFACE  
WR0  
WR1  
VOLATILE  
REGISTER  
AND  
WIPER  
CONTROL  
CIRCUITRY  
A1  
A0  
VOLATILE  
REGISTER  
AND  
WIPER  
CONTROL  
CIRCUITRY  
NON-VOLATILE  
REGISTERS  
RW0  
RL0  
RW1  
RL1  
GND  
Pinouts  
ISL22323  
ISL22323  
(14 LD TSSOP)  
(16 LD QFN)  
TOP VIEW  
TOP VIEW  
RH0  
RL0  
RW0  
RH1  
RL1  
RW1  
A2  
1
2
3
4
5
6
7
14  
VCC  
A0  
16 15 14 13  
13  
12  
11  
10  
9
1
2
3
4
12  
RL0  
A1  
A2  
NC  
NC  
V-  
GND  
SCL  
SDA  
V-  
11  
10  
9
RH0  
VCC  
A0  
8
5
6
7
8
FN6422.1  
March 13, 2008  
2
ISL22323  
Pin Descriptions  
TSSOP PIN  
QFN PIN  
SYMBOL  
RH0  
RL0  
RW0  
RH1  
RL1  
RW1  
A2  
DESCRIPTION  
1
2
11  
12  
13  
14  
15  
16  
1
“High” terminal of DCP0  
“Low” terminal of DCP0  
“Wiper” terminal of DCP0  
“High” terminal of DCP1  
“Low” terminal of DCP1  
“Wiper” terminal of DCP1  
3
4
5
6
2
7
Device address input for the I C interface  
8
4
V-  
Negative power supply pin  
2
9
5
SDA  
SCL  
GND  
A1  
Open drain Serial data I/O for the I C interface  
2
10  
11  
12  
13  
14  
6
I C interface clock input  
7
Device ground pin  
2
8
Device address input for the I C interface  
2
9
A0  
Device address input for the I C interface  
10  
2, 3  
EPAD*  
VCC  
NC  
Positive power supply pin  
No connection  
Exposed Die Pad internally connected to V-  
NOTE: *PCB thermal land for QFN EPAD should be connected to V- plane or left floating. For more information refer to  
http://www.intersil.com/data/tb/TB389.pdf  
FN6422.1  
March 13, 2008  
3
ISL22323  
Absolute Maximum Ratings  
Thermal Information  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Voltage at any Digital Interface Pin  
Thermal Resistance (Typical, Note 3)  
θ
(°C/W)  
θ
(°C/W)  
JC  
JA  
14 Lead TSSOP. . . . . . . . . . . . . . . . . .  
16 Lead QFN (Note 4) . . . . . . . . . . . . .  
Maximum Junction Temperature (Plastic Package) . . . . . . . +150°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
105  
39  
N/A  
3.0  
with Respect to GND . . . . . . . . . . . . . . . . . . . . . -0.3V to V +0.3  
CC  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to +6V  
CC  
V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -6V to 0.3V  
Voltage at any DCP Pin with  
respect to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V- to V  
CC  
I
(10s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±6mA  
W
Recommended Operating Conditions  
Latchup . . . . . . . . . . . . . . . . . . . . . . . . . Class II, Level A at +125°C  
Temperature Range (Full Industrial) . . . . . . . . . . . .-40°C to +125°C  
Power Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15mW  
ESD  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5kV  
Machine Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350V  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.25V to 5.5V  
CC  
V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-2.25V to -5.5V  
Max Wiper Current Iw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±3.0mA  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
NOTE:  
3. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
4. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Analog Specifications Over recommended operating conditions unless otherwise stated.  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
RHi to RLi Resistance  
TEST CONDITIONS  
(Note 21) (Note 5) (Note 21)  
UNIT  
kΩ  
R
W option  
U option  
T option  
10  
50  
TOTAL  
kΩ  
100  
kΩ  
RHi to RLi Resistance Tolerance  
-20  
V-  
+20  
%
End-to-End Temperature Coefficient  
W option  
±85  
±45  
ppm/°C  
ppm/°C  
V
U, T option  
V
, V  
RHi RLi  
DCP Terminal Voltage  
Wiper Resistance  
V
and V to GND  
RL  
V
RH  
CC  
R
RH - floating, V = V-, force Iw current to  
RL  
the wiper, I = (V  
70  
10/10/25  
0.1  
250  
Ω
W
- V )/R  
W
CC  
RL TOTAL  
C /C /C  
W
(Note 19)  
Potentiometer Capacitance  
Leakage on DCP Pins  
See Macro Model below.  
pF  
µA  
H
L
I
Voltage at pin from V- to V  
@ RHi; measured at RWi, unloaded)  
W option  
1
LkgDCP  
CC  
VOLTAGE DIVIDER MODE (V- @ RLi; V  
CC  
INL  
Integral Non-linearity  
-1.5  
-1.0  
-1.0  
-0.5  
±0.5  
±0.2  
1.5  
1.0  
1.0  
0.5  
LSB  
(Note 6)  
(Note 10)  
Monotonic Over All Tap Positions  
U, T option  
W option  
LSB  
(Note 6)  
DNL  
Differential Non-linearity  
Monotonic Over All Tap Positions  
±0.4  
LSB  
(Note 6)  
(Note 9)  
U, T option  
±0.15  
LSB  
(Note 6)  
ZSerror  
(Note 7)  
Zero-scale Error  
W option  
0
0
1
0.5  
-1  
5
2
0
0
2
LSB  
(Note 6)  
U, T option  
W option  
FSerror  
(Note 8)  
Full-scale Error  
-5  
-2  
-2  
LSB  
(Note 6)  
U, T option  
-1  
V
DCP-to-DCP Matching  
Wipers at the same tap position, the same  
voltage at all RH terminals and the same  
voltage at all RL terminals  
LSB  
(Note 6)  
MATCH  
(Note 11, 19)  
FN6422.1  
March 13, 2008  
4
ISL22323  
Analog Specifications Over recommended operating conditions unless otherwise stated. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
DCP register set to 80 hex  
(Note 21) (Note 5) (Note 21)  
UNIT  
TC (Note 12, Ratiometric Temperature Coefficient  
V
±4  
ppm/°C  
19)  
f
-3dB Cut Off Frequency  
Wiper at midpoint (80hex) W option (10k)  
Wiper at midpoint (80hex) U option (50k)  
Wiper at midpoint (80hex) T option (100k)  
1000  
250  
kHz  
kHz  
kHz  
cutoff  
(Note 19)  
120  
RESISTOR MODE (Measurements between RWi and RLi with RHi not connected, or between RWi and RHi with RLi not connected)  
RINL  
(Note 16)  
Integral Non-linearity  
Differential Non-linearity  
Offset  
W option  
-3  
±1.5  
±0.4  
±0.5  
±0.15  
1
3
MI  
(Note 13)  
U, T option  
W option  
-1  
1
MI  
(Note 13)  
RDNL  
(Note 15)  
-1.5  
-0.5  
0
1.5  
0.5  
5
MI  
(Note 13)  
U, T option  
W option  
MI  
(Note 13)  
Roffset  
MI  
(Note 14)  
(Note 13)  
U, T option  
0
0.5  
2
MI  
(Note 13)  
R
DCP-to-DCP Matching  
Wipers at the same tap position with the  
same terminal voltages  
-2  
2
MI  
(Note 13)  
MATCH  
(Note 17)  
TC  
Resistance Temperature Coefficient  
DCP register set between 32hex and FF hex  
±40  
ppm/°C  
R
(Notes 18, 19)  
Operating Specifications Over the recommended operating conditions unless otherwise specified.  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
(Note 21) (Note 5) (Note 21)  
UNIT  
2
I
V
Supply Current (Volatile  
V
= 5.5V, f = 400kHz; (for I C Active,  
SCL  
0.01  
0.005  
-0.05  
0.2  
mA  
CC1  
CC  
CC  
Write/Read)  
Read and Volatile Write states only)  
2
V
= 2.25V, f  
= 400kHz; (for I C Active,  
SCL  
0.1  
mA  
mA  
CC  
Read and Volatile Write states only)  
I
V- Supply Current (Volatile  
Write/Read)  
V- = -5.5V, V = 5.5V, f = 400kHz; (for  
I C Active, Read and Volatile Write states  
-0.2  
-0.1  
V-1  
CC  
SCL  
2
only)  
V- = -2.25V, V  
= 2.25V, f  
SCL  
= 400kHz;  
(for I C Active, Read and Volatile Write  
states only)  
-0.02  
1.0  
mA  
mA  
mA  
mA  
mA  
CC  
2
I
V
Supply Current (Non-volatile  
V = 5.5V, V- = 5.5V, f  
CC SCL  
= 400kHz; (for  
I C Active, Read and Non-volatile Write  
states only)  
2.0  
1.0  
CC2  
CC  
2
Write/Read)  
V
= 2.25V, V- = -2.25V, f  
SCL  
= 400kHz;  
0.3  
CC  
2
(for I C Active, Read and Non-volatile Write  
states only)  
I
V- Supply Current (Non-volatile  
Write/Read)  
V- = -5.5V, V  
= 5.5V, f  
CC SCL  
= 400kHz; (for  
I C Active, Read and Non-volatile Write  
states only)  
-2.0  
-1.0  
-1.2  
-0.4  
V-2  
2
V- Supply Current (Non-volatile  
Write/Read)  
V- = -2.25V, V  
= 2.25V, f = 400kHz;  
SCL  
(for I C Active, Read and Non-volatile Write  
CC  
2
states only)  
FN6422.1  
March 13, 2008  
5
ISL22323  
Operating Specifications Over the recommended operating conditions unless otherwise specified. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
= +5.5V, V- = -5.5V @ +85°C, I C  
(Note 21) (Note 5) (Note 21)  
UNIT  
2
I
V
Current (Standby)  
V
0.5  
1.0  
2.0  
4.0  
1.0  
2.0  
µA  
SB  
CC  
CC  
interface in standby state  
2
V
= +5.5V, V- = -5.5V @ +125°C, I C  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µs  
CC  
interface in standby state  
2
V
= +2.25V, V- = -2.25V @ +85°C, I C  
0.2  
CC  
interface in standby state  
2
V
= +2.25V, V- = -2.25V @ +125°C, I C  
0.5  
CC  
interface in standby state  
2
I
V- Current (Standby)  
V- = -5.5V, V = +5.5V @ +85°C, I C  
-3.0  
-5.0  
-2.0  
-3.0  
-0.7  
-1.5  
-0.3  
-0.4  
0.5  
V-SB  
CC  
interface in standby state  
2
V- = -5.5V, V  
= +5.5V @ +125°C, I C  
CC  
interface in standby state  
2
V- = -2.25V, V = +2.25V @ +85°C, I C  
CC  
interface in standby state  
2
V- = -2.25V, V = +2.25V @ +125°C, I C  
CC  
interface in standby state  
2
I
V
Current (Shut-down)  
V
= +5.5V, V- = -5.5V @ +85°C, I C  
2.0  
4.0  
1.0  
2.0  
SD  
CC  
CC  
interface in standby state  
2
V
= +5.5V, V- = -5.5V @ +125°C, I C  
1.0  
CC  
interface in standby state  
2
V
= +2.25V, V- = -2.25V @ +85°C, I C  
0.2  
CC  
interface in standby state  
2
V
= +2.25V, V- = -2.25V @ +125°C, I C  
0.5  
CC  
interface in standby state  
2
I
V- Current (Standby)  
V- = -5.5V, V = +5.5V @ +85°C, I C  
-3.0  
-5.0  
-2.0  
-3.0  
-1  
-0.7  
-1.5  
-0.3  
-0.4  
V-SB  
CC  
interface in standby state  
2
V- = -5.5V, V  
= +5.5V @ +125°C, I C  
CC  
interface in standby state  
2
V- = -2.25V, V = +2.25V @ +85°C, I C  
CC  
interface in standby state  
2
V- = -2.25V, V = +2.25V @ +125°C, I C  
CC  
interface in standby state  
I
Leakage Current, at Pins A0, A1, A2, Voltage at pin from GND to V  
SDA, and SCL  
1
LkgDig  
CC  
t
DCP Wiper Response Time  
SCL falling edge of last bit of DCP data byte  
to wiper new position  
1.5  
1.5  
WRT  
(Note 19)  
t
DCP Recall Time from Shut-down  
SCL falling edge of last bit of ACR data byte  
to wiper stored position and RH connection  
µs  
ShdnRec  
(Note 19) Mode  
Vpor  
Power-on Recall Voltage  
Ramp Rate  
Minimum V  
at which memory recall occurs  
1.9  
0.2  
2.1  
5
V
CC  
VCCRamp  
V
V/ms  
ms  
CC  
t
Power-up Delay  
V
above Vpor, to DCP Initial Value  
CC  
D
2
Register recall completed, and I C Interface  
in standby state  
FN6422.1  
March 13, 2008  
6
ISL22323  
Operating Specifications Over the recommended operating conditions unless otherwise specified. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
EEPROM SPECIFICATION  
EEPROM Endurance  
PARAMETER  
TEST CONDITIONS  
(Note 21) (Note 5) (Note 21)  
UNIT  
1,000,000  
50  
Cycles  
Years  
ms  
EEPROM Retention  
Temperature T +55°C  
t
Non-volatile Write Cycle Time  
12  
20  
WC  
(Note 20)  
SERIAL INTERFACE SPECS  
V
A0, A1, A2, SDA, and SCL Input  
Buffer LOW Voltage  
0.3*V  
V
V
IL  
CC  
V
A0, A1, A2, SDA, and SCL Input  
Buffer HIGH Voltage  
0.7*V  
CC  
IH  
Hysteresis SDA and SCL Input Buffer Hysteresis  
(Note 19)  
0.05*V  
0
V
CC  
V
SDA Output Buffer LOW Voltage,  
0.4  
10  
V
OL  
(Note 19) Sinking 4mA  
Cpin  
A0, A1, A2, SDA, and SCL Pin  
pF  
(Note 19) Capacitance  
f
SCL Frequency  
Pulse Width Suppression Time at SDA Any pulse narrower than the max spec is  
400  
50  
kHz  
ns  
SCL  
t
sp  
and SCL Inputs suppressed  
t
SCL Falling Edge to SDA Output Data SCL falling edge crossing 30% of V , until  
CC  
900  
ns  
ns  
AA  
(Note 19) Valid  
SDA exits the 30% to 70% of V  
window  
CC  
t
Time the Bus Must be Free Before The SDA crossing 70% of V  
during a STOP  
1300  
BUF  
(Note 19) Start of a New Transmission  
CC  
condition, to SDA crossing 70% of V  
CC  
during the following START condition  
t
Clock LOW Time  
Measured at the 30% of V  
Measured at the 70% of V  
crossing  
crossing  
1300  
600  
ns  
ns  
ns  
LOW  
CC  
t
Clock HIGH Time  
HIGH  
CC  
t
START Condition Setup Time  
SCL rising edge to SDA falling edge; both  
crossing 70% of V  
600  
SU:STA  
HD:STA  
SU:DAT  
CC  
From SDA falling edge crossing 30% of V  
t
t
START Condition Hold Time  
Input Data Setup Time  
600  
100  
ns  
ns  
CC  
to SCL falling edge crossing 70% of V  
CC  
From SDA exiting the 30% to 70% of V  
CC  
window, to SCL rising edge crossing 30% of  
V
CC  
t
Input Data Hold Time  
From SCL rising edge crossing 70% of V  
0
ns  
HD:DAT  
CC  
to SDA entering the 30% to 70% of V  
window  
CC  
t
STOP Condition Setup Time  
From SCL rising edge crossing 70% of V  
to SDA rising edge crossing 30% of V  
,
600  
1300  
0
ns  
ns  
ns  
SU:STO  
CC  
CC  
t
STOP Condition Hold Time for Read, From SDA rising edge to SCL falling edge;  
HD:STO  
or Volatile Only Write  
Output Data Hold Time  
both crossing 70% of V  
CC  
t
From SCL falling edge crossing 30% of V  
,
DH  
(Note 19)  
CC  
CC  
until SDA enters the 30% to 70% of V  
window  
t
SDA and SCL Rise Time  
SDA and SCL Fall Time  
From 30% to 70% of V  
20 +  
0.1*Cb  
250  
250  
ns  
ns  
R
CC  
(Note 19)  
t
From 70% to 30% of V  
20 +  
F
CC  
(Note 19)  
0.1*Cb  
FN6422.1  
March 13, 2008  
7
ISL22323  
Operating Specifications Over the recommended operating conditions unless otherwise specified. (Continued)  
MIN  
TYP  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
Total on-chip and off-chip  
(Note 21) (Note 5) (Note 21)  
UNIT  
Cb  
(Note 19)  
Capacitive Loading of SDA or SCL  
10  
1
400  
pF  
Rpu  
SDA and SCL Bus Pull-up Resistor  
Maximum is determined by t and t  
kΩ  
R
F
(Note 19) Off-chip  
For Cb = 400pF, max is about 2kΩ ~ 2.5kΩ  
For Cb = 40pF, max is about 15kΩ ~ 20kΩ  
t
A0, A1, and A2 Setup Time  
A0, A1, and A2 Hold Time  
Before START condition  
After STOP condition  
600  
600  
ns  
ns  
SU:A  
t
HD:A  
NOTES:  
5. Typical values are for T = +25°C and 3.3V supply voltage.  
A
6. LSB: [V(R  
)
– V(R ) ]/255. V(R  
)
and V(R ) are V(R ) for the DCP register set to FF hex and 00 hex respectively. LSB is the  
W 0  
W 255  
W 0 W 255  
W
incremental voltage when changing from one tap to an adjacent tap.  
7. ZS error = V(RW) /LSB.  
0
8. FS error = [V(RW)  
255  
– V ]/LSB.  
CC  
9. DNL = [V(RW) – V(RW) ]/LSB-1, for i = 1 to 255. i is the DCP register setting.  
i-1  
i
10. INL = [V(RW) – i • LSB – V(RW) ]/LSB for i = 1 to 255  
i
0
11. V  
12.  
= [V(RWx)i -V(RWy)i]/LSB, for i = 0 to 255, x = 0 to 1, y = 0 to 1.  
MATCH  
Max(V(RW) ) Min(V(RW) )  
6
10  
i
i
for i = 16 to 240 decimal, T = -40°C to +125°C. Max( ) is the maximum value of the wiper  
[Max(V(RW) ) + Min(V(RW) )] ⁄ 2 165°C voltage and Min ( ) is the minimum value of the wiper voltage over the temperature range.  
--------------------------------------------------------------------------------------------- ----------------  
TC  
=
×
V
+
i
i
13. MI = |RW  
– RW |/255. MI is a minimum increment. RW  
and RW are the measured resistances for the DCP register set to FF hex and 00  
255 0  
255  
hex respectively.  
0
14. R  
= RW /MI, when measuring between RW and RL.  
OFFSET  
0
R
= RW  
/MI, when measuring between RW and RH.  
OFFSET  
255  
15. RDNL = (RW – RW )/MI -1, for i = 16 to 255.  
i-1  
i
16. RINL = [RW – (MI • i) – RW ]/MI, for i = 16 to 255.  
i
0
17. R  
18.  
= [(Rx)i -(Ry)i]/MI, for i = 0 to 255, x = 0 to 1, y = 0 to 1.  
6
MATCH  
for i = 16 to 240, T = -40°C to +125°C. Max( ) is the maximum value of the resistance and Min ( ) is  
the minimum value of the resistance over the temperature range.  
[Max(Ri) Min(Ri)]  
10  
--------------------------------------------------------------- ----------------  
TC  
=
×
R
165°C  
[Max(Ri) + Min(Ri)] ⁄ 2  
+
19. This parameter is not 100% tested.  
2
20. t  
is the time from a valid STOP condition at the end of a Write sequence of I C serial interface, to the end of the self-timed internal non-volatile  
WC  
write cycle.  
21. Parts are 100% tested at +25°C. Temperature limits established by characterization and are not production tested.  
FN6422.1  
March 13, 2008  
8
ISL22323  
DCP Macro Model  
R
TOTAL  
RH  
RL  
C
L
C
H
C
W
10pF  
10pF  
25pF  
RW  
SDA vs SCL Timing  
t
sp  
t
t
t
t
R
F
HIGH  
LOW  
SCL  
t
SU:DAT  
t
t
t
SU:STO  
SU:STA  
HD:DAT  
t
HD:STA  
SDA  
(INPUT TIMING)  
t
t
t
BUF  
AA  
DH  
SDA  
(OUTPUT TIMING)  
A0, A1 and A2 Pin Timing  
STOP  
START  
SCL  
CLK 1  
SDA  
t
t
HD:A  
SU:A  
A0, A1, A2  
Typical Performance Curves  
80  
2.0  
1.5  
1.0  
0.5  
0
T = +125°C  
70  
60  
50  
40  
30  
20  
10  
0
T = +25°C  
I
CC  
-0.5  
-1.0  
-1.5  
-2.0  
I
V-  
T = -40°C  
0
50  
100  
150  
200  
250  
-40  
0
40  
TEMPERATURE (°C)  
80  
120  
TAP POSITION (DECIMAL)  
FIGURE 2. STANDBY I  
CC  
and I vs TEMPERATURE  
V-  
FIGURE 1. WIPER RESISTANCE vs TAP POSITION  
[ I(RW) = V /R ] FOR 10kΩ (W)  
CC TOTAL  
FN6422.1  
March 13, 2008  
9
ISL22323  
Typical Performance Curves (Continued)  
0.50  
0.50  
0.25  
0
V
= 5.5V  
CC  
T = +25°C  
T = +25°C  
V
= 2.25V  
CC  
0.25  
0
-0.25  
-0.50  
-0.25  
-0.50  
V
= 5.5V  
V
= 2.25V  
100  
CC  
100  
TAP POSITION (DECIMAL)  
CC  
0
50  
150  
200  
250  
0
50  
150  
200  
250  
TAP POSITION (DECIMAL)  
FIGURE 3. DNL vs TAP POSITION IN VOLTAGE DIVIDER  
FIGURE 4. INL vs TAP POSITION IN VOLTAGE DIVIDER  
MODE FOR 10kΩ (W)  
MODE FOR 10kΩ (W)  
2.0  
0
10k  
1.6  
1.2  
-1  
V
= 2.25V  
CC  
50k  
V
= 5.5V  
CC  
-2  
-3  
-4  
0.8  
50k  
10k  
V
= 2.25V  
V
= 5.5V  
CC  
CC  
0.4  
0
-5  
-40  
0
40  
80  
120  
-40  
0
40  
TEMPERATURE (ºC)  
80  
120  
TEMPERATURE (ºC)  
FIGURE 6. FS ERROR vs TEMPERATURE  
FIGURE 5. ZS ERROR vs TEMPERATURE  
2.0  
0.5  
0.25  
0
T = +25°C  
T = +25°C  
1.5  
1.0  
V
= 5.5V  
CC  
V
= 2.25V  
CC  
0.5  
0
-0.25  
-0.50  
V
= 2.25V  
100  
CC  
V
= 5.5V  
CC  
-0.5  
0
50  
100  
150  
200  
250  
0
50  
150  
200  
250  
TAP POSITION (DECIMAL)  
TAP POSITION (DECIMAL)  
FIGURE 8. INL vs TAP POSITION IN RHEOSTAT MODE FOR  
FIGURE 7. DNL vs TAP POSITION IN RHEOSTAT MODE FOR  
10kΩ (W)  
10kΩ (W)  
FN6422.1  
March 13, 2008  
10  
ISL22323  
Typical Performance Curves (Continued)  
200  
160  
120  
80  
1.60  
10k  
1.20  
10k  
0.80  
5.5V  
0.40  
0.00  
50k  
40  
50k  
2.25V  
0
-0.40  
16  
66  
116  
166  
216  
266  
-40  
0
40  
80  
120  
TAP POSITION (DECIMAL)  
TEMPERATURE (ºC)  
FIGURE 10. TC FOR VOLTAGE DIVIDER MODE IN ppm  
FIGURE 9. END TO END R  
% CHANGE vs  
TOTAL  
TEMPERATURE  
500  
400  
300  
INPUT  
OUTPUT  
10k  
200  
100  
50k  
WIPER AT MID POINT (POSITION 80h)  
R
= 10kΩ  
TOTAL  
0
16  
66  
116  
166  
216  
TAP POSITION (DECIMAL)  
FIGURE 11. TC FOR RHEOSTAT MODE IN ppm  
FIGURE 12. FREQUENCY RESPONSE (1MHz)  
CS  
SCL  
WIPER UNLOADED,  
WIPER  
MOVEMENT FROM 0h to FFh  
FIGURE 13. MIDSCALE GLITCH, CODE 7Fh TO 80h  
FIGURE 14. LARGE SIGNAL SETTLING TIME  
FN6422.1  
March 13, 2008  
11  
ISL22323  
loaded into the corresponding WRi to set the wipers to their  
initial positions.  
Pin Description  
Potentiometers Pins  
RHI AND RLi  
DCP Description  
The DCP is implemented with a combination of resistor  
elements and CMOS switches. The physical ends of each  
DCP are equivalent to the fixed terminals of a mechanical  
potentiometer (RHi and RLi pins). The RWi pin of the DCP is  
connected to intermediate nodes, and is equivalent to the  
wiper terminal of a mechanical potentiometer. The position  
of the wiper terminal within the DCP is controlled by an 8-bit  
volatile Wiper Register (WRi). When the WRi of a DCP  
contains all zeroes (WRi[7:0]= 00h), its wiper terminal (RWi)  
is closest to its “Low” terminal (RLi). When the WRi register  
of a DCP contains all ones (WRi[7:0] = FFh), its wiper  
terminal (RWi) is closest to its “High” terminal (RHi). As the  
value of the WRi increases from all zeroes (0) to all ones  
(255 decimal), the wiper moves monotonically from the  
position closest to RLi to the position closest to RHi. At the  
same time, the resistance between RWi and RLi increases  
monotonically, while the resistance between RHi and RWi  
decreases monotonically.  
The high (RHi) and low (RLi) terminals of the ISL22323 are  
equivalent to the fixed terminals of a mechanical  
potentiometer. RHi and RLi are referenced to the relative  
position of the wiper and not the voltage potential on the  
terminals. With WRi set to 255 decimal, the wiper will be  
closest to RHi, and with the WRi set to 0, the wiper is closest  
to RLi.  
RWi  
RWi is the wiper terminal, and it is equivalent to the movable  
terminal of a mechanical potentiometer. The position of the  
wiper within the array is determined by the WRi register.  
Bus Interface Pins  
SERIAL DATA INPUT/OUTPUT (SDA)  
2
The SDA is a bidirectional serial data input/output pin for I C  
interface. It receives device address, operation code, wiper  
2
address and data from an I C external master device at the  
While the ISL22323 is being powered up, the WRi is reset to  
80h (128 decimal), which locates RWi roughly at the center  
between RLi and RHi. After the power supply voltage  
becomes large enough for reliable non-volatile memory  
reading, the WRi will be reloaded with the value stored in  
corresponding non-volatile Initial Value Register (IVRi).  
rising edge of the serial clock SCL, and it shifts out data after  
each falling edge of the serial clock.  
SDA requires an external pull-up resistor, since it is an open  
drain input/output.  
SERIAL CLOCK (SCL)  
2
This input is the serial clock of the I C serial interface. SCL  
The WRi and IVRi can be read or written to directly using the  
I C serial interface as described in the following sections.  
2
requires an external pull-up resistor.  
DEVICE ADDRESS (A2, A1, A0)  
Memory Description  
The address inputs are used to set the least significant 3 bits  
of the 7-bit I C interface slave address. A match in the slave  
The ISL22323 contains two non-volatile 8-bit Initial Value  
Register (IVRi), thirteen General Purpose non-volatile 8-bit  
registers and three volatile 8-bit registers: two Wiper Registers  
(WRi) and Access Control Register (ACR). Memory map of  
ISL22323 is in Table 1. The non-volatile registers (IVRi) at  
address 0 and 1, contain initial wiper position and volatile  
registers (WRi) contain current wiper position.  
2
address serial data stream must match with the Address  
input pins in order to initiate communication with the  
ISL22323. A maximum of eight ISL22323 devices may  
2
occupy the I C serial bus (See Table 3).  
Principles of Operation  
TABLE 1. MEMORY MAP  
The ISL22323 is an integrated circuit incorporating two  
DCPs with its associated registers, non-volatile memory and  
an I C serial interface providing direct communication  
between a host and the potentiometer and memory. The  
resistor arrays are comprised of individual resistors  
connected in a series. At either end of the array and  
between each resistor is an electronic switch that transfers  
the potential at that point to the wiper.  
ADDRESS  
(hex)  
10  
F
NON-VOLATILE  
VOLATILE  
2
N/A  
ACR  
Reserved  
E
General Purpose  
General Purpose  
General Purpose  
General Purpose  
General Purpose  
General Purpose  
General Purpose  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
D
C
The electronic switches on the device operate in a “make  
before break” mode when the wiper changes tap positions.  
B
A
When the device is powered down, the last value stored in  
IVRi will be maintained in the non-volatile memory. When  
power is restored, the contents of the IVRi are recalled and  
9
8
FN6422.1  
March 13, 2008  
12  
ISL22323  
TABLE 1. MEMORY MAP (Continued)  
transmit and receive operations. Therefore, the ISL22323  
operates as a slave device in all applications.  
ADDRESS  
(hex)  
NON-VOLATILE  
General Purpose  
General Purpose  
General Purpose  
General Purpose  
General Purpose  
General Purpose  
IVR1  
VOLATILE  
2
All communication over the I C interface is conducted by  
7
6
5
4
3
2
1
0
N/A  
N/A  
sending the MSB of each byte of data first.  
Protocol Conventions  
N/A  
Data states on the SDA line must change only during SCL  
LOW periods. SDA state changes during SCL HIGH are  
reserved for indicating START and STOP conditions (see  
Figure 16). On power-up of the ISL22323, the SDA pin is in  
the input mode.  
N/A  
N/A  
N/A  
WR1  
WR0  
2
All I C interface operations must begin with a START  
condition, which is a HIGH to LOW transition of SDA while  
SCL is HIGH. The ISL22323 continuously monitors the SDA  
and SCL lines for the START condition and does not  
respond to any command until this condition is met (see  
Figure 16). A START condition is ignored during the  
power-up of the device.  
IVR0  
The non-volatile IVRi and volatile WRi registers are  
accessible with the same address.  
The Access Control Register (ACR) contains information  
and control bits described in Table 2.  
2
All I C interface operations must be terminated by a STOP  
The VOL bit (ACR[7]) determines whether the access to  
wiper registers WRi or initial value registers IVRi.  
condition, which is a LOW to HIGH transition of SDA while  
SCL is HIGH (see Figure 16). A STOP condition at the end  
of a read operation, or at the end of a write operation places  
the device in its standby mode.  
TABLE 2. ACCESS CONTROL REGISTER (ACR)  
BIT #  
7
6
5
4
0
3
0
2
0
1
0
0
0
NAME  
VOL  
SHDN WIP  
An ACK (Acknowledge) is a software convention used to  
indicate a successful data transfer. The transmitting device,  
either master or slave, releases the SDA bus after  
transmitting eight bits. During the ninth clock cycle, the  
receiver pulls the SDA line LOW to acknowledge the  
reception of the eight bits of data (see Figure 17).  
If VOL bit is 0, the non-volatile IVRi registers are accessible.  
If VOL bit is 1, only the volatile WRi are accessible.  
Note: value is written to IVRi register also is written to the  
corresponding WRi. The default value of this bit is 0.  
The SHDN bit (ACR[6]) disables or enables Shut-down mode.  
When this bit is 0, DCPs are in Shut-down mode. Default value  
of the SHDN bit is 1.  
The ISL22323 responds with an ACK after recognition of a  
START condition followed by a valid Identification Byte, and  
once again after successful receipt of an Address Byte. The  
ISL22323 also responds with an ACK after receiving a Data  
Byte of a write operation. The master must respond with an  
ACK after receiving a Data Byte of a read operation  
RHi  
A valid Identification Byte contains 1010 as the four MSBs,  
and the following three bits matching the logic values  
present at pins A2, A1 and A0. The LSB is the Read/Write  
bit. Its value is “1” for a Read operation and “0” for a Write  
operation (See Table 3).  
RWi  
RLi  
FIGURE 15. DCP CONNECTION IN SHUT-DOWN MODE  
TABLE 3. IDENTIFICATION BYTE FORMAT  
The WIP bit (ACR[5]) is a read-only bit. It indicates that  
non-volatile write operation is in progress. It is impossible to  
write to the WRi or ACR while WIP bit is 1.  
LOGIC VALUES AT PINS A2, A1 AND A0, RESPECTIVELY  
2
1
0
1
0
A2  
A1  
A0  
R/W  
I C Serial Interface  
(MSB)  
(LSB)  
2
The ISL22323 supports an I C bidirectional bus oriented  
protocol. The protocol defines any device that sends data  
onto the bus as a transmitter and the receiving device as the  
receiver. The device controlling the transfer is a master and  
the device being controlled is the slave. The master always  
initiates data transfers and provides the clock for both  
FN6422.1  
March 13, 2008  
13  
ISL22323  
SCL  
SDA  
START  
DATA  
STABLE  
DATA  
CHANGE STABLE  
DATA  
STOP  
FIGURE 16. VALID DATA CHANGES, START AND STOP CONDITIONS  
SCL FROM  
MASTER  
1
8
9
SDA OUTPUT FROM  
TRANSMITTER  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
SDA OUTPUT FROM  
RECEIVER  
START  
ACK  
FIGURE 17. ACKNOWLEDGE RESPONSE FROM RECEIVER  
WRITE  
S
SIGNALS FROM  
THE MASTER  
T
A
R
T
S
T
O
P
IDENTIFICATION  
BYTE  
ADDRESS  
BYTE  
DATA  
BYTE  
SIGNAL AT SDA  
1 0 1 0 A2A1A0 0  
0 0 0 0  
SIGNALS FROM  
THE SLAVE  
A
C
K
A
C
K
A
C
K
FIGURE 18. BYTE WRITE SEQUENCE  
S
T
A
R
T
S
T
A
R
T
SIGNALS  
FROM THE  
MASTER  
S
T
O
P
A
C
K
A
C
K
IDENTIFICATION  
BYTE WITH  
R/W = 0  
IDENTIFICATION  
BYTE WITH  
R/W = 1  
A
C
K
ADDRESS  
BYTE  
SIGNAL AT SDA  
1 0 1 0 A2A1A0 0  
0 0 0 0  
1 0  
1
A2A1A0 1  
0
A
C
K
A
C
K
A
C
K
SIGNALS FROM  
THE SLAVE  
FIRST READ  
DATA BYTE  
LAST READ  
DATA BYTE  
FIGURE 19. READ SEQUENCE  
FN6422.1  
March 13, 2008  
14  
ISL22323  
Write Operation  
Applications Information  
A Write operation requires a START condition, followed by a  
valid Identification Byte, a valid Address Byte, a Data Byte,  
and a STOP condition. After each of the three bytes, the  
ISL22323 responds with an ACK. At this time, the device  
enters its standby state (See Figure 18).  
Wiper Transition  
When stepping up through each tap in voltage divider mode,  
some tap transition points can result in noticeable voltage  
transients (or overshoot/undershoot) resulting from the  
sudden transition from a very low impedance “make” to a  
much higher impedance “break within an extremely short  
period of time (<50ns). Two such code transitions are EFh to  
F0h, and 0Fh to 10h. Note that all switching transients will  
settle well within the settling time as stated on the datasheet.  
A small capacitor can be added externally to reduce the  
amplitude of these voltage transients, but that will also  
reduce the useful bandwidth of the circuit, thus this may not  
be a good solution for some applications. It may be a good  
idea, in that case, to use fast amplifiers in a signal chain for  
fast recovery.  
The non-volatile write cycle starts after STOP condition is  
determined and it requires up to 20ms delay for the next  
non-volatile write. Thus, non-volatile registers must be  
written individually.  
Read Operation  
A Read operation consist of a three byte instruction followed  
by one or more Data Bytes (See Figure 19). The master  
initiates the operation issuing the following sequence: a  
START, the Identification byte with the R/W bit set to “0”, an  
Address Byte, a second START, and a second Identification  
byte with the R/W bit set to “1”. After each of the three bytes,  
the ISL22323 responds with an ACK. Then the ISL22323  
transmits Data Bytes as long as the master responds with an  
ACK during the SCL cycle following the eighth bit of each  
byte. The Data Bytes are from the registers indicated by an  
internal pointer. This pointers initial value is determined by  
the Address Byte in the Read operation instruction, and  
increments by one during transmission of each Data Byte.  
After reaching the memory location 0Fh, the pointer “rolls  
over” to 00h, and the device continues to output data for  
each ACK received.The master terminates the read  
Application Example  
Figure 20 shows an example of using ISL22323 for gain  
setting and offset correction in high side current  
measurement application. DCP0 applies a programmable  
offset voltage of ±25mV to the FB+ pin of the Instrumentation  
Amplifier EL8173 to adjust output offset to zero voltages.  
DCP1 programs the gain of the EL8173 from 90 to 110 with  
5V output for 10A current through current sense resistor.  
More application examples can be found at:  
http://www.intersil.com/data/an/AN1145.pdf  
operation issuing a NACK (ACK) and a STOP condition  
following the last bit of the last Data Byte (See Figure 19).  
FN6422.1  
March 13, 2008  
15  
ISL22323  
1.2V  
DC/DC CONVERTER  
OUTPUT  
PROCESSOR LOAD  
10A, MAX  
0.005Ω  
+5V  
10k  
10k  
0.1µF  
8
EL8173IS  
1
V +  
S
3
2
7
5
IN+  
IN-  
EN  
6
V
V
= 0V TO +5V to ADC  
OUT  
OUT  
FB+  
+5V  
R
4
FB-  
V -  
S
150k, 1%  
R
1
4
50k, 1%  
RH1  
RL1  
RH0  
RW1  
R
5
309, 1%  
R
2
1k, 1%  
RW0  
RL0  
50k  
50k  
DCP0 (1/2 ISL22323U)  
PROGRAMMABLE OFFSET ±25mV  
DCP1 (1/2 ISL22323U)  
PROGRAMMABLE GAIN 90 TO 110  
R
6
R
3
1.37k, 1%  
50k, 1%  
-5V  
ISL22323UFV14Z  
14  
1
2
3
+5V  
I C BUS  
VCC  
RH0  
RL0  
RW0  
DCP0  
DCP1  
10  
9
7
12  
13  
2
SCL  
SDA  
A2  
A1  
A0  
4
5
6
RH1  
RL1  
RW1  
11  
8
GND  
-5V  
V-  
FIGURE 20. CURRENT SENSING WITH GAIN AND OFFSET CONTROL  
FN6422.1  
March 13, 2008  
16  
ISL22323  
Quad Flat No-Lead Plastic Package (QFN)  
Micro Lead Frame Plastic Package (MLFP)  
L16.4x4A  
16 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
(COMPLIANT TO JEDEC MO-220-VGGD-10)  
MILLIMETERS  
SYMBOL  
MIN  
NOMINAL  
MAX  
1.00  
0.05  
1.00  
NOTES  
A
A1  
A2  
A3  
b
0.80  
0.90  
-
-
-
-
-
-
9
0.20 REF  
9
0.18  
2.30  
2.30  
0.25  
0.30  
2.55  
2.55  
5, 8  
D
4.00 BSC  
-
D1  
D2  
E
3.75 BSC  
9
2.40  
7, 8  
4.00 BSC  
-
E1  
E2  
e
3.75 BSC  
9
2.40  
7, 8  
0.50 BSC  
-
k
0.25  
0.30  
-
-
-
-
L
0.40  
0.50  
0.15  
8
L1  
N
-
16  
4
4
-
10  
2
Nd  
Ne  
P
3
3
-
-
0.60  
12  
9
θ
-
9
Rev. 2 3/06  
NOTES:  
1. Dimensioning and tolerancing conform to ASME Y14.5-1994.  
2. N is the number of terminals.  
3. Nd and Ne refer to the number of terminals on each D and E.  
4. All dimensions are in millimeters. Angles are in degrees.  
5. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
6. The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
7. Dimensions D2 and E2 are for the exposed pads which provide  
improved electrical and thermal performance.  
8. Nominal dimensions are provided to assist with PCB Land  
Pattern Design efforts, see Intersil Technical Brief TB389.  
9. Features and dimensions A2, A3, D1, E1, P & θ are present when  
Anvil singulation method is used and not present for saw  
singulation.  
10. Depending on the method of lead termination at the edge of the  
package, a maximum 0.15mm pull back (L1) maybe present.  
L minus L1 to be equal to or greater than 0.3mm.  
FN6422.1  
March 13, 2008  
17  
ISL22323  
Thin Shrink Small Outline Plastic Packages (TSSOP)  
N
M14.173  
INDEX  
AREA  
0.25(0.010)  
M
B M  
E
14 LEAD THIN SHRINK SMALL OUTLINE PLASTIC  
PACKAGE  
E1  
-B-  
GAUGE  
PLANE  
INCHES  
MIN  
MILLIMETERS  
SYMBOL  
MAX  
0.047  
0.006  
0.041  
0.0118  
0.0079  
0.199  
0.177  
MIN  
-
MAX  
1.20  
0.15  
1.05  
0.30  
0.20  
5.05  
4.50  
NOTES  
1
2
3
A
A1  
A2  
b
-
-
L
0.002  
0.031  
0.0075  
0.0035  
0.195  
0.169  
0.05  
0.80  
0.19  
0.09  
4.95  
4.30  
-
0.25  
0.010  
0.05(0.002)  
SEATING PLANE  
A
-
-A-  
D
9
c
-
-C-  
α
D
3
A2  
e
A1  
E1  
e
4
c
b
0.10(0.004)  
0.026 BSC  
0.65 BSC  
-
0.10(0.004) M  
C
A M B S  
E
0.246  
0.256  
6.25  
0.45  
6.50  
0.75  
-
L
0.0177  
0.0295  
6
NOTES:  
N
14  
14  
7
1. These package dimensions are within allowable dimensions of  
JEDEC MO-153-AC, Issue E.  
o
o
o
o
0
8
0
8
-
α
Rev. 2 4/06  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm  
(0.006 inch) per side.  
4. Dimension “E1” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.15mm (0.006 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. Dimension “b” does not include dambar protrusion. Allowable dambar  
protrusion shall be 0.08mm (0.003 inch) total in excess of “b” dimen-  
sion at maximum material condition. Minimum space between protru-  
sion and adjacent lead is 0.07mm (0.0027 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact. (Angles in degrees)  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6422.1  
March 13, 2008  
18  

相关型号:

ISL22323UFV14Z

Dual Digitally Controlled Potentiometer XDCP
INTERSIL

ISL22323UFV14Z

Dual Digitally Controlled Potentiometer (XDCP&trade;), Low Noise, Low Power, I2C&reg; Bus, 256 Taps; QFN16, TSSOP14; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL22323WFR16Z

Dual Digitally Controlled Potentiometer XDCP
INTERSIL

ISL22323WFR16Z

Dual Digitally Controlled Potentiometer (XDCP&trade;), Low Noise, Low Power, I2C&reg; Bus, 256 Taps; QFN16, TSSOP14; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL22323WFV14Z

Dual Digitally Controlled Potentiometer XDCP
INTERSIL

ISL22323WFV14Z

Dual Digitally Controlled Potentiometer (XDCP&trade;), Low Noise, Low Power, I2C&reg; Bus, 256 Taps; QFN16, TSSOP14; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL22323WFV14Z-TK

Dual Digitally Controlled Potentiometer (XDCP&trade;), Low Noise, Low Power, I2C&reg; Bus, 256 Taps; QFN16, TSSOP14; Temp Range: -40&deg; to 125&deg;C
RENESAS

ISL22326

Dual Digitally Controlled Potentiometers
INTERSIL

ISL22326

Dual Digitally Controlled Potentiometers (XDCP™) Low Noise, Low Power, I2C™ Bus, 128 Taps
RENESAS

ISL22326UFR16Z

Low Noise, Low Power, I2C™ Bus, 128 Taps
INTERSIL

ISL22326UFR16Z

Dual Digitally Controlled Potentiometers (XDCP™) Low Noise, Low Power, I2C™ Bus, 128 Taps
RENESAS

ISL22326UFR16Z-TK

Dual Digitally Controlled Potentiometers (XDCP&trade;), Low Noise, Low Power, I2C&trade; Bus, 128 Taps; QFN16, TSSOP14; Temp Range: -40&deg; to 125&deg;C
RENESAS