ICL7129_00 [INTERSIL]

4 Digit LCD, Single-Chip A/D Converter; 4数字LCD ,单芯片A / D转换器
ICL7129_00
型号: ICL7129_00
厂家: Intersil    Intersil
描述:

4 Digit LCD, Single-Chip A/D Converter
4数字LCD ,单芯片A / D转换器

转换器 CD
文件: 总10页 (文件大小:728K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
ICL7129  
1
4 / Digit LCD,  
2
July 2000  
Single-Chip A/D Converter  
Features  
Description  
1
±19,999 Count A/D Converter Accurate to ±4 Count  
• 10µV Resolution on 200mV Scale  
• 110dB CMRR  
• Direct LCD Display Drive  
• True Differential Input and Reference  
• Low Power Consumption  
The Intersil ICL7129 is a very high performance 4 / -digit,  
2
analog-to-digital converter that directly drives a multiplexed  
liquid crystal display. This single chip CMOS integrated  
circuit requires only a few passive components and a  
reference to operate. It is ideal for high resolution hand-held  
digital multimeter applications.  
• Decimal Point Drive Outputs  
• Overrange and Underrange Outputs  
• Low Battery Detection and Indication  
• 10:1 Range Change Input  
The performance of the ICL7129 has not been equaled  
before in a single chip A/D converter. The successive integra-  
tion technique used in the ICL7129 results in accuracy better  
than 0.005% of full scale and resolution down to 10µV/count.  
The ICL7129, drawing only 1mA from a 9V battery, is well  
suited for battery powered instruments. Provision has been  
made for the detection and indication of a “LOW/BATTERY”  
condition. Autoranging instruments can be made with the  
ICL7129 which provides overrange and underrange outputs  
and 10:1 range changing input. The ICL7129 instantly checks  
for continuity, giving both a visual indication and a logic level  
output which can enable an external audible transducer. These  
features and the high performance of the ICL7129 make it an  
extremely versatile and accurate instrument-on-a-chip.  
Ordering Information  
TEMP.  
o
PART NUMBER RANGE ( C)  
PACKAGE  
40 Ld PDIP  
40 Ld PDIP  
44 Ld MQFP  
PKG. NO.  
E40.6  
ICL7129CPL  
ICL7129RCPL  
ICL7129CM44  
0 to 70  
0 to 70  
0 to 70  
E40.6  
Q44.10x10  
NOTE: “R” indicates device with reversed leads.  
Pinouts  
ICL7129 (PDIP)  
ICL7129 (MQFP)  
TOP VIEW  
TOP VIEW  
1
2
40 OSC2  
OSC1  
OSC3  
39 DP  
1
ANNUNCIATOR  
3
38 DP  
2
DRIVE  
4
37 RANGE  
36 DGND  
35 REF LO  
B , C , CONT  
1
1
5
A , G , D  
1
1
1
1
44 43 42 41 40 39 38 37 36 35 34  
6
F , E , DP  
1
1
1
2
3
4
5
6
7
8
9
V+  
V-  
DGND  
33  
32  
31  
30  
29  
REF HI  
34  
7
B , C , LO BAT  
2
2
RANGE  
8
33 IN HI  
32 IN LO  
31 BUFF  
A , G , D  
2
2
2
2
NC  
DP  
DP  
2
9
F , E , DP  
2
2
NC  
LATCH/  
HOLD  
1
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
B , C , MINUS  
3
3
OSC 2  
OSC 1  
OSC 3  
NC  
30  
29  
C
C
A , G , D  
REF-  
3
3
3
3
5
4
28  
27  
26  
25  
24  
23  
DP /UR  
3
F , E , DP  
REF+  
3
3
DP /OR  
4
28 COMMON  
B , C , BC  
4
4
V
DISP  
27 CONTINUITY  
26 INT OUT  
25 INT IN  
A , D , G  
4
4
NC  
BP1  
BP2  
BP3  
F , E , DP  
4
4
4
ANNUNCE  
DRIVE  
B , C , CONT  
10  
11  
BP3  
1
1
12 13 14 15 16 17 18 19 20 21 22  
24 V+  
BP2  
BP1  
23 V-  
22 LATCH/HOLD  
V
DISP  
21 DP /UR  
3
DP /OR  
4
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2002. All Rights Reserved  
File Number 3085.2  
1
ICL7129  
Functional Block Diagram  
LOW BATTERY CONTINUITY  
BACKPLANE  
DRIVES  
SEGMENT DRIVES  
ANNUNCIATOR DRIVE  
LATCH, DECODE DISPLAY MULTIPLEXER  
V
DISP  
OSC1  
OSC2  
OSC3  
UP/DOWN RESULTS COUNTER  
SEQUENCE COUNTER/DECODER  
CONTROL LOGIC  
ANALOG SECTION  
RANGE L/H CONT  
V+  
V-  
DGND  
OR  
DP  
UR DP  
DP  
2
1
DP  
3
3
Typical Application Schematic  
LOW BATTERY CONTINUITY  
V+  
5pF  
(MICA)  
120kHz  
ICL7129  
270K  
560pF  
(MICA)  
10pF  
1.2kΩ  
V+  
+
0.1µF  
20K  
1.0µF  
6.8µF  
0.1µF  
150kΩ  
10kΩ  
+
ICL8069  
100kΩ  
9V  
+
-
-
V
IN  
2
ICL7129  
Absolute Maximum Ratings  
Thermal Information  
o
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15V  
Reference Voltage (REF HI or REF LO) . . . . . . . . . . . . . . . V+ to V-  
Input Voltage (Note 1), IN HI or IN LO . . . . . . . . . . . . . . . . . V+ to V-  
Thermal Resistance (Typical, Note 2)  
θ
( C/W)  
JA  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature. . . . . . . . . . . . . . . . . . . . . .150 C  
Maximum Storage Temperature Range . . . . . . . . . .-65 C to 150 C  
Maximum Lead Temperature (Soldering 10s). . . . . . . . . . . . . 300 C  
50  
80  
o
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .DGND -0.3V to V+  
DISP  
o
o
o
Digital Input Pins  
1, 2, 19, 20, 21, 22, 27, 37, 38, 39, 40 . . . . . . . . . . . . .DGND to V+  
(MQFP - Lead Tips Only)  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Input voltages may exceed the supply voltages provided that input current is limited to 1400mA. Currents above this value may result in  
valid display readings but will not destroy the device if limited to ±1mA.  
2. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
o
Electrical Specifications V- to V+ = 9V, V  
= 1.00V, T = 25 C, f  
= 120kHz, Unless Otherwise Specified  
REF  
A
CLK  
PARAMETER  
Zero Input Reading  
TEST CONDITIONS  
= 0V, 200mV Scale  
MIN  
-0000  
-
TYP  
0000  
±0.5  
MAX  
+0000  
-
UNITS  
V
Counts  
IN  
IN  
IN  
IN  
o
o
o
Zero Reading Drift  
V
V
V
= 0V, 0 C To 70 C  
= V = 1000mV, RANGE = 2V  
µV/ C  
Ratiometric Reading  
9996  
0.9999  
9999  
1.0000  
10000  
1.0001  
Counts  
Ratio  
REF  
= 0.10000V on Low,  
Range Change Accuracy  
Range V = 1.0000V on High Range  
IN  
Rollover Error  
-V = +V = 199mV  
IN IN  
-
-
-
-
1.5  
1.0  
110  
3.0  
Counts  
Counts  
dB  
Linearity Error  
200mV Scale  
-
-
-
Input Common-Mode Rejection Ratio  
Input Common-Mode Voltage Range  
V
V
= 1V,V = 0V, 200mV Scale  
IN  
CM  
= 0V, 200mV Scale  
(V-) +1.5  
(V+) -1.0  
V
IN  
Noise (Peak-To-Peak Value not Exceeded 95% of  
Time)  
V
= 0V 200mV Scale  
-
14  
-
µV  
IN  
Input Leakage Current  
Scale Factor Tempco  
V
V
= 0V, Pin 32, 33  
o
-
-
1
2
10  
7
pA  
IN  
o
o
o
= 199mV 0 C To 70 C  
ppm/ C  
IN  
External V  
= 0ppm/ C  
REF  
COMMON Voltage  
V+ to Pin 28  
2.8  
3.2  
0.6  
10  
3.5  
V
mA  
µA  
V
COMMON Sink Current  
COMMON Source Current  
DGND VoItage  
Common = + 0.1V  
Common = -0.1V  
V+ to Pin 36, V+ to V- = 9V  
DGND = +0.5V  
V+ to V- (Note 3)  
V+ to V- = 9V  
-
-
-
-
4.5  
5.3  
1.2  
9
5.8  
-
DGND Sink Current  
-
mA  
V
Supply Voltage Range  
Supply Current Excluding COMMON Current  
Clock Frequency  
6
12  
1.5  
360  
-
-
1.0  
120  
50  
mA  
kHz  
kΩ  
V
(Note 3)  
-
V
Resistance  
V
to V+  
-
DISP  
DISP  
Low Battery Flag Activation Voltage  
V+ to V-  
6.3  
7.2  
200  
200  
2
7.7  
-
CONTINUITY Comparator Threshold Voltages  
V
V
Pin 27 = HI  
Pin 27 = LO  
100  
mV  
mV  
µA  
µA  
µA  
µA  
µA  
OUT  
-
-
-
-
-
-
400  
10  
-
OUT  
Pull-Down Current  
Pins 37, 38, 39  
“Weak Output” Current Sink/Source  
Pins 20, 21 Sink/Source  
Pin 27 Sink/Source  
3/3  
3/9  
40  
-
Pin 22 Source Current  
Pin 22 Sink Current  
-
3
-
3
ICL7129  
o
Electrical Specifications V- to V+ = 9V, V  
= 1.00V, T = 25 C, f  
= 120kHz, Unless Otherwise Specified  
CLK  
REF  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTE:  
3. Device functionality is guaranteed at the stated Min/Max limits. However, accuracy can degrade under these conditions.  
Pin Descriptions  
PIN  
1
SYMBOL  
DESCRIPTION  
Input to first clock inverter.  
Output of second clock inverter.  
PIN  
SYMBOL  
DESCRIPTION  
OSC  
OSC  
22  
LATCH/HOLD  
INPUT: When floating, A/D converter  
operates in the free-run mode. When  
pulled HI, the last displayed reading is  
held. When pulled LO, the result  
1
3
2
3
ANNUNCIATOR Backplane squarewave output for  
counter  
contents  
are  
shown  
DRIVE  
driving annunciators.  
incrementing during the de-integrate  
phase of cycle.  
4
B , C , CONT  
Output to display segments.  
Output to display segments.  
Output to display segments.  
1
1
OUTPUT: Negative going edge  
occurs when the data latches are  
updated. Can be used for converter  
status signal.  
5
A , G , D  
1 1 1  
6
F , E , DP  
1 1 1  
23  
24  
V-  
Negative power supply terminal.  
7
B , C , LO BATT Output to display segments.  
2 2  
V+  
Positive power supply terminal, and  
positive rail for display drivers.  
8
A , G , D  
2
Output to display segments.  
Output to display segments.  
2
2
9
F , E , DP  
2 2 2  
25  
26  
27  
INT IN  
INT OUT  
Input to integrator amplifier.  
Output of integrator amplifier.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
B , C , MINUS Output to display segments.  
3 3  
A , G , D  
3
Output to display segments.  
Output to display segments.  
Output to display segments.  
Output to display segments.  
Output to display segments.  
Backplane #3 output to display.  
Backplane #2 output to display.  
Backplane #1 output to display.  
Negative rail for display drivers.  
3
3
CONTINUITY  
INPUT: When LO, continuity flag on  
the display is off. When HI,  
continuity flag is on.  
F , E , DP  
3
3
3
B , C , BC  
4
4
5
OUTPUT: HI when voltage between  
inputs is less than +200mV. LO  
when voltage between inputs is  
more than +200mV.  
A , D , G  
4
4
4
F , E , DP  
4
4
4
28  
COMMON  
Sets common-mode voltage of 3.2V  
below V+ for DE, 10X, etc., Can be  
used as pre-regulator for external  
reference.  
BP  
3
2
1
BP  
BP  
29  
30  
C
+
Positive side of external reference  
capacitor.  
REF  
V
DlSP  
C
-
Negative side of external reference  
capacitor.  
REF  
DP /OR  
INPUT: When HI, turns on most  
significant decimal point.  
4
31  
32  
33  
34  
BUFFER  
IN LO  
Output of buffer amplifier.  
OUTPUT: Pulled HI when result  
count exceeds ±19,999.  
Negative input voltage terminal.  
Positive input voltage terminal.  
21  
DP /UR  
INPUT: Second most significant  
decimal point on when HI.  
3
IN HI  
OUTPUT: Pulled HI when result  
count is less than ±1,000.  
REF HI  
Positive reference voltage input  
terminal.  
35  
36  
REF LO  
DGND  
Negative reference voltage input  
terminal.  
Ground reference for digital section.  
4
ICL7129  
PIN  
SYMBOL  
DESCRIPTION  
PIN  
SYMBOL  
DP  
DESCRIPTION  
37  
RANGE  
3µA pull-down for 200mV scale.  
39  
Internal 3µA pull-down. When HI,  
1
Pulled HIGH externally for 2V scale.  
decimal point 1 will be on.  
38  
DP  
Internal 3µA pull-down. When HI,  
decimal point 2 will be on.  
40  
OSC2  
Output of first clock inverter. Input of  
second clock inverter.  
2
C
R
C
INT  
REF  
REF LO  
INT  
REF HI  
BUFFER  
INT, IN  
INT OUT  
DE DE  
X10  
COMPARATOR 1  
10  
INT  
-
1
-
+
+
+
IN HI  
+
TO DIGITAL  
SECTION  
-
Detailed Descripion  
-
DE-  
DE+  
INT , INT  
DE+  
DE-  
BUFFER  
Z1, X10  
100  
INTEGRATOR  
COMPARATOR 2  
COMMON  
IN LO  
1
2
REST, INT  
INT  
2
FIGURE 1. ANALOG BLOCK DIAGRAM  
DE  
ZERO-INTEGRATE  
AND LATCH  
INT  
1
1
INTEGRATE  
DE-INTEGRATE REST X10 DE REST X10  
2
DE ZERO-INTEGRATE  
3
INTEGRATOR  
RESIDUE  
VOLTAGE  
NOTE: Shaded area greatly expanded  
in time and amplitude.  
1000 CLOCKS  
2000  
CLOCKS  
1000 CLOCKS  
10,000 CLOCKS  
FIGURE 2. INTEGRATOR WAVEFORM FOR NEGATIVE INPUT VOLTAGE SHOWING SUCCESSIVE INTEGRATION PHASES AND  
RESIDUE VOLTAGE  
COMMON, DGND, and “Low Battery”  
capability of the DGND pin. If more supply current is  
required, the buffer in Figure 5 can be used to keep the load-  
ing on DGND to a minimum. COMMON can source approxi-  
The COMMON and DGND (Digital GrouND) outputs of the  
ICL7129 are generated from internal zener diodes  
(Figure 3). COMMON is included primarily to set the com-  
mon-mode voltage for battery operation or for any system  
where the input signals float with respect to the power sup-  
plies. It also functions as a pre-regulator for an external pre-  
cision reference voltage source. The voltage between  
DGND and V+ is the supply voltage for the logic section of  
the ICL7129 including the display multiplexer and drivers.  
Both COMMON and DGND are capable of sinking current  
from external loads, but caution should be taken to ensure  
that these outputs are not overloaded. Figure 4 shows the  
connection of external logic circuitry to the ICL7129. This  
connection will work providing that the supply current  
requirements of the logic do not exceed the current sink  
5
ICL7129  
mately 12mA while DGND has no source capability.  
not desired in an application it can easily be overridden by  
connecting the pin to V+ (HI) or DGND (LO). This connection  
will not damage the device because the output impedance of  
these pins is quite high. A simplified schematic of these  
input/output pins is shown in Figure 6. Since there is approx-  
imately 500kin series with the output driver, the pin (when  
used as an output) can only drive very light loads such as  
4000 series, 74CXX type CMOS logic, or other high input  
impedance devices. The output drive capability of these four  
pins is limited to 3µA, nominally, and the input switching  
threshold is typically DGND + 2V.  
24  
V+  
3.2V  
28  
COMMON  
5V  
-
N
+
LOGIC  
SECTION  
“LOW  
BATTERY”  
36  
P
DGND  
N
23  
V-  
500kΩ  
DP4/OR PIN 20  
DP3/UR PIN 21  
FIGURE 3. BIASING STRUCTURE FOR COMMON AND DGND  
LATCH/HOLD PIN 22  
CONTINUITY PIN 27  
ICL7129  
V+  
24  
FIGURE 6. “WEAK OUTPUT”  
LATCH/HOLD, Overrange, and Underrange Timing  
EXTERNAL  
LOGIC  
The LATCH/HOLD output (pin 22) will be pulled low during  
the last 100 clock cycles of each full conversion cycle. Dur-  
ing this time the final data from the ICL7129 counter is  
latched and transferred to the display decoder and multi-  
plexer. The conversion cycle and LATCH/HOLD timing are  
directly related to the clock frequency. A full conversion  
cycle takes 30,000 clock cycles which is equivalent to  
60,000 oscillator cycles. OverRange (OR pin 20) and Under-  
Range (UR pin 21) outputs are latched on the falling edge of  
LATCH/HOLD and remain in that state until the end of the  
next conversion cycle. In addition, digits 1 through 4 are  
blanked during overrange. All three of these pins are “weak  
outputs” and can be overridden with external drivers or pull-  
up resistors to enable their input functions as described in  
the Pin Description table.  
ICL7129  
36  
DGND  
I
LOGIC  
23  
V-  
FIGURE 4. DGND SINK CURRENT  
V+  
24  
EXTERNAL  
LOGIC  
ICL7129  
EXTERNAL  
LOGIC  
CURRENT  
-
36  
+
Instant Continuity  
DGND  
A comparator with a built-in 200mV offset is connected  
directly between INPUT HI and INPUT LO of the ICL7129  
(Figure 7). The CONTINUITY output (pin 27) will be pulled  
high whenever the voltage between the analog inputs is less  
than 200mV. This will also turn on the “CONTINUITY”  
annunciator on the display. The CONTINUITY output may  
be used to enable an external alarm or buzzer, thereby giv-  
23  
V-  
FIGURE 5. BUFFERED DGND  
The “LOW BATTERY” annunciator of the display is turned  
on when the voltage between V+ and V- drops below 7.2V  
typically. The exact point at which this occurs is determined  
by the 6.3V zener diode and the threshold voltage of the  
N-Channel transistor connected to the V- rail in Figure 3. As  
the supply voltage decreases, the N-Channel transistor  
connected to the V-rail eventually turns off and the “LOW  
BATTERY” input to the logic section is pulled HIGH, turning  
on the “LOW BATTERY” annunciator.  
I/O Ports  
Four pins of the ICL7129 can be used as either inputs or out-  
puts. The specific pin numbers and functions are described  
in the Pin Description table. If the output function of the pin is  
6
ICL7129  
ing the ICL7129 an audible continuity checking capability.  
display. This type of display has three backplanes and is driven  
in a multiplexed format similar to the ICM7231 display driver  
family. The specific display format is shown in Figure 8. Notice  
that the polarity sign, decimal points, “LOW BATTERY”, and  
“CONTINUITY” annunciators are directly driven by the  
ICL7129. The individual segments and annunciators are  
addressed in a manner similar to row-column addressing. Each  
backplane (row) is connected to one-third of the total number of  
segments. BP1 has all F, A, and B segments of the four least  
significant digits. BP2 has all of the C, E, and G segments. BP3  
has all D segments, decimal points, and annunciators. The  
segment lines (columns) are connected in groups of three  
bringing all segments of the display out on just 12 lines.  
-
+
IN HI  
BUFFER  
COMMON  
IN LO  
500kΩ  
Annunciator Drive  
200mV  
-
-
+
+
V
A special display driver output is provided on the ICL7129  
which is intended to drive various kinds of annunciators on  
custom multiplexed liquid crystal displays. The ANNUNClA-  
TOR DRIVE output (pin 3) is a squarewave signal running at  
the backplane frequency, approximately 100Hz. This signal  
TO DISPLAY  
DRIVER  
(NOT LATCHED)  
CONTINUITY  
FIGURE 7. “INSTANT CONTINUITY” COMPARATOR AND  
OUTPUT STRUCTURE  
swings from V  
to V+ and is in sync with the three back-  
DISP  
plane outputs BP1, BP2, and BP3. Figure 9 shows these  
four outputs on the same time and voltage scales.  
Since the CONTINUITY output is one of the four “weak out-  
puts” of the ICL7129, the “continuity” annunciator on the dis-  
play can be driven by an external source if desired. The  
continuity function can be overridden with a pull-down resistor  
connected between CONTINUITY pin and DGND (pin 36).  
Any annunciator associated with any of the three backplanes  
can be turned on simply by connecting it to the ANNUNClA-  
TOR DRIVE pin. To turn an annunciator off connect if to its  
backplane. An example of a display and annunciator drive  
scheme is shown in Figure 10.  
Display Configuration  
The ICL7129 is designed to drive a triplexed liquid crystal  
LOW BATTERY CONTINUITY  
a
a
a
a
f
f
f
f
f
b
b
b
b
BP1  
BP2  
BACKPLANE  
CONNECTIONS  
g
g
g
g
c
e
e
e
e
c
c
c
c
e
d
d
d
d
BP3  
LOW BATTERY CONTINUITY  
a
a
a
a
f
f
f
f
f
b
b
b
b
g
g
g
g
c
e
e
e
e
c
c
c
c
e
d
d
d
d
F4, E4, DP4  
A4, G4, D4  
B1, C1, CONTINUITY  
A1, G1, D1  
B4, C4, BC5  
F3, E3, DP3  
A3, G3, D3  
F1, E1, DP1  
B2, C2, LOW BATTERY  
A2, G2, D2  
B3, C3, MINUS  
F2, E2, DP2  
FIGURE 8. TRIPLEXED LIQUID CRYSTAL DISPLAY LAYOUT FOR ICL7129  
7
ICL7129  
compensation will depend upon the type of liquid crystal used.  
Display manufacturers can supply the temperature compen-  
sation requirements for their displays. Figure 11 shows two  
BP1  
BP2  
circuits that can be adjusted to give a temperature compensa-  
o
tion of +10mV/ C between V+ and V  
. The diode  
DISP  
between DGND and V  
should have a low turn-on voltage  
DISP  
to assure that no forward current is injected into the chip if  
is more negative than DGND.  
V
DISP  
Component Selection  
BP3  
There are only three passive components around the  
ICL7129 that need special consideration in selection. They  
are the reference capacitor, integrator resistor, and integra-  
tor capacitor. There is no auto-zero capacitor like that found  
in earlier integrating A/D converter designs.  
ON SEG.  
The integrating resistor is selected to be high enough to  
assure good current Iinearity from the buffer amplifier and  
integrator and low enough that PC board leakage is not a  
problem. A value of 150kshould be optimum for most appli-  
cations. The integrator capacitor is selected to give an opti-  
mum integrator swing at full-scale. A large integrator swing  
will reduce the effect of noise sources in the comparator but  
will affect rollover error if the swing gets too close to the posi-  
tive rail (0.7V). This gives an optimum swing of 2.5V at full-  
scale. For a 150kintegrating resistor and 2 conversions per  
second the value is 0.1µF. For different conversion rates, the  
value will change in inverse proportion. A second requirement  
for good linearity is that the capacitor have low dielectric  
absorption. Polypropylene caps give good performance at a  
reasonable price. Finally the foil side of the cap should be  
connected to the integrator output to shield against pickup.  
FIGURE 9. TYPICAL BACKPLANE AND ANNUNCIATOR  
DRIVE WAVEFORM  
ANNUNCIATOR  
µ
m
K
M
LOW BATTERY CONTINUITY  
BACKPLANE  
ANNUNCIATOR  
AMPS  
VOLTS  
BACKPLANE  
The only requirement for the reference cap is that it be low  
leakage. In order to reduce the effects of stray capacitance,  
a 1µF value is recommended.  
FIGURE 10. MULTIMETER EXAMPLE SHOWING USE OF  
ANNUNCIATOR DRIVE OUTPUT  
Display Temperature Compensation  
Clock Oscillator  
For most applications an adequate display can be obtained by  
The ICL7129 achieves its digital range changing by integrat-  
ing the input signal for 1000 clock pulses (2,000 oscillator  
cycles) on the 2V scale and 10,000 clock pulses on the  
200mV scale. To achieve complete rejection of 60Hz on  
both scales, an oscillator frequency of 120kHz is required,  
giving two conversions per second.  
connecting V  
(pin 19) to DGND (pin 36). In applications  
DlSP  
where a wide temperature range is encountered, the voltage  
drive levels for some triplexed liquid crystal displays may need  
to vary with temperature in order to maintain good display  
contrast and viewing angle. The amount of temperature  
V+  
V+  
1N4148  
39K  
39K  
24  
24  
200K  
2N2222  
20K  
ICL7611  
19  
36  
19  
36  
-
V
V
DISP  
DISP  
ICL7129  
DGND  
+
5K  
ICL7129  
DGND  
75K  
18K  
23  
V-  
23  
V-  
FIGURE 11. TWO METHODS FOR TEMPERATURE COMPENSATING THE LIQUID CRYSTAL DISPLAY  
8
ICL7129  
In low resolution applications, where the converter uses only It is important to notice that in Figure 13, digital ground of the  
1
3 / digits and 100µV resolution, an R-C type oscillator is ade- ICL7129 (DGND pin 36) is not directly connected to power  
2
quate. In this application a C of 51pF is recommended and the supply ground. DGND is set internally to approximately 5V  
resistor value selected from f  
= 0.45/RC. However, when less than the V+ terminal and is not intended to be used as a  
OSC  
1
the converter is used to its full potential (4 / digits and 10µV power input pin. It may be used as the ground reference for  
2
resolution) a crystal oscillator is recommended to prevent the external logic, as shown in Figure 4 and 5. In Figure 4, DGND  
noise from increasing as the input signal is increased due to fre- is used as the negative supply rail for external logic provided  
quency jitter of the R-C oscillator. Both R-C and crystal oscilla- that the supply current for the external logic does not cause  
tor circuits are shown in Figure 12.  
excessive loading on DGND. The DGND output can be buff-  
ered as shown in Figure 5. Here, the logic supply current is  
shunted away from the ICL7129 keeping the load on DGND  
low. This treatment of the DGND output is necessary to insure  
compatibility when the external logic is used to interface  
directly with the logic inputs and outputs of the ICL7129.  
ICL7129  
1
1
40  
40  
2
75kΩ  
When a battery voltage between 3.8V and 6V is desired for  
operation, a voltage doubling circuit should be used to bring  
the voltage on the ICL7129 up to a level within the power sup-  
ply voltage range. This operating mode is shown in Figure 14.  
51pF  
ICL7129  
2
24  
V+  
CRYSTAL MODE:  
PARALLEL  
27kΩ  
120kHz  
34  
5pF  
10pF  
REF HI  
R
C
C
< 50kΩ  
< 12pF  
< 5pF  
S
L
O
V-  
V+  
35  
REF LO  
ICL7129  
COM  
+
3.8V TO  
6V  
FIGURE 12. RC AND CRYSTAL OSCILLATOR CIRCUITS  
Powering the ICL7129  
28  
33  
36  
DGND  
-
8
IN HI  
+
2
The ICL7129 may be operated as a battery powered hand-held  
instrument or integrated into larger systems that have more  
sophisticated power supplies. Figures 13, 14, and 15 show  
various powering modes that may be used with the ICL7129.  
V
IN  
+
32  
IN LO  
V-  
3
-
4
5
ICL7660  
10µF  
23  
10µF  
+
The standard supply connection using a 9V battery is shown  
in the Typical Application Schematic.  
FIGURE 14. POWERING THE ICL7129 FROM A 3.8V TO 6V BAT-  
The power connection for systems with +5V and -5V sup-  
plies available is shown in Figure 13. Notice that measure-  
ments are with respect to ground. COMMON is also tied to  
INLO to remove any common-mode voltage swing on the  
integrator amplifier inputs.  
Again measurements are made with respect to COMMON  
since the entire system is floating. Voltage doubling is  
accomplished by using an ICL7660 CMOS voltage converter  
and two inexpensive electrolytic capacitors. The same princi-  
ple applies in Figure 15 where the ICL7129 is being used in  
a system with only a single +5V power supply. Here mea-  
surements are made with respect to power supply ground.  
+5V  
24  
+5V  
V+  
24  
34  
REF HI  
V+  
0.1µF  
0.1µF  
ICL8089  
34  
35  
28  
33  
ICL8089  
0.1µF  
0.1µF  
REF LO  
ICL7129  
35  
28  
33  
36  
COM  
ICL7129  
DGND  
36  
8
IN HI  
+
2
V
IN  
+
V
32  
IN  
32  
IN LO  
3
0.1µF  
4
5
-
10µF  
V-  
ICL7660  
V-  
23  
23  
10µF  
+
-5V  
FIGURE 13. POWERING THE ICL7129 FROM +5V AND -5V  
FIGURE 15. POWERING THE ICL7129 FROM A SINGLE  
POLARITY POWER SUPPLY  
9
ICL7129  
A single polarity power supply can be used to power the Integrate Resistor  
ICL7129 in applications where battery operation is not  
R
R
= V  
/I  
INFS INT  
INT  
INT  
appropriate or convenient only if the power supply is isolated  
from system ground. Measurements must be made with  
respect to COMMON or some other voltage within its input  
common-mode range.  
(Typ) = 150kΩ  
Integrate Capacitor  
(t )(I  
)
INT INT  
C
= ----------------------------------  
INT  
V
Voltage References  
INT  
Integrator Output Voltage Swing  
The COMMON output of the ICL7129 has a temperature  
coefficient of ±80ppm/ C typically. This voltage is only suit-  
o
(t  
)(I  
)
INT INT  
C
able as a reference voltage for applications where ambient  
temperature variations are expected to be minimal. When  
the ICL7129 is used in most environments, other voltage ref-  
erences should be considered. The diagram in the Typical  
Application Schematic and Figure 15 show the ICL8069  
1.2V band-gap voltage source used as the reference for the  
ICL7129, and the COMMON output as its pre-regulator. The  
reference voltage for the ICL7129 is set to 1.000V for both  
2V and 200mV full-scale operation.  
V
= ----------------------------------  
INT  
INT  
V
Maximum Swing: (V- + 0.5V) < V  
< (V+ - 0.7V)  
INT  
INT  
Display Count  
V
IN  
COUNT = 10, 000 × ----------------(Range = 1)  
V
REF  
(2V Range)  
V
× 10  
IN  
COUNT = 10, 000 × ---------------------- (Range = 0)  
(200mV Range)  
V
REF  
Multiple Integration A/D Converter  
Equations  
Minimum V  
: 500mV  
REF  
Common Mode Input Voltage  
(V- + 1V) < V < (V+ - 0.5V)  
Oscillator Frequency  
IN  
f
= 0.45/RC  
OSC  
C
> 50pF; R > 50kΩ  
OSC  
(Typ) = 120kHz  
OSC  
Auto Zero Capacitor: C not used  
AZ  
f
OSC  
or  
Reference Capacitor: 0.1µF < C  
< 1µF  
REF  
f
= 120kHz Crystal (Recommended)  
OSC  
Oscillator Period  
= 1/f  
V
COM  
Biased Between V+ and V-.  
V
V+ -2.9V  
COM  
Regulation lost when V+ to V- < 6.4V.  
t
OSC  
OSC  
Integration Clock Period  
= 2*t  
If V  
V
is externally pulled down to (V+ to V-)/2, the  
COM  
circuit will turn off.  
t
COM  
CLOCK  
OSC  
Power Supply: Single 9V  
Integration Period  
V+ - V- = 9V  
Digital supply is generated internally  
t
t
= 1000*t  
INT(200mV)  
(Range = 1)  
(Range = 0)  
INT(2V)  
CLOCK  
= 10,000*t  
CLOCK  
V
V+ - 4.5V  
GND  
60/50Hz Rejection Criterion  
/t or t /t = Integer  
Display: Triplexed LCD  
t
INT 60Hz INT 50Hz  
Continuity Output On if  
Optimum Integration Current  
= 13µA  
V
to V  
< 200mV  
INHI  
INLO  
I
INT  
Conversion Cycle (In Both Ranges)  
= t x 30,000  
Full Scale Analog Input Voltage  
t
CYC  
CLOCK  
V
(Typ) = 200mV or 2V  
INFS  
ZERO-INTEGRATE  
AND LATCH  
INT  
INTEGRATE  
DE  
1
1
DE-INTEGRATE REST X10 DE REST X10  
2
DE ZERO-INTEGRATE  
3
INTEGRATOR  
RESIDUE  
VOLTAGE  
NOTE: Shaded area greatly expanded  
in time and amplitude.  
1000 CLOCKS  
2000  
CLOCKS  
1000 CLOCKS  
10,000 CLOCKS  
10  

相关型号:

ICL7134

N-CHANNEL JFET
INTERSIL

ICL7134C

Converter IC
ETC

ICL7134I

Converter IC
ETC

ICL7134M

Converter IC
ETC

ICL7135

4 Digit A/D Converter with Multiplexed BCD Outputs
MAXIM

ICL7135

4 1/2 Digit, BCD Output, A/D Converter
INTERSIL

ICL7135

4位半双斜积分式A/D转换器。具有LCD/LED及微处理器解码、驱动的接口电路。可显示数据: -19999 到 19999 特点:1)输入阻抗达109Ω以上,对被测电路几乎没有影响;2)自动校零;3)有精确的差分输入电路;4)自动判别信号极性;5)有超、欠压输出信号6)采用位扫描与BCD码输出。 应用:数字万用表或温度控制器等,微处理器的A/D转换.
HN

ICL7135C

4 1/2-DIGIT PRECISION ANALOG-TO-DIGITAL CONVERTERS
TI

ICL7135C/D

4 Digit A/D Converter with Multiplexed BCD Outputs
MAXIM

ICL7135CAI

ADC, Dual-Slope, 4-Bit, 1 Func, 1 Channel, Parallel, 4 Bits Access, CMOS, PDSO28, 5.3 MM, MO-150, SSOP-28
MAXIM

ICL7135CAI+T

ADC, Dual-Slope, 4-Bit, 1 Func, 1 Channel, Parallel, 4 Bits Access, CMOS, PDSO28, 5.3 MM, ROHS COMPLIANT, MO-150, SSOP-28
MAXIM

ICL7135CAI-T

ADC, Dual-Slope, 4-Bit, 1 Func, 1 Channel, Parallel, 4 Bits Access, CMOS, PDSO28, 5.3 MM, MO-150, SSOP-28
MAXIM