HSP45116GC-15 [INTERSIL]

Numerically Controlled Oscillator/Modulator; 数控振荡器/调制器
HSP45116GC-15
型号: HSP45116GC-15
厂家: Intersil    Intersil
描述:

Numerically Controlled Oscillator/Modulator
数控振荡器/调制器

振荡器 外围集成电路 时钟
文件: 总18页 (文件大小:132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HSP45116  
Data Sheet  
May 1999  
File Number 2485.7  
Numerically Controlled  
Oscillator/Modulator  
Features  
• NCO and CMAC on One Chip  
The Intersil HSP45116 combines a high performance  
quadrature Numerically Controlled Oscillator (NCO) and a  
high speed 16-bit Complex Multiplier/Accumulator (CMAC)  
on a single IC. This combination of functions allows a  
complex vector to be multiplied by the internally generated  
(cos, sin) vector for quadrature modulation and  
• 15MHz, 25.6MHz, 33MHz Versions  
• 32-Bit Frequency Control  
• 16-Bit Phase Modulation  
• 16-Bit CMAC  
• 0.008Hz Tuning Resolution at 33MHz  
• Spurious Frequency Components < -90dBc  
• Fully Static CMOS  
demodulation. As shown in the Block Diagram, the  
HSP45116 is divided into three main sections. The  
Phase/Frequency Control Section (PFCS) and the  
Sine/Cosine Section together form a complex NCO. The  
CMAC multiplies the output of the Sine/ Cosine Section with  
an external complex vector.  
Applications  
• Frequency Synthesis  
• Modulation - AM, FM, PSK, FSK, QAM  
• Demodulation, PLL  
The inputs to the Phase/Frequency Control Section consist  
of a microprocessor interface and individual control lines.  
The phase resolution of the PFCS is 32 bits, which results in  
frequency resolution better than 0.008Hz at 33MHz. The  
output of the PFCS is the argument of the sine and cosine.  
The spurious free dynamic range of the complex sinusoid is  
greater than 90dBc.  
• Phase Shifter  
• Polar to Cartesian Conversions  
Ordering Information  
The output vector from the Sine/Cosine Section is one of the  
inputs to the Complex Multiplier/Accumulator. The CMAC  
multiplies this (cos, sin) vector by an external complex vector  
and can accumulate the result. The resulting complex vectors  
are available through two 20-bit output ports which maintain  
the 90dB spectral purity. This result can be accumulated  
internally to implement an accumulate and dump filter.  
TEMP.  
o
PART NUMBER  
HSP45116VC-15  
HSP45116VC-25  
HSP45116GC-15  
HSP45116GC-25  
HSP45116GC-33  
HSP45116GI-15  
HSP45116GI-25  
HSP45116GI-33  
RANGE ( C) PACKAGE  
PKG. NO.  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
0 to 70  
160 Ld MQFP Q160.28x28  
160 Ld MQFP Q160.28x28  
145 Ld CPGA G145.A  
145 Ld CPGA G145.A  
145 Ld CPGA G145.A  
A quadrature down converter can be implemented by  
loading a center frequency into the Phase/Frequency  
Control Section. The signal to be down converted is the  
Vector Input of the CMAC, which multiplies the data by the  
rotating vector from the Sine/Cosine Section. The resulting  
complex output is the down converted signal.  
-40 to 85 145 Ld CPGA G145.A  
-40 to 85 145 Ld CPGA G145.A  
-40 to 85 145 Ld CPGA G145.A  
HSP45116GM-15/883 -55 to 125 145 Ld CPGA G145.A  
HSP45116GM-25/883 -55 to 125 145 Ld CPGA G145.A  
HSP45116AVC-52  
0 to 70  
160 Ld MQFP Q160.28x28  
This part has its own data sheet under HSP45116A, AnswerFAX  
document no. 4156.  
Block Diagram  
VECTOR INPUT  
R
I
SINE/  
COSINE  
ARGUMENT  
MICROPROCESSOR  
PHASE/  
SIN  
INTERFACE  
SINE/  
COSINE  
SECTION  
FREQUENCY  
CMAC  
CONTROL  
COS  
INDIVIDUAL  
SECTION  
CONTROL SIGNALS  
R
I
VECTOR OUTPUT  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
1
HSP45116  
Pinouts  
145 PIN PGA  
TOP VIEW  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
V
IMIN  
4
IMIN  
8
IMIN  
9
IMIN  
11  
IMIN  
15  
IMIN  
16  
GND  
V
IO  
18  
IO  
15  
IO  
12  
IO  
10  
GND  
V
CC  
CC  
CC  
A
B
C
D
E
F
A
B
C
D
E
F
GND  
IMIN  
1
IMIN  
5
IMIN  
7
IMIN  
10  
IMIN  
13  
IMIN  
14  
IO  
19  
IO  
16  
IO  
14  
IO  
11  
IO  
8
IO  
7
IO  
5
IO  
2
RIN  
15  
RIN  
18  
IMIN  
2
IMIN  
3
IMIN  
6
IMIN  
12  
IMIN  
17  
IMIN  
18  
IO  
17  
IO  
13  
IO  
9
IO  
6
IO  
4
IO  
1
RO  
18  
RIN  
13  
RIN  
17  
IMIN  
0
INDEX  
IO  
3
RO  
19  
RO  
17  
RIN  
10  
RIN  
14  
RIN  
16  
IO  
0
RO  
16  
RO  
15  
RIN  
7
RIN  
11  
RIN  
12  
RO  
14  
RO  
13  
RO  
11  
RO  
9
RO  
12  
RO  
10  
RIN  
9
RIN  
8
V
CC  
G
H
J
G
H
J
GND  
RIN  
6
RIN  
5
RO  
8
RO  
7
GND  
RIN  
3
RIN  
1
RIN  
4
RO  
5
RO  
4
V
CC  
RIN  
2
RIN  
0
SH  
1
RO  
1
RO  
2
RO  
6
K
L
K
L
PACO  
DET  
1
RO  
3
SH  
0
ACC RBYTILD  
ENPH  
REG  
PEAK  
MOD  
1
OEREXT OEI  
RO  
0
M
N
P
Q
M
N
P
Q
AD  
0
C
14  
C
13  
C
8
C
2
OUT-  
MUX  
OUT-  
MUX  
DET  
0
ENOF BINFMT MOD  
LOAD  
ENCF MODPI  
OEIEXT  
OER  
0
REG  
REG  
/2PI  
1
0
TICO  
PACI  
PMSEL CLROFR ENTIREG  
CS  
AD  
1
C
C
C
9
C
6
C
3
C
1
GND  
15  
10  
V
GND ENPHAC ENI  
CLK  
5
WR  
6
V
GND  
8
C
C
C
7
C
5
C
4
C
0
V
CC  
CC  
1
CC  
12  
11  
2
3
4
7
9
10  
11  
12  
13  
14  
15  
2
HSP45116  
Pinouts (Continued)  
145 PIN PGA  
BOTTOM VIEW  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
V
GND  
IO  
10  
IO  
12  
IO  
15  
IO  
18  
V
GND  
IMIN  
16  
IMIN  
15  
IMIN  
11  
IMIN  
9
IMIN  
8
IMIN  
4
V
CC  
CC  
CC  
A
B
C
D
E
F
A
B
C
D
E
F
IO  
2
IO  
5
IO  
7
IO  
8
IO  
11  
IO  
14  
IO  
16  
IO  
19  
IMIN  
14  
IMIN  
13  
IMIN  
10  
IMIN  
7
IMIN  
5
IMIN  
1
GND  
RO  
18  
IO  
1
IO  
4
IO  
6
IO  
9
IO  
13  
IO  
17  
IMIN  
18  
IMIN  
17  
IMIN  
12  
IMIN  
6
IMIN  
3
IMIN  
2
RIN  
18  
RIN  
15  
INDEX  
IMIN  
0
RIN  
17  
RIN  
13  
RO  
17  
RO  
19  
IO  
3
RIN  
16  
RIN  
14  
RIN  
10  
RO  
15  
RO  
16  
IO  
0
RIN  
12  
RIN  
11  
RIN  
7
RO  
11  
RO  
13  
RO  
14  
RO  
10  
RO  
12  
RO  
9
RIN  
8
RIN  
9
V
CC  
G
H
J
G
H
J
RIN  
5
RIN  
6
GND  
GND  
RO  
7
RO  
8
RIN  
4
RIN  
1
RIN  
3
V
RO  
4
RO  
5
CC  
SH  
1
RIN  
0
RIN  
2
RO  
6
RO  
2
RO  
1
K
L
K
L
RO  
3
DET  
1
PACO  
RBYTILD ACC  
SH  
0
RO  
0
OEI OEREXT  
MOD  
1
PEAK  
ENPH  
REG  
M
N
P
Q
M
N
P
Q
DET  
0
OUT-  
MUX  
OUT-  
MUX  
C
2
C
8
C
13  
C
14  
AD  
0
OEIEXT  
OER  
MODPI ENCF  
LOAD  
MOD BINFMT ENOF  
0
REG  
/2PI  
REG  
0
1
GND  
C
1
C
3
C
6
C
9
C
C
AD  
1
CS  
ENTIREG CLROFR PMSEL  
PACI  
TICO  
10  
15  
V
C
0
C
4
C
5
C
7
C
C
GND  
8
V
WR  
6
CLK  
5
ENI  
4
ENPHAC GND  
V
CC  
CC  
7
CC  
12  
11  
15  
14  
13  
12  
11  
10  
9
3
2
1
3
HSP45116  
Pinouts (Continued)  
160LEAD MQFP  
TOP VIEW  
1
2
3
4
5
6
7
8
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
NC  
IMIN0  
RIN18  
RIN17  
RIN16  
RIN15  
RIN14  
GND  
RIN13  
RIN12  
RIN11  
RIN10  
RIN9  
RIN8  
RIN7  
RIN6  
RIN5  
RIN4  
RIN3  
RIN2  
GND  
RIN1  
GND  
IO6  
IO5  
IO4  
IO3  
GND  
IO2  
IO1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
V
CC  
IO0  
RO19  
GND  
RO18  
RO17  
RO16  
RO15  
RO14  
103  
102  
V
CC  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
RO13  
RO12  
RO11  
GND  
RO10  
RO9  
V
CC  
RIN0  
SH1  
SH0  
ACC  
V
CC  
ENPHREG  
ENOFREG  
PEAK  
RBYTILD  
BINFMT  
GND  
RO8  
RO7  
GND  
RO6  
RO5  
RO4  
RO3  
TICO  
V
V
CC  
CC  
MOD1  
MOD0  
PACI  
LOAD  
PMSEL  
NC  
RO2  
RO1  
RO0  
GND  
DET1  
DET0  
4
HSP45116  
Pin Description  
NAME  
NUMBER  
TYPE  
DESCRIPTION  
V
A1, A9, A15, G1,  
J15, Q1, Q7, Q15  
-
+5V Power supply input.  
CC  
GND  
A8, A14, B1, H1,  
H15, P15, Q2, Q8  
-
I
Power supply ground input.  
C0-15  
N8-11, P8-13,  
Q9-14  
Control input bus for loading phase and frequency data into the PFCS. C15 is the MSB.  
AD0-1  
CS  
N7, P7  
P6  
I
I
I
Address pins for selecting destination of C0-15 data.  
Chip Select (active low).  
WR  
Q6  
Write Enable. Data is clocked into the register selected by AD0-1 on the rising edge of WR when  
the CS line is low.  
CLK  
Q5  
M1  
N1  
N5  
Q3  
P5  
I
I
I
I
I
I
Clock. All registers, except the control registers clocked with WR, are clocked (when enabled)  
by the rising edge of CLK.  
ENPHREG  
ENOFREG  
ENCFREG  
ENPHAC  
ENTIREG  
Phase Register Enable (active low). Registered on chip by CLK. When active, after being  
clocked onto chip, ENPHREG enables the clocking of data into the phase register.  
Frequency Offset Register Enable (active Low). Registered on chip by CLK. When active, after  
being clocked onto chip, ENOFREG enables clocking of data into the frequency offset register.  
Center Frequency Register Enable (active low). Registered on chip by CLK. When active, after  
being clocked onto chip, ENCFREG enables clocking of data into the center frequency register.  
Phase Accumulator Register Enable (active low). Registered on chip by CLK. When active, after  
being clocked onto chip, ENPHAC enables clocking of the phase accumulator register.  
Time Interval Control Register Enable (active low). Registered on chip by CLK. When active,  
after being clocked onto chip, ENTIREG enables clocking of data into the time accumulator  
register.  
ENI  
Q4  
N6  
P4  
I
I
I
Real and Imaginary Data Input Register (RIR, IIR) Enable (active low). Registered on chip by  
CLK. When active, after being clocked onto chip, ENI enables clocking of data into the real and  
imaginary input data register.  
MODPI/2PI  
CLROFR  
Modulo π/2π Select. When low, the Sine and Cosine ROMs are addressed modulo 2π (360  
degrees). When high, the most significant address bit is held low so that the ROMs are  
addressed modulo π (180 degrees). This input is registered on chip by clock.  
Frequency Offset Register Output Zero (active low). Registered on chip by CLK. When active,  
after being clocked onto chip, CLROFR zeros the data path from the frequency offset register to  
the frequency adder. New data can still be clocked into the frequency offset register; CLROFR  
does not affect the contents of the register.  
LOAD  
N4  
I
I
Phase Accumulator Load Control (active low). Registered on chip by CLK. Zeroes feedback path  
in the phase accumulator without clearing the phase accumulator register.  
MOD0-1  
M3, N3  
External Modulation Control Bits. When selected with the PMSEL line, these bits add a 0, 90,  
180, or 270 degree offset to the current phase in the phase accumulator. The lower 14 bits of  
the phase control path are set to zero.  
These bits are loaded into the phase register when ENPHREG is low.  
PMSEL  
RBYTILD  
PACI  
P3  
L3  
P2  
I
I
I
Phase Modulation Select Line. This line determines the source of the data clocked into the phase  
register. When high, the phase control register is selected. When low, the external modulation pins  
(MOD0-1) are selected for the most significant two bits and the least significant two bits and the  
least significant 14 bits are set to zero. This control is registered by CLK.  
ROM Bypass, Timer Load. Active low, registered by CLK. This input bypasses the sine/ cosine  
ROM so that the 16-bit phase adder output and lower 16 bits of the phase accumulator go  
directly to the CMAC’s sine and cosine inputs, respectively. It also enables loading of the timer  
accumulator register by zeroing the feedback in the accumulator.  
Phase Accumulator Carry Input (active low). A low on this pin causes the phase accumulator to  
increment by one, in addition to the values in the phase accumulator register and frequency  
adder.  
5
HSP45116  
Pin Description (Continued)  
NAME  
NUMBER  
TYPE  
DESCRIPTION  
PACO  
L13  
O
Phase Accumulator Carry Output. Active low and registered by CLK. A low on this output  
indicates that the phase accumulator has overflowed, i.e., the end of one sine/cosine cycle has  
been reached.  
TICO  
P1  
O
I
Time Interval Accumulator Carry Output. Active low, registered by CLK. This output goes low  
when a carry is generated by the time interval accumulator. This function is provided to time out  
control events such as synchronizing register clocking to data timing.  
RIN0-18  
C1, C2, D1, D2, E1-  
3, F1-3, G2, G3,  
H2, H3, J1-3, K1,  
K2  
Real Input Data Bus. This is the external real component into the complex multiplier. The bus is  
clocked into the real input data register by CLK when ENI is asserted; two’s complement.  
IMIN0-18  
A2-7, B2-7, C3-8,  
D3  
I
Imaginary Input Data Bus. This is the external imaginary component into the complex multiplier.  
The bus is clocked into the real input data register by CLK when ENI is asserted; two’s  
complement.  
SH0-1  
ACC  
K3, L1  
L2  
I
I
Shift Control Inputs. These lines control the input shifters of the RIN and IIN inputs of the  
complex multiplier. The shift controls are common to the shifters on both of the busses.  
Accumulate/Dump Control. This input controls the complex accumulators and their holding  
registers. When high, the accumulators accumulate and the holding registers are disabled.  
When low, the feedback in the accumulators is zeroed to cause the accumulators to load.  
The holding registers are enabled to clock in the results of the accumulation. This input is  
registered by CLK.  
BINFMT  
PEAK  
N2  
M2  
I
I
This input is used to convert the two’s complement output to offset binary (unsigned) for  
applications using D/A converters. When low, bits RO19 and IO19 are inverted from the internal  
two’s complement representation. This input is registered by CLK.  
This input enables the peak detect feature of the block floating point detector. When high, the  
maximum bit growth in the output holding registers is encoded and output on the DET0-1 pins.  
When the PEAK input is asserted, the block floating point detector output will track the maximum  
growth in the holding registers, including the data in the holding registers at the time that PEAK  
is activated.  
OUTMUX0-1  
RO0-19  
N12, N13  
I
These inputs select the data to be output on RO0-19 and IO0-19.  
C15, D14, D15,  
E14, E15, F13-15,  
G13-15, H13, H14,  
J13, J14, K13-15,  
L15, M15  
O
Real Output Data Bus. These Three-state outputs are controlled by OER and OEREXT.  
OUTMUX0-1 select the data output on the bus.  
IO0-19  
A10-13, B8-15, C9-  
14, D13, E13  
O
O
Imaginary Output Data Bus. These Three-state outputs are controlled by OEI and OEIEXT.  
OUTMUX0-1 select the data output on the bus.  
DET0-1  
N15, L14  
These output pins indicate the number of bits of growth in the accumulators. While PEAK is low,  
these pins indicate the peak growth. The detector examines bits 15-18, real and imaginary  
accumulator holding registers and bits 30-33 of the real and imaginary CMAC holding registers.  
The bits indicate the largest growth of the four registers.  
OER  
OEREXT  
OEI  
P14  
M13  
M14  
N14  
I
I
I
I
Three-state control for bits RO0-15. Outputs are enabled when the line is low.  
Three-state control for bits RO16-19. Outputs are enabled when the line is low.  
Three-state control for bits IO0-15. Outputs are enabled when the line is low.  
Three-state control for bits IO16-19. Outputs are enabled when the line is low.  
OEIEXT  
6
HSP45116  
IMIN(18:0)  
RIN(18:0)  
IMIN(18:0)  
RIN(18:0)  
2
PHASE  
REGISTER  
MOD(1:0)  
ENCODE  
0
PHASE  
INPUT  
REGISTER  
14  
16  
R
E
R.ENPHREG  
CLK  
16  
G
16  
R
E
>
C(15:0)  
16  
G
PHEN  
R.PMSEL  
>
MS INPUT  
REGISTER  
FREQUENCY  
ADDER  
CENTER FREQUENCY  
REGISTER  
R
16  
E
G
32  
32  
SIN/COS  
ARGUMENT  
MSEN  
R
E
G
>
32  
PHASE  
A
D
D
E
R
LS INPUT  
REGISTER  
CLK  
>
OFFSET  
FREQUENCY  
REGISTER  
16  
R
E
R.ENCFREG  
32  
16  
16  
16  
SIN  
20  
SINE/COSINE  
GENERATOR  
R
E
G
G
>
32  
R
COS  
16  
32  
E
CLK  
>
LSEN  
G
CLK  
>
AD(1:0)  
CS  
0
32  
DECODER  
32  
R.ENOFREG  
WR  
R.CLROFR  
PHASE  
ACCUMULATOR  
R.PMSEL  
PMSEL  
R.ENPHREG  
R.ENCFREG  
R.ENOFREG  
ENPHREG  
ENCFREG  
ENOFREG  
CLROFR  
PACO  
R
E
G
R
E
G
R.CLROFR  
R.LOAD  
CLK  
>
PHASE  
ADDER  
LOAD  
ENPHAC  
MODPI/2PI  
R.ENPHAC  
R.MODPI/2PI  
R.RBYTILD  
R.ENTIREG  
PHASE  
ACCUMULATOR  
ADDER  
RBYTILD  
ENTIREG  
CLK  
A
0
D
D
E
R
16  
>
32  
R
E
PHASE  
ACCUMULATOR  
REGISTER  
G
MSB  
A
D
D
E
R
CLK  
>
CLK  
32  
32  
0
R
E
G
32  
15  
16 MSBs  
CLK  
>
R.ENPHAC  
32  
R.LOAD  
PACI  
16 LSBs  
PACI  
R.MODPI/2PI  
R.RBYTILD  
R.SH(1:0)  
R.SH(1:0)  
R.ENI  
R.ACC  
R.PEAK  
SH(1:0)  
ENI  
ACC  
PEAK  
BINFMT  
CLK  
R.ENI  
R.ACC  
R.PEAK  
R
E
G
R.BINFMT  
R.BINFMT  
gram  
>
CARRY OUT  
TIME  
ACCUMULATOR  
REGISTER  
TICO  
32  
R
E
G
kDia  
CLK  
32  
>
TIME  
INCREMENT  
32  
OEI  
OEIEXT  
OER  
32  
R
E
G
R
E
G
CLK  
CLK  
>
>
OEREXT  
OUTMUX(1:0)  
0
32  
R.ENTIREG  
TICO  
PACO  
TIME ACCUMULATOR  
FutinaBloc  
7
HSP45116  
IMIN(18:0)  
RIN(18:0)  
R
E
G
R
E
G
CLK  
>
19  
19  
CLK  
>
R.ENI  
IMIN0-18  
RIN0-18  
R.SH(1:0)  
SHIFTER  
16  
SHIFTER  
16  
CLK  
> REG  
> REG  
> REG  
CLK  
CLK  
> REG  
CLK  
PHASE  
SIN  
R
16  
E
G
CLK  
COS  
ADDER  
ADDER  
>
>
COMPLEX  
MULTIPLIER  
SIN  
R1.ACC  
R
E
G
MUX  
MUX  
16  
CLK  
0
0
1
0
0
1
COS  
> REG  
CLK  
33  
REG < CLK  
33  
CLK  
COMPLEX  
ACCUMULATOR  
> REG  
CLK  
> REG  
R.RBYTILD  
MUX  
MUX  
ADDER  
ADDER  
CLK  
1
0
0
1
0
ROUND  
0
ROUND  
> REG  
REG <  
CLK  
CMAC  
ACCUMULATOR  
REG <  
CLK  
CLK  
REG <  
> REG  
> REG  
REG <  
CLK  
CLK  
CLK  
20  
35  
35  
REG <  
CLK  
0
20  
1
0
R.PEAK  
MUX  
OUTMUX(1:0)  
See Table 4  
OUTMUX(1:0)  
See Table 4  
GROWTH  
DETECT  
MUX  
MUX  
OUTMUX(1:0)  
3
16  
FMT  
3
16  
R.BINFMT  
FMT  
R.SH(1:0)  
R.ENI  
R.ENI  
OEI  
OEIEXT  
OER  
R.PEAK  
R.BINFMT  
gram  
OEREXT  
> REG  
CLK  
kDia  
4
16  
4
16  
OUTMUX(1:0)  
RO(19-16) RO(15:0)  
DET(1:0)  
IO(19-16) IO(15:0)  
FutinaBloc  
8
HSP45116  
Functional Description  
The Numerically Controlled Oscillator/Modulator (NCOM)  
produces a digital complex sinusoid waveform whose  
amplitude, phase and frequency are controlled by a set of  
input command words. When used as a Numerically  
Controlled Oscillator (NCO), it generates 16-bit sine and  
cosine vectors at a maximum sample rate of 33MHz. The  
NCOM can be preprogrammed to produce a constant (CW)  
sine and cosine output for Direct Digital Synthesis (DDS)  
applications. Alternatively, the phase and frequency inputs  
can be updated in real time to produce a FM, PSK, FSK, or  
MSK modulated waveform. The Complex Multiplier/  
Accumulator (CMAC) can be used to multiply this waveform  
by an input signal for AM and QAM signals. By stepping the  
phase input, the output of the ROM becomes an FFT twiddle  
factor; when data is input to the Vector Inputs (see Block  
Diagram), the NCOM calculates an FFT butterfly.  
register. The overflow bit is used as an output to indicate the  
timing of the accumulation overflows. In the Time  
Accumulator, the overflow bit generates TICO, the Time  
Accumulator carry out (which is the only output of the Time  
Accumulator). In the Phase Accumulator, the overflow is  
inverted to generate the Phase Accumulator Carry Out,  
PACO.  
The output of the Phase Accumulator goes to the Phase  
Adder, which adds an offset to the top 16 bits of the phase.  
This 32-bit number forms the argument of the sine and  
cosine, which is passed to the Sine/Cosine Generator.  
Both accumulators are loaded 16 bits at a time over the  
C0-15 bus. Data on C0-15 is loaded into one of the three  
input registers when CS and WR are low. The data in the  
Most Significant Input Register and Least Significant Input  
Register forms a 32-bit word that is the input to the Center  
Frequency Register, Offset Frequency Register and Time  
Accumulator. These registers are loaded by enabling the  
proper register enable signal; for example, to load the Center  
Frequency Register, the data is loaded into the LS and MS  
Input Registers, and ENCFREG is set to zero; the next rising  
edge of CLK will pass the registered version of ENCFREG,  
R.ENCFREG, to the clock enable of the Center Frequency  
Register; this register then gets loaded on the following  
rising edge of CLK. The contents of the Input Registers will  
be continuously loaded into the Center Frequency Register  
as long as R.ENCFREG is low.  
As shown in the Block Diagram, the NCOM consists of three  
parts: Phase and Frequency Control Section (PFCS),  
Sine/Cosine Generator, and CMAC. The PFCS stores the  
phase and frequency inputs and uses them to calculate the  
phase angle of a rotating complex vector. The Sine/Cosine  
Generator performs a lookup on this phase and outputs the  
appropriate values for the sine and cosine. The sine and  
cosine form one set of inputs to the CMAC, which multiplies  
them by the input vector to form the modulated output.  
Phase and Frequency Control Section  
The phase and frequency of the internally generated sine  
and cosine are controlled by the PFCS (Block Diagram). The  
PFCS generates a 32-bit word that represents the current  
phase of the sine and cosine waves being generated; the  
Sine/ Cosine Argument. Stepping this phase angle from 0  
The Phase Register is loaded in a similar manner. Assuming  
PMSEL is high, the contents of the Phase Input Register is  
loaded into the Phase Register on every rising clock edge  
that R.ENPHREG is low. If PMSEL is low, MOD0-1 supply  
the two most significant bits into the Phase Register (MOD1  
is the MSB) and the least significant 14 bits are loaded with  
0. MOD0-1 are used to generate a Quad Phase Shift Keying  
(QPSK) signal (Table 2).  
32  
through full scale (2 - 1) corresponds to the phase angle of  
o
a sinusoid starting at 0 and advancing around the unit circle  
counterclockwise. The PFCS automatically increments the  
phase by a preprogrammed amount on every rising edge of  
the external clock. The value of the phase step (which is the  
sum of the Center and Offset Frequency Registers) is:  
TABLE 1. AD0-1 DECODING  
AD1  
AD0  
CS  
WR  
FUNCTION  
32  
Signal Frequency  
----------------------------------------------  
Clock Frequency  
0
0
0
Load least significant bits  
of frequency input.  
Phase Step =  
× 2  
0
1
0
Load most significant bits  
of frequency input.  
The PFCS is divided into two sections: the Phase  
Accumulator uses the data on C0-15 to compute the phase  
angle that is the input to the Sine/Cosine Section  
(Sine/Cosine Argument); the Time Accumulator supplies a  
pulse to mark the passage of a preprogrammed period of  
time.  
1
1
0
1
0
X
1
Load phase register.  
Reserved.  
X
X
X
X
No Operation.  
The Phase Accumulator consists of registers and adders  
that compute the value of the current phase at every clock. It  
has three inputs: Center Frequency, which corresponds to  
the carrier frequency of a signal; Offset Frequency, which is  
the deviation from the Center Frequency; and Phase, which  
is a 16-bit number that is added to the current phase for PSK  
The Phase Accumulator and Time Accumulator work on the  
same principle: a 32-bit word is added to the contents of a  
32-bit accumulator register every clock cycle; when the sum  
causes the adder to overflow, the accumulation continues  
with the 32 bits of the adder going into the accumulator  
9
HSP45116  
modulation schemes. These three values are used by the  
Phase Accumulator and Phase Adder to form the phase of  
the internally generated sine and cosine.  
increments is loaded into the Input Registers and is latched  
into the Time Accumulator Register on rising edges of CLK  
while ENTIREG is low. The output of the Time Accumulator  
is the accumulator carry out, TICO. TICO can be used as a  
timer to enable the periodic sampling of the output of the  
The sum of the values in Center and Offset Frequency  
Registers corresponds to the desired phase increment  
NCOM. The number programmed into this register equals  
32  
32  
(modulo 2 ) from one clock to the next. For example,  
2
x CLK period/desired time interval. TICO is disabled and  
loading both registers with zero will cause the Phase  
Accumulator to add zero to its current output; the output of  
the PFCS will remain at its current value; i.e., the output of  
the NCOM will be a DC signal. If a hexadecimal 00000001 is  
loaded into the Center Frequency Control Register, the  
output of the PFCS will increment by one after every clock.  
This will step through every location in the Sine/Cosine  
Generator, so that the output will be the lowest frequency  
above DC that can be generated by the NCOM, i.e., the  
its phase is initialized by zeroing the feedback path of the  
accumulator with RBYTILD.  
Sine/Cosine Section  
The Sine/Cosine Section (Figure 1) converts the output of  
the PFCS into the appropriate values for the sine and  
cosine. It takes the most significant 20 bits of the PFCS  
output and passes them through a look up table to form the  
16-bit sine and cosine inputs to the CMAC.  
32  
clock frequency divided by 2 . If the input to the Center  
Frequency Control Register is hex 80000000, the PFCS will  
step through the Generator with half of the maximum step  
size, so that frequency of the output waveform will be half of  
the sample rate.  
32  
16  
SIN  
MUX  
16  
16  
16  
16  
16  
REG  
CLK  
COS  
32  
20  
SINE/COSINE  
GENERATOR  
The operation of the Offset Frequency Control Register is  
identical to that of the Center Frequency Control Register;  
having two separate registers allows the user to generate an  
FM signal by loading the carrier frequency in the Center  
Frequency Control Register and updating the Offset  
Frequency Control Register with the value of the frequency  
offset - the difference between the carrier frequency and the  
frequency of the output signal. A logic low on CLROFR  
disables the output of the Offset Frequency Register without  
clearing the contents of the register.  
CLK  
R.RBYTILD  
FIGURE 1. SINE/COSINE SECTION  
The 20-bit word maps into 2π radians so that the angular  
resolution is 2π/2 . An address of zero corresponds to  
20  
TABLE 2. MOD0-1 DECODE  
0 radians and an address of hex FFFFF corresponds to  
2π- (2π/2 ) radians. The outputs of the Generator Section  
20  
MOD1  
MOD0  
PHASE SHIFT (DEGREES)  
are 2’s complement sine and cosine values. The sine and  
cosine outputs range from hexadecimal 8001, which  
represents negative full scale, to 7FFF, which represents  
positive full scale. Note that the normal range for two’s  
complement numbers is 8000 to 7FFF; the output range of  
the SIN/COS generator is scaled by one so that it is  
symmetric about 0.  
0
0
1
1
0
1
0
1
0
90  
270  
180  
Initializing the Phase Accumulator Register is done by putting  
a low on the LOAD line. This zeroes the feedback path to the  
accumulator, so that the register is loaded with the current  
value of the phase increment summer on the next clock.  
The sine and cosine values are computed to reduce the  
amount of ROM needed. The magnitude of the error in the  
computed value of the complex vector is less than -90.2dB.  
The error in the sine or cosine alone is approximately 2dB  
better.  
The final phase value going to the Generator can be  
adjusted using MODPI/2PI to force the range of the phase to  
be 0 to 180 (modulo π) or 0 to 360 (modulo 2π). Modulo  
2π is the mode used for modulation, demodulation, direct  
digital synthesis, etc. Modulo π is used to calculate FFTs.  
This is explained in greater detail in the Applications Section.  
o
o
o
o
If RBYTILD is low, the output of the PFCS goes directly to  
the inputs of the CMAC. If the real and imaginary inputs of  
the CMAC are programmed to hex 7FFF and 0 respectively,  
then the output of the PFCS will appear on output bits 0  
through 15 of the NCOM with the output multiplexers set to  
bring out the most significant bits of the CMAC output  
(OUTMUX = 00). The most significant 16 bits out of the  
PFCS appears on IOUT0-15 and the least significant bits  
come out on ROUT0-15.  
The Phase Register adds an offset to the output of the  
Phase Accumulator. Since the Phase Register is only 16  
bits, it is added to the top 16 bits of the Phase Accumulator.  
The Time Accumulator consists of a register which is  
incremented on every clock. The amount by which it  
10  
HSP45116  
The 33-bit real and imaginary outputs of the Complex  
Complex Multiplier/Accumulator  
Multiplier are latched in the Multiplier Registers and then go  
through the Accumulator Section of the CMAC. If the ACC  
line is high, the feedback to the accumulators is enabled; a  
low on ACC zeroes the feedback path, so that the next set of  
real and imaginary data out of the complex multiplier is  
stored in the CMAC Output Registers.  
The CMAC (Figure 2) performs two types of functions:  
complex multiplication/accumulation for modulation and  
demodulation of digital signals, and the operations  
necessary to implement an FFT butterfly. Modulation and  
demodulation are implemented using the complex multiplier  
and its associated accumulator; the rest of the circuitry  
in this section, i.e., the complex accumulator, input shifters  
and growth detect logic are used along with the complex  
multiplier/accumulator for FFTs. The complex multiplier  
performs the complex vector multiplication on the output of  
the Sine/Cosine Section and the vector represented by the  
real and imaginary inputs RIN and IIN. The two vectors are  
combined in the following manner:  
The data in the CMAC Output Registers goes to the  
Multiplexer, the output of which is determined by the  
OUTMUX0-1 lines (Table 4). BINFMT controls whether the  
output of the Multiplexer is presented in two’s complement or  
unsigned format; BINFMT = 0 inverts ROUT19 and IOUT19  
for unsigned output, while BINFMT = 1 selects two’s  
complement.  
ROUT = COS x RIN - SIN x IIN  
IOUT = COS x IIN + SIN x RIN  
TABLE 4. OUTPUT MULTIPLEXER SELECTION  
OUT OUT  
MUX MUX  
RIN and IIN are latched into the input registers and passed  
through the shift stages. Clocking of the input registers is  
enabled with a low on ENI. The amount of shift on the  
latched data is programmed with SH0-1 (Table 3). The  
output of the shifters is sent to the CMAC and the auxiliary  
accumulators.  
1
0
RO16-19  
RO0-15  
IO16-19  
IO0-15  
0
0
Real CMAC RealCMAC ImagCMAC ImagCMAC  
31-34 15-30 31-34 15-30  
0
1
1
1
0
1
Real CMAC 0, Real  
31-34  
ImagCMAC 0, Imag  
CMAC 0-14 31-34 CMAC 0-14  
Real ACC  
16-19  
Real ACC  
0-15  
Imag ACC Imag ACC  
16-19  
TABLE 3. INPUT SHIFT SELECTION  
0-15  
SH1  
SH0  
SELECTED BITS  
RIN0-15, IMIN0-15  
RIN1-16, IMIN1-16  
RIN2-17, IMIN2-17  
RIN3-18, IMIN3-18  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
1
1
0
1
0
1
The Complex Accumulator duplicates the accumulator in the  
CMAC. The input comes from the data shifters, and its 20-bit  
complex output goes to the Multiplexer. ACC controls  
whether the accumulator is enabled or not. OUTMUX0-1  
determines whether the accumulator output appears on  
ROUT and IOUT.  
11  
HSP45116  
RIN0-18  
19  
IMIN0-18  
19  
R.ENI  
REG  
REG  
R.SH0-1  
SHIFTER  
16  
SHIFTER  
16  
REG  
REG  
REG  
REG  
16  
16  
R1.ACC  
SIN  
MUX  
ADDER  
MUX  
ADDER  
COMPLEX  
MULTIPLIER  
COS  
0
0
REG  
REG  
33  
33  
REG  
COMPLEX  
ACCUMULATOR  
REG  
MUX  
MUX  
ADDER  
ADDER  
0
0
REG  
REG  
CMAC  
ACCUMULATOR  
REG  
35  
REG  
35  
REG  
20  
REG  
20  
R1.ACC  
0
R.PEAK  
MUX  
MUX  
3
GROWTH  
DETECT  
OUTMUX0-1  
MUX  
3
OUTMUX0-1  
R.BINFMT  
OEREXT  
16  
16  
FMT  
R.BINFMT  
OEIEXT  
FMT  
16  
16  
REG  
OER  
OEI  
4
4
DET0-1  
RO16-19 RO0-15  
IO16-19 IO0-15  
ENI  
R.ENI  
R.SH0-1  
SH0-1  
R1.ACC  
R2.ACC  
ACC  
REG  
REG  
REG  
PEAK  
R.PEAK  
BINFMT  
R.BINFMT  
FIGURE 2. COMPLEX MULTIPLIER/ACCUMULATOR; ALL REGISTERS CLOCKED BY CLK  
12  
HSP45116  
The Growth Detect circuitry outputs a two bit value that  
TABLE 5. GROWTH ENCODING  
NUMBER OF BITS  
signifies the amount of growth on the data in the CMAC and  
Complex Accumulator. Its output, DET0-1, is encoded as  
shown in Table 5. If PEAK is low, the highest value of  
DET0-1 is latched in the Growth Detect Output Register.  
o
DET 1  
DET 0  
OF GROWTH ABOVE 2  
0
0
1
1
0
1
0
1
0
1
2
3
The relative weighting of the bits at the inputs and outputs of  
the CMAC is shown in Figure 3. Note that the binary point of  
the sine, cosine, RIN and IIN is to the right of the most  
significant bit, while the binary point of RO and IO is to the  
right of the fifth most significant bit. These CMAC external  
input and output busses are aligned with each other to  
facilitate cascading NCOMs for FFT applications.  
SIN/COS INPUT  
15  
14  
-1  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
-2  
2
-3  
2
-4  
2
-5  
2
-6  
-7  
-8  
-9  
-10  
-11  
-12  
-13  
-14  
-15  
-2 . 2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Radix Point  
COMPLEX MULTIPLIER/ACCUMULATOR INPUT (RIN, IIN)  
SH = 00  
15  
14  
-1  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
-2  
2
-3  
2
-4  
2
-5  
2
-6  
-7  
-8  
-9  
-10  
-11  
-12  
-13  
-14  
-15  
-2 . 2  
2
2
2
2
2
2
2
Radix Point  
COMPLEX MULTIPLIER/ACCUMULATOR OUTPUT (RO, IO)  
OUTMUX = 00  
19  
18  
17  
16  
15  
14  
-1  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
4
3
2
1
0
-2  
2
-3  
2
-4  
2
-5  
2
-6  
-7  
-8  
-9  
-10  
-11  
-12  
-13  
-14  
-15  
-2  
2
2
2
-2 . 2  
2
2
2
2
2
2
2
Radix Point  
COMPLEX MULTIPLIER/ACCUMULATOR OUTPUT (RO, IO)  
OUTMUX = 01  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
4
3
2
1
-16  
-17  
-18  
-19  
-20  
-21  
-22  
-23  
-24  
-25  
-26  
-27  
-28  
-29  
-30  
-2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
COMPLEX ACCUMULATOR OUTPUT (RO, IO)  
OUTMUX = 10  
19  
18  
17  
16  
15  
14  
-1  
13  
-2  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
4
3
2
1
0
-3  
2
-4  
2
-5  
2
-6  
-7  
-8  
-9  
-10  
-11  
-12  
-13  
-14  
-15  
-2  
2
2
2
-2 . 2  
2
2
2
2
2
2
2
Radix Point  
FIGURE 3. BIT WEIGHTING  
13  
HSP45116  
Applications  
The NCOM can be used for Amplitude, Phase and Frequency  
modulation, as well as in variations and combinations of these  
techniques, such as QAM. It is most effective in applications  
requiring multiplication of a rotating complex sinusoid by an  
external vector. These include AM and QAM modulators and  
digital receivers. The NCOM implements AM and QAM  
modulation on a single chip, and is a element in demodulation,  
where it performs complex down conversion. It can be  
combined with the Intersil HSP43220 Decimating Digital Filter  
to form the front end of a digital receiver.  
RIN IMIN  
16  
16  
NCOM  
32  
16  
CMAC  
PFCS  
CLK  
16  
16  
RO  
D/A  
LO  
Modulation/Demodulation  
Figure 4 shows a block diagram of an AM modulator. In this  
example, the phase increment for the carrier frequency is  
loaded into the center frequency register, and the  
modulating input is clocked into the real input of the CMAC,  
with the imaginary input set to 0. The modulated output is  
obtained at the real output of the CMAC. With a sixteen bit,  
two’s complement signal input, the output will be a 16-bit real  
number, on ROUT0-15 (with OUTMUX = 00).  
FIGURE 5. QUADRATURE AMPLITUDE MODULATION (QAM)  
The NCOM also works with the HSP43220 Decimating  
Digital Filter to implement down conversion and low pass  
filtering in a digital receiver (Figure 6). The NCOM performs  
complex down conversion on the wideband input signal by  
multiplying the input vector and the internally generated  
complex sinusoid. The resulting signal has components at  
twice the center frequency and at DC. Two HSP43220s, one  
each on the real and imaginary outputs of the HSP45116,  
perform low pass filtering and decimation on the down  
converted data, resulting in a complex baseband signal.  
SIGNAL INPUT  
RIN  
16  
32  
SIN  
16  
CMAC  
PFCS  
CLK  
HSP45116  
NCOM  
NCOM  
HSP43220  
DDF  
16  
MODULATED OUTPUT  
RO  
COS (wt)  
LO  
SAMPLED  
INPUT  
FIGURE 4. AMPLITUDE MODULATION  
DATA  
By replacing the real input with a complex vector, a similar  
setup can generate QAM signals (Figure 5). In this case, the  
carrier frequency is loaded into the center frequency register as  
before, but the modulating vector now carries both amplitude  
and phase information. Since the input vector and the internally  
generated sine and cosine waves are both 16 bits, the number  
of states is only limited by the characteristics of the  
transmission medium and by the analog electronics in the  
transmitter and receiver.  
SIN (wt)  
NCOM  
OUTPUT  
DDF  
OUTPUT  
INPUT  
The phase and amplitude resolution for the Sine/Cosine section  
(16-bit output), delivers a spectral purity of greater than 90dBc.  
This means that the unwanted spectral components due to  
phase uncertainty (phase noise) will be greater than 90dB  
below the desired output (dBc, decibels below the carrier). With  
a 32-bit phase accumulator in the Phase/Frequency Control  
Section, the frequency tuning resolution equals the clock  
0
10MHz  
0
20MHz  
0
FIGURE 6. CHANNELIZED RECEIVER CHIP SET  
32  
frequency divided by 2 . For example, a 25MHz clock gives a  
tuning resolution of 0.006Hz.  
14  
HSP45116  
Absolute Maximum Ratings  
Thermal Information  
o
o
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +8.0V  
Input, Output or I/O Voltage Applied . . . . .GND -0.5V to V +0.5V  
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Class 1  
Thermal Resistance (Typical, Note 1)  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
CC  
MQFP Package . . . . . . . . . . . . . . . . . .  
PGA Package. . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature  
22.0  
23.1  
N/A  
3
o
MQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150 C  
PGA Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 C  
Operating Conditions  
o
Operating Voltage Range. . . . . . . . . . . . . . . . . . . .+4.75V to +5.25V  
o
o
o
o
Operating Temperature Range . . . . . . . . . . . . . . . . . . . 0 C to 70 C  
o
(MQFP - Lead Tips Only)  
Die Characteristics  
Component Count . . . . . . . . . . . . . . . . . . . . . . . 103,000 Transistors  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
DC Electrical Specifications  
PARAMETER  
Logical One Input Voltage  
Logical Zero Input Voltage  
High Level Clock Input  
SYMBOL  
TEST CONDITIONS  
MIN  
2.0  
-
MAX  
-
UNITS  
V
V
V
V
V
V
= 5.25V  
= 4.75V  
= 5.25V  
= 4.75V  
IH  
CC  
CC  
CC  
CC  
V
0.8  
-
V
IL  
V
3.0  
-
V
IHC  
Low Level Clock Input  
V
0.8  
-
V
ILC  
Output HIGH Voltage  
V
I
I
= -400mA, V  
= 4.75V  
= 4.75V  
2.6  
-
V
OH  
OH  
CC  
Output LOW Voltage  
V
= 2.0mA, V  
0.4  
10  
10  
500  
182  
V
OL  
OL  
CC  
Input Leakage Current  
I
V
= V  
or GND, V  
= 5.25V  
-10  
-10  
-
µA  
µA  
µA  
mA  
I
IN  
CC  
CC  
or GND, V  
I/O Leakage Current  
I
V
= V  
= 5.25V  
O
OUT  
CC  
or GND V  
CC  
Standby Power Supply Current  
Operating Power Supply Current  
I
V
= V  
= 5.25V, Note 4  
CCSB  
IN  
CC  
CC  
or GND, V  
I
f = 15MHz, V = V  
IN  
= 5.25V,  
CC  
-
CCOP  
CC  
Notes 2 and 4  
o
Capacitance T = 25 C, Note 3  
A
PARAMETER  
Input Capacitance  
Output Capacitance  
NOTES:  
SYMBOL  
TEST CONDITIONS  
FREQ = 1MHz, V = Open, All measurements  
MIN  
MAX  
15  
UNITS  
pF  
C
-
-
IN  
CC  
are referenced to device ground  
C
15  
pF  
O
2. Power supply current is proportional to operating frequency. Typical rating for I  
is 10mA/MHz.  
CCOP  
3. Not tested, but characterized at initial design and at major process/design changes.  
4. Output load per test load circuit with switch open and C = 40pF.  
L
15  
HSP45116  
o
o
AC Electrical Specifications  
V
= 5.0V ±5%, T = 0 C to 70 C (Note 5)  
CC A  
-15 (15MHz)  
-25 (25.6MHz)  
-33 (33MHz)  
PARAMETER  
SYMBOL  
NOTES  
MIN  
66  
26  
26  
26  
26  
18  
0
MAX  
MIN  
39  
15  
15  
15  
15  
13  
0
MAX  
MIN  
30  
12  
12  
12  
12  
13  
0
MAX  
UNITS  
ns  
CLK Period  
CLK High  
CLK Low  
WR Low  
t
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CP  
t
ns  
CH  
t
ns  
CL  
t
ns  
WL  
WR High  
t
ns  
WH  
Setup Time; AD0-1, CS to WR Going High  
Hold Time; AD0, AD1, CS from WR Going High  
Setup Time C0-15 from WR Going High  
Hold Time C0-15 from WR Going High  
Setup time WR High to CLK High  
t
ns  
AWS  
AWH  
CWS  
CWH  
t
ns  
t
20  
0
15  
0
15  
0
ns  
t
ns  
t
7
20  
20  
0
16  
15  
0
12  
15  
0
ns  
WC  
Setup Time MOD0-1 to CLK Going High  
Hold Time MOD0-1 from CLK Going High  
Setup Time PACI to CLK Going High  
Hold Time PACI from CLK Going High  
t
ns  
MCS  
t
ns  
MCH  
t
25  
0
15  
0
11  
0
ns  
PCS  
t
ns  
PCH  
Setup ENPHREG, ENCFREG, ENOFREG,  
ENPHAC, ENTIREG, CLROFR, PMSEL, LOAD, ENI,  
ACC, BINFMT, PEAK, MODPI/2PI, SH0-1, RBYTILD  
from CLK Going High  
t
18  
12  
12  
ns  
ECS  
Hold Time ENPHREG, ENCFREG, ENOFREG, EN-  
PHAC, ENTIREG, CLROFR, PMSEL, LOAD, ENI,  
ACC, BINFMT, PEAK, MODPI/2PI, SH0-1, RBYTILD  
from CLK Going High  
t
0
-
0
-
0
-
ns  
ECH  
Setup Time RIN0-18, IMIN0-18 to CLK  
Going High  
t
18  
0
-
-
12  
0
-
-
12  
0
-
-
ns  
ns  
DS  
DH  
DO  
Hold Time RIN0-18, IMIN0-18 from CLK  
Going High  
t
CLK to Output Delay RO0-19, IO0-19  
CLK to Output Delay DET0-1  
CLK to Output Delay PACO  
CLK to Output Delay TICO  
Output Enable Time OER, OEI, OEREXT, OEIEXT  
OUTMUX0-1 to Output Delay  
Output Disable Time  
t
-
-
-
-
-
-
-
-
40  
40  
30  
30  
25  
40  
20  
8
-
-
-
-
-
-
-
-
24  
27  
20  
20  
20  
28  
15  
8
-
-
-
-
-
-
-
-
19  
20  
12  
12  
20  
26  
15  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
DEO  
t
PO  
t
TO  
OE  
MD  
t
t
t
6
6
OD  
Output Rise, Fall Time  
t
RF  
NOTES:  
5. AC testing is performed as follows: Input levels (CLK Input) 4.0V and 0V; input levels (all other inputs) 0V and 3.0V; timing reference levels (CLK)  
2.0V; all others 1.5V. Output load per test load circuit with switch closed and C = 40pF. Output transition is measured at V  
1.5V and V  
OL  
L
OH  
1.5V.  
6. Controlled via design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design  
changes.  
7. Applicable only when outputs are being monitored and ENCFREG, ENPHREG, or ENTIREG is active.  
16  
HSP45116  
AC Test Load Circuit  
S
1
DUT  
C
(NOTE)  
L
±
I
1.5V  
I
OL  
OH  
SWITCH S1 OPEN FOR I  
AND I  
CCOP  
CCSB  
EQUIVALENT CIRCUIT  
NOTE: Test head capacitance.  
Waveforms  
t
CP  
t
t
CL  
CH  
CLK  
t
t
MCH  
MCS  
MOD0-1  
t
PCH  
t
PCS  
PACI  
t
t
t
ECH  
DH  
ECS  
CONTROL  
INPUTS  
t
DS  
RIN0-19  
IIN0-19  
t
DO  
ROUT0-19  
IOUT0-19  
t
t
t
DEO  
PO  
DET0-1  
PACO  
TICO  
TO  
FIGURE 7. INPUT AND OUTPUT TIMING  
17  
HSP45116  
Waveforms (Continued)  
t
WC  
CLK  
WR  
t
t
WH  
WL  
t
t
t
AWS  
AWH  
CS  
AD0-1  
C0-15  
t
t
AWS  
AWH  
t
CWS  
CWH  
FIGURE 8. CONTROL BUS TIMING  
OUTMUX0-1  
OER  
OEI  
OEREXT  
1.5V  
1.5V  
OEIEXT  
t
t
OD  
OE  
t
MD  
RO0-19  
IO0-19  
1.7V  
1.3V  
RO0-19  
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
IO0-19  
FIGURE 9. OUTPUT ENABLE, DISABLE TIMING  
FIGURE 10. MULTIPLEXER TIMING  
2.0V  
0.8V  
t
t
RF  
RF  
FIGURE 11. OUTPUT RISE AND FALL TIMES  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (407) 724-7000  
FAX: (407) 724-7240  
18  

相关型号:

HSP45116GC-25

Numerically Controlled Oscillator/Modulator
INTERSIL

HSP45116GC-33

Numerically Controlled Oscillator/Modulator
INTERSIL

HSP45116GI-15

Numerically Controlled Oscillator/Modulator
INTERSIL

HSP45116GI-25

Numerically Controlled Oscillator/Modulator
INTERSIL

HSP45116GI-25

19-BIT, DSP-NUM CONTROLLED OSCILLATOR, CPGA145, CERAMIC, PGA-145
RENESAS

HSP45116GI-33

Numerically Controlled Oscillator/Modulator
INTERSIL

HSP45116GM-15/883

Numerically Controlled Oscillator/Modulator
INTERSIL

HSP45116GM-15/883

16-BIT, DSP-NUM CONTROLLED OSCILLATOR, CPGA145
RENESAS

HSP45116GM-15883

Numerically Controlled Oscillator/Modulator
INTERSIL

HSP45116GM-25883

Numerically Controlled Oscillator/Modulator
INTERSIL

HSP45116TM-15

Numeric-Controlled Oscillator
ETC

HSP45116TM-25

Numeric-Controlled Oscillator
ETC