HI5662/6IN [INTERSIL]

Dual 8-Bit, 60MSPS A/D Converter with Internal Voltage Reference; 双8位,60Msps A / D转换器,内置电压基准
HI5662/6IN
型号: HI5662/6IN
厂家: Intersil    Intersil
描述:

Dual 8-Bit, 60MSPS A/D Converter with Internal Voltage Reference
双8位,60Msps A / D转换器,内置电压基准

转换器
文件: 总14页 (文件大小:133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI5662  
Data Sheet  
February 1999  
File Number 4317.2  
Dual 8-Bit, 60MSPS A/D Converter with  
Internal Voltage Reference  
Features  
• Sampling Rate . . . . . . . . . . . . . . . . . . . . . . . . . . .60MSPS  
The HI5662 is a monolithic, dual 8-Bit, 60MSPS analog-to-  
digital converter fabricated in an advanced CMOS process.  
It is designed for high speed applications where integration,  
bandwidth and accuracy are essential. The HI5662 reaches  
a new level of multi-channel integration. The fully pipeline  
architecture and an innovative input stage enable the HI5662  
to accept a variety of input configurations, single-ended or  
fully differential. Only one external clock is necessary to  
drive both converters and an internal band-gap voltage  
reference is provided. This allows the system designer to  
realize an increased level of system integration resulting in  
decreased cost and power dissipation.  
• 7.8 Bits at f = 10MHz  
IN  
• Low Power at 60MSPS. . . . . . . . . . . . . . . . . . . . . 650mW  
• Wide Full Power Input Bandwidth. . . . . . . . . . . . . 250MHz  
• Excellent Channel-to-Channel Isolation . . . . . . . . . >75dB  
• On-Chip Sample and Hold Amplifiers  
• Internal Band-Gap Voltage Reference . . . . . . . . . . . . 2.5V  
• Fully Differential or Single-Ended Analog Inputs  
• Single Supply Voltage Operation . . . . . . . . . . . . . . . . +5V  
• TTL/CMOS Compatible Digital Inputs  
The HI5662 has excellent dynamic performance while  
consuming only 650mW power at 60MSPS. The A/D only  
requires a single +5V power supply and encode clock. Data  
output latches are provided which present valid data to the  
output bus with a latency of 6 clock cycles.  
• CMOS Compatible Digital Outputs. . . . . . . . . . . . 3.0/5.0V  
• Offset Binary Digital Data Output Format  
• Dual 8-Bit A/D Converters on a Monolithic Chip  
Applications  
• Wireless Local Loop  
For those customers needing dual channel 10-bit resolution,  
please refer to the HI5762. For single channel 10-bit  
applications, please refer to the HI5767.  
• PSK and QAM I and Q Demodulators  
• Medical Imaging  
Ordering Information  
• High Speed Data Acquisition  
PART  
NUMBER  
TEMP.  
o
RANGE ( C)  
-40 to 85  
25  
PACKAGE  
44 Ld MQFP  
PKG. NO.  
Pinout  
HI5662/6IN  
Q44.10x10  
HI5662  
(MQFP)  
TOP VIEW  
HI5662EVAL2  
Evaluation Platform  
44 43 42 41 40 39 38 37 36 35 34  
A
1
A
33  
32  
31  
30  
29  
GND  
GND  
AV  
2
AV  
CC2  
ID7  
CC2  
3
4
5
6
7
8
9
QD7  
QD6  
QD5  
QD4  
QD3  
ID6  
ID5  
ID4  
ID3  
28  
27  
26  
25  
24  
23  
DV  
DV  
CC3  
CC3  
D
D
GND  
GND  
ID2  
10  
11  
QD2  
QD1  
ID1  
12 13 14 15 16 17 18 19 20 21 22  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
10  
HI5662  
Functional Block Diagram  
I/Q  
-
IN  
BIAS  
I/QV  
DC  
I/Q  
+
IN  
S/H  
STAGE 1  
2-BIT  
FLASH  
2-BIT  
DAC  
+
-
DV  
CC3  
X2  
I/QD7 (MSB)  
I/QD6  
DIGITAL DELAY  
AND  
STAGE M-1  
I/QD5  
DIGITAL ERROR  
CORRECTION  
I/QD4  
I/QD3  
2-BIT  
FLASH  
2-BIT  
DAC  
I/QD2  
I/QD1  
+
I/QD0 (LSB)  
-
X2  
STAGE M  
2-BIT  
FLASH  
I or Q CHANNEL  
V
REFOUT  
CLK  
CLOCK  
REFERENCE  
V
REFIN  
AV  
AGND  
DV  
CC1,2  
DGND  
CC1,2  
11  
HI5662  
Typical Application Schematic  
HI5662  
(LSB) ID0 (12)  
ID0  
ID1  
ID2  
ID3  
ID4  
ID5  
ID6  
ID7  
I
+
-
(42) I  
IN  
+
IN  
ID1 (11)  
ID2 (10)  
(44) IV  
DC  
-
I
(43) I  
IN  
IN  
ID3 (7)  
ID4 (6)  
ID5 (5)  
ID6 (4)  
(MSB) ID7 (3)  
(LSB) QD0 (22)  
QD1 (23)  
QD0  
QD1  
QD2  
QD3  
QD4  
QD5  
QD6  
QD7  
Q
+
-
(36) Q  
IN  
+
IN  
(34) QV  
DC  
-
QD2 (24)  
Q
(35) Q  
IN  
IN  
QD3 (27)  
QD4 (28)  
QD5 (29)  
QD6 (30)  
(MSB) QD7 (31)  
(40) V  
(38) V  
RIN  
ROUT  
0.1µF  
CLK (17)  
CLOCK  
DV  
(8,26)  
CC3  
+5V or +3V  
+
0.1µF  
0.1µF  
10µF  
(13,14,20,21,39) NC  
(37) AV  
CC1  
DV  
(18)  
(16)  
CC2  
DV  
(2,32) AV  
+5V  
CC1  
+5V  
CC2  
+
10µF  
+
10µF  
0.1µF  
(1,33,41) AGND  
DGND (9,15,19,25)  
DGND  
10µF AND 0.1µF CAPS  
ARE PLACED AS CLOSE  
TO PART AS POSSIBLE  
AGND  
BNC  
12  
HI5662  
Pin Descriptions  
PIN NO.  
NAME  
DESCRIPTION  
Analog Ground  
PIN NO.  
24  
NAME  
DESCRIPTION  
Q-Channel, Data Bit 2 Output  
Digital Ground  
1
2
3
4
5
6
7
8
A
QD2  
GND  
AV  
Analog Supply (+5.0V)  
25  
D
CC2  
ID7  
GND  
I-Channel, Data Bit 7 Output (MSB)  
I-Channel, Data Bit 6 Output  
I-Channel, Data Bit 5 Output  
I-Channel Data Bit 4 Output  
I-Channel, Data Bit 3 Output  
26  
DV  
Digital Output Supply  
(+3.0V or +5.0V)  
CC3  
ID6  
ID5  
ID4  
ID3  
27  
28  
29  
30  
31  
QD3  
Q-Channel, Data Bit 3 Output  
Q-Channel, Data Bit 4 Output  
Q-Channel, Data Bit 5 Output  
Q-Channel, Data Bit 6 Output  
QD4  
QD5  
QD6  
QD7  
DV  
Digital Output Supply  
(+3.0V or +5.0V)  
CC3  
Q-Channel, Data Bit 7 Output  
(MSB)  
9
D
Digital Ground  
GND  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
AV  
Analog Supply (+5.0V)  
CC2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
ID2  
ID1  
ID0  
NC  
NC  
I-Channel, Data Bit 2 Output  
I-Channel, Data Bit 1 Output  
I-Channel, Data Bit 0 Output (LSB)  
No Connect  
A
Analog Ground  
GND  
QV  
Q-Channel DC Bias Voltage Output  
Q-Channel Negative Analog Input  
Q-Channel Positive Analog Input  
Analog Supply (+5.0V)  
DC  
IN-  
Q
Q
IN+  
No Connect  
AV  
CC1  
D
Digital Ground  
GND  
V
+2.5V Reference Voltage Output  
No Connect  
ROUT  
NC  
DV  
Digital Supply (+5.0V)  
Sample Clock Input  
Digital Supply (+5.0V)  
Digital Ground  
CC1  
CLK  
V
+2.5V Reference Voltage Input  
Analog Ground  
RIN  
DV  
CC2  
A
GND  
D
GND  
I
I-Channel Positive Analog Input  
I-Channel Negative Analog Input  
I-Channel DC Bias Voltage Output  
IN+  
NC  
NC  
No Connect  
I
IN-  
No Connect  
IV  
DC  
QD0  
QD1  
Q-Channel, Data Bit 0 Output (LSB)  
Q-Channel, Data Bit 1 Output  
13  
HI5662  
o
Absolute Maximum Ratings T = 25 C  
Thermal Information  
A
o
Supply Voltage, AV  
CC  
or DV  
to AGND or DGND . . . . . . . . . . .6V  
Thermal Resistance (Typical, Note 1)  
θJA ( C/W)  
CC  
DGND to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3V  
HI5662/6IN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
75  
o
Digital I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DGND to DV  
Analog I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . AGND to AV  
CC  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .150 C  
o
o
CC  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 C  
o
(Lead Tips Only)  
Operating Conditions  
Temperature Range  
o
o
HI5662/6IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications AV  
= DV  
CC1,2  
= +5.0V, DV  
CC3  
= +3.0V; V = 2.50V; f = 60MSPS at 50% Duty Cycle;  
RIN S  
CC1,2  
C = 10pF; T = 25 C; Differential Analog Input; Unless Otherwise Specified  
o
L
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ACCURACY  
Resolution  
8
-
-
-
-
Bits  
LSB  
LSB  
Integral Linearity Error, INL  
f
f
= 10MHz  
0.5  
±0.2  
IN  
Differential Linearity Error, DNL  
(Guaranteed No Missing Codes)  
= 10MHz  
-
±1.0  
IN  
Offset Error, V  
OS  
f
f
= DC  
= DC  
-10  
-
-
+10  
-
LSB  
LSB  
IN  
Full Scale Error, FSE  
1
IN  
DYNAMIC CHARACTERISTICS  
Minimum Conversion Rate  
Maximum Conversion Rate  
Effective Number of Bits, ENOB  
No Missing Codes  
No Missing Codes  
-
1
-
-
-
MSPS  
MSPS  
60  
f
f
= 10MHz  
7.5  
7.0  
7.8  
7.7  
-
-
Bits  
Bits  
IN  
IN  
= 10MHz, Single Ended Analog Input  
Signal to Noise and Distortion Ratio, SINAD  
f
= 10MHz  
-
48.7  
-
dB  
IN  
RMS Signal  
= -------------------------------------------------------------  
RMS Noise + Distortion  
Signal to Noise Ratio, SNR  
f
= 10MHz  
-
48  
-
dB  
IN  
RMS Signal  
= -------------------------------  
RMS Noise  
Total Harmonic Distortion, THD  
2nd Harmonic Distortion  
f
f
f
f
f
= 10MHz  
= 10MHz  
= 10MHz  
= 10MHz  
-
-
-
-
-
-
-
-
-
-
-66  
-71  
-71  
71  
64  
-75  
2.5  
2.5  
1
-
dBc  
dBc  
IN  
IN  
IN  
IN  
-
3rd Harmonic Distortion  
-
dBc  
Spurious Free Dynamic Range, SFDR  
Intermodulation Distortion, IMD  
I/Q Channel Crosstalk  
-
dBc  
= 1MHz, f = 1.02MHz  
-
dBc  
1
2
-60  
dBc  
I/Q Channel Offset Match  
I/Q Channel Full Scale Error Match  
Transient Response  
-
-
-
-
LSB  
LSB  
Cycle  
Cycle  
(Note 2)  
Over-Voltage Recovery  
0.2V Overdrive (Note 2)  
1
14  
HI5662  
Electrical Specifications AV  
= DV  
CC1,2  
= +5.0V, DV  
CC3  
= +3.0V; V = 2.50V; f = 60MSPS at 50% Duty Cycle;  
RIN S  
CC1,2  
C = 10pF; T = 25 C; Differential Analog Input; Unless Otherwise Specified (Continued)  
o
L
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT  
Maximum Peak-to-Peak Differential Analog Input  
Range (V + - V -)  
IN IN  
-
-
±0.5  
-
-
V
V
Maximum Peak-to-Peak Single-Ended  
Analog Input Range  
1.0  
Analog Input Resistance, R  
or R  
V
V
V
, V = VREF,DC  
IN+ IN-  
-
-
1
10  
-
-
-
MΩ  
pF  
IN+  
IN-  
Analog Input Capacitance, C  
or C  
, V = 2.5V,DC  
IN+ IN-  
IN+  
IN-  
Analog Input Bias Current, I + or I -  
, V = V  
IN+ IN-  
, V  
, DC  
-10  
10  
µA  
B
B
REF- REF+  
(Notes 2, 3)  
Differential Analog Input Bias Current  
= (I + - I -)  
(Notes 2, 3)  
-0.5  
-
+0.5  
µA  
I
BDIFF  
B
B
Full Power Input Bandwidth, FPBW  
(Note 2)  
-
250  
-
-
MHz  
V
Analog Input Common Mode Voltage Range  
Differential Mode (Note 2)  
0.25  
4.75  
(V + + V -) / 2  
IN IN  
INTERNAL VOLTAGE REFERENCE  
Reference Output Voltage, V  
(Loaded)  
2.35  
2.5  
2
2.65  
V
ROUT  
Reference Output Current, I  
-
-
4
-
mA  
ROUT  
o
Reference Temperature Coefficient  
-400  
ppm/ C  
REFERENCE VOLTAGE INPUT  
Reference Voltage Input, V  
-
-
-
2.5  
1.25  
2
-
-
-
V
RIN  
Total Reference Resistance, R  
with V  
with V  
= 2.5V  
= 2.5V  
kΩ  
mA  
RIN  
RIN  
Reference Current, I  
RIN  
RIN  
DC BIAS VOLTAGE  
DC Bias Voltage Output, V  
Maximum Output Current  
-
-
3.0  
-
-
V
DC  
0.4  
mA  
SAMPLING CLOCK INPUT  
Input Logic High Voltage, V  
CLK  
CLK  
2.0  
-
-
-
-
V
IH  
Input Logic Low Voltage, V  
0.8  
V
IL  
Input Logic High Current, I  
CLK, V = 5V  
IH  
-10.0  
-10.0  
-
-
+10.0  
+10.0  
-
µA  
µA  
pF  
IH  
Input Logic Low Current, I  
CLK, V = 0V  
IL  
-
IL  
Input Capacitance, C  
CLK  
7
IN  
DIGITAL OUTPUTS  
Output Logic High Voltage, V  
OH  
I
I
I
I
= 100µA; DV  
= 5V  
= 5V  
= 3V  
= 3V  
4.0  
-
-
-
0.8  
-
V
V
OH  
OL  
OH  
OL  
CC3  
Output Logic Low Voltage, V  
OL  
= 100µA; DV  
= 100µA; DV  
-
2.4  
-
CC3  
Output Logic High Voltage, V  
-
V
OH  
OL  
CC3  
CC3  
Output Logic Low Voltage, V  
Output Capacitance, C  
= 100µA; DV  
-
0.5  
-
V
-
7
pF  
OUT  
TIMING CHARACTERISTICS  
Aperture Delay, t  
-
-
-
5
5
-
-
-
ns  
AP  
Aperture Jitter, t  
AJ  
ps  
RMS  
Data Output Hold, t  
10.7  
ns  
H
15  
HI5662  
Electrical Specifications AV  
= DV  
CC1,2  
= +5.0V, DV  
CC3  
= +3.0V; V = 2.50V; f = 60MSPS at 50% Duty Cycle;  
RIN S  
CC1,2  
C = 10pF; T = 25 C; Differential Analog Input; Unless Otherwise Specified (Continued)  
o
L
A
PARAMETER  
Data Output Delay, t  
TEST CONDITIONS  
MIN  
-
TYP  
11.7  
6
MAX  
UNITS  
ns  
-
6
OD  
Data Latency, t  
For a Valid Sample (Note 2)  
Data Invalid Time (Note 2)  
(Note 2)  
6
Cycles  
Cycles  
ns  
LAT  
Power-Up Initialization  
-
-
20  
-
Sample Clock Pulse Width (Low)  
Sample Clock Pulse Width (High)  
Sample Clock Duty Cycle Variation  
7.5  
7.5  
8.3  
8.3  
±5  
(Note 2)  
-
ns  
%
POWER SUPPLY CHARACTERISTICS  
Analog Supply Voltage, AV  
(Note 2)  
4.75  
5.0  
5.0  
5.25  
5.25  
3.3  
5.25  
-
V
V
CC  
Digital Supply Voltage, DV  
and DV  
(Note 2)  
4.75  
CC1  
CC2  
Digital Output Supply Voltage, DV  
At 3.0V (Note 2)  
At 5.0V (Note 2)  
2.7  
3.0  
V
CC3  
4.75  
5.0  
V
Supply Current, I  
CC  
f
= 60MSPS  
-
-
-
-
130  
mA  
mW  
LSB  
LSB  
S
Power Dissipation  
650  
670  
-
Offset Error Sensitivity, V  
AV  
AV  
or DV  
or DV  
= 5V ±5%  
= 5V ±5%  
±0.125  
±0.15  
OS  
CC  
CC  
Gain Error Sensitivity, FSE  
-
CC  
CC  
NOTES:  
2. Parameter guaranteed by design or characterization and not production tested.  
3. With the clock low and DC input.  
16  
HI5662  
Timing Waveforms  
ANALOG  
INPUT  
CLOCK  
INPUT  
S
H
S
H
S
H
S
S
H
S
H
S
H
S
H
N + 8  
N - 1  
N - 1  
N
N
N + 1  
N + 1  
N + 2  
N + 5  
N + 5  
N + 6  
N + 6  
N + 7  
N + 7  
N + 8  
INPUT  
S/H  
1ST  
STAGE  
B ,  
B ,  
B ,  
B ,  
B ,  
B ,  
B ,  
1 N + 7  
1
N - 1  
1
N
1
N + 1  
1
N + 4  
1
N + 5  
1
N + 6  
2ND  
STAGE  
B ,  
B ,  
B ,  
2 N + 6  
B ,  
B ,  
B ,  
2 N  
2
N + 4  
2
N + 5  
2
N - 2  
2
N - 1  
M-th  
STAGE  
B ,  
B ,  
B ,  
B ,  
B ,  
B ,  
9 N + 3  
9
N - 5  
9
N - 4  
9
N
9
N + 1  
9
N + 2  
DATA  
OUTPUT  
D
D
D
D
D
D
N + 2  
N - 6  
N - 5  
N - 1  
N
N + 1  
t
LAT  
NOTES:  
4. S : N-th sampling period.  
N
5. H : N-th holding period.  
N
6. B  
, : M-th stage digital output corresponding to N-th sampled input.  
M N  
7. D : Final data output corresponding to N-th sampled input.  
N
FIGURE 1. HI5662 INTERNAL CIRCUIT TIMING  
ANALOG  
INPUT  
t
AP  
t
AJ  
CLOCK  
INPUT  
1.5V  
1.5V  
t
OD  
t
H
2.4V  
0.5V  
DATA  
OUTPUT  
DATA N  
DATA N-1  
FIGURE 2. HI5662 INPUT-TO-OUTPUT TIMING  
17  
HI5662  
Typical Performance Curves  
50  
44  
38  
32  
8
50  
44  
38  
32  
7
6
f
T
= 60MSPS  
= 25 C  
S
f
T
= 60MSPS  
= 25 C  
S
o
o
A
A
5
1
10  
100  
1
10  
100  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
FIGURE 3. EFFECTIVE NUMBER OF BITS (ENOB) AND  
SINAD vs INPUT FREQUENCY  
FIGURE 4. SNR vs INPUT FREQUENCY  
70  
90  
85  
60  
50  
40  
30  
20  
10  
-2HD  
80  
75  
-THD (dBc)  
-3HD  
70  
65  
-THD  
SNR (dB) OR SINAD (dB)  
60  
55  
50  
f
T
= 60MSPS  
= 25 C  
S
o
A
1
10  
100  
-40  
-30  
-20  
-10  
0
INPUT FREQUENCY (MHz)  
INPUT LEVEL (dBFS)  
FIGURE 5. -THD, -2HD AND -3HD vs INPUT FREQUENCY  
8
FIGURE 6. SINAD, SNR AND -THD vs INPUT AMPLITUDE  
150  
1MHz < f < 15MHz  
IN  
140  
130  
120  
110  
100  
90  
o
T
= 25 C  
A
I
CC  
7
6
AI  
80  
CC  
70  
60  
50  
DI  
CC1  
40  
f
= 60MSPS  
S
30  
1MHz < f < 15MHz  
IN  
= 25 C  
20  
DI  
o
CC2  
T
DI  
A
CC3  
10  
5
0
40  
42  
44  
46  
48  
50  
52  
54  
)
56  
58  
60  
10  
20  
30  
40  
50  
60  
70  
DUTY CYCLE (%, t /t  
f
(MSPS)  
HI CLK  
S
FIGURE 7. EFFECTIVE NUMBER OF BITS (ENOB) vs  
SAMPLE CLOCK DUTY CYCLE  
FIGURE 8. SUPPLY CURRENT vs SAMPLE CLOCK  
FREQUENCY  
18  
HI5662  
Typical Performance Curves (Continued)  
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
2.44  
2.43  
2.42  
2.41  
2.40  
IV  
DC  
QV  
DC  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 9. INTERNAL REFERENCE VOLTAGE (V  
TEMPERATURE  
) vs  
FIGURE 10. DC BIAS VOLTAGE (I/QVDC) vs TEMPERATURE  
ROUT  
13.0  
12.5  
140  
I
CC  
120  
100  
80  
60  
40  
20  
0
f
= 60MSPS  
S
1MHz < f < 15MHz  
IN  
t
OD  
AI  
12.0  
11.5  
11.0  
CC  
DI  
DI  
CC1  
CC2  
DI  
CC3  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 11. DATA OUTPUT DELAY (t ) vs TEMPERATURE  
OD  
FIGURE 12. SUPPLY CURRENT vs TEMPERATURE  
0
f
f
= 60MSPS  
= 10MHz  
S
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
IN  
o
T
= 25 C  
A
0
100 200 300 400 500 600 700 800 900 1023  
FREQUENCY (BIN)  
FIGURE 13. 2048 POINT FFT PLOT  
19  
HI5662  
TABLE 1. A/D CODE TABLE  
OFFSET BINARY OUTPUT CODE  
DIFFERENTIAL INPUT  
VOLTAGE  
(I/Q + - I/Q -)  
MSB  
LSB  
CODE CENTER  
DESCRIPTION  
I/QD7 I/QD6 I/QD5 I/QD4 I/QD3 I/QD2 I/QD1 I/QD0  
IN IN  
7
+Full Scale (+FS) - / LSB  
16  
0.498291V  
0.494385V  
2.19727mV  
-1.70898mV  
-0.493896V  
-0.497803V  
1
1
1
0
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
0
1
1
0
7
+FS - 1 / LSB  
16  
9
+ / LSB  
16  
7
- / LSB  
16  
9
-FS + 1 / LSB  
16  
9
-Full Scale (-FS) +  
NOTE:  
/
LSB  
16  
8. The voltages listed above represent the ideal center of each output code shown with V  
= +2.5V.  
REFIN  
As illustrated in the functional block diagram and the timing  
diagram in Figure 1, identical pipeline subconverter stages,  
each containing a two-bit flash converter and a two-bit  
multiplying digital-to-analog converter, follow the S/H circuit  
with the last stage being a two bit flash converter. Each  
converter stage in the pipeline will be sampling in one phase  
and amplifying in the other clock phase. Each individual  
subconverter clock signal is offset by 180 degrees from the  
previous stage clock signal resulting in alternate stages in  
the pipeline performing the same operation.  
Detailed Description  
Theory of Operation  
The HI5662 is a dual 8-bit fully differential sampling pipeline  
A/D converter with digital error correction logic. Figure 14  
depicts the circuit for the front end differential-in-differential-  
out sample-and-hold (S/H) amplifiers. The switches are  
controlled by an internal sampling clock which is a non-  
overlapping two phase signal, φ and φ , derived from the  
1
2
master sampling clock. During the sampling phase, φ , the  
1
input signal is applied to the sampling capacitors, C . At the  
S
The output of each of the identical two-bit subconverter  
stages is a two-bit digital word containing a supplementary  
bit to be used by the digital error correction logic. The output  
of each subconverter stage is input to a digital delay line  
which is controlled by the internal sampling clock. The  
function of the digital delay line is to time align the digital  
outputs of the identical two-bit subconverter stages with the  
corresponding output of the last stage flash converter before  
applying the results to the digital error correction logic. The  
digital error correction logic uses the supplementary bits to  
correct any error that may exist before generating the final  
eight bit digital data output of the converter.  
same time the holding capacitors, C , are discharged to  
H
analog ground. At the falling edge of φ the input signal is  
1
sampled on the bottom plates of the sampling capacitors. In  
the next clock phase, φ , the two bottom plates of the  
2
sampling capacitors are connected together and the holding  
capacitors are switched to the op-amp output nodes. The  
charge then redistributes between C and C completing  
S
H
one sample-and-hold cycle. The front end sample-and-hold  
output is a fully-differential, sampled-data representation of  
the analog input. The circuit not only performs the sample-  
and-hold function but will also convert a single-ended input  
to a fully-differential output for the converter core. During the  
sampling phase, the I/Q pins see only the on-resistance of  
a switch and C . The relatively small values of these  
S
components result in a typical full power input bandwidth of  
250MHz for the converter.  
Because of the pipeline nature of this converter, the digital  
data representing an analog input sample is output to the  
digital data bus following the 6th cycle of the clock after the  
analog sample is taken (see the timing diagram in Figure 1).  
This time delay is specified as the data latency. After the  
data latency time, the digital data representing each  
succeeding analog sample is output during the following  
clock cycle. The digital output data is provided in offset  
binary format (see Table 1, A/D Code Table).  
IN  
Φ
Φ
C
1
1
H
Φ
1
C
C
S
I/Q  
I/Q  
IN+  
V
OUT+  
+
-
Φ
2
V
+
-
OUT-  
Internal Reference Voltage Output, V  
REFOUT  
IN-  
S
Φ
1
The HI5662 is equipped with an internal reference voltage  
generator, therefore, no external reference voltage is  
Φ
C
Φ
1
H
1
required. V  
must be connected to V  
when using the  
RIN  
ROUT  
internal reference voltage.  
FIGURE 14. ANALOG INPUT SAMPLE-AND-HOLD  
20  
HI5662  
An internal band-gap reference voltage followed by an  
amplifier/buffer generates the precision +2.5V reference  
voltage used by the converter. A band-gap reference circuit  
is used to generate a precision +1.25V internal reference  
voltage. This voltage is then amplified by a wide-band  
uncompensated operational amplifier connected in a  
gain-of-two configuration. An external, user-supplied, 0.1µF  
an AC coupled differential input. This low output impedance  
voltage source is not designed to be a reference but makes an  
excellent DC bias source and stays well within the analog  
input common mode voltage range over temperature.  
For the AC coupled differential input (Figure 15) and with  
V
V
connected to V  
, full scale is achieved when the  
, with -V being  
RIN  
ROUT  
and -V input signals are 0.5V  
IN  
IN  
P-P  
IN  
capacitor connected from the V  
output pin to analog  
ROUT  
180 degrees out of phase with V . The converter will be at  
IN  
ground is used to set the dominant pole and to maintain the  
stability of the operational amplifier.  
positive full scale when the I/Q + input is at V  
IN DC  
+ 0.25V and  
the I/Q input is at V  
- 0.25V (I/Q  
- I/Q = +0.5V).  
IN- DC  
IN+ IN-  
Conversely, the converter will be at negative full scale when  
the I/Q input is equal to V - 0.25V and I/Q is at  
Reference Voltage Input, V  
REFIN  
The HI5662 is designed to accept a +2.5V reference voltage  
source at the V input pin. Typical operation of the  
IN+  
+ 0.25V (I/Q  
DC  
IN-  
V
- I/Q = -0.5V).  
IN+ IN-  
DC  
RIN  
converter requires V  
to be set at +2.5V. The HI5662 is  
yielding a fully  
RIN  
connected to V  
The analog input can be DC coupled (Figure 16) as long as  
the inputs are within the analog input common mode voltage  
range (0.25V VDC 4.75V).  
tested with V  
RIN  
ROUT  
differential analog input voltage range of ±0.5V.  
The user does have the option of supplying an external  
+2.5V reference voltage. As a result of the high input  
V
IN  
I/Q  
+
IN  
VDC  
impedance presented at the V  
input pin, 1.25ktypically,  
RIN  
R
R
HI5662  
the external reference voltage being used is only required to  
source 2mA of reference input current. In the situation where  
an external reference voltage will be used an external 0.1µF  
C
I/QV  
I/Q  
DC  
-V  
IN  
capacitor must be connected from the V  
output pin to  
ROUT  
VDC  
-
analog ground in order to maintain the stability of the internal  
operational amplifier.  
IN  
FIGURE 16. DC COUPLED DIFFERENTIAL INPUT  
In order to minimize overall converter noise it is  
The resistors, R, in Figure 16 are not absolutely necessary  
but may be used as load setting resistors. A capacitor, C,  
recommended that adequate high frequency decoupling be  
provided at the reference voltage input pin, V  
.
RIN  
connected from I/Q + to I/Q - will help filter any high  
IN IN  
Analog Input, Differential Connection  
frequency noise on the inputs, also improving performance.  
Values around 20pF are sufficient and can be used on AC  
coupled inputs as well. Note, however, that the value of  
capacitor C chosen must take into account the highest  
frequency component of the analog input signal.  
The analog input of the HI5662 is a differential input that can  
be configured in various ways depending on the signal  
source and the required level of performance. A fully  
differential connection (Figure 15 and Figure 16) will deliver  
the best performance from the converter.  
Analog Input, Single-Ended Connection  
The configuration shown in Figure 17 may be used with a  
single ended AC coupled input.  
I/Q  
+
V
IN  
IN  
R
R
HI5662  
I/QV  
I/Q  
+
V
IN  
IN  
DC  
R
HI5662  
VDC  
-V  
IN  
I/Q  
-
IN  
I/Q  
-
IN  
FIGURE 15. AC COUPLED DIFFERENTIAL INPUT  
FIGURE 17. AC COUPLED SINGLE ENDED INPUT  
Since the HI5662 is powered by a single +5V analog supply,  
the analog input is limited to be between ground and +5V.  
For the differential input connection this implies the analog  
input common mode voltage can range from 0.25V to 4.75V.  
The performance of the ADC does not change significantly  
with the value of the analog input common mode voltage.  
Again, with V  
RIN  
connected to V  
, if V is a 1V  
IN P-P  
ROUT  
sinewave, then I/Q  
is a 1.0V sinewave riding on a  
IN+  
P-P  
positive voltage equal to V . The converter will be at positive  
DC  
full scale when I/Q  
is at V  
+ 0.5V (I/Q  
- I/Q = +0.5V)  
IN+  
DC  
IN+  
IN-  
and will be at negative full scale when I/Q  
IN+  
is equal to  
V
- 0.5V (I/Q  
- I/Q = -0.5V). Sufficient headroom must  
IN-  
DC  
be provided such that the input voltage never goes above +5V  
IN+  
A DC voltage source, I/QV , equal to 3.0V (typical), is made  
DC  
available to the user to help simplify circuit design when using  
21  
HI5662  
or below AGND. In this case, VDC could range between 0.5V  
and 4.5V without a significant change in ADC performance.  
The simplest way to produce VDC is to use the DC bias source,  
regulated supplies. The board should also have good high  
frequency decoupling capacitors mounted as close as  
possible to the converter. If the part is powered off a single  
supply then the analog supply can be isolated by a ferrite  
bead from the digital supply.  
I/QV , of the HI5662.  
DC  
The single ended analog input can be DC coupled  
(Figure 18) as long as the input is within the analog input  
common mode voltage range.  
Refer to the application note “Using Intersil High Speed A/D  
Converters” (AN9214) for additional considerations when  
using high speed converters.  
V
IN  
I/Q  
+
V
IN  
DC  
Static Performance Definitions  
R
Offset Error (V  
)
OS  
HI5662  
C
1
The midscale code transition should occur at a level / LSB  
4
above half-scale. Offset is defined as the deviation of the  
actual code transition from this point.  
V
I/Q  
-
IN  
DC  
Full-Scale Error (FSE)  
The last code transition should occur for an analog input that  
3
FIGURE 18. DC COUPLED SINGLE ENDED INPUT  
is / LSB below Positive Full Scale (+FS) with the offset  
4
The resistor, R, in Figure 18 is not absolutely necessary but  
may be used as a load setting resistor. A capacitor, C,  
error removed. Full scale error is defined as the deviation of  
the actual code transition from this point.  
connected from I/Q + to I/Q - will help filter any high  
IN IN  
Differential Linearity Error (DNL)  
frequency noise on the inputs, also improving performance.  
Values around 20pF are sufficient and can be used on AC  
coupled inputs as well. Note, however, that the value of  
capacitor C chosen must take into account the highest  
frequency component of the analog input signal.  
DNL is the worst case deviation of a code width from the  
ideal value of 1LSB.  
Integral Linearity Error (INL)  
INL is the worst case deviation of a code center from a best  
fit straight line calculated from the measured data.  
A single ended source may give better overall system  
performance if it is first converted to differential before  
driving the HI5662.  
Power Supply Sensitivity  
Each of the power supplies are moved plus and minus 5% and  
the shift in the offset and full scale error (in LSBs) is noted.  
Sampling Clock Requirements  
The HI5662 sampling clock input provides a standard high-  
speed interface to external TTL/CMOS logic families.  
Dynamic Performance Definitions  
Fast Fourier Transform (FFT) techniques are used to evaluate  
the dynamic performance of the HI5662. A low distortion sine  
wave is applied to the input, it is coherently sampled, and the  
output is stored in RAM. The data is then transformed into the  
frequency domain with an FFT and analyzed to evaluate the  
dynamic performance of the A/D. The sine wave input to the  
part is typically -0.5dB down from full scale for all these tests.  
In order to ensure rated performance of the HI5662, the duty  
cycle of the clock should be held at 50% ±5%. It must also  
have low jitter and operate at standard TTL/CMOS levels.  
Performance of the HI5662 will only be guaranteed at  
conversion rates above 1MSPS (Typ). This ensures proper  
performance of the internal dynamic circuits. Similarly, when  
power is first applied to the converter, a maximum of 20  
cycles at a sample rate above 1MSPS must to be performed  
before valid data is available.  
SNR and SINAD are quoted in dB. The distortion numbers are  
quoted in dBc (decibels with respect to carrier) and DO NOT  
include any correction factors for normalizing to full scale.  
Supply and Ground Considerations  
The Effective Number of Bits (ENOB) is calculated from the  
SINAD data by:  
The HI5662 has separate analog and digital supply and ground  
pins to keep digital noise out of the analog signal path. The  
digital data outputs also have a separate supply pin, DV  
,
ENOB = (SINAD - 1.76 + V  
) / 6.02,  
CORR  
CC3  
which can be powered from a 3.0V or 5.0V supply. This allows  
the outputs to interface with 3.0V logic if so desired.  
where: V  
= 0.5 dB (Typical).  
adjusts the SINAD, and hence the ENOB, for the  
CORR  
V
CORR  
amount the analog input signal is backed off from full scale.  
The part should be mounted on a board that provides  
separate low impedance connections for the analog and  
digital supplies and grounds. For best performance, the  
supplies to the HI5662 should be driven by clean, linear  
22  
HI5662  
Signal To Noise and Distortion Ratio (SINAD)  
I/Q Channel Crosstalk  
SINAD is the ratio of the measured RMS signal to RMS sum  
of all the other spectral components below the Nyquist  
frequency, f /2, excluding DC.  
S
I/Q Channel Crosstalk is a measure of the amount of  
channel separation or isolation between the two A/D  
converter cores contained within the dual converter  
package. The measurement consists of stimulating one  
channel of the converter with a fullscale input signal and  
then measuring the amount that signal is below, in dBc, a  
fullscale signal on the opposite channel.  
Signal To Noise Ratio (SNR)  
SNR is the ratio of the measured RMS signal to RMS noise at  
a specified input and sampling frequency. The noise is the  
RMS sum of all of the spectral components below f /2  
S
excluding the fundamental, the first five harmonics and DC.  
Timing Definitions  
Refer to Figure 1 and Figure 2 for these definitions.  
Total Harmonic Distortion (THD)  
THD is the ratio of the RMS sum of the first 5 harmonic  
components to the RMS value of the fundamental input signal.  
Aperture Delay (t  
)
AP  
Aperture delay is the time delay between the external  
sample command (the falling edge of the clock) and the time  
at which the signal is actually sampled. This delay is due to  
internal clock path propagation delays.  
2nd and 3rd Harmonic Distortion  
This is the ratio of the RMS value of the applicable harmonic  
component to the RMS value of the fundamental input signal.  
Aperture Jitter (t  
)
AJ  
Spurious Free Dynamic Range (SFDR)  
Aperture jitter is the RMS variation in the aperture delay due  
to variation of internal clock path delays.  
SFDR is the ratio of the fundamental RMS amplitude to the  
RMS amplitude of the next largest spectral component in the  
spectrum below f /2.  
S
Data Hold Time (t )  
H
Data hold time is the time to where the previous data (N - 1)  
is no longer valid.  
Intermodulation Distortion (IMD)  
Nonlinearities in the signal path will tend to generate  
intermodulation products when two tones, f and f , are  
present at the inputs. The ratio of the measured signal to the  
distortion terms is calculated. The terms included in the  
1
2
Data Output Delay Time (t  
)
OD  
Data output delay time is the time to where the new data (N)  
is valid.  
calculation are (f +f ), (f -f ), (2f ), (2f ), (2f +f ), (2f -f ),  
1
2
1 2 1 2  
1
2
1 2  
Data Latency (t )  
LAT  
After the analog sample is taken, the digital data  
(f +2f ), (f -2f ). The ADC is tested with each tone 6dB  
below full scale.  
1
2
1
2
representing an analog input sample is output to the digital  
data bus following the 6th cycle of the clock after the analog  
sample is taken. This is due to the pipeline nature of the  
converter where the analog sample has to ripple through the  
internal subconverter stages. This delay is specified as the  
data latency. After the data latency time, the digital data  
representing each succeeding analog sample is output  
during the following clock cycle. The digital data lags the  
analog input sample by 6 sample clock cycles.  
Transient Response  
Transient response is measured by providing a full-scale  
transition to the analog input of the ADC and measuring the  
number of cycles it takes for the output code to settle within  
10-bit accuracy.  
Over-Voltage Recovery  
Over-Voltage Recovery is measured by providing a full-scale  
transition to the analog input of the ADC which overdrives  
the input by 200mV, and measuring the number of cycles it  
takes for the output code to settle within 10-bit accuracy.  
Power-Up Initialization  
This time is defined as the maximum number of clock cycles  
that are required to initialize the converter at power-up. The  
requirement arises from the need to initialize the dynamic  
circuits within the converter.  
Full Power Input Bandwidth (FPBW)  
Full power input bandwidth is the analog input frequency at  
which the amplitude of the digitally reconstructed output has  
decreased 3dB below the amplitude of the input sine wave.  
The input sine wave has an amplitude which swings from  
-FS to +FS. The bandwidth given is measured at the  
specified sampling frequency.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
23  

相关型号:

HI5662EVAL2

Dual 8-Bit, 60MSPS A/D Converter with Internal Voltage Reference
INTERSIL

HI5662IN

HI5662IN
RENESAS

HI5667

8-Bit, 60MSPS A/D Converter with Internal Voltage Reference
INTERSIL

HI5667/6CA

8-Bit, 60MSPS A/D Converter with Internal Voltage Reference
INTERSIL

HI5667/6CB

8-Bit, 60MSPS A/D Converter with Internal Voltage Reference
INTERSIL

HI5667EVAL2

8-Bit, 60MSPS A/D Converter with Internal Voltage Reference
INTERSIL

HI5675

8-Bit, 20MSPS, Flash A/D Converter
INTERSIL

HI5675JCB

8-Bit, 20MSPS, Flash A/D Converter
INTERSIL

HI5675JCB-T

1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PDSO24, PLASTIC, SOIC-24
RENESAS

HI5675_03

8-Bit, 20MSPS, Flash A/D Converter
INTERSIL

HI5701-EV

6-Bit, 30MSPS, Flash A/D Converter
INTERSIL

HI5702

10-Bit, 40 MSPS A/D Converter
INTERSIL