HGT1S3N60B3DS [INTERSIL]

7A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode; 7A , 600V , UFS系列N沟道IGBT与反并联二极管超高速
HGT1S3N60B3DS
型号: HGT1S3N60B3DS
厂家: Intersil    Intersil
描述:

7A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
7A , 600V , UFS系列N沟道IGBT与反并联二极管超高速

二极管 双极性晶体管
文件: 总7页 (文件大小:157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTP3N60B3D, HGT1S3N60B3DS  
Data Sheet  
January 2000  
File Number 4414.1  
7A, 600V, UFS Series N-Channel IGBT with  
Anti-Parallel Hyperfast Diode  
Features  
o
• 7A, 600V T = 25 C  
C
The HGTP3N60B3D and HGT1S3N60B3DS are MOS gated  
high voltage switching devices combining the best features  
of MOSFETs and bipolar transistors. These devices have  
the high input impedance of a MOSFET and the low on-state  
conduction loss of a bipolar transistor. The much lower on-  
• 600V Switching SOA Capability  
o
Typical Fall Time. . . . . . . . . . . . . . . . 115ns at T = 125 C  
J
• Short Circuit Rating  
• Low Conduction Loss  
• Hyperfast Anti-Parallel Diode  
• Related Literature  
o
state voltage drop varies only moderately between 25 C and  
o
150 C. The diode used in anti-parallel with the IGBT is the  
RHRD460. The IGBT used is TA49192.  
The IGBT is ideal for many high voltage switching  
applications operating at moderate frequencies where low  
conduction losses are essential, such as: AC and DC motor  
controls, power supplies and drivers for solenoids, relays  
and contactors.  
• TB334 “Guidelines for Soldering Surface Mount  
- Components to PC Boards  
Packaging  
JEDEC TO-220AB  
Formerly Developmental Type TA49193.  
E
C
G
Ordering Information  
COLLECTOR  
(FLANGE)  
PART NUMBER  
PACKAGE  
TO-220AB  
TO-263AB  
BRAND  
G3N60B3D  
G3N60B3D  
HGTP3N60B3D  
HGT1S3N60B3DS  
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-263AB variant in tape and reel, i.e.,  
HGT1S3N60B3DS9A.  
Symbol  
TO-263, TO-263AB  
C
COLLECTOR  
(FLANGE)  
G
G
E
E
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000  
1
HGTP3N60B3D, HGT1S3N60B3DS  
o
Absolute Maximum Ratings  
T
= 25 C, Unless Otherwise Specified  
C
HGTP3N60B3D,  
HGT1S3N60B3DS  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
7.0  
3.5  
A
A
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
C
C110  
Average Diode Forward Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
4.0  
EC(AVG)  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
20  
A
V
V
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
18A at 600V  
33.3  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.27  
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T , T  
J
-55 to 150  
C
STG  
Maximum Lead Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Package Body for 10s, See Tech Brief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
PKG  
Short Circuit Withstand Time (Note 2) at V  
Short Circuit Withstand Time (Note 2) at V  
= 12V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
5
µs  
µs  
GE  
SC  
SC  
= 10V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
10  
GE  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Pulse width limited by maximum junction temperature.  
o
2. V  
= 360V, T = 125 C, R = 82Ω.  
J G  
CE(PK)  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
TYP  
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Collector to Emitter Leakage Current  
I
600  
-
-
CES  
C
GE  
o
I
V
= BV  
CES  
T
= 25 C  
-
-
250  
2.0  
2.1  
2.5  
6.0  
±250  
-
µA  
mA  
V
CES  
CE  
C
C
C
C
o
T
T
T
= 150 C  
-
o
Collector to Emitter Saturation Voltage  
V
I
V
= I  
,
= 25 C  
-
1.8  
2.1  
5.4  
-
CE(SAT)  
C C110  
= 15V  
GE  
o
= 150 C  
-
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 250µA, V  
= V  
GE  
4.5  
-
V
GE(TH)  
C CE  
I
V
= ±20V  
nA  
A
GES  
GE  
o
SSOA  
T = 150 C, R = 82Ω, V  
= 15V  
18  
-
J
G
GE  
L = 500µH, V = 600V  
CE  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
= I  
, V  
C110 CE  
= 0.5 BV  
-
-
-
-
-
-
-
-
-
7.9  
18  
21  
18  
16  
105  
70  
66  
88  
-
22  
25  
-
V
GEP  
C
CES  
V = 15V  
GE  
Q
= I  
,
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
g(ON)  
C
C110  
= 0.5 BV  
V
CE  
CES  
V
= 20V  
o
GE  
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C  
J
d(ON)I  
I
= I  
CE  
C110  
t
-
rI  
V
V
R
= 0.8 BV  
= 15V  
CE  
CES  
GE  
Current Turn-Off Delay Time  
Current Fall Time  
t
-
d(OFF)I  
= 82Ω  
G
L = 1mH  
Test Circuit (Figure 19)  
t
-
fI  
Turn-On Energy  
E
75  
160  
ON  
Turn-Off Energy (Note 1)  
E
OFF  
2
HGTP3N60B3D, HGT1S3N60B3DS  
o
Electrical Specifications  
PARAMETER  
T = 25 C, Unless Otherwise Specified (Continued)  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
16  
18  
220  
115  
130  
210  
2.0  
-
MAX  
-
UNITS  
ns  
o
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 150 C  
-
-
-
-
-
-
-
-
-
-
d(ON)I  
J
I
= I  
CE  
C110  
t
-
ns  
rI  
V
= 0.8 BV  
= 15V  
CE  
CES  
V
GE  
Current Turn-Off Delay Time  
Current Fall Time  
t
295  
175  
140  
325  
2.5  
22  
ns  
d(OFF)I  
R
= 82Ω  
G
L = 1mH  
t
ns  
fI  
Test Circuit (Figure 19)  
Turn-On Energy  
E
µJ  
ON  
Turn-Off Energy (Note 1)  
Diode Forward Voltage  
Diode Reverse Recovery Time  
E
µJ  
OFF  
V
I
I
I
= 3A  
V
EC  
EC  
EC  
EC  
t
= 1A, dI /dt = 200A/µs  
EC  
ns  
rr  
= 3A, dI /dt = 200A/µs  
EC  
-
28  
ns  
o
Thermal Resistance Junction To Case  
NOTE:  
R
IGBT  
-
3.75  
3.0  
C/W  
θJC  
o
Diode  
C/W  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. Turn-On losses include losses due  
to diode recovery.  
Typical Performance Curves Unless Otherwise Specified  
20  
o
= 150 C, R = 82, V  
T
= 15V L = 500µH  
7
6
5
4
3
2
1
0
J
G
GE  
18  
16  
14  
12  
10  
8
V
= 15V  
GE  
6
4
2
0
0
100  
200  
300  
400  
500  
600  
700  
25  
50  
75  
100  
125  
150  
o
T
, CASE TEMPERATURE ( C)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
C
CE  
FIGURE 1. DC COLLECTOR CURRENT vs CASE TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
3
HGTP3N60B3D, HGT1S3N60B3DS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
200  
16  
45  
40  
35  
30  
25  
20  
15  
o
T
= 150 C, R = 82, L = 1mH, V  
= 480V  
o
J
G
CE  
V
= 360V, R = 82, T = 125 C  
G J  
CE  
100  
10  
1
T
V
C
o
o
o
GE  
14  
12  
10  
8
15V  
10V  
I
75 C  
75 C  
110 C 15V  
110 C 10V  
SC  
o
f
f
= 0.05 / (t  
d(OFF)I  
+ t  
d(ON)I  
)
)
MAX1  
t
= (P - P ) / (E  
ON  
= CONDUCTION DISSIPATION  
+ E  
SC  
MAX2  
D
C
OFF  
P
C
6
(DUTY FACTOR = 50%)  
o
R
= 3.75 C/W, SEE NOTES  
ØJC  
4
10  
11  
12  
13  
14  
15  
1
2
3
4
5
6
7
8
V
, GATE TO EMITTER VOLTAGE (V)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
GE  
CE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
30  
25  
20  
15  
10  
5
14  
DUTY CYCLE <0.5%, V  
= 10V  
PULSE DURATION = 250µs  
o
DUTY CYCLE <0.5%, V  
= 15V  
PULSE DURATION = 250µs  
GE  
GE  
T
= -55 C  
C
C
o
12  
10  
8
T
= -55 C  
C
o
T
= 150 C  
o
T
= 150 C  
C
6
o
T
= 25 C  
C
4
o
T
= 25 C  
C
2
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
0.7  
0.6  
R
= 82, L = 1mH, V  
= 480V  
o
R
= 82, L = 1mH, V  
= 480V  
CE  
G
CE  
G
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
o
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
= 25 C, T = 150 C, V  
= 10V  
J
J
GE  
o
T
= 150 C; V  
= 10V OR 15V  
J
GE  
o
T
= 25 C; V  
= 10V OR 15V  
7 8  
J
GE  
o
o
V
= 15V, T = 150 C, T = 25 C  
GE  
J
J
1
2
3
4
5
6
7
8
1
2
3
4
5
6
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
4
HGTP3N60B3D, HGT1S3N60B3DS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
80  
70  
60  
50  
40  
30  
20  
10  
45  
40  
35  
30  
25  
20  
15  
10  
R
= 82, L = 1mH, V  
= 480V  
CE  
R
= 82, L = 1mH, V  
= 480V  
CE  
G
G
o
o
T
= 25 C, T = 150 C, V = 10V  
GE  
J
J
o
o
T
= 25 C AND T = 150 C, V  
= 10V  
J
J
GE  
o
= 25 C, T = 150 C, V = 15V  
GE  
o
T
J
J
o
o
T
= 25 C, T = 150 C, V  
= 15V  
J
J
GE  
7
1
2
3
4
5
6
8
1
2
3
4
5
6
7
8
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
250  
140  
R
= 82, L = 1mH, V  
= 480V  
CE  
G
R
= 82, L = 1mH, V  
= 480V  
CE  
G
225  
200  
175  
150  
125  
100  
75  
o
T
= 150 C, V  
= 15V  
J
GE  
120  
100  
80  
o
T
= 150 C, V  
= 10V OR 15V  
J
GE  
o
T
= 150 C, V  
GE  
= 10V  
J
o
T
= 25 C, V  
= 15V  
J
GE  
o
= 25 C, V  
T
= 10V OR 15V  
J
GE  
o
T
= 25 C, V  
= 10V  
3
J
GE  
60  
1
2
4
5
6
7
8
1
2
3
4
5
6
7
8
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER  
CURRENT  
15  
30  
o
= 25 C  
C
I
= 1mA,  
G(REF)  
= 171, T = 25 C  
T
PULSE DURATION = 250µs  
o
R
L
C
25  
20  
15  
10  
5
12  
9
o
T
= -55 C  
C
o
T
= 150 C  
C
6
V
= 200V  
V
= 400V  
V
= 600V  
CE  
CE  
CE  
3
0
0
0
5
10  
15  
20  
25  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Q , GATE CHARGE (nC)  
g
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
5
HGTP3N60B3D, HGT1S3N60B3DS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
500  
FREQUENCY = 1MHz  
400  
C
IES  
300  
200  
100  
0
C
OES  
C
RES  
0
5
10  
15  
20  
25  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER VOLTAGE  
0
10  
0.5  
0.2  
t
1
0.1  
-1  
10  
10  
P
D
0.05  
t
2
0.02  
0.01  
DUTY FACTOR, D = t / t  
1
2
PEAK T = (P X Z  
X R  
) + T  
SINGLE PULSE  
J
D
θJC  
θJC  
C
-2  
-5  
10  
-4  
-3  
-2  
-1  
10  
0
1
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
10  
10  
1
FIGURE 16. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
15  
12  
9
30  
o
T
= 25 C, dI /dt = 200A/µs  
C
EC  
25  
20  
15  
10  
5
t
rr  
o
150 C  
t
t
a
b
6
o
25 C  
o
-55 C  
3
0
0.5  
0
1
2
3
4
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
I
, FORWARD CURRENT (A)  
EC  
V
, FORWARD VOLTAGE (V)  
EC  
FIGURE 17. DIODE FORWARD CURRENT vs FORWARD  
VOLTAGE DROP  
FIGURE 18. RECOVERY TIME vs FORWARD CURRENT  
6
HGTP3N60B3D, HGT1S3N60B3DS  
Test Circuit and Waveforms  
HGTP3N60B3D  
90%  
OFF  
10%  
ON  
V
GE  
E
E
V
CE  
L = 1mH  
90%  
R
= 82Ω  
G
10%  
d(OFF)I  
+
I
DUT  
CE  
t
t
V
= 480V  
rI  
DD  
t
fI  
-
t
d(ON)I  
FIGURE 19. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 20. SWITCHING TEST WAVEFORMS  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge built  
in the handler’s body capacitance is not discharged through  
the device. With proper handling and application procedures,  
however, IGBTs are currently being extensively used in  
production by numerous equipment manufacturers in military,  
industrial and consumer applications, with virtually no  
damage problems due to electrostatic discharge. IGBTs can  
be handled safely if the following basic precautions are taken:  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 5, 6, 7, 8, 9  
and 11. The operating frequency plot (Figure 3) of a typical  
device shows f  
or f  
; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
MAX1  
= 0.05/(t ).  
+ t  
MAX1  
d(OFF)I d(ON)I  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD LD26™” or equivalent.  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
are possible. t  
and t  
are defined in Figure 20.  
d(OFF)I  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
JM d(OFF)I  
is important when controlling output ripple under a lightly  
loaded condition.  
3. Tips of soldering irons should be grounded.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON  
MAX2  
D
C
4. Devices should never be inserted into or removed from  
circuits with power on.  
allowable dissipation (P ) is defined by P = (T - T )/R  
The sum of device switching and conduction losses must  
not exceed P . A 50% duty factor was used (Figure 3) and  
the conduction losses (P ) are approximated by  
P
.
D
D
JM θJC  
C
5. Gate Voltage Rating - Never exceed the gate-voltage  
D
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
C
permanent damage to the oxide layer in the gate region.  
= V  
x I )/2.  
CE  
C
CE  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate open-  
circuited or floating should be avoided. These conditions  
can result in turn-on of the device due to voltage buildup  
on the input capacitor due to leakage currents or pickup.  
E
and E  
are defined in the switching waveforms  
OFF  
ON  
shown in Figure 20. E  
power loss (I  
is the integral of the instantaneous  
ON  
x V ) during turn-on and E  
is the  
CE  
CE  
OFF  
x V ) during  
integral of the instantaneous power loss (I  
CE  
turn-off. All tail losses are included in the calculation for  
; i.e., the collector current equals zero (I = 0).  
CE  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
E
OFF  
CE  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
ECCOSORBD is a Trademark of Emerson and Cumming, Inc.  
7

相关型号:

HGT1S3N60B3DS9A

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 3.5A I(C) | TO-263AB
ETC

HGT1S3N60B3S

7A, 600V, UFS Series N-Channel IGBTs
INTERSIL

HGT1S3N60B3S

7A, 600V, N-CHANNEL IGBT, PLASTIC PACKAGE-4
ROCHESTER

HGT1S3N60B3S9A

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 3.5A I(C) | TO-263AB
ETC

HGT1S3N60C3D

6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
HARRIS

HGT1S3N60C3DS

6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
HARRIS

HGT1S3N60C3DS

6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
INTERSIL

HGT1S3N60C3DS9A

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 3A I(C) | TO-263AB
ETC

HGT1S5N120BNDS

21A, 1200V, NPT Series N-Channel IGBTs with Anti-Parallel Hyperfast Diodes
INTERSIL

HGT1S5N120BNDS

21A, 1200V, N-CHANNEL IGBT, TO-263AB
RENESAS

HGT1S5N120BNDS9A

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 10A I(C) | TO-263AB
ETC

HGT1S5N120BNS

21A, 1200V, NPT Series N-Channel IGBTs
INTERSIL