HGT1S3N60B3S9A [ETC]

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 3.5A I(C) | TO-263AB ; 晶体管| IGBT | N -CHAN | 600V V( BR ) CES | 3.5AI ( C) | TO- 263AB\n
HGT1S3N60B3S9A
型号: HGT1S3N60B3S9A
厂家: ETC    ETC
描述:

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 3.5A I(C) | TO-263AB
晶体管| IGBT | N -CHAN | 600V V( BR ) CES | 3.5AI ( C) | TO- 263AB\n

晶体 晶体管 电动机控制 瞄准线 双极性晶体管 栅
文件: 总7页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTD3N60B3S, HGT1S3N60B3S, HGTP3N60B3  
Data Sheet  
December 2001  
7A, 600V, UFS Series N-Channel IGBTs  
Features  
o
The HGTD3N60B3S, HGT1S3N60B3S and HGTP3N60B3  
are MOS gated high voltage switching devices combining  
the best features of MOSFETs and bipolar transistors. These  
devices have the high input impedance of a MOSFET and  
the low on-state conduction loss of a bipolar transistor. The  
much lower on-state voltage drop varies only moderately  
• 7A, 600V, T = 25 C  
C
• 600V Switching SOA Capability  
o
Typical Fall Time. . . . . . . . . . . . . . . . 115ns at T = 150 C  
J
• Short Circuit Rating  
• Low Conduction Loss  
o
o
between 25 C and 150 C.  
The IGBT is ideal for many high voltage switching  
applications operating at moderate frequencies where low  
conduction losses are essential, such as: AC and DC motor  
controls, power supplies and drivers for solenoids, relays  
and contactors.  
Packaging  
JEDEC TO-220AB  
E
C
G
COLLECTOR  
(FLANGE)  
Formerly Developmental Type TA49192.  
Ordering Information  
PART NUMBER  
HGTD3N60B3S  
HGT1S3N60B3S  
HGTP3N60B3  
PACKAGE  
BRAND  
G3N60B  
TO-252AA  
JEDEC TO-263AB  
TO-263AB  
TO-220AB  
G3N60B3  
G3N60B3  
COLLECTOR  
(FLANGE)  
G
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-252AA and TO-263AB variant in tape and reel, e.g.  
HGTD3N60B3S9A.  
E
Symbol  
JEDEC TO-252AA  
COLLECTOR  
C
(FLANGE)  
G
G
E
E
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
©2001 Fairchild Semiconductor Corporation  
HGTD3N60B3S, HGT1S3N60B3S, HGTP3N60B3 Rev. B  
HGTD3N60B3S, HGT1S3N60B3S, HGTP3N60B3  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGTD3N60B3S, HGT1S3N60B3S  
HGTP3N60B3  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
7.0  
3.5  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
20  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
18A at 600V  
33.3  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
W
D
o
o
0.27  
W/ C  
C
Reverse Voltage Avalanche Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
100  
mJ  
ARV  
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
-55 to 150  
260  
C
J
STG  
o
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
L
SC  
SC  
Short Circuit Withstand Time (Note 2) at V  
Short Circuit Withstand Time (Note 2) at V  
= 12V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
= 10V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
5
µs  
µs  
GE  
GE  
10  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Pulse width limited by maximum junction temperature.  
o
2. V  
= 360V, T = 125 C, R = 82Ω.  
J G  
CE(PK)  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Emitter to Collector Breakdown Voltage  
Collector to Emitter Leakage Current  
BV  
BV  
I
I
= 250µA, V  
= 0V  
= 0V  
600  
-
28  
-
CES  
ECS  
C
GE  
= 10mA, V  
20  
-
V
C
GE  
o
I
V
= BV  
CES  
T
= 25 C  
-
-
250  
2.0  
2.1  
2.5  
6.0  
±250  
-
µA  
mA  
V
CES  
CE  
C
C
C
C
o
T
T
T
= 150 C  
-
o
Collector to Emitter Saturation Voltage  
V
I
= I  
,
= 25 C  
-
1.8  
2.1  
5.4  
-
CE(SAT)  
C
C110  
= 15V  
V
GE  
o
= 150 C  
-
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 250µA, V  
= V  
GE  
4.5  
-
V
GE(TH)  
C CE  
I
V
= ±20V  
nA  
A
GES  
GE  
o
SSOA  
T = 150 C  
V
= 600V  
18  
-
J
CE  
R
= 82Ω  
G
V
= 15V  
GE  
L = 500µH  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
= I  
, V  
C110 CE  
= 0.5 BV  
CES  
-
-
-
-
-
-
-
-
-
7.9  
18  
21  
18  
16  
105  
70  
66  
88  
-
22  
25  
-
V
GEP  
C
C
Q
I
V
= I  
,
V
= 15V  
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
g(ON)  
C110  
= 0.5 BV  
GE  
GE  
CE  
CES  
V
= 20V  
o
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C  
J
d(ON)I  
I
= I  
CE  
C110  
t
-
rI  
V
V
R
= 0.8 BV  
= 15V  
CE  
GE  
CES  
Current Turn-Off Delay Time  
Current Fall Time  
t
-
d(OFF)I  
= 82Ω  
G
t
-
fI  
L = 1mH  
Test Circuit (Figure 17)  
Turn-On Energy  
E
75  
160  
ON  
Turn-Off Energy (Note 3)  
E
OFF  
©2001 Fairchild Semiconductor Corporation  
HGTD3N60B3S, HGT1S3N60B3S, HGTP3N60B3 Rev. B  
HGTD3N60B3S, HGT1S3N60B3S, HGTP3N60B3  
o
Electrical Specifications  
PARAMETER  
T
= 25 C, Unless Otherwise Specified (Continued)  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
16  
MAX  
-
UNITS  
ns  
o
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 150 C  
-
-
-
-
-
-
-
d(ON)I  
J
I
= I  
C110  
CE  
t
18  
-
ns  
rI  
V
V
= 0.8 BV  
= 15V  
CE  
CES  
Current Turn-Off Delay Time  
Current Fall Time  
t
GE  
220  
115  
130  
210  
-
295  
175  
140  
325  
3.75  
ns  
d(OFF)I  
R
= 82Ω  
G
t
ns  
fI  
L = 1mH  
Test Circuit (Figure 17)  
Turn-On Energy  
E
µJ  
ON  
Turn-Off Energy (Note 3)  
E
µJ  
OFF  
o
Thermal Resistance Junction To Case  
NOTE:  
R
C/W  
θJC  
3. Turn-Off Energy Loss (EOFF) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
at the point where the collector current equals zero (I = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. Turn-On losses include losses due  
to diode recovery.  
Typical Performance Curves Unless Otherwise Specified  
20  
18  
16  
14  
12  
10  
8
7
o
T
= 150 C, R = 82, V = 15V, L = 500µH  
GE  
J
G
V
= 15V  
GE  
6
5
4
3
2
1
0
6
4
2
0
25  
50  
75  
100  
125  
150  
0
100  
V
200  
300  
400  
500  
600  
700  
o
T
, CASE TEMPERATURE ( C)  
, COLLECTOR TO EMITTER VOLTAGE (V)  
C
CE  
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
200  
16  
14  
12  
10  
8
45  
40  
35  
30  
25  
20  
15  
o
= 150 C, R = 82, L = 1mH, V = 480V  
CE  
T
J
G
o
V
= 360V, R = 82, T = 125 C  
G J  
CE  
100  
10  
1
T
V
C
GE  
o
15V  
75 C  
I
SC  
o
75 C 10V  
o
110 C 15V  
o
110 C 10V  
f
= 0.05/(t  
+ t )  
d(ON)I  
MAX1  
d(OFF)I  
f
= (P - P )/(E  
ON  
+ E )  
OFF  
MAX2  
D
C
t
SC  
P
= CONDUCTION DISSIPATION  
C
6
(DUTY FACTOR = 50%)  
o
R
= 3.75 C/W, SEE NOTES  
ØJC  
4
1
2
3
4
5
6
7
8
10  
11  
12  
13  
14  
15  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
©2001 Fairchild Semiconductor Corporation  
HGTD3N60B3S, HGT1S3N60B3S, HGTP3N60B3 Rev. B  
HGTD3N60B3S, HGT1S3N60B3S, HGTP3N60B3  
Typical Performance Curves Unless Otherwise Specified (Continued)  
30  
25  
20  
15  
10  
5
14  
12  
10  
8
o
DUTY CYCLE <0.5%, V  
= 15V  
PULSE DURATION = 250µs  
DUTY CYCLE <0.5%, V  
= 10V  
PULSE DURATION = 250µs  
GE  
GE  
T
= -55 C  
C
C
o
T
= -55 C  
C
o
T
= 150 C  
o
T
= 150 C  
C
6
o
T
= 25 C  
C
o
4
T
= 25 C  
C
2
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
0.7  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
0.6  
R
= 82, L = 1mH, V  
= 480V  
R
= 82, L = 1mH, V  
= 480V  
G
CE  
G
CE  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
o
o
T
= 25 C, T = 150 C, V  
= 10V  
GE  
J
J
o
T
= 150 C; V  
= 10V OR 15V  
J
GE  
o
T
= 25 C; V  
= 10V OR 15V  
7 8  
J
GE  
o
o
T
4
= 25 C, T = 150 C, V  
= 15V  
J
J
GE  
1
2
3
4
5
6
1
2
3
5
6
7
8
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
80  
45  
R
G
= 82, L = 1mH, V = 480V  
CE  
R
T
= 82, L = 1mH, V  
= 480V  
CE  
G
70  
60  
50  
40  
30  
20  
10  
40  
35  
30  
25  
20  
15  
10  
o
o
= 25 C, T = 150 C, V  
GE  
= 10V  
J
J
o
o
T
= 25 C, T = 150 C, V = 10V  
GE  
J
J
o
o
T
= 25 C, T = 150 C, V = 15V  
GE  
J
J
o
o
T
= 25 C, T = 150 C, V  
= 15V  
J
J
GE  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
©2001 Fairchild Semiconductor Corporation  
HGTD3N60B3S, HGT1S3N60B3S, HGTP3N60B3 Rev. B  
HGTD3N60B3S, HGT1S3N60B3S, HGTP3N60B3  
Typical Performance Curves Unless Otherwise Specified (Continued)  
140  
120  
100  
250  
R
= 82, L = 1mH, V = 480V  
CE  
R
= 82, L = 1mH, V  
= 480V  
CE  
G
G
225  
200  
175  
150  
o
T
= 150 C, V = 15V  
GE  
J
o
T
= 150 C, V  
= 10V OR 15V  
J
GE  
o
T
= 150 C, V  
= 10V  
J
GE  
o
125  
100  
T
= 25 C, V  
= 15V  
= 10V  
80  
60  
J
GE  
GE  
o
= 25 C, V  
T
= 10V OR 15V  
J
GE  
o
T
= 25 C, V  
2
J
75  
1
2
3
4
5
6
7
8
1
3
4
5
6
7
8
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER  
CURRENT  
30  
15  
o
= 25 C  
o
T
PULSE DURATION = 250µs  
C
I
= 1mA, R = 171, T = 25 C  
g(REF)  
L
C
25  
20  
15  
10  
5
12  
9
o
T
= -55 C  
C
o
T
= 150 C  
C
6
V
= 200V  
V
= 400V  
V
= 600V  
CE  
CE  
CE  
3
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
5
10  
15  
20  
25  
V
, GATE TO EMITTER VOLTAGE (V)  
Q , GATE CHARGE (nC)  
GE  
g
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORM  
500  
400  
300  
200  
FREQUENCY = 1MHz  
C
IES  
C
OES  
100  
0
C
RES  
0
5
10  
15  
20  
25  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER VOLTAGE  
©2001 Fairchild Semiconductor Corporation  
HGTD3N60B3S, HGT1S3N60B3S, HGTP3N60B3 Rev. B  
HGTD3N60B3S, HGT1S3N60B3S, HGTP3N60B3  
Typical Performance Curves Unless Otherwise Specified (Continued)  
0
10  
0.5  
0.2  
0.1  
-1  
10  
10  
0.05  
t
1
0.02  
0.01  
P
D
DUTY FACTOR, D = t / t  
1
2
t
SINGLE PULSE  
2
PEAK T = (P X Z  
X R  
) + T  
JC C  
J
D
JC  
θ
θ
-2  
-5  
10  
-4  
-3  
-2  
10  
-1  
10  
0
1
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 16. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
Test Circuit and Waveform  
L = 1mH  
90%  
OFF  
RHRD460  
10%  
V
GE  
E
ON  
E
R
= 82Ω  
G
V
CE  
+
90%  
V
= 480V  
DD  
10%  
d(OFF)I  
-
I
CE  
t
t
fI  
t
fI  
t
d(ON)I  
FIGURE 17. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 18. SWITCHING TEST WAVEFORMS  
©2001 Fairchild Semiconductor Corporation  
HGTD3N60B3S, HGT1S3N60B3S, HGTP3N60B3 Rev. B  
HGTD3N60B3S, HGT1S3N60B3S, HGTP3N60B3  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to gate-  
insulation damage by the electrostatic discharge of energy  
through the devices. When handling these devices, care  
should be exercised to assure that the static charge built in  
the handler’s body capacitance is not discharged through the  
device. With proper handling and application procedures,  
however, IGBTs are currently being extensively used in  
production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 5, 6, 7, 8, 9  
and 11. The operating frequency plot (Figure 3) of a typical  
device shows f  
or f ; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated junction  
temperature.  
f
is defined by f  
= 0.05/(t  
MAX1  
+ t ).  
d(OFF)I d(ON)I  
MAX1  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD™ LD26” or equivalent.  
are possible. t  
and t are defined in Figure 18.  
d(OFF)I  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
JM d(OFF)I  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
is important when controlling output ripple under a lightly  
loaded condition.  
f
is defined by f  
= (P - P )/(E + E ). The  
OFF ON  
MAX2  
MAX2  
D
C
3. Tips of soldering irons should be grounded.  
allowable dissipation (P ) is defined by P = (T - T )/R  
.
D
D
JM θJC  
C
4. Devices should never be inserted into or removed from  
circuits with power on.  
The sum of device switching and conduction losses must  
not exceed P . A 50% duty factor was used (Figure 3) and  
D
5. Gate Voltage Rating - Never exceed the gate-voltage  
the conduction losses (P ) are approximated by  
C
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
P
= (V  
CE  
x I )/2.  
CE  
C
permanent damage to the oxide layer in the gate region.  
E
and E  
are defined in the switching waveforms  
OFF  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate open-  
circuited or floating should be avoided. These conditions  
can result in turn-on of the device due to voltage buildup  
on the input capacitor due to leakage currents or pickup.  
ON  
shown in Figure 18. E  
is the integral of the instantaneous  
ON  
power loss (I  
CE  
x V ) during turn-on and E  
is the  
OFF  
x V ) during  
CE  
integral of the instantaneous power loss (I  
CE  
CE  
turn-off. All tail losses are included in the calculation for  
E ; i.e., the collector current equals zero (I = 0).  
OFF  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
CE  
©2001 Fairchild Semiconductor Corporation  
HGTD3N60B3S, HGT1S3N60B3S, HGTP3N60B3 Rev. B  

相关型号:

HGT1S3N60C3D

6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
HARRIS

HGT1S3N60C3DS

6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
HARRIS

HGT1S3N60C3DS

6A, 600V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diodes
INTERSIL

HGT1S3N60C3DS9A

TRANSISTOR | IGBT | N-CHAN | 600V V(BR)CES | 3A I(C) | TO-263AB
ETC

HGT1S5N120BNDS

21A, 1200V, NPT Series N-Channel IGBTs with Anti-Parallel Hyperfast Diodes
INTERSIL

HGT1S5N120BNDS

21A, 1200V, N-CHANNEL IGBT, TO-263AB
RENESAS

HGT1S5N120BNDS9A

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 10A I(C) | TO-263AB
ETC

HGT1S5N120BNS

21A, 1200V, NPT Series N-Channel IGBTs
INTERSIL

HGT1S5N120BNS9A

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 10A I(C) | TO-263AB
ETC

HGT1S5N120CNDS

25A, 1200V, NPT Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
INTERSIL

HGT1S5N120CNDS9A

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 25A I(C) | TO-263AB
ETC

HGT1S5N120CNS

25A, 1200V, NPT Series N-Channel IGBT
INTERSIL