HFA1145IPZ [INTERSIL]

330MHz, Low Power, Current Feedback Video Operational Amplifier with Output Disable; 330MHz的低功耗与输出禁用电流反馈型视频运算放大器
HFA1145IPZ
型号: HFA1145IPZ
厂家: Intersil    Intersil
描述:

330MHz, Low Power, Current Feedback Video Operational Amplifier with Output Disable
330MHz的低功耗与输出禁用电流反馈型视频运算放大器

运算放大器 光电二极管
文件: 总13页 (文件大小:419K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HFA1145  
®
Data Sheet  
June 1, 2006  
FN3955.5  
330MHz, Low Power, Current Feedback  
Video Operational Amplifier with Output  
Disable  
Features  
• Low Supply Current . . . . . . . . . . . . . . . . . . . . . . . . 5.8mA  
• High Input Impedance . . . . . . . . . . . . . . . . . . . . . . . 1MΩ  
• Wide -3dB Bandwidth. . . . . . . . . . . . . . . . . . . . . . 330MHz  
• Very Fast Slew Rate. . . . . . . . . . . . . . . . . . . . . . 1000V/μs  
• Gain Flatness (to 75MHz) . . . . . . . . . . . . . . . . . . ±0.1dB  
• Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.02%  
• Differential Phase. . . . . . . . . . . . . . . . . . . . . 0.03 Degrees  
• Output Enable/Disable Time . . . . . . . . . . . . . 180ns/35ns  
• Pin Compatible Upgrade for CLC410  
The HFA1145 is a high speed, low power current feedback  
amplifier built with Intersil’s proprietary complementary  
bipolar UHF-1 process.  
This amplifier features a TTL/CMOS compatible disable  
control, pin 8, which when pulled low reduces the supply  
current and forces the output into a high impedance state.  
This allows easy implementation of simple, low power video  
switching and routing systems. Component and composite  
video systems also benefit from this op amp’s excellent gain  
flatness, and good differential gain and phase specifications.  
• Pb-Free Plus Anneal Available (RoHS Compliant)  
Multiplexed A/D applications will also find the HFA1145  
useful as the A/D driver/multiplexer.  
Applications  
The HFA1145 is a low power, high performance upgrade for  
the CLC410.  
• Flash A/D Drivers  
• Video Switching and Routing  
• Professional Video Processing  
• Video Digitizing Boards/Systems  
• Multimedia Systems  
For Military grade product, please refer to the HFA1145/883  
data sheet.  
Ordering Information  
PART  
NUMBER  
(BRAND)  
TEMP.  
RANGE  
(°C)  
• RGB Preamps  
PART  
MARKING  
PKG.  
PACKAGE DWG. #  
• Medical Imaging  
HFA1145IB  
1145IB  
-40 to 85 8 Ld SOIC  
M8.15  
M8.15  
• Hand Held and Miniaturized RF Equipment  
• Battery Powered Communications  
HFA1145IBZ  
(Note)  
1145IBZ  
-40 to 85 8 Ld SOIC  
(Pb-free)  
HFA1145IP  
HFA1145IP  
-40 to 85 8 Ld PDIP  
E8.3  
E8.3  
Pinout  
HFA1145IPZ  
(Note)  
HFA1145IPZ -40 to 85 8 Ld PDIP*  
(Pb-free)  
HFA1145 (SOIC)  
TOP VIEW  
HFA11XXEVAL DIP Evaluation Board for High Speed Op Amps  
Note: Requires a SOIC-to-DIP adapter. See  
“Evaluation Board” section inside.  
NC  
-IN  
+IN  
V-  
1
2
3
4
8
7
6
5
DISABLE  
V+  
-
+
NOTE: Intersil Pb-free plus anneal products employ special Pb-free  
material sets; molding compounds/die attach materials and 100%  
matte tin plate termination finish, which are RoHS compliant and  
compatible with both SnPb and Pb-free soldering operations. Intersil  
Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of  
IPC/JEDEC J STD-020.  
OUT  
NC  
*Pb-free PDIPs can be used for through hole wave solder processing  
only. They are not intended for use in Reflow solder processing  
applications.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 1999, 2004, 2006. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
HFA1145  
Absolute Maximum Ratings  
Thermal Information  
Voltage Between V+ and V-. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Thermal Resistance (Typical, Note 2)  
θJA (°C/W)  
SUPPLY  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
170  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8V  
Output Current (Note 1) . . . . . . . . . . . . . . . . .Short Circuit Protected  
30mA Continuous  
60mA 50% Duty Cycle  
ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .>600V  
Maximum Junction Temperature (Die Only) . . . . . . . . . . . . . . . . 175°C  
Maximum Junction Temperature (Plastic Package) . . . . . . . . 150°C  
Maximum Storage Temperature Range. . . . . . . . . . -65°C to 150°C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300°C  
(Lead Tips Only)  
Operating Conditions  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to 85°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100% duty cycle) output  
current must not exceed 30mA for maximum reliability.  
2. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications  
V
= ±5V, A = +1, R = 510Ω, R = 100Ω, Unless Otherwise Specified  
SUPPLY V F L  
(NOTE 3)  
TEST  
PARAMETER  
INPUT CHARACTERISTICS  
Input Offset Voltage  
TEST CONDITIONS  
LEVEL  
TEMP. (°C)  
MIN  
TYP  
MAX  
UNITS  
A
A
B
A
A
A
A
A
A
A
A
B
A
A
A
A
A
A
A
A
B
A
A
A
25  
Full  
Full  
25  
-
-
2
3
5
8
mV  
mV  
Average Input Offset Voltage Drift  
-
1
10  
-
μV/°C  
dB  
Input Offset Voltage  
Common-Mode Rejection Ratio  
ΔV  
ΔV  
ΔV  
= ±1.8V  
= ±1.8V  
= ±1.2V  
47  
45  
45  
50  
47  
47  
-
50  
48  
48  
54  
50  
50  
6
CM  
CM  
CM  
85  
-
dB  
-40  
25  
-
dB  
Input Offset Voltage  
Power Supply Rejection Ratio  
ΔV = ±1.8V  
PS  
-
dB  
ΔV = ±1.8V  
PS  
85  
-
dB  
ΔV = ±1.2V  
PS  
-40  
25  
-
dB  
Non-Inverting Input Bias Current  
15  
25  
60  
1
μA  
Full  
Full  
25  
-
10  
5
μA  
Non-Inverting Input Bias Current Drift  
-
nA/°C  
μA/V  
μA/V  
μA/V  
MΩ  
MΩ  
MΩ  
μA  
Non-Inverting Input Bias Current  
Power Supply Sensitivity  
ΔV = ±1.8V  
PS  
-
0.5  
0.8  
0.8  
1.2  
0.8  
0.8  
2
ΔV = ±1.8V  
PS  
85  
-
3
ΔV = ±1.2V  
PS  
-40  
25  
-
3
Non-Inverting Input Resistance  
ΔV  
ΔV  
ΔV  
= ±1.8V  
= ±1.8V  
= ±1.2V  
0.8  
0.5  
0.5  
-
-
CM  
CM  
CM  
85  
-
-40  
25  
-
Inverting Input Bias Current  
7.5  
15  
200  
6
Full  
Full  
25  
-
5
μA  
Inverting Input Bias Current Drift  
-
60  
3
nA/°C  
μA/V  
μA/V  
μA/V  
Inverting Input Bias Current  
Common-Mode Sensitivity  
ΔV  
ΔV  
ΔV  
= ±1.8V  
= ±1.8V  
= ±1.2V  
-
CM  
CM  
CM  
85  
-
4
8
-40  
-
4
8
FN3955.5  
June 1, 2006  
2
HFA1145  
Electrical Specifications  
V
= ±5V, A = +1, R = 510Ω, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
(NOTE 3)  
TEST  
PARAMETER  
TEST CONDITIONS  
LEVEL  
TEMP. (°C)  
MIN  
TYP  
2
MAX  
UNITS  
μA/V  
μA/V  
μA/V  
Ω
Inverting Input Bias Current  
Power Supply Sensitivity  
ΔV = ±1.8V  
A
A
A
C
C
A
A
25  
85  
-
5
8
8
-
PS  
ΔV = ±1.8V  
-
4
PS  
ΔV = ±1.2V  
-40  
25  
-
-
4
PS  
Inverting Input Resistance  
Input Capacitance  
60  
25  
-
1.6  
±2.4  
±1.7  
-
pF  
Input Voltage Common Mode Range  
25, 85  
-40  
±1.8  
±1.2  
-
V
(Implied by V CMRR, +R , and -I  
CMS  
IO IN  
BIAS  
-
V
tests)  
Input Noise Voltage Density (Note 6)  
f = 100kHz  
f = 100kHz  
B
B
25  
25  
-
-
3.5  
2.5  
-
-
nV/Hz  
pA/Hz  
Non-Inverting Input Noise Current Density  
(Note 6)  
Inverting Input Noise Current Density  
(Note 6)  
f = 100kHz  
B
C
25  
25  
-
-
20  
-
-
pA/Hz  
kΩ  
TRANSFER CHARACTERISTICS  
Open Loop Transimpedance Gain  
A
= -1  
500  
V
AC CHARACTERISTICS  
R = 510Ω, Unless Otherwise Specified  
F
-3dB Bandwidth  
A
= +1, +R = 510Ω  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
A
25  
Full  
25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
270  
240  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
dB  
V
S
(V  
= 0.2V , Note 6)  
P-P  
OUT  
A
= -1, R = 425Ω  
300  
V
F
A
= +2  
25  
330  
V
Full  
25  
260  
A
= +10, R = 180Ω  
130  
V
F
Full  
25  
90  
Full Power Bandwidth  
(V = 5V at A = +2/-1,  
A
= +1, +R = 510Ω  
135  
V
S
OUT  
4V  
P-P  
V
A
= -1  
25  
140  
V
at A = +1, Note 6)  
P-P  
V
A
= +2  
25  
115  
V
Gain Flatness  
(A = +2, V  
To 25MHz  
25  
±0.03  
±0.04  
±0.11  
±0.22  
±0.03  
±0.09  
1
= 0.2V , Note 6)  
OUT P-P  
V
Full  
25  
dB  
To 75MHz  
dB  
Full  
25  
dB  
Gain Flatness  
(A = +1, +R = 510Ω, V = 0.2V , Note 6)  
OUT P-P  
To 25MHz  
To 75MHz  
dB  
V
S
25  
dB  
Minimum Stable gain  
Full  
V/V  
OUTPUT CHARACTERISTICS  
A = +2, R = 510Ω, Unless Otherwise Specified  
V F  
Output Voltage Swing  
(Note 6)  
A
= -1, R = 100Ω  
A
A
A
A
B
B
25  
Full  
25, 85  
-40  
±3  
±2.8  
50  
28  
-
±3.4  
±3  
-
-
-
-
-
-
V
V
V
L
Output Current  
(Note 6)  
A
= -1, R = 50Ω  
60  
mA  
mA  
mA  
Ω
V
L
42  
Output Short Circuit Current  
25  
90  
Closed Loop Output Impedance (Note 6)  
DC  
25  
-
0.08  
FN3955.5  
June 1, 2006  
3
HFA1145  
Electrical Specifications  
V
= ±5V, A = +1, R = 510Ω, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
(NOTE 3)  
TEST  
PARAMETER  
TEST CONDITIONS  
10MHz  
LEVEL  
TEMP. (°C)  
MIN  
TYP  
-48  
-44  
-50  
-45  
-55  
MAX  
UNITS  
dBc  
dBc  
dBc  
dBc  
dB  
Second Harmonic Distortion  
B
B
B
B
B
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
-
-
-
(V  
= 2V , Note 6)  
P-P  
OUT  
20MHz  
10MHz  
20MHz  
30MHz  
Third Harmonic Distortion  
(V = 2V , Note 6)  
OUT  
P-P  
Reverse Isolation (S , Note 6)  
12  
TRANSIENT CHARACTERISTICS  
A = +2, R = 510Ω, Unless Otherwise Specified  
V F  
Rise and Fall Times  
V
= 0.5V  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
25  
Full  
25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.1  
1.4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
OUT  
P-P  
Overshoot (Note 4)  
+OS  
-OS  
+OS  
-OS  
+SR  
3
%
(V  
= 0 to 0.5V, V  
t
IN RISE  
= 1ns)  
= 1ns)  
OUT  
25  
5
%
Overshoot (Note 4)  
(V = 0.5V , V  
25  
3
%
t
P-P IN RISE  
OUT  
25  
11  
%
Slew Rate  
(V = 4V , A = +1, +R = 510Ω)  
25  
1000  
975  
650  
580  
1400  
1200  
800  
700  
2100  
1900  
1000  
900  
15  
V/μs  
V/μs  
V/μs  
V/μs  
V/μs  
V/μs  
V/μs  
V/μs  
V/μs  
V/μs  
V/μs  
V/μs  
ns  
OUT  
P-P  
V
S
Full  
25  
-SR (Note 5)  
+SR  
Full  
25  
Slew Rate  
(V = 5V , A = +2)  
OUT  
P-P  
V
Full  
25  
-SR (Note 5)  
+SR  
Full  
25  
Slew Rate  
(V = 5V , A = -1)  
OUT  
P-P  
V
Full  
25  
-SR (Note 5)  
Full  
25  
Settling Time  
(V = +2V to 0V step, Note 6)  
To 0.1%  
OUT  
To 0.05%  
To 0.02%  
25  
23  
ns  
25  
30  
ns  
Overdrive Recovery Time  
V
= ±2V  
25  
8.5  
ns  
IN  
A = +2, R = 510Ω, Unless Otherwise Specified  
V
VIDEO CHARACTERISTICS  
F
Differential Gain  
(f = 3.58MHz)  
R
R
R
R
= 150Ω  
= 75Ω  
B
B
B
B
25  
25  
25  
25  
-
-
-
-
0.02  
0.03  
0.03  
0.05  
-
-
-
-
%
L
L
L
L
%
Differential Phase  
(f = 3.58MHz)  
= 150Ω  
= 75Ω  
Degrees  
Degrees  
DISABLE CHARACTERISTICS  
Disabled Supply Current  
V
= 0V  
= 0V  
A
A
A
A
A
Full  
Full  
-
-
3
4
0.8  
-
mA  
V
DISABLE  
DISABLE  
DISABLE Input Logic Low  
DISABLE Input Logic High  
-
25, 85  
-40  
2.0  
2.4  
-
-
-
V
-
V
DISABLE Input Logic Low Current  
V
Full  
100  
200  
μA  
FN3955.5  
June 1, 2006  
4
HFA1145  
Electrical Specifications  
V
= ±5V, A = +1, R = 510Ω, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
(NOTE 3)  
TEST  
PARAMETER  
DISABLE Input Logic High Current  
Output Disable Time (Note 6)  
TEST CONDITIONS  
LEVEL  
TEMP. (°C)  
MIN  
TYP  
1
MAX  
15  
-
UNITS  
μA  
V
= 5V  
A
B
Full  
25  
-
-
DISABLE  
= ±1V,  
V
V
35  
ns  
IN  
DISABLE  
= 2.4V to 0V  
Output Enable Time (Note 6)  
V
V
= ±1V,  
B
25  
-
180  
-
ns  
IN  
= 0V to 2.4V  
= 0V  
DISABLE  
DISABLE  
DISABLE  
Disabled Output Capacitance  
Disabled Output Leakage  
V
B
A
25  
-
-
2.5  
3
-
pF  
±
V
V
= 0V, V  
=
2V,  
Full  
10  
μA  
IN  
= ±3V  
OUT  
Off Isolation  
At 5MHz  
B
B
25  
25  
-
-
-75  
-60  
-
-
dB  
dB  
(V  
= 0V, V = 1V , Note 6)  
DISABLE  
IN P-P  
At 25MHz  
POWER SUPPLY CHARACTERISTICS  
Power Supply Range  
C
A
A
25  
25  
±4.5  
-
±5.5  
6.1  
V
Power Supply Current (Note 6)  
-
-
5.8  
5.9  
mA  
mA  
Full  
6.3  
NOTES:  
3. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.  
4. Undershoot dominates for output signal swings below GND (e.g. 0.5V  
condition. See the “Application Information” section for details.  
), yielding a higher overshoot limit compared to the V  
P-P  
= 0 to 0.5V  
OUT  
5. Slew rates are asymmetrical if the output swings below GND (e.g. a bipolar signal). Positive unipolar output signals have symmetric positive and  
negative slew rates comparable to the +SR specification. See the “Application Information” section, and the pulse response graphs for details.  
6. See Typical Performance Curves for more information.  
Application Information  
GAIN  
(A  
BANDWIDTH  
(MHz)  
)
R (Ω)  
F
CL  
Optimum Feedback Resistor  
-1  
+1  
425  
300  
270  
330  
300  
130  
Although a current feedback amplifier’s bandwidth  
510 (+R = 510Ω)  
S
dependency on closed loop gain isn’t as severe as that of a  
voltage feedback amplifier, there can be an appreciable  
decrease in bandwidth at higher gains. This decrease may be  
minimized by taking advantage of the current feedback  
+2  
510  
200  
180  
+5  
+10  
amplifier’s unique relationship between bandwidth and R . All  
F
Non-inverting Input Source Impedance  
current feedback amplifiers require a feedback resistor, even  
for unity gain applications, and R , in conjunction with the  
internal compensation capacitor, sets the dominant pole of the  
frequency response. Thus, the amplifier’s bandwidth is  
For best operation, the DC source impedance seen by the  
non-inverting input should be 50Ω. This is especially  
important in inverting gain configurations where the non-  
inverting input would normally be connected directly to GND.  
F
inversely proportional to R . The HFA1145 design is optimized  
F
for R = 510Ω at a gain of +2. Decreasing R decreases  
F
F
DISABLE Input TTL Compatibility  
stability, resulting in excessive peaking and overshoot (Note:  
Capacitive feedback will cause the same problems due to the  
feedback impedance decrease at higher frequencies). At  
The HFA1145 derives an internal GND reference for the  
digital circuitry as long as the power supplies are  
symmetrical about GND. With symmetrical supplies the  
digital switching threshold (V = (V + V )/2 = (2.0 +  
higher gains, however, the amplifier is more stable so R can  
be decreased in a trade-off of stability for bandwidth.  
F
TH  
IH  
IL  
0.8)/2) is 1.4V, which ensures the TTL compatibility of the  
DISABLE input. If asymmetrical supplies (e.g. +10V, 0V) are  
utilized, the switching threshold becomes:  
V+ + V-  
The table below lists recommended R values for various  
F
gains, and the expected bandwidth. For a gain of +1, a  
resistor (+R ) in series with +IN is required to reduce gain  
S
-------------------  
+ 1.4V  
V
=
peaking and increase stability.  
TH  
2
and the V and V levels will be V ± 0.6V, respectively.  
IH IL TH  
FN3955.5  
June 1, 2006  
5
HFA1145  
Driving Capacitive Loads  
Optional GND Pad (Die Use Only) for  
TTL Compatibility  
Capacitive loads, such as an A/D input, or an improperly  
terminated transmission line will degrade the amplifier’s  
phase margin resulting in frequency response peaking and  
possible oscillations. In most cases, the oscillation can be  
The die version of the HFA1145 provides the user with a GND  
pad for setting the disable circuitry GND reference. With  
symmetrical supplies the GND pad may be left unconnected, or  
tied directly to GND. If asymmetrical supplies (e.g. +10V, 0V)  
are utilized, and TTL compatibility is desired, die users must  
connect the GND pad to GND. With an external GND, the  
DISABLE input is TTL compatible regardless of supply voltage  
utilized.  
avoided by placing a resistor (R ) in series with the output  
S
prior to the capacitance.  
Figure 1 details starting points for the selection of this  
resistor. The points on the curve indicate the R and C  
S
L
combinations for the optimum bandwidth, stability, and  
Pulse Undershoot and Asymmetrical Slew Rates  
settling time, but experimental fine tuning is recommended.  
Picking a point above or to the right of the curve yields an  
overdamped response, while points below or left of the curve  
indicate areas of underdamped performance.  
The HFA1145 utilizes a quasi-complementary output stage to  
achieve high output current while minimizing quiescent supply  
current. In this approach, a composite device replaces the  
traditional PNP pulldown transistor. The composite device  
switches modes after crossing 0V, resulting in added distortion  
for signals swinging below ground, and an increased  
undershoot on the negative portion of the output waveform  
(See Figures 5, 8, and 11). This undershoot isn’t present for  
small bipolar signals, or large positive signals. Another artifact  
of the composite device is asymmetrical slew rates for output  
signals with a negative voltage component. The slew rate  
degrades as the output signal crosses through 0V (See Figures  
5, 8, and 11), resulting in a slower overall negative slew rate.  
Positive only signals have symmetrical slew rates as illustrated  
in the large signal positive pulse response graphs (See Figures  
4, 7, and 10).  
R and C form a low pass network at the output, thus limiting  
S
L
system bandwidth well below the amplifier bandwidth of  
270MHz (for A = +1). By decreasing R as C increases (as  
V
S
L
illustrated in the curves), the maximum bandwidth is obtained  
without sacrificing stability. In spite of this, the bandwidth  
decreases as the load capacitance increases. For example, at  
A = +1, R = 62Ω, C = 40pF, the overall bandwidth is  
V
S
L
limited to 180MHz, and bandwidth drops to 75MHz at A = +1,  
V
R = 8Ω, C = 400pF.  
S
L
50  
40  
30  
20  
10  
0
PC Board Layout  
This amplifier’s frequency response depends greatly on the  
care taken in designing the PC board. The use of low  
inductance components such as chip resistors and chip  
capacitors is strongly recommended, while a solid  
ground plane is a must!  
A
= +1  
V
A
= +2  
150  
V
Attention should be given to decoupling the power supplies.  
A large value (10μF) tantalum in parallel with a small value  
(0.1μF) chip capacitor works well in most cases.  
0
100  
200  
300  
400  
50  
250  
350  
Terminated microstrip signal lines are recommended at the  
device’s input and output connections. Capacitance,  
parasitic or planned, connected to the output must be  
minimized, or isolated as discussed in the next section.  
LOAD CAPACITANCE (pF)  
FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs  
LOAD CAPACITANCE  
Evaluation Board  
Care must also be taken to minimize the capacitance to  
ground at the amplifier’s inverting input (-IN), as this  
capacitance causes gain peaking, pulse overshoot, and if  
large enough, instability. To reduce this capacitance, the  
designer should remove the ground plane under traces  
connected to -IN, and keep connections to -IN as short as  
possible.  
The performance of the HFA1145 may be evaluated using  
the HFA11XX Evaluation Board and a SOIC to DIP adaptor  
like the Aries Electronics Part Number 14-350000-10. The  
layout and schematic of the board are shown in Figure 2.  
The V connection may be used to exercise the DISABLE  
H
pin, but note that this connection has no 50Ω termination. To  
order evaluation boards (part number HFA11XXEVAL),  
please contact your local sales office.  
An example of a good high frequency layout is the Evaluation  
Board shown in Figure 2.  
FN3955.5  
June 1, 2006  
6
HFA1145  
V
H
1
+IN  
OUT  
V-  
V+  
V
L
GND  
FIGURE 2A. TOP LAYOUT  
FIGURE 2B. TOP LAYOUT  
510  
510  
V
H
R
1
1
2
3
4
8
7
6
5
10μF  
0.1μF  
50Ω  
+5V  
50Ω  
IN  
OUT  
V
L
GND  
0.1μF  
10μF  
-5V  
GND  
FIGURE 2. EVALUATION BOARD SCHEMATIC AND LAYOUT  
Typical Performance Curves V  
= ±5V, R = 510Ω, T = 25°C, R = 100Ω, Unless Otherwise Specified  
F A L  
SUPPLY  
200  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
A
= +1  
A
= +1  
V
V
+R = 510Ω  
+R = 510Ω  
S
150  
100  
50  
S
0
-50  
-100  
-0.5  
-1.0  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 3. SMALL SIGNAL PULSE RESPONSE  
FIGURE 4. LARGE SIGNAL POSITIVE PULSE RESPONSE  
FN3955.5  
June 1, 2006  
7
HFA1145  
Typical Performance Curves V  
= ±5V, R = 510Ω, T = 25°C, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
F
A
L
2.0  
200  
150  
100  
50  
A
= +1  
A
= +2  
V
V
+R = 510Ω  
S
1.5  
1.0  
0.5  
0
0
-0.5  
-1.0  
-50  
-100  
-1.5  
-2.0  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 5. LARGE SIGNAL BIPOLAR PULSE RESPONSE  
FIGURE 6. SMALL SIGNAL PULSE RESPONSE  
3.0  
2.0  
1.5  
1.0  
0.5  
0
A
= +2  
A = +2  
V
V
2.5  
2.0  
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-0.5  
-1.0  
-1.5  
-2.0  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 7. LARGE SIGNAL POSITIVE PULSE RESPONSE  
FIGURE 8. LARGE SIGNAL BIPOLAR PULSE RESPONSE  
200  
3.0  
A
R
= +10  
V
F
A
R
= +10  
V
F
= 180Ω  
= 180Ω  
150  
100  
50  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
-50  
-100  
-0.5  
-1.0  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 9. SMALL SIGNAL PULSE RESPONSE  
FIGURE 10. LARGE SIGNAL POSITIVE PULSE RESPONSE  
FN3955.5  
June 1, 2006  
8
HFA1145  
Typical Performance Curves V  
= ±5V, R = 510Ω, T = 25°C, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
F
A
L
2.0  
A
R
= +10  
V
F
= 180Ω  
1.5  
1.0  
0.5  
0
DISABLE  
800mV/DIV.  
(0.4V to 2.4V)  
OUT  
400mV/DIV.  
-0.5  
-1.0  
0V  
-1.5  
-2.0  
A
= +1, V = 1V  
IN  
V
TIME (5ns/DIV.)  
TIME (50ns/DIV.)  
FIGURE 11. LARGE SIGNAL BIPOLAR PULSE RESPONSE  
FIGURE 12. OUTPUT ENABLE AND DISABLE RESPONSE  
V
= 200mV  
P-P  
OUT  
+R = 510Ω (+1)  
A
= +2  
V
3
3
0
S
A
A
= +1  
= -1  
V
V
+R = 0Ω (-1)  
S
0
A
= +10  
V
-3  
-3  
A
= +5  
V
A
= +2  
V
0
0
A
= -1  
V
90  
90  
A
= +5  
V
= 200mV  
P-P  
V
OUT  
180  
270  
R
R
R
= 510Ω (+2)  
= 200Ω (+5)  
= 180Ω (+10)  
180  
270  
F
F
F
A
= +10  
100  
V
A
= +1  
V
0.3  
1
10  
100  
500  
0.3  
1
10  
FREQUENCY (MHz)  
500  
FREQUENCY (MHz)  
FIGURE 13. FREQUENCY RESPONSE  
FIGURE 14. FREQUENCY RESPONSE  
A
= +2  
V
V
= 200mV  
P-P  
OUT  
3
0
3
A
= -1  
V
0
V
V
= 4V  
= 5V  
(+1)  
(-1, +2)  
OUT  
OUT  
P-P  
P-P  
V
= 1.5V  
= 5V  
-3  
-3  
OUT  
P-P  
A
= +1  
V
V
OUT  
P-P  
+R = 510Ω (+1)  
S
A
= +2  
V
V
= 200mV  
OUT  
P-P  
0
90  
V
= 1.5V  
P-P  
180  
270  
OUT  
V
= 5V  
P-P  
OUT  
1
10  
100  
200  
0.3  
1
10  
100  
500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 15. FREQUENCY RESPONSE FOR VARIOUS OUTPUT  
VOLTAGES  
FIGURE 16. FULL POWER BANDWIDTH  
FN3955.5  
June 1, 2006  
9
HFA1145  
Typical Performance Curves V  
= ±5V, R = 510Ω, T = 25°C, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
F
A
L
V
= 200mV  
P-P  
OUT  
= +2  
R
= 1kΩ  
500  
400  
300  
200  
100  
0
L
R
= 500Ω  
3
L
A
A
= +2  
V
V
= 200mV  
P-P  
V
OUT  
= 180Ω (+10)  
R
F
0
+R = 510Ω (+1)  
S
R
= 50Ω  
L
-3  
R
= 100Ω  
L
A
= +1  
V
R
= 50Ω  
L
= 100Ω  
R
0
L
90  
R
= 1kΩ  
= 500Ω  
A
= +10  
L
L
V
R
180  
270  
-100  
-50  
0
50  
100  
150  
0.3  
1
10  
FREQUENCY (MHz)  
100  
500  
TEMPERATURE (°C)  
FIGURE 17. FREQUENCY RESPONSE FOR VARIOUS LOAD  
RESISTORS  
FIGURE 18. -3dB BANDWIDTH vs TEMPERATURE  
-30  
V
= 200mV  
P-P  
OUT  
+R = 510Ω (+1)  
A
V
= +2  
V
-40  
-50  
-60  
-70  
-80  
-90  
S
= 1V  
IN  
P-P  
0.25  
0.20  
0.15  
0.10  
0.05  
0
A
= +2  
A
V
= +1  
V
-0.05  
-0.10  
0.3  
1
10  
100  
1
10  
75  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 19. GAIN FLATNESS  
FIGURE 20. OFF ISOLATION  
-40  
A
= +2  
V
= 2V  
V
OUT  
P-P  
A
= +1, +2  
-50  
-60  
-70  
-80  
-90  
V
1K  
100  
10  
A
= -1  
V
1
0.1  
0.01  
0.3  
1
10  
FREQUENCY (MHz)  
100  
0.3  
1
10  
100  
1000  
FREQUENCY (MHz)  
FIGURE 21. REVERSE ISOLATION (S  
)
FIGURE 22. ENABLED OUTPUT IMPEDANCE  
12  
FN3955.5  
June 1, 2006  
10  
HFA1145  
Typical Performance Curves V  
= ±5V, R = 510Ω, T = 25°C, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
F
A
L
-30  
-40  
-50  
-60  
-70  
A
= +2  
= 2V  
V
0.8  
0.6  
0.4  
A
= +2  
V
V
OUT  
20MHz  
0.2  
0.1  
0
10MHz  
-0.2  
-0.4  
-0.6  
-0.8  
-5  
0
5
10  
15  
3
8
13  
18  
23  
28  
33  
38  
43  
48  
TIME (ns)  
OUTPUT POWER (dBm)  
FIGURE 23. SETTLING RESPONSE  
FIGURE 24. SECOND HARMONIC DISTORTION vs P  
OUT  
-30  
-40  
3.6  
A
= -1  
|-V  
| (R = 100Ω)  
OUT  
A
= +2  
V
L
V
3.5  
+V  
(R = 100Ω)  
L
OUT  
3.4  
3.3  
3.2  
3.1  
-50  
-60  
-70  
+V  
OUT  
(R = 50Ω)  
L
3.0  
2.9  
2.8  
|-V  
| (R = 50Ω)  
L
OUT  
2.7  
2.6  
-50  
-25  
0
25  
50  
75  
100  
125  
-5  
0
5
10  
15  
OUTPUT POWER (dBm)  
TEMPERATURE (°C)  
FIGURE 25. THIRD HARMONIC DISTORTION vs P  
FIGURE 26. OUTPUT VOLTAGE vs TEMPERATURE  
OUT  
100  
100  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
I
NI-  
10  
10  
E
NI  
I
NI+  
1
100  
1
0.1  
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
1
10  
POWER SUPPLY VOLTAGE (±V)  
FREQUENCY (kHz)  
FIGURE 27. INPUT NOISE CHARACTERISTICS  
FIGURE 28. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FN3955.5  
June 1, 2006  
11  
HFA1145  
PASSIVATION:  
Die Characteristics  
DIE DIMENSIONS:  
Type: Nitride  
Thickness: 4kÅ ±0.5kÅ  
59 mils x 59 mils x 19 mils  
1500μm x 1500μm x 483μm  
TRANSISTOR COUNT:  
METALLIZATION:  
75  
Type: Metal 1: AICu(2%)/TiW  
Thickness: Metal 1: 8kÅ ±0.4kÅ  
Type: Metal 2: AICu(2%)  
SUBSTRATE POTENTIAL (Powered Up):  
Floating (Recommend Connection to V-)  
Thickness: Metal 2: 16kÅ ±0.8kÅ  
Metallization Mask Layout  
HFA1145  
DISABLE  
-IN  
V+  
OUT  
+IN  
V-  
OPTIONAL GND (NOTE)  
NOTE: This pad is not bonded out on packaged units. Die users may set a GND reference, via this pad, to ensure the TTL compatibility  
of the DIS input when using asymmetrical supplies (e.g. V+ = 10V, V- = 0V). See the “Application Information” section for details.  
FN3955.5  
June 1, 2006  
12  
HFA1145  
Small Outline Plastic Packages (SOIC)  
M8.15 (JEDEC MS-012-AA ISSUE C)  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
N
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
INCHES MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0532  
0.0040  
0.013  
0.0688  
0.0098  
0.020  
-
-
1
2
3
L
9
SEATING PLANE  
A
0.0075  
0.1890  
0.1497  
0.0098  
0.1968  
0.1574  
-
-A-  
3
h x 45°  
D
4
-C-  
0.050 BSC  
1.27 BSC  
-
α
H
h
0.2284  
0.0099  
0.016  
0.2440  
0.0196  
0.050  
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C
A M B S  
N
α
8
8
7
NOTES:  
0°  
8°  
0°  
8°  
-
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 1 6/05  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN3955.5  
June 1, 2006  
13  

相关型号:

HFA1145MJ/883

High Speed, Low Power, Current Feedback Video Operational Amplifier with Output Disable
INTERSIL

HFA1145_06

330MHz, Low Power, Current Feedback Video Operational Amplifier with Output Disable
INTERSIL

HFA1149

450MHz, Low Power, Video Operational Amplifier with Programmable Output Disable
INTERSIL

HFA1149EVAL

450MHz, Low Power, Video Operational Amplifier with Programmable Output Disable
INTERSIL

HFA1149IB

450MHz, Low Power, Video Operational Amplifier with Programmable Output Disable
INTERSIL

HFA1149IP

IC,OP-AMP,SINGLE,BIPOLAR,DIP,8PIN,PLASTIC
RENESAS

HFA1149_04

450MHz, Low Power, Video Operational Amplifier with Programmable Output Disable
INTERSIL

HFA1150

700MHz, SOT-23, Low Distortion Current Feedback Operational Amplifier
INTERSIL

HFA1150EVAL

700MHz, SOT-23, Low Distortion Current Feedback Operational Amplifier
INTERSIL

HFA1150IB

700MHz, SOT-23, Low Distortion Current Feedback Operational Amplifier
INTERSIL

HFA1150IB96

700MHz, SOT-23, Low Distortion Current Feedback Operational Amplifier
INTERSIL

HFA1150IB96

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, SOIC-8
RENESAS