HA5022 [INTERSIL]

Dual, 125MHz, Video Current Feedback Amplifier with Disable; 双通道, 125MHz的,视频电流反馈放大器具有禁用
HA5022
型号: HA5022
厂家: Intersil    Intersil
描述:

Dual, 125MHz, Video Current Feedback Amplifier with Disable
双通道, 125MHz的,视频电流反馈放大器具有禁用

放大器
文件: 总16页 (文件大小:172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA5022  
Data Sheet  
May 1999  
File Number 3392.6  
Dual, 125MHz, Video Current Feedback  
Amplifier with Disable  
Features  
• Dual Version of HA-5020  
The HA5022 is a dual version of the popular Intersil HA5020.  
It features wide bandwidth and high slew rate, and is  
optimized for video applications and gains between 1 and  
10. It is a current feedback amplifier and thus yields less  
bandwidth degradation at high closed loop gains than  
voltage feedback amplifiers.  
• Individual Output Enable/Disable  
• Input Offset Voltage . . . . . . . . . . . . . . . . . . . . . . . . 800µV  
• Wide Unity Gain Bandwidth . . . . . . . . . . . . . . . . . 125MHz  
• Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475V/µs  
• Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.03%  
• Differential Phase . . . . . . . . . . . . . . . . . . . . 0.03 Degrees  
• Supply Current (per Amplifier) . . . . . . . . . . . . . . . . 7.5mA  
• ESD Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4000V  
• Guaranteed Specifications at ±5V Supplies  
The low differential gain and phase, 0.1dB gain flatness, and  
ability to drive two back terminated 75cables, make this  
amplifier ideal for demanding video applications.  
The HA5022 also features a disable function that  
significantly reduces supply current while forcing the output  
to a true high impedance state. This functionality allows 2:1  
video multiplexers to be implemented with a single IC.  
Applications  
The current feedback design allows the user to take  
• Video Multiplexers; Video Switching and Routing  
• Video Gain Block  
advantage of the amplifier’s bandwidth dependency on the  
feedback resistor. By reducing R , the bandwidth can be  
F
increased to compensate for decreases at higher closed  
loop gains or heavy output loads.  
• Video Distribution Amplifier/RGB Amplifier  
• Flash A/D Driver  
Ordering Information  
• Current to Voltage Converter  
• Medical Imaging  
TEMP.  
PKG.  
NO.  
o
PART NUMBER RANGE ( C)  
PACKAGE  
16 Ld PDIP  
16 Ld SOIC  
• Radar and Imaging Systems  
HA5022IP  
-40 to 85  
-40 to 85  
E16.3  
M16.15  
HA5022IB  
Pinout  
HA5022EVAL  
High Speed Op Amp DIP Evaluation Board  
HA5022  
(PDIP, SOIC)  
TOP VIEW  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
-IN1  
+IN1  
DIS1  
V-  
OUT1  
NC  
-
+
NC  
V+  
DIS2  
+IN2  
-IN2  
NC  
NC  
NC  
+
-
OUT2  
NC  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
1
HA5022  
Absolute Maximum Ratings  
Thermal Information  
o
Voltage Between V+ and V- Terminals. . . . . . . . . . . . . . . . . . . . 36V  
DC Input Voltage (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . ±V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10V  
Output Current (Note 4) . . . . . . . . . . . . . . . . .Short Circuit Protected  
ESD Rating (Note 3)  
Thermal Resistance (Typical, Note 2)  
θJA ( C/W)  
SUPPLY  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
90  
115  
o
Maximum Junction Temperature (Note 1) . . . . . . . . . . . . . . . . .175 C  
Maximum Junction Temperature (Plastic Package, Note 1) . .150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300 C  
o
o
o
Human Body Model (Per MIL-STD-883 Method 3015.7) . . 2000V  
o
(SOIC - Lead Tips Only)  
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
Supply Voltage Range (Typical). . . . . . . . . . . . . . . . . ±4.5V to ±15V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
o
o
1. Maximum power dissipation, including output load, must be designed to maintain junction temperature below 175 C for die, and below 150 C  
for plastic packages. See Application Information section for safe operating area information.  
2. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
3. The non-inverting input of unused amplifiers must be connected to GND.  
4. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100% duty cycle)  
output current should not exceed 15mA for maximum reliability.  
Electrical Specifications  
V
= ±5V, R = 1k, A = +1, R = 400Ω, C 10pF, Unless Otherwise Specified  
SUPPLY  
F
V
L
L
(NOTE 11)  
TEST  
LEVEL  
TEST  
CONDITIONS  
TEMP.  
( C)  
o
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
INPUT CHARACTERISTICS  
Input Offset Voltage (V  
)
A
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
25  
Full  
Full  
Full  
25  
-
0.8  
-
3
5
mV  
mV  
mV  
IO  
-
Delta V Between Channels  
IO  
-
1.2  
5
-
3.5  
-
o
Average Input Offset Voltage Drift  
-
µV/ C  
V
V
Common Mode Rejection Ratio  
Note 5  
53  
-
dB  
dB  
IO  
IO  
Full  
25  
50  
-
-
Power Supply Rejection Ratio  
±3.5V V ≤ ±6.5V  
60  
-
-
dB  
S
Full  
Full  
25  
55  
-
-
dB  
Input Common Mode Range  
Note 5  
Note 5  
±2.5  
-
-
V
Non-Inverting Input (+IN) Current  
-
-
-
-
-
-
-
-
-
-
-
-
3
-
8
µA  
Full  
25  
20  
0.15  
0.5  
0.1  
0.3  
12  
30  
15  
30  
0.4  
1.0  
µA  
+IN Common Mode Rejection  
1
-
µA/V  
µA/V  
µA/V  
µA/V  
µA  
(+I  
=
)
BCMR  
+R  
Full  
25  
-
IN  
+IN Power Supply Rejection  
Inverting Input (-IN) Current  
±3.5V V ≤ ±6.5V  
-
S
Full  
25, 85  
-40  
25, 85  
-40  
25  
-
4
10  
6
10  
-
µA  
Delta -IN BIAS Current Between  
Channels  
µA  
µA  
-IN Common Mode Rejection  
Note 5  
µA/V  
µA/V  
Full  
-
2
HA5022  
Electrical Specifications  
V
= ±5V, R = 1k, A = +1, R = 400Ω, C 10pF, Unless Otherwise Specified (Continued)  
SUPPLY  
F
V
L
L
(NOTE 11)  
TEST  
LEVEL  
TEST  
CONDITIONS  
TEMP.  
( C)  
o
PARAMETER  
MIN  
TYP  
-
MAX  
UNITS  
µA/V  
-IN Power Supply Rejection  
±3.5V V ≤ ±6.5V  
A
A
B
B
B
25  
Full  
25  
-
-
-
-
-
0.2  
S
-
0.5  
µA/V  
Input Noise Voltage  
f = 1kHz  
f = 1kHz  
f = 1kHz  
4.5  
2.5  
25.0  
-
-
-
nV/Hz  
pA/Hz  
pA/Hz  
+Input Noise Current  
-Input Noise Current  
25  
25  
TRANSFER CHARACTERISTICS  
Transimpedance  
Note 16  
A
A
A
A
A
A
25  
Full  
25  
1.0  
0.85  
70  
-
-
-
-
-
-
-
-
-
-
-
-
MΩ  
MΩ  
dB  
Open Loop DC Voltage Gain  
Open Loop DC Voltage Gain  
R
R
= 400, V  
= 100, V  
= ±2.5V  
= ±2.5V  
L
L
OUT  
Full  
25  
65  
dB  
50  
dB  
OUT  
Full  
45  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
R
R
= 150Ω  
= 150Ω  
A
A
B
A
A
25  
±2.5  
±2.5  
±16.6  
±40  
-
±3.0  
±3.0  
±20.0  
±60  
-
-
-
V
L
Full  
Full  
Full  
Full  
V
Output Current  
-
mA  
mA  
µA  
L
Output Current, Short Circuit  
Output Current, Disabled  
V
= ±2.5V, V  
OUT  
= 0V  
-
IN  
V
= ±2.5V, V = 0V,  
IN  
2
OUT  
DISABLE = 0V  
Output Disable Time  
Note 12  
B
B
B
25  
25  
25  
-
-
-
40  
40  
15  
-
-
-
µs  
ns  
pF  
Output Enable Time  
Note 13  
Output Capacitance, Disabled  
Note 14  
POWER SUPPLY CHARACTERISTICS  
Supply Voltage Range  
A
A
A
A
25  
5
-
-
15  
10  
V
Quiescent Supply Current  
Full  
Full  
Full  
7.5  
5
mA/Op Amp  
mA/Op Amp  
mA  
Supply Current, Disabled  
DISABLE = 0V  
DISABLE = 0V  
-
7.5  
1.5  
-
1.0  
Disable Pin Input Current  
Minimum Pin 8 Current to Disable  
Maximum Pin 8 Current to Enable  
Note 6  
Note 7  
A
A
Full  
Full  
350  
-
-
-
-
µA  
µA  
20  
AC CHARACTERISTICS (A = +1)  
V
Slew Rate  
Note 8  
B
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
25  
275  
400  
28  
6
-
-
-
-
-
-
-
-
-
V/µs  
MHz  
ns  
Full Power Bandwidth  
Rise Time  
Note 9  
22  
-
Note 10  
Note 10  
Note 10  
Fall Time  
-
6
ns  
Propagation Delay  
Overshoot  
-
6
ns  
-
4.5  
125  
50  
75  
%
-3dB Bandwidth  
Settling Time to 1%  
Settling Time to 0.25%  
V
= 100mV  
-
MHz  
ns  
OUT  
2V Output Step  
2V Output Step  
-
-
ns  
3
HA5022  
Electrical Specifications  
V
= ±5V, R = 1k, A = +1, R = 400Ω, C 10pF, Unless Otherwise Specified (Continued)  
SUPPLY  
F
V
L
L
(NOTE 11)  
TEST  
LEVEL  
TEST  
CONDITIONS  
TEMP.  
( C)  
o
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
AC CHARACTERISTICS (A = +2, R = 681)  
V
F
Slew Rate  
Note 8  
B
B
B
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
-
-
-
-
475  
26  
-
-
-
-
-
-
-
-
-
-
-
V/µs  
MHz  
ns  
Full Power Bandwidth  
Rise Time  
Note 9  
Note 10  
Note 10  
Note 10  
6
Fall Time  
6
ns  
Propagation Delay  
Overshoot  
6
ns  
12  
%
-3dB Bandwidth  
Settling Time to 1%  
Settling Time to 0.25%  
Gain Flatness  
V
= 100mV  
95  
MHz  
ns  
OUT  
2V Output Step  
2V Output Step  
5MHz  
50  
100  
0.02  
0.07  
ns  
dB  
dB  
20MHz  
AC CHARACTERISTICS (A = +10, R = 383)  
V
F
Slew Rate  
Note 8  
B
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
25  
350  
475  
38  
8
-
-
-
-
-
-
-
-
-
V/µs  
MHz  
ns  
Full Power Bandwidth  
Rise Time  
Note 9  
28  
-
Note 10  
Note 10  
Note 10  
Fall Time  
-
9
ns  
Propagation Delay  
Overshoot  
-
9
ns  
-
1.8  
65  
75  
130  
%
-3dB Bandwidth  
Settling Time to 1%  
Settling Time to 0.1%  
V
= 100mV  
-
MHz  
ns  
OUT  
2V Output Step  
2V Output Step  
-
-
ns  
VIDEO CHARACTERISTICS  
Differential Gain (Note 15)  
Differential Phase (Note 15)  
R
R
= 150Ω  
= 150Ω  
B
B
25  
25  
-
-
0.03  
0.03  
-
-
%
L
L
Degrees  
NOTES:  
5. V  
o
= ±2.5V. At -40 C Product is tested at V  
= ±2.25V because short test duration does not allow self heating.  
CM  
CM  
6. R = 100, V = 2.5V. This is the minimum current which must be pulled out of the Disable pin in order to disable the output. The output is  
L
IN  
considered disabled when -10mV V  
+10mV.  
OUT  
7. V = 0V. This is the maximum current that can be pulled out of the Disable pin with the HA5022 remaining enabled. The HA5022 is  
IN  
considered disabled when the supply current has decreased by at least 0.5mA.  
8. V  
9.  
switches from -2V to +2V, or from +2V to -2V. Specification is from the 25% to 75% points.  
Slew Rate  
OUT  
.
= 2V  
----------------------------  
FPBW =  
; V  
PEAK  
2πV  
PEAK  
10. R = 100, V  
= 1V. Measured from 10% to 90% points for rise/fall times; from 50% points of input and output for propagation delay.  
11. A. Production Tested; B. Typical or Guaranteed Limit based on characterization; C. Design Typical for information only.  
L
OUT  
12. V = +2V, DISABLE = +5V to 0V. Measured from the 50% point of DISABLE to V  
IN  
= 0V.  
= 2V.  
OUT  
13. V = +2V, DISABLE = 0V to +5V. Measured from the 50% point of DISABLE to V  
IN  
OUT  
14. V = 0V, Force V  
IN OUT  
from 0V to ±2.5V, t = t = 50ns, DISABLE = 0V.  
R F  
15. Measured with a VM700A video tester using an NTC-7 composite VITS.  
o
16. V  
= ±2.5V. At -40 C Product is tested at V  
= ±2.25V because short test duration does not allow self heating.  
OUT  
OUT  
4
HA5022  
Test Circuits and Waveforms  
+
-
DUT  
50  
HP4195  
NETWORK  
ANALYZER  
50Ω  
FIGURE 1. TEST CIRCUIT FOR TRANSIMPEDANCE MEASUREMENTS  
(NOTE 17)  
100Ω  
(NOTE 17)  
100Ω  
DUT  
V
+
-
IN  
DUT  
V
OUT  
V
+
-
IN  
V
OUT  
50Ω  
R
L
400Ω  
50Ω  
R
100Ω  
L
R , 681Ω  
F
R
681Ω  
I
R , 1kΩ  
F
FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT  
FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT  
NOTE:  
17. A series input resistor of 100is recommended to limit input currents in case input signals are present before the HA5022 is powered up.  
Vertical Scale: V = 100mV/Div., V  
= 100mV/Div.  
Horizontal Scale: 20ns/Div.  
Vertical Scale: V = 1V/Div., V  
= 1V/Div.  
Horizontal Scale: 50ns/Div.  
IN OUT  
IN OUT  
FIGURE 4. SMALL SIGNAL RESPONSE  
FIGURE 5. LARGE SIGNAL RESPONSE  
5
Schematic Diagram (One Amplifier of Two)  
V+  
R
800  
R
2.5K  
R
6
15K  
R
820  
2
5
10  
R
R
400  
R
R
15  
400  
19  
33  
29  
9.5  
D
Q
Q
P9  
2
P8  
R
2K  
27  
200  
Q
P19  
Q
Q
P14  
P11  
Q
P18  
R
Q
31  
P1  
Q
R
11  
1K  
P5  
R
280  
5
R
18  
17  
280  
R
24  
140  
Q
Q
N5  
P16  
6
Q
P20  
Q
P10  
R
20  
140  
Q
R
N12  
8
1.25K  
Q
P15  
C
1.4pF  
1
Q
N8  
Q
P2  
Q
P12  
R
20  
28  
R
60K  
1
Q
P6  
Q
Q
Q
P3  
N6  
-IN  
R
R
7
15K  
12  
Q
P17  
Q
280  
N1  
Q
Q
N13  
P4  
+IN  
Q
N17  
DIS  
0
R
25  
P13  
R
6K  
3
20  
C
1.4pF  
2
Q
N15  
Q
N2  
R
21  
140  
Q
Q
R
N10  
N21  
Q
R
R
R
14  
280  
P7  
22  
280  
25  
140  
D
1
Q
N4  
32  
Q
N14  
5
Q
N16  
Q
N18  
R
1K  
Q
13  
Q
Q
N19  
N20  
N3  
Q
N7  
R
7
30  
R
R
R
R
26  
200  
16  
400  
23  
400  
26  
200  
OUT  
R
800  
R
4
33  
800  
R
820  
9
Q
Q
N11  
N9  
V-  
HA5022  
as short as possible to minimize the capacitance from this  
node to ground.  
Application Information  
Optimum Feedback Resistor  
The plots of inverting and non-inverting frequency response,  
see Figure 11 and Figure 12 in the Typical Performance  
Curves section, illustrate the performance of the HA5022 in  
various closed loop gain configurations. Although the  
bandwidth dependency on closed loop gain isn’t as severe  
as that of a voltage feedback amplifier, there can be an  
appreciable decrease in bandwidth at higher gains. This  
decrease may be minimized by taking advantage of the  
current feedback amplifier’s unique relationship between  
Driving Capacitive Loads  
Capacitive loads will degrade the amplifier’s phase margin  
resulting in frequency response peaking and possible  
oscillations. In most cases the oscillation can be avoided by  
placing an isolation resistor (R) in series with the output as  
shown in Figure 6.  
100Ω  
R
V
+
-
IN  
V
OUT  
R
T
bandwidth and R . All current feedback amplifiers require a  
C
F
L
feedback resistor, even for unity gain applications, and R , in  
F
conjunction with the internal compensation capacitor, sets  
the dominant pole of the frequency response. Thus, the  
R
F
R
I
amplifier’s bandwidth is inversely proportional to R . The  
F
HA5022 design is optimized for a 1000R at a gain of +1.  
F
FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION  
RESISTOR, R  
Decreasing R in a unity gain application decreases stability,  
F
resulting in excessive peaking and overshoot. At higher  
gains the amplifier is more stable, so R can be decreased  
in a trade-off of stability for bandwidth.  
The selection criteria for the isolation resistor is highly  
dependent on the load, but 27has been determined to be  
a good starting value.  
F
The table below lists recommended R values for various  
F
gains, and the expected bandwidth.  
Power Dissipation Considerations  
Due to the high supply current inherent in dual amplifiers,  
care must be taken to insure that the maximum junction  
GAIN  
(A  
BANDWIDTH  
(MHz)  
)
R ()  
F
CL  
temperature (T see Absolute Maximum Ratings) is not  
exceeded. Figure 7 shows the maximum ambient  
temperature versus supply voltage for the available package  
-1  
+1  
750  
1000  
681  
100  
125  
95  
J,  
+2  
styles (PDIP, SOIC). At V = ±5V quiescent operation both  
S
+5  
1000  
383  
52  
package styles may be operated over the full industrial range  
+10  
-10  
65  
o
o
of -40 C to 85 C. It is recommended that thermal  
calculations, which take into account output power, be  
performed by the designer.  
750  
22  
PC Board Layout  
140  
The frequency response of this amplifier depends greatly on  
the amount of care taken in designing the PC board. The  
use of low inductance components such as chip resistors  
and chip capacitors is strongly recommended. If leaded  
components are used the leads must be kept short  
especially for the power supply decoupling components and  
those components connected to the inverting input.  
130  
PDIP  
120  
110  
100  
90  
Attention must be given to decoupling the power supplies. A  
large value (10µF) tantalum or electrolytic capacitor in  
parallel with a small value (0.1µF) chip capacitor works well  
in most cases.  
SOIC  
80  
5
7
9
11  
13  
15  
SUPPLY VOLTAGE (±V)  
FIGURE 7. MAXIMUM OPERATING AMBIENT  
TEMPERATURE vs SUPPLY VOLTAGE  
A ground plane is strongly recommended to control noise.  
Care must also be taken to minimize the capacitance to  
ground seen by the amplifier’s inverting input (-IN). The  
larger this capacitance, the worse the gain peaking, resulting  
in pulse overshoot and possible instability. It is  
Enable/Disable Function  
When enabled the amplifier functions as a normal current  
feedback amplifier with all of the data in the electrical  
specifications table being valid and applicable. When  
recommended that the ground plane be removed under  
traces connected to -IN, and that connections to -IN be kept  
7
HA5022  
disabled the amplifier output assumes a true high  
impedance state and the supply current is reduced  
significantly.  
position 1. At position 1 the switch pulls the disable pin up to  
the plus supply rail thereby enabling the amplifier. Since all  
of the actual signal switching takes place within the amplifier,  
it’s differential gain and phase parameters, which are 0.03%  
and 0.03 degrees respectively, determine the circuit’s  
The circuit shown in Figure 8 is a simplified schematic of the  
enable/disable function. The large value resistors in series  
with the DISABLE pin makes it appear as a current source to  
the driver. When the driver pulls this pin low current flows out  
of the pin and into the driver. This current, which may be as  
large as 350µA when external circuit and process variables  
are at their extremes, is required to insure that point “A”  
achieves the proper potential to disable the output. The  
driver must have the compliance and capability of sinking all  
of this current.  
performance. The other circuit, U , operates in a similar  
1B  
manner.  
When the plus supply rail is 5V the disable pin can be driven  
by a dedicated TTL gate as discussed earlier. If a multiplexer  
IC or its equivalent is used to select channels its logic must  
be break before make. When these conditions are satisfied  
the HA5022 is often used as a remote video multiplexer, and  
the multiplexer may be extended by adding more amplifier  
ICs.  
V+  
Low Impedance Multiplexer  
R
15K  
R
6
33  
R
10  
Two common problems surface when you try to multiplex  
multiple high speed signals into a low impedance source  
such as an A/D converter. The first problem is the low source  
impedance which tends to make amplifiers oscillate and  
causes gain errors. The second problem is the multiplexer  
which supplies no gain, introduces all kinds of distortion and  
limits the frequency response. Using op amps which have an  
enable/disable function, such as the HA5022, eliminates the  
multiplexer problems because the external mux chip is not  
needed, and the HA5022 can drive low impedance (large  
capacitance) loads if a series isolation resistor is used.  
Q
P18  
D
1
R
8
R
15K  
7
A
Q
P3  
ENABLE/DISABLE INPUT  
FIGURE 8. SIMPLIFIED SCHEMATIC OF ENABLE/DISABLE  
FUNCTION  
When V  
CC  
is +5V the DISABLE pin may be driven with a  
dedicated TTL gate. The maximum low level output voltage  
of the TTL gate, 0.4V, has enough compliance to insure that  
the amplifier will always be disabled even though D will not  
turn on, and the TTL gate will sink enough current to keep  
Referring to Figure 10, both inputs are terminated in their  
characteristic impedance; 75is typical for video  
applications. Since the drivers usually are terminated in their  
characteristic impedance the input gain is 0.5, thus the  
1
point “A” at its proper voltage. When V  
is greater than +5V  
CC  
the DISABLE pin should be driven with an open collector  
device that has a breakdown rating greater than V  
amplifiers, U , are configured in a gain of +2 to set the circuit  
2
.
CC  
gain equal to one. Resistors R and R determine the  
2
3
amplifier gain, and if a different gain is desired R should be  
2
Referring to Figure 8, it can be seen that R will act as a pull-  
6
changed according to the equation G = (1 + R /R ). R sets  
3
2
3
up resistor to +V  
CC  
if the DISABLE pin is left open. In those  
the frequency response of the amplifier so you should refer  
to the manufacturers data sheet before changing its value.  
cases where the enable/disable function is not required on  
all circuits some circuits can be permanently enabled by  
letting the DISABLE pin float. If a driver is used to set the  
enable/disable level, be sure that the driver does not sink  
more than 20µA when the DISABLE pin is at a high level.  
TTL gates, especially CMOS versions, do not violate this  
criteria so it is permissible to control the enable/disable  
function with TTL.  
R , C and D are an asymmetrical charge/discharge time  
5
1
1
circuit which configures U as a break before make switch to  
1
prevent both amplifiers from being active simultaneously. If  
this design is extended to more channels the drive logic  
must be designed to be break before make. R is enclosed  
4
in the feedback loop of the amplifier so that the large open  
loop amplifier gain of U will present the load with a small  
2
closed loop output impedance while keeping the amplifier  
stable for all values of load capacitance.  
Typical Applications  
Two Channel Video Multiplexer  
The circuit shown in Figure 10 was tested for the full range of  
capacitor values with no oscillations being observed; thus,  
problem one has been solved.The frequency and gain  
characteristics of the circuit are now those of the amplifier  
independent of any multiplexing action; thus, problem two  
has been solved. The multiplexer transition time is  
Referring to the amplifier U in Figure 9, R terminates the  
1A  
1
cable in its characteristic impedance of 75, and R back  
4
terminates the cable in its characteristic impedance. The  
amplifier is set up in a gain configuration of +2 to yield an  
overall network gain of +1 when driving a double terminated  
cable. The value of R can be changed if a different network  
3
approximately 15µs with the component values shown.  
gain is desired. R holds the disable pin at ground thus  
5
inhibiting the amplifier until the switch, S , is thrown to  
1
8
HA5022  
(NOTE 17)  
R
75  
4
U
100Ω  
1A  
16  
1
VIDEO INPUT #1  
VIDEO OUTPUT  
TO 75LOAD  
+
-
R
2
1
3
75  
R
5
R
2000  
2
R
681  
3
681  
1
2
R
11  
100  
(NOTE 17)  
R
75  
9
U
100Ω  
1B  
7
6
3
+5V  
10  
VIDEO INPUT #2  
+
-
S
1
ALL  
OFF  
R
6
5
75  
R
10  
2000  
R
7
R
681  
8
681  
+5V IN  
+5V  
-5V IN  
0.1µF  
-5V  
10µF  
+
0.1µF  
10µF  
+
NOTES:  
18. U is HA5022.  
1
19. All resistors in Ω.  
20. S is break before make.  
1
21. Use ground plane.  
FIGURE 9. TWO CHANNEL HIGH IMPEDANCE MULTIPLEXER  
R
3A  
681  
INPUT B  
R
1A  
681  
R
R
1A  
75  
4A  
27  
U
2A  
16  
-
1
2
+
4
-5V  
0.01µF  
INPUT A  
100Ω  
(NOTE 17)  
3
D
1A  
1N4148  
R
1B  
75  
R
5A  
2000  
R
3B  
681  
U
1C  
R
681  
C
2B  
1A  
0.047µF  
R
4B  
27  
U
2B  
CHANNEL  
SWITCH  
7
6
10  
-
OUTPUT  
+
13  
5
+5V  
0.01µF  
100Ω  
(NOTE 17)  
R
5B  
2000  
U
1D  
U
1B  
U
C
1A  
1B  
INHIBIT  
0.047µF  
D
1B  
1N4148  
R
6
100K  
NOTES:  
22. U : HA5022.  
2
23. U : CD4011.  
1
FIGURE 10. LOW IMPEDANCE MULTIPLEXER  
9
HA5022  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1k, R = 400Ω, T = 25 C, Unless Otherwise Specified  
V F L A  
SUPPLY  
5
5
V
C
= 0.2V  
P-P  
OUT  
= 10pF  
V
C
R
= 0.2V  
P-P  
= 10pF  
= 750Ω  
OUT  
A
= +1, R = 1kΩ  
4
3
V
F
4
3
L
L
F
A
= 2, R = 681Ω  
V
F
A
= -1  
= -2  
V
2
A
= 5, R = 1kΩ  
2
V
F
1
1
A
V
0
0
-1  
-1  
-2  
-3  
-4  
-2  
-3  
-4  
A
= -10  
V
A
= 10, R = 383Ω  
F
V
A
= -5  
V
-5  
-5  
2
10  
100  
200  
2
10  
FREQUENCY (MHz)  
100  
200  
FREQUENCY (MHz)  
FIGURE 12. INVERTING FREQUENCY RESPONSE  
FIGURE 11. NON-INVERTING FREQUENCY RESPONSE  
140  
V
C
= 0.2V  
P-P  
OUT  
= 10pF  
180  
135  
90  
0
-45  
A
= +1, R = 1kΩ  
F
V
L
A
= +1  
V
130  
120  
-90  
A
= -1, R = 750Ω  
F
V
45  
0
-135  
-100  
-225  
A
= +10, R = 383Ω  
F
V
10  
-3dB BANDWIDTH  
-45  
-90  
-270  
A
= -10, R = 750Ω  
F
V
5
0
-135  
-180  
-315  
-360  
V
= 0.2V  
P-P  
OUT  
= 10pF  
C
GAIN PEAKING  
700  
L
2
10  
FREQUENCY (MHz)  
100  
200  
500  
900  
1100  
1300  
1500  
FEEDBACK RESISTOR ()  
FIGURE 14. BANDWIDTH AND GAIN PEAKING vs FEEDBACK  
RESISTANCE  
FIGURE 13. PHASE RESPONSE AS A FUNCTION OF  
FREQUENCY  
100  
130  
V
C
= 0.2V  
P-P  
OUT  
= 10pF  
L
A
= +2  
V
120  
95  
90  
-3dB BANDWIDTH  
110  
100  
6
-3dB BANDWIDTH  
10  
4
2
5
0
V
C
= 0.2V  
P-P  
90  
80  
OUT  
= 10pF  
GAIN PEAKING  
L
A
= +1  
V
GAIN PEAKING  
0
1000  
0
200  
400  
600  
800  
350  
500  
650  
800  
950  
1100  
LOAD RESISTOR ()  
FEEDBACK RESISTOR ()  
FIGURE 16. BANDWIDTH AND GAIN PEAKING vs LOAD  
RESISTANCE  
FIGURE 15. BANDWIDTH AND GAIN PEAKING vs FEEDBACK  
RESISTANCE  
10  
HA5022  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1k, R = 400Ω, T = 25 C, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
A
16  
80  
V
C
= 0.1V  
= 10pF  
OUT  
P-P  
V
= 0.2V  
P-P  
= 10pF  
= +10  
OUT  
L
C
A
L
V
= ±5V, A = +2  
V
V
SUPPLY  
60  
12  
40  
20  
0
6
V
= ±15V, A = +2  
V
SUPPLY  
V
= ±5V, A = +1  
SUPPLY  
V
V
= ±15V, A = +1  
V
SUPPLY  
0
200  
350  
500  
650  
800  
950  
0
200  
400  
600  
800  
1000  
FEEDBACK RESISTOR ()  
LOAD RESISTANCE ()  
FIGURE 18. SMALL SIGNAL OVERSHOOT vs LOAD  
RESISTANCE  
FIGURE 17. BANDWIDTH vs FEEDBACK RESISTANCE  
0.08  
0.10  
FREQUENCY = 3.58MHz  
FREQUENCY = 3.58MHz  
0.08  
0.06  
0.04  
R
= 75Ω  
L
0.06  
0.04  
R
= 150Ω  
R
L
= 150Ω  
L
R
= 75Ω  
L
0.02  
0.00  
0.02  
0.00  
R
= 1kΩ  
L
R
= 1kΩ  
L
3
5
7
9
11  
13  
15  
3
5
7
9
11  
13  
15  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
FIGURE 20. DIFFERENTIAL PHASE vs SUPPLY VOLTAGE  
FIGURE 19. DIFFERENTIAL GAIN vs SUPPLY VOLTAGE  
-40  
A
= +1  
V
C
= 2.0V  
V
OUT  
= 30pF  
P-P  
0
-10  
-20  
-30  
L
-50  
-60  
HD2  
3RD ORDER IMD  
-40  
-50  
CMRR  
-70  
HD2  
HD3  
-60  
-70  
-80  
-80  
-90  
NEGATIVE PSRR  
POSITIVE PSRR  
0.1  
HD3  
0.3  
1
10  
0.001  
0.01  
1
10  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 22. REJECTION RATIOS vs FREQUENCY  
FIGURE 21. DISTORTION vs FREQUENCY  
11  
HA5022  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1k, R = 400Ω, T = 25 C, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
A
12  
8.0  
R
= 100Ω  
= 1.0V  
= +1  
L
R
= 100Ω  
LOAD  
V
OUT  
P-P  
V
= 1.0V  
OUT  
P-P  
A
V
10  
7.5  
A
= +10, R = 383Ω  
F
V
8
7.0  
6.5  
6.0  
A
= +2, R = 681Ω  
F
V
6
4
A
= +1, R  
kΩ  
=1  
7
V
F
-50  
-25  
0
25  
50  
75  
100  
125  
3
5
9
11  
13  
15  
o
SUPPLY VOLTAGE (±V)  
TEMPERATURE ( C)  
FIGURE 23. PROPAGATION DELAY vs TEMPERATURE  
FIGURE 24. PROPAGATION DELAY vs SUPPLY VOLTAGE  
0.8  
500  
V
C
= 0.2V  
P-P  
V
= 2V  
P-P  
OUT  
= 10pF  
OUT  
0.6  
0.4  
0.2  
0
450  
400  
350  
300  
250  
L
+ SLEW RATE  
A = +2, R = 681Ω  
V
F
- SLEW RATE  
-0.2  
-0.4  
-0.6  
A = +5, R = 1kΩ  
V
F
A
= +1, R = 1kΩ  
F
V
200  
150  
100  
-0.8  
-1.0  
-1.2  
A
= +10, R = 383Ω  
V
F
5
10  
15  
20  
25  
30  
-50  
-25  
0
25  
50  
75  
100  
125  
o
FREQUENCY (MHz)  
TEMPERATURE ( C)  
FIGURE 25. SLEW RATE vs TEMPERATURE  
FIGURE 26. NON-INVERTING GAIN FLATNESS vs FREQUENCY  
0.8  
100  
80  
1000  
800  
V
C
R
= 0.2V  
P-P  
OUT  
L
F
A
= +10, R = 383Ω  
F
V
0.6  
0.4  
= 10pF  
= 750Ω  
-INPUT NOISE CURRENT  
0.2  
A
= -1  
= -5  
V
0
600  
60  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
+INPUT NOISE CURRENT  
INPUT NOISE VOLTAGE  
400  
40  
A
V
200  
0
20  
0
A
= -2  
V
A
= -10  
V
5
10  
15  
20  
25  
30  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
FIGURE 27. INVERTING GAIN FLATNESS vs FREQUENCY  
FIGURE 28. INPUT NOISE CHARACTERISTICS  
12  
HA5022  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1k, R = 400Ω, T = 25 C, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
A
1.5  
2
0
1.0  
-2  
-4  
0.5  
0.0  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 30. +INPUT BIAS CURRENT vs TEMPERATURE  
FIGURE 29. INPUT OFFSET VOLTAGE vs TEMPERATURE  
4000  
22  
3000  
2000  
1000  
20  
18  
16  
-60 -40 -20  
0
20  
40  
60  
o
80  
100 120 140  
-60 -40 -20  
0
20  
40  
60  
o
80  
100 120 140  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 31. -INPUT BIAS CURRENT vs TEMPERATURE  
FIGURE 32. TRANSIMPEDANCE vs TEMPERATURE  
74  
25  
+PSRR  
-PSRR  
72  
70  
68  
66  
64  
62  
60  
o
125 C  
20  
o
55 C  
15  
10  
CMRR  
o
25 C  
58  
-100  
5
3
4
5
6
7
8
9
10 11 12  
13 14 15  
-50  
0
50  
100  
150  
200  
250  
o
SUPPLY VOLTAGE (±V)  
TEMPERATURE ( C)  
FIGURE 34. REJECTION RATIO vs TEMPERATURE  
FIGURE 33. SUPPLY CURRENT vs SUPPLY VOLTAGE  
13  
HA5022  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1k, R = 400Ω, T = 25 C, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
A
40  
4.0  
+10V  
+15V  
30  
20  
+5V  
3.8  
10  
0
3.6  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
o
DISABLE INPUT VOLTAGE (V)  
TEMPERATURE ( C)  
FIGURE 35. SUPPLY CURRENT vs DISABLE INPUT VOLTAGE  
30  
FIGURE 36. OUTPUT SWING vs TEMPERATURE  
1.2  
1.1  
V
= ±15V  
S
20  
10  
1.0  
V
= ±10V  
S
0.9  
0.8  
V
= ±4.5V  
S
0
0.01  
0.10  
1.00  
10.00  
-60 -40 -20  
0
20  
40  
60  
80  
100 120 140  
o
LOAD RESISTANCE (k)  
TEMPERATURE ( C)  
FIGURE 38. INPUT OFFSET VOLTAGE CHANGE BETWEEN  
CHANNELS vs TEMPERATURE  
FIGURE 37. OUTPUT SWING vs LOAD RESISTANCE  
30  
1.5  
o
-55 C  
25  
20  
1.0  
o
25 C  
15  
10  
0.5  
0.0  
o
125 C  
5
3
4
5
6
7
8
9
10 11 12 13 14 15  
-60 -40 -20  
20  
40  
60  
80 100 120 140  
0
o
SUPPLY VOLTAGE (±V)  
TEMPERATURE ( C)  
FIGURE 39. INPUT BIAS CURRENT CHANGE BETWEEN  
CHANNELS vs TEMPERATURE  
FIGURE 40. DISABLE SUPPLY CURRENT vs SUPPLY VOLTAGE  
14  
HA5022  
o
Typical Performance Curves V  
= ±5V, A = +1, R = 1k, R = 400Ω, T = 25 C, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
A
-30  
32  
30  
20  
18  
A
= +1  
= 2V  
V
V
OUT  
P-P  
ENABLE  
-40  
-50  
-60  
-70  
-80  
28  
26  
24  
22  
16  
14  
12  
10  
ENABLE  
20  
8
18  
16  
14  
12  
6
4
2
0
DISABLE  
DISABLE  
-2.5 -2.0 -1.5 -1.0 -0.5  
0
0.5 1.0 1.5 2.0 2.5  
0.1  
1
10  
30  
FREQUENCY (MHz)  
OUTPUT VOLTAGE (V)  
FIGURE 41. CHANNEL SEPARATION vs FREQUENCY  
FIGURE 42. ENABLE/DISABLE TIME vs OUTPUT VOLTAGE  
10  
DISABLE = 0V  
0
R
= 100Ω  
V
= 5V  
P-P  
L
1
IN  
R
= 750Ω  
F
-10  
-20  
-30  
0.1  
0.01  
180  
135  
90  
45  
0
0.001  
-40  
-50  
-60  
-70  
-80  
-45  
-90  
-135  
100  
0.1  
1
10  
20  
0.001  
0.01  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 43. DISABLE FEEDTHROUGH vs FREQUENCY  
FIGURE 44. TRANSIMPEDANCE vs FREQUENCY  
10  
1
R
= 400Ω  
L
0.1  
180  
135  
90  
0.01  
0.001  
45  
0
-45  
-90  
-135  
0.001  
0.01  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FIGURE 45. TRANSIMPEDENCE vs FREQUENCY  
15  
HA5022  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
1650µm x 2540µm x 483µm  
Type: Nitride  
Thickness: 4kÅ ±0.4kÅ  
METALLIZATION:  
TRANSISTOR COUNT:  
Type: Metal 1: AlCu (1%)  
Thickness: Metal 1: 8kÅ ±0.4kÅ  
Type: Metal 2: AlCu (1%)  
Thickness: Metal 2: 16kÅ ±0.8kÅ  
124  
PROCESS:  
High Frequency Bipolar Dielectric Isolation  
SUBSTRATE POTENTIAL (POWERED UP):  
V-  
Metallization Mask Layout  
HA5022  
-IN1  
OUT1  
V+  
+IN1  
DIS1  
V-  
NC  
DIS2  
+IN2  
-IN2  
OUT2  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
16  

相关型号:

HA5022/883

Dual 100MHz Video Current Feedback Amplifier with Disable
ETC

HA5022EVAL

Dual, 125MHz, Video Current Feedback Amplifier with Disable
INTERSIL

HA5022IB

Dual, 125MHz, Video Current Feedback Amplifier with Disable
INTERSIL

HA5022IP

Dual, 125MHz, Video Current Feedback Amplifier with Disable
INTERSIL

HA5022_03

Dual, 125MHz, Video Current Feedback Amplifier with Disable
INTERSIL

HA5023

Dual 125MHz Video Current Feedback Amplifier
INTERSIL

HA5023/883

Dual 125MHz Video Current Feedback Amplifier
INTERSIL

HA5023883

Dual 125MHz Video Current Feedback Amplifier
INTERSIL

HA5023EVAL

Dual 125MHz Video Current Feedback Amplifier
INTERSIL

HA5023IB

Dual 125MHz Video Current Feedback Amplifier
INTERSIL

HA5023IB96

Dual 125MHz Video Current Feedback Amplifier
INTERSIL

HA5023IBZ

Dual 125MHz Video Current Feedback Amplifier
INTERSIL