EL5220TIYZ-T13 [INTERSIL]

12MHz Rail-to-Rail Input-Output Operational Amplifier; 12MHz的轨至轨输入输出运算放大器
EL5220TIYZ-T13
型号: EL5220TIYZ-T13
厂家: Intersil    Intersil
描述:

12MHz Rail-to-Rail Input-Output Operational Amplifier
12MHz的轨至轨输入输出运算放大器

运算放大器 光电二极管
文件: 总15页 (文件大小:387K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12MHz Rail-to-Rail Input-Output Operational Amplifier  
EL5220T  
Features  
• 12MHz (-3dB) Bandwidth  
The EL5220T is a high voltage rail-to-rail input-output  
amplifier with low power consumption. The EL5220T  
contains two amplifiers. Each amplifier exhibits beyond  
the rail input capability, rail-to-rail output capability and  
is unity gain stable.  
• 4.5V to 19V Maximum Supply Voltage Range  
• 12V/μs Slew Rate  
• 550μA Supply Current (per Amplifier)  
• ±65mA Continuous Output Current  
• ±200mA Output Short Circuit Current  
• Unity-gain Stable  
The maximum operating voltage range is from 4.5V to  
19V. It can be configured for single or dual supply  
operation, and typically consumes only 550μA per  
amplifier. The EL5220T has an output short circuit  
capability of ±200mA and a continuous output current  
capability of ±65mA.  
• Beyond the Rails Input Capability  
• Rail-to-rail Output Swing  
• Built-in Thermal Protection  
The EL5220T features a slew rate of 12V/μs. Also, the  
device provides common mode input capability beyond  
the supply rails, rail-to-rail output capability, and a  
bandwidth of 12MHz (-3dB). This enables the amplifiers  
to offer maximum dynamic range at any supply voltage.  
These features make the EL5220T an ideal amplifier  
• -40°C to +85°C Ambient Temperature Range  
• Pb-free (RoHS Compliant)  
Applications*(see page 13)  
• TFT-LCD Panels  
solution for use in TFT-LCD panels as a V  
or static  
COM  
• V  
Amplifiers  
COM  
gamma buffer, and in high speed filtering and signal  
conditioning applications. Other applications include  
battery power and portable devices, especially where low  
power consumption is important.  
• Static Gamma Buffers  
• Electronics Notebooks  
• Electronics Games  
The EL5220T is available in an 8 Ld MSOP package, and a  
thermally enhanced 8 Ld DFN package. Both feature a  
standard operational amplifier pinout. The devices  
operate over an ambient temperature range of -40°C to  
+85°C.  
• Touch-screen Displays  
• Personal Communication Devices  
• Personal Digital Assistants (PDA)  
• Portable Instrumentation  
• Sampling ADC Amplifiers  
• Wireless LANs  
• Office Automation  
• Active Filters  
• ADC/DAC Buffer  
5
10kΩ  
PANEL  
CAPACITANCE  
+15V  
0
+
EL5220T  
VOUTA  
VINA-  
VS+  
0.1μF  
+15V  
4.7μF  
1kΩ  
VOUTB  
-5  
560Ω  
150Ω  
0
PANEL  
CAPACITANCE  
VINB-  
VINA+  
-10  
-15  
V
= ±5V  
= 1  
= 8pF  
0
S
A
VS-  
VINB+  
V
L
C
TFT-LCD  
PANEL  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FIGURE 1. TYPICAL TFT-LCD V  
APPLICATION  
FIGURE 2. FREQUENCY RESPONSE FOR VARIOUS R  
L
COM  
May 4, 2010  
FN6892.0  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2010. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
EL5220T  
Pin Configuration  
EL5220T  
EL5220T  
(8 LD DFN)  
TOP VIEW  
(8 LD MSOP)  
TOP VIEW  
VOUTA 1  
VINA- 2  
VINA+ 3  
VS- 4  
8 VS+  
VOUTA  
VS+  
1
2
3
4
8
7
6
5
-
+
-
7 VOUTB  
6 VINB-  
5 VINB+  
VINA-  
VINA+  
VS-  
VOUTB  
VINB-  
VINB+  
PD  
+
THERMAL PAD IS ELECTRICALLY  
CONNECTED TO VS-  
Pin Descriptions  
PIN NUMBER  
PIN  
EQUIVALENT  
(MSOP, DFN)  
NAME  
FUNCTION  
CIRCUIT  
1
2
VOUTA  
VINA-  
VINA+  
VS-  
Amplifier A output  
(Reference Circuit 1)  
(Reference Circuit 2)  
(Reference Circuit 2)  
Amplifier A inverting input  
3
Amplifier A non-inverting input  
Negative power supply  
4
5
VINB+  
VINB-  
VOUTB  
VS+  
Amplifier B non-inverting input  
Amplifier B inverting input  
Amplifier B output  
(Reference Circuit 2)  
(Reference Circuit 2)  
(Reference Circuit 1)  
6
7
8
Positive power supply  
PD  
Thermal Pad Functions as a heat sink. Electrically connected to VS-. Connect the thermal  
pad to VS- plane on the PCB for optimum thermal performance.  
V
S+  
V
V
S+  
V
OUTx  
V
INx  
S-  
GND  
V
S-  
CIRCUIT 1  
CIRCUIT 2  
Ordering Information  
PART NUMBER  
(Notes 2, 3)  
PART  
MARKING  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
EL5220TILZ-T13 (Note 1)  
EL5220TIYZ  
20T  
8 Ld DFN  
L8.2x3  
BBBMA  
BBBMA  
BBBMA  
8 Ld MSOP  
8 Ld MSOP  
8 Ld MSOP  
M8.118A  
M8.118A  
M8.118A  
EL5220TIYZ-T7 (Note 1)  
EL5220TIYZ-T13 (Note 1)  
NOTES:  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for EL5220T. For more information on MSL please see  
techbrief TB363.  
FN6892.0  
May 4, 2010  
2
EL5220T  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage between V + and V -. . . . . . . . . . . .+19.8V  
Thermal Resistance (Typical)  
θ (°C/W) θ (°C/W)  
JA JC  
S
S
Input Voltage Range (V ) . . . V - - 0.5V, V + + 0.5V  
, V  
INx+ INx- S S  
8 Ld MSOP (Notes 6, 7) . . . . . . . .  
8 Ld DFN (Notes 4, 5). . . . . . . . . .  
170  
58  
60  
8
Input Differential Voltage (V  
- V  
) . . . . . . . . . . . . . .  
INx-  
INx+  
. . . . . . . . . . . . . . . . . . . . . . . (V + + 0.5V)-(V - - 0.5V)  
S
S
Storage Temperature . . . . . . . . . . . . . . . -65°C to +150°C  
Ambient Operating Temperature. . . . . . . . . -40°C to +85°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . +150°C  
Power Dissipation . . . . . . . . . . . . . . .See Figures 32 and 33  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Maximum Continuous Output Current . . . . . . . . . . .±65mA  
ESD Rating  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . 3000V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact  
product reliability and result in failures not covered by warranty.  
NOTES:  
4. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach”  
JA  
features. See Tech Brief TB379.  
5. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
6. θ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief  
JA  
TB379 for details.  
7. For θ , the “case temp” location is taken at the package top center.  
JC  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are  
at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 10kΩ to 0V, T = +25°C, unless otherwise specified.  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
INPUT CHARACTERISTICS  
V
Input Offset Voltage  
V
= 0V  
3
5
3
2
1
2
18  
50  
mV  
μV/°C  
μV/°C  
nA  
OS  
CM  
TCV  
Average Offset Voltage Drift (Note 8)  
8 Ld MSOP package  
8 Ld DFN package  
OS  
I
Input Bias Current  
V
= 0V  
B
CM  
R
C
Input Impedance  
GΩ  
IN  
Input Capacitance  
pF  
IN  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open Loop Gain  
-5.5  
50  
+5.5  
V
CMRR  
For V  
from -5.5V to +5.5V  
-4.5V V ≤ +4.5V  
75  
dB  
INx  
A
75  
105  
dB  
VOL  
OUTx  
OUTPUT CHARACTERISTICS  
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
I = -5mA  
-4.94 -4.85  
V
V
OL  
OH  
SC  
L
V
I = +5mA  
4.85 4.94  
±200  
L
I
V
= 0V, Source: V  
OUTx  
short to V -,  
mA  
CM  
Sink: V  
S
short to V +  
OUTx  
S
I
Output Current  
±65  
mA  
OUT  
POWER SUPPLY PERFORMANCE  
(V +) - (V -) Supply Voltage Range  
4.5  
19  
V
S
S
I
Supply Current (Per Amplifier)  
Power Supply Rejection Ratio  
V
= 0V, No load  
550  
750  
μA  
dB  
S
CM  
PSRR  
Supply is moved from ±2.25V to ±9.5V 60  
75  
FN6892.0  
May 4, 2010  
3
EL5220T  
Electrical Specifications V + = +5V, V - = -5V, R = 10kΩ to 0V, T = +25°C, unless otherwise specified. (Continued)  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
DYNAMIC PERFORMANCE  
SR  
Slew Rate (Note 9)  
-4.0V V  
≤ +4.0V, 20% to 80%  
12  
V/μs  
OUTx  
t
Settling to +0.1% (Note 10)  
A = +1, V  
= 2V step,  
500  
ns  
S
V
OUTx  
L
R = 10kΩ, C = 8pF  
L
BW  
-3dB Bandwidth  
R = 10kΩ, C = 8pF  
12  
8
MHz  
MHz  
L
L
GBWP  
Gain-Bandwidth Product  
A = -50, R = 5kΩ, R = 100Ω  
V F G  
R = 10kΩ, C = 8pF  
L
L
PM  
CS  
Phase Margin  
A = -50, R = 5kΩ, R = 100Ω  
50  
85  
°
V
F
G
R = 10kΩ, C = 8pF  
L
L
Channel Separation  
f = 5MHz  
dB  
Electrical Specifications V + = +5V, V - = 0V, R = 10kΩ to 2.5V, T = +25°C, unless otherwise specified.  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN TYP MAX UNIT  
INPUT CHARACTERISTICS  
Input Offset Voltage  
V
V
= 2.5V  
3
5
3
2
1
2
18  
50  
mV  
μV/°C  
μV/°C  
nA  
OS  
CM  
TCV  
Average Offset Voltage Drift (Note 8) 8 Ld MSOP package  
8 Ld DFN package  
OS  
I
Input Bias Current  
V
= 2.5V  
B
CM  
R
C
Input Impedance  
GΩ  
IN  
Input Capacitance  
pF  
IN  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open Loop Gain  
-0.5  
45  
+5.5  
V
CMRR  
For V  
from -0.5V to +5.5V  
70  
dB  
INx  
A
0.5V V  
≤ + 4.5V  
OUTx  
75  
105  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
I = -2.5mA  
30  
150  
mV  
V
OL  
OH  
SC  
L
V
I = +2.5mA  
4.85 4.97  
±125  
L
I
V
= 2.5V, Source: V  
OUTx  
short to V -,  
mA  
CM  
Sink: V  
S
short to V +  
OUTx  
S
I
Output Current  
±65  
mA  
OUT  
POWER SUPPLY PERFORMANCE  
(V +) - (V -) Supply Voltage Range  
4.5  
19  
V
S
S
I
Supply Current (Per Amplifier)  
Power Supply Rejection Ratio  
V
= 2.5V, No load  
550  
750  
μA  
dB  
S
CM  
PSRR  
Supply is moved from 4.5V to 19V  
60  
75  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 9)  
1V V  
4V, 20% to 80%  
12  
V/μs  
OUTx  
t
Settling to +0.1% (Note 10)  
A = +1, V  
= 2V step,  
500  
ns  
S
V
OUTx  
L
R = 10kΩ, C = 8pF  
L
BW  
-3dB Bandwidth  
R = 10kΩ, C = 8pF  
12  
8
MHz  
MHz  
L
L
GBWP  
Gain-Bandwidth Product  
A = -50, R = 5kΩ, R = 100Ω  
V F G  
R = 10kΩ, C = 8pF  
L
L
PM  
CS  
Phase Margin  
A = -50, R = 5kΩ, R = 100Ω  
50  
85  
°
V
F
G
R = 10kΩ, C = 8pF  
L
L
Channel Separation  
f = 5MHz  
dB  
FN6892.0  
May 4, 2010  
4
EL5220T  
Electrical Specifications V + = +18V, V - = 0V, R = 10kΩ to 9V, T = +25°C, unless otherwise specified.  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP MAX UNIT  
INPUT CHARACTERISTICS  
Input Offset Voltage  
V
V
= 9V  
5
6
4
2
1
2
18  
50  
mV  
μV/°C  
μV/°C  
nA  
OS  
CM  
TCV  
Average Offset Voltage Drift (Note 8) 8 Ld MSOP package  
8 Ld DFN package  
OS  
I
Input Bias Current  
V
= 9V  
B
CM  
R
C
Input Impedance  
GΩ  
IN  
Input Capacitance  
pF  
IN  
CMIR  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Open Loop Gain  
-0.5  
53  
+18.5  
V
CMRR  
For V  
from -0.5V to +18.5V  
78  
90  
dB  
INx  
A
0.5V V  
17.5V  
OUTx  
75  
dB  
VOL  
OUTPUT CHARACTERISTICS  
V
Output Swing Low  
Output Swing High  
Short Circuit Current  
I = -9mA  
120  
150  
mV  
V
OL  
OH  
SC  
L
V
I = +9mA  
17.85 17.88  
±200  
L
I
V
= 9V, Source: V  
OUTx  
short to V -,  
mA  
CM  
Sink: V  
S
short to V +  
OUTx  
S
I
Output Current  
±65  
mA  
OUT  
POWER SUPPLY PERFORMANCE  
(V +) - (V -) Supply Voltage Range  
4.5  
19  
V
S
S
I
Supply Current (Per Amplifier)  
Power Supply Rejection Ratio  
V
= 9V, No load  
650  
850  
μA  
dB  
S
CM  
PSRR  
Supply is moved from 4.5V to 19V  
60  
75  
DYNAMIC PERFORMANCE  
SR Slew Rate (Note 9)  
1V V  
17V, 20% to 80%  
12  
V/μs  
OUTx  
t
Settling to +0.1% (Note 10)  
A = +1, V  
= 2V step,  
500  
ns  
S
V
OUTx  
L
R = 10kΩ, C = 8pF  
L
BW  
-3dB Bandwidth  
R = 10kΩ, C = 8pF  
12  
8
MHz  
MHz  
L
L
GBWP  
Gain-Bandwidth Product  
A = -50, R = 5kΩ, R = 100Ω  
V F G  
R = 10kΩ, C = 8pF  
L
L
PM  
Phase Margin  
A = -50, R = 5kΩ, R = 100Ω  
50  
85  
°
V
F
G
R = 10kΩ, C = 8pF  
L
L
CS  
Channel Separation  
f = 5MHz  
dB  
NOTES:  
8. Measured over -40°C to +85°C ambient operating temperature range. See the typical TCV  
the “Typical Performance Curves” on page 6.  
production distribution shown in  
OS  
9. Typical slew rate is an average of the slew rates measured on the rising (20% to 80%) and the falling (80% to 20%) edges of  
the output signal.  
10. Settling time measured as the time from when the output level crosses the final value on rising/falling edge to when the output  
level settles within a ±0.1% error band. The range of the error band is determined by: Final Value(V)±[Full Scale(V)*0.1%]  
FN6892.0  
May 4, 2010  
5
EL5220T  
Typical Performance Curves  
500  
18  
16  
14  
12  
10  
8
V
= ±5V  
= +25°C  
S
TYPICAL  
PRODUCTION  
DISTRIBUTION  
V
= ±5V  
S
T
A
-40°C TO +85°C  
400  
300  
200  
100  
0
TYPICAL  
PRODUCTION  
DISTRIBUTION  
6
4
2
0
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
INPUT OFFSET VOLTAGE (mV)  
INPUT OFFSET VOLTAGE DRIFT (|μV|/°C)  
FIGURE 3. INPUT OFFSET VOLTAGE DISTRIBUTION  
FIGURE 4. INPUT OFFSET VOLTAGE DRIFT (MSOP)  
18  
10.0  
V
= ±5V  
S
16  
14  
12  
10  
8
V
= ±5V  
S
-40°C TO +85°C  
7.5  
5.0  
2.5  
0.0  
TYPICAL  
PRODUCTION  
DISTRIBUTION  
6
4
2
0
1
3
5
7
9
11  
13  
15  
17  
-50  
0
50  
100  
150  
INPUT OFFSET VOLTAGE DRIFT (mV)  
TEMPERATURE (°C)  
FIGURE 5. INPUT OFFSET VOLTAGE DRIFT (DFN)  
FIGURE 6. INPUT OFFSET VOLTAGE vs TEMPERATURE  
4.96  
5
V
= ±5V  
= 5mA  
V
= ±5V  
S
S
I
OUT  
4
3
4.95  
4.94  
4.93  
4.92  
2
1
0
-1  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 7. INPUT BIAS CURRENT vs TEMPERATURE  
FIGURE 8. OUTPUT HIGH VOLTAGE vs TEMPERATURE  
FN6892.0  
May 4, 2010  
6
EL5220T  
Typical Performance Curves(Continued)  
-4.91  
-4.92  
140  
120  
100  
80  
V
= ±5V  
= -5mA  
V
R
= ±5V  
= 10kΩ  
S
S
L
I
OUT  
-4.93  
-4.94  
-4.95  
60  
40  
-4.96  
-4.97  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 9. OUTPUT LOW VOLTAGE vs TEMPERATURE  
FIGURE 10. OPEN-LOOP GAIN vs TEMPERATURE  
13.0  
590  
V
R
= ±5V  
= 10kΩ  
S
L
V
= ±5V  
S
NO LOAD  
INPUT AT GND  
12.5  
12.0  
11.5  
11.0  
570  
550  
530  
510  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 11. SLEW RATE vs TEMPERATURE  
FIGURE 12. SUPPLY CURRENT PER AMPLIFIER vs  
TEMPERATURE  
16  
800  
700  
600  
500  
400  
T
= +25°C  
= 1  
T
= +25°C  
A
V
L
A
A
NO LOAD  
INPUT AT GND  
R = 10kΩ  
C = 8pF  
L
14  
12  
10  
8
2
4
6
8
10  
4
6
8
10  
12  
14  
16  
18  
20  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (±V)  
FIGURE 13. SUPPLY CURRENT PER AMPLIFIER vs  
SUPPLY VOLTAGE  
FIGURE 14. SLEW RATE vs SUPPLY VOLTAGE  
FN6892.0  
May 4, 2010  
7
EL5220T  
Typical Performance Curves(Continued)  
250  
200  
150  
100  
50  
100  
80  
60  
40  
20  
5
0
10kΩ  
GAIN  
1kΩ  
-5  
560Ω  
PHASE  
150Ω  
V
T
= ±5V  
= +25°C  
= 10kΩ  
= 8pF  
S
A
-10  
-15  
0
V
V
L
= ±5V  
= 1  
= 8pF  
0
S
R
L
L
A
C
C
-50  
10M 100M  
-20  
10  
100  
1k  
10k  
100k  
1M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 15. OPEN LOOP GAIN AND PHASE vs  
FREQUENCY  
FIGURE 16. FREQUENCY RESPONSE FOR VARIOUS R  
L
1000  
20  
V = ±5V  
S
V
V
L
= ±5V  
= 1  
= 10kΩ  
S
R = 2kVΩ  
A
R
F
15  
10  
5
R
= 1kΩ  
100  
10  
G
R = 450Ω  
L
SOURCE = 0dBm  
100pF  
0
1
0.1  
50pF  
8pF  
-5  
-10  
-15  
1000pF  
0.01  
10  
1k  
100k  
1M  
100M  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 17. FREQUENCY RESPONSE FOR VARIOUS C  
FIGURE 18. CLOSED LOOP OUTPUT IMPEDANCE vs  
FREQUENCY  
L
12  
10  
8
0
V
T
V
= ±5V  
= +25°C  
S
A
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
= -10dBm  
INx  
6
4
2
0
V
T
= ±5V  
= +25°C  
= 1  
= 10kΩ  
= 8pF  
S
A
A
R
V
L
L
C
10k  
100k  
1M  
10M  
10  
1k  
100k  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 19. MAXIMUM OUTPUT SWING vs FREQUENCY  
FIGURE 20. CMRR vs FREQUENCY  
FN6892.0  
May 4, 2010  
8
EL5220T  
Typical Performance Curves(Continued)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
1000  
100  
10  
V
= ±5V  
S
T
= +25°C  
A
T
= +25°C  
A
1
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 21. PSRR vs FREQUENCY  
FIGURE 22. INPUT VOLTAGE NOISE SPECTRAL  
DENSITY vs FREQUENCY  
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
-60  
V
= ±5V  
= 1  
= 0dBm  
S
V
= ±5V  
= 10kΩ  
= 1  
S
A
V
R
A
V
V
L
INx  
V
-70  
-80  
= 1.4V  
RMS  
IN  
-90  
0.015  
0.010  
0.005  
-100  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 23. TOTAL HARMONIC DISTORTION + NOISE  
vs FREQUENCY  
FIGURE 24. CHANNEL SEPARATION vs FREQUENCY  
RESPONSE  
100  
80  
5
V
T
= ±5V  
= +25°C  
= 1  
S
A
4
3
A
V
R = 10kΩ  
0.1%  
0.1%  
L
2
C = 8pF  
L
60  
1
0
40  
-1  
-2  
-3  
-4  
-5  
V
T
= ±5V  
= +25°C  
= 1  
S
A
A
V
20  
R = 10kΩ  
L
V
= ±50mV  
INx  
0
10  
100  
200  
300  
400  
500  
600  
700  
100  
LOAD CAPACITANCE (pF)  
1000  
SETTLING TIME (ns)  
FIGURE 25. SMALL SIGNAL OVERSHOOT vs LOAD  
CAPACITANCE  
FIGURE 26. STEP SIZE vs SETTLING TIME  
FN6892.0  
May 4, 2010  
9
EL5220T  
Typical Performance Curves(Continued)  
V
= ±5V  
= +25°C  
= 1  
S
A
T
V
= ±5V  
= +25°C  
= 1  
S
A
A
V
T
R = 10kΩ  
L
A
V
C = 8pF  
L
R = 10kΩ  
L
C = 8pF  
L
200ns/DIV  
100mV STEP  
6V STEP  
1μs/DIV  
FIGURE 27. LARGE SIGNAL TRANSIENT RESPONSE  
FIGURE 28. SMALL SIGNAL TRANSIENT RESPONSE  
EL5220T  
(8LD MSOP/DFN SHOWN)  
V +  
S
+
8
7
1
4.7μF  
VOUTA  
VINA-  
V +  
S
VOUTA  
0.1μF  
C
R
R
FA  
LA  
LA  
2
3
VOUTB  
LB  
VOUTB  
VINB-  
VINB+  
R
GA  
R
R
LB  
C
FB  
6
5
VINA+  
VINA+  
R
GB  
49.9  
4
VINB+  
V -  
S
V -  
S
+
4.7μF  
0.1μF  
49.9  
THERMAL PAD  
CONNECTED TO V -  
S
(DFN ONLY)  
FIGURE 29. BASIC TEST CIRCUIT  
FN6892.0  
May 4, 2010  
10  
EL5220T  
Applications Information  
V = ±2.5V, T = +25°C, A = 1, V  
= 6V R = 10kΩ TO GND  
P-P, L  
S
A
V
INx  
Product Description  
The EL5220T is a high voltage rail-to-rail input-output  
amplifier with low power consumption. The EL5220T  
contains two amplifiers. Each amplifier exhibits beyond  
the rail input capability, rail-to-rail output capability,  
and is unity gain stable.  
OUTPUT  
The EL5220T features a slew rate of 12V/μs. Also, the  
device provides common mode input capability beyond  
the supply rails, rail-to-rail output capability, and a  
bandwidth of 12MHz (-3dB). This enables the  
amplifiers to offer maximum dynamic range at any  
supply voltage.  
INPUT  
100μs/DIV  
FIGURE 30. OPERATION WITH BEYOND-THE-RAILS  
INPUT  
Operating Voltage, Input and Output  
Capability  
V = ±5V, T = +25°C, A = 1, V  
INx  
= 10V R = 10kΩ TO GND  
P-P, L  
S
A
V
The EL5220T can operate on a single supply or dual  
supply configuration. The EL5220T operating voltage  
ranges from a minimum of 4.5V to a maximum of 19V.  
This range allows for a standard 5V (or ±2.5V) supply  
voltage to dip to -10%, or a standard 18V (or ±9V) to  
rise by +5.5% without affecting performance or  
reliability.  
The input common-mode voltage range of the EL5220T  
extends 500mV beyond the supply rails. Also, the  
EL5220T is immune to phase reversal. However, if the  
common mode input voltage exceeds the supply voltage  
by more than 0.5V, electrostatic protection diodes in the  
input stage of the device begin to conduct. Even though  
phase reversal will not occur, to maintain optimal  
reliability it is suggested to avoid input overvoltage  
conditions. Figure 30 shows the input voltage driven  
500mV beyond the supply rails and the device output  
swinging between the supply rails.  
100μs/DIV  
FIGURE 31. OPERATION WITH RAIL-TO-RAIL INPUT  
AND OUTPUT  
Output Current  
The EL5220T is capable of output short circuit currents  
of 200mA (source and sink), and the device has  
built-in protection circuitry which limits the output  
current to ±200mA (typical).  
The EL5220T output typically swings to within 50mV of  
positive and negative supply rails with load currents of  
±5mA. Decreasing load currents will extend the output  
voltage range even closer to the supply rails. Figure 31  
shows the input and output waveforms for the device in  
a unity-gain configuration. Operation is from ±5V  
supply with a 10kΩ load connected to GND. The input is  
To maintain maximum reliability the continuous output  
current should never exceed ±65mA. This ±65mA limit  
is determined by the characteristics of the internal  
metal interconnects. Also, see “Power Dissipation” on  
page 12 for detailed information on ensuring proper  
device operation and reliability for temperature and  
load conditions.  
a 10V  
approximately 9.9V  
sinusoid and the output voltage is  
P-P  
.
P-P  
Refer to the “Electrical Specifications” Table beginning  
on page 3 for specific device parameters. Parameter  
variations with operating voltage, loading and/or  
temperature are shown in the “Typical Performance  
Curves” on page 6.  
Unused Amplifiers  
It is recommended that any unused amplifiers be  
configured as a unity gain follower. The inverting input  
should be directly connected to the output and the  
non-inverting input tied to the ground.  
Thermal Shutdown  
The EL5220T has a built-in thermal protection which  
ensures safe operation and prevents internal damage  
to the device due to overheating. When the die  
temperature reaches +165°C (typical) the device  
automatically shuts OFF the outputs by putting them in  
a high impedance state. When the die cools by +15°C  
FN6892.0  
May 4, 2010  
11  
EL5220T  
(typical) the device automatically turns ON the outputs  
• V = Total supply voltage (V + - V -)  
S S  
S
by putting them in a low impedance (normal)  
operating state.  
• V + = Positive supply voltage  
S
• V - = Negative supply voltage  
S
Driving Capacitive Loads  
• I  
(I  
= Maximum supply current per amplifier  
= EL5220T quiescent current ÷ 2)  
SMAX  
SMAX  
As load capacitance increases, the -3dB bandwidth will  
decrease and peaking can occur. Depending on the  
application, it may be necessary to reduce peaking and  
to improve device stability. To improve device stability,  
a snubber circuit or a series resistor may be added to  
the output of the EL5220T.  
• V  
• I  
= Output voltage  
= Load current  
OUT  
LOAD  
Device overheating can be avoided by calculating the  
minimum resistive load condition, R  
the highest power dissipation. To find R  
, resulting in  
A snubber is a shunt load consisting of a resistor in series  
with a capacitor. An optimized snubber can improve the  
phase margin and the stability of the EL5220T. The  
advantage of a snubber circuit is that it does not draw  
any DC load current or reduce the gain.  
LOAD  
set the  
LOAD  
two P  
V
equations equal to each other and solve for  
. Reference the package power dissipation  
DMAX  
/I  
OUT LOAD  
curves, Figures 32 and 33, for further information.  
Another method to reduce peaking is to add a series  
output resistor (typically between 1Ω to 10Ω).  
Depending on the capacitive loading, a small value  
resistor may be the most appropriate choice to  
minimize any reduction in gain.  
JEDEC JESD51-3 LOW EFFECTIVE  
THERMAL CONDUCTIVITY TEST BOARD  
1.0  
781mW  
0.8  
DFN8  
JA  
Power Dissipation  
595mW  
θ
= +160°C/W  
0.6  
0.4  
0.2  
0.0  
With the high-output drive capability of the EL5220T  
amplifiers, it is possible to exceed the +150°C absolute  
maximum junction temperature under certain load  
current conditions. It is important to calculate the  
maximum power dissipation of the EL5220T in the  
application. Proper load conditions will ensure that the  
EL5220T junction temperature stays within a safe  
operating region.  
MSOP8  
θ
= +210°C/W  
JA  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
The maximum power dissipation allowed in a package is  
determined according to Equation 1:  
FIGURE 32. PACKAGE POWER DISSIPATION vs  
AMBIENT TEMPERATURE  
T
T  
AMAX  
JMAX  
P
= --------------------------------------------  
(EQ. 1)  
DMAX  
θ
JA  
JEDEC JESD51-7 HIGH EFFECTIVE  
THERMAL CONDUCTIVITY TEST BOARD  
where:  
2.4  
2.16W  
• T  
= Maximum junction temperature  
= Maximum ambient temperature  
JMAX  
AMAX  
2.0  
• T  
DFN8  
θ
= +58°C/W  
JA  
1.6  
1.2  
0.8  
0.4  
0.0  
θ = Thermal resistance of the package  
JA  
• P  
= Maximum power dissipation allowed  
MSOP8  
= +170°C/W  
DMAX  
θ
JA  
The total power dissipation produced by an IC is the  
total quiescent supply current times the total power  
supply voltage, plus the power dissipation in the IC  
due to the loads, or:  
740mW  
P
= Σi[V × I  
+ (V + V  
i) × I  
i]  
LOAD  
0
25  
50  
75  
100  
125  
150  
85  
(EQ. 2)  
DMAX  
S
SMAX  
S
OUT  
AMBIENT TEMPERATURE (°C)  
when sourcing, and:  
FIGURE 33. PACKAGE POWER DISSIPATION vs  
AMBIENT TEMPERATURE  
P
= Σi[V × I  
+ (V  
i V -) × I  
i]  
LOAD  
(EQ. 3)  
DMAX  
S
SMAX  
OUT  
S
when sinking, where:  
• i = 1 to 2  
(1, 2 corresponds to Channel A, B respectively)  
FN6892.0  
May 4, 2010  
12  
EL5220T  
as possible. One 4.7μF capacitor may be used for  
Power Supply Bypassing and Printed Circuit  
Board Layout  
multiple devices. For dual supply operation the same  
capacitor combination should be placed at each supply  
pin to ground.  
The EL5220T can provide gain at high frequency, so  
good printed circuit board layout is necessary for  
optimum performance. Ground plane construction is  
highly recommended, trace lengths should be as short  
as possible and the power supply pins must be well  
bypassed to reduce any risk of oscillation.  
It is highly recommended that EL5220T exposed  
thermal pad packages should always have the pad  
connected to the lowest potential, V -, to optimize  
S
thermal and operating performance. PCB vias should  
be placed below the device’s exposed thermal pad to  
For normal single supply operation (the V - pin is  
S
connected to ground) a 4.7μF capacitor should be  
transfer heat to the V - plane and away from the  
S
device.  
placed from V + to ground, then a parallel 0.1μF  
S
capacitor should be connected as close to the amplifier  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to  
web to make sure you have the latest Rev.  
DATE  
REVISION  
CHANGE  
5/4/10  
FN6892.0  
Initial Release  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The  
Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones,  
handheld products, and notebooks. Intersil's product families address power management and analog signal  
processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device  
information page on intersil.com: EL5220T  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications  
at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by  
Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any  
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any  
patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6892.0  
May 4, 2010  
13  
EL5220T  
Package Outline Drawing  
M8.118A  
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE (MSOP)  
Rev 0, 9/09  
A
3.0±0.1  
8
0.25 CAB  
4.9±0.15  
DETAIL "X"  
0.18 ± 0.05  
3.0±0.1  
1.10 Max  
PIN# 1 ID  
B
SIDE VIEW 2  
1
2
0.65 BSC  
TOP VIEW  
0.95 BSC  
0.86±0.09  
GAUGE  
PLANE  
H
C
0.25  
SEATING PLANE  
0.10 ± 0.05  
0.33 +0.07/ -0.08  
0.08 C AB  
3°±3°  
0.10 C  
0.55 ± 0.15  
DETAIL "X"  
SIDE VIEW 1  
5.80  
NOTES:  
1. Dimensions are in millimeters.  
4.40  
3.00  
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA  
and AMSE Y14.5m-1994.  
3.  
Plastic or metal protrusions of 0.15mm max per side are not  
included.  
0.65  
0.40  
4. Plastic interlead protrusions of 0.25mm max per side are not  
included.  
1.40  
5. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
6. This replaces existing drawing # MDP0043 MSOP 8L.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6892.0  
May 4, 2010  
14  
EL5220T  
Package Outline Drawing  
L8.2x3  
8 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE  
Rev 1, 3/10  
2.00  
A
2X 1.50  
PIN 1  
INDEX AREA  
6X 0.50  
B
1
6
PIN #1  
1.80 +0.10/-0.15  
INDEX AREA  
(4X)  
0.15  
8
4
8X 0.25 +0.07/-0.05  
8X 0.40 ±0.10  
0.10 M C A B  
TOP VIEW  
1.65 +0.10/-0.15  
BOTTOM VIEW  
SEE DETAIL "X"  
0.10 C  
0.90 ±0.10  
(1.65)  
(1.50)  
C
BASE PLANE  
SEATING PLANE  
(8X 0.60)  
0.08 C  
0.05 MAX  
SIDE VIEW  
0.20 REF  
(1.80)  
(2.80)  
C
(6X 0.50)  
0.05 MAX  
DETAIL "X"  
(8X 0.25)  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension applies to the metallized terminal and is measured  
between 0.25mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
Compies to JEDEC MO-229 VCED-2.  
7.  
FN6892.0  
May 4, 2010  
15  

相关型号:

EL5220TIYZ-T7

12MHz Rail-to-Rail Input-Output Operational Amplifier
INTERSIL

EL5221

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221C

Dual 12MHz Rail-to-Rail Input-Output Buffer
ELANTEC

EL5221CW-T13

Dual 12MHz Rail-to-Rail Input-Output Buffer
ELANTEC

EL5221CW-T13

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221CW-T7

Dual 12MHz Rail-to-Rail Input-Output Buffer
ELANTEC

EL5221CW-T7

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221CW-T7A

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221CWZ-T7

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221CWZ-T7A

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221CY

Dual 12MHz Rail-to-Rail Input-Output Buffer
INTERSIL

EL5221CY-T13

Dual 12MHz Rail-to-Rail Input-Output Buffer
ELANTEC