RK80532PG056512 [INTEL]

RISC Microprocessor, 32-Bit, 2400MHz, CMOS, CPGA478;
RK80532PG056512
型号: RK80532PG056512
厂家: INTEL    INTEL
描述:

RISC Microprocessor, 32-Bit, 2400MHz, CMOS, CPGA478

文件: 总85页 (文件大小:1750K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intel® Pentium® 4 Processor with 512-KB  
L2 Cache on 0.13 Micron Process and  
Intel® Pentium® 4 Processor Extreme  
Edition Supporting Hyper-Threading  
Technology1  
Datasheet  
2 GHz – 3.40 GHz Frequencies Supporting Hyper-Threading  
Technology1 at 3.06 GHz with 533 MHz System Bus and All  
Frequencies with 800 MHz System Bus  
I Available at 2 GHz, 2.20 GHz, 2.26 GHz,  
2.40 GHz, 2.50 GHz, 2.53 GHz, 2.60 GHz,  
2.66 GHz, 2.80 GHz, 3 GHz, 3.06 GHz,  
3.20 GHz, and 3.40 GHz  
I 8-KB Level 1 data cache  
I Level 1 Execution Trace Cache stores 12-K  
micro-ops and removes decoder latency from  
main execution loops  
I Supports Hyper-Threading Technology  
(HT Technology) at 3.06 GHz with 533 MHz  
system bus and all frequencies with 800 MHz  
system bus  
I 512-KB Advanced Transfer Cache (on-die,  
full-speed Level 2 (L2) cache) with 8-way  
associativity and Error Correcting Code  
(ECC)  
I Binary compatible with applications running  
on previous members of the Intel  
microprocessor line  
I 2-MB Integrated Level 3 (L3) cache with  
8-way associativity that is supported by Intel®  
Pentium® 4 Processor Extreme Edition  
Supporting Hyper-Threading Technology  
I Intel NetBurst® microarchitecture  
I System bus frequency at 400 MHz, 533 MHz, I 144 Streaming SIMD Extensions 2 (SSE2)  
and 800 MHz  
instructions  
I Rapid Execution Engine: Arithmetic Logic  
Units (ALUs) run at twice the processor core  
frequency  
I Enhanced floating point and multimedia unit  
for enhanced video, audio, encryption, and  
3D performance  
I Hyper-Pipelined Technology  
Advance Dynamic Execution  
Very deep out-of-order execution  
I Enhanced branch prediction  
I Optimized for 32-bit applications running on  
advanced 32-bit operating systems  
I Power Management capabilities  
System Management mode  
Multiple low-power states  
I 8-way cache associativity provides improved  
cache hit rate on load/store operations  
I 478-Pin Package  
The Intel® Pentium® 4 processor family supporting Hyper-Threading Technology1  
(HT Technology) delivers Intel's most advanced, most powerful processors for desktop PCs and  
entry-level workstations, which are based on the Intel NetBurst® microarchitecture. The  
Pentium 4 processor is designed to deliver performance across applications and usages where  
end-users can truly appreciate and experience the performance. These applications include  
Internet audio and streaming video, image processing, video content creation, speech, 3D, CAD,  
games, multimedia, and multitasking user environments. The Intel® Pentium® 4 processor  
Extreme Edition supporting HT Technology features 2 MB of L3 cache and offers high levels of  
performance targeted specifically for high-end gamers and computing power users.  
February 2004  
Document Number: 298643-012  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS  
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES  
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The Intel® Pentium® 4 processor on 0.13 micron process may contain design defects or errors known as errata which may cause the product to  
deviate from published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
1Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting HT Technology and a Hyper-Threading  
Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. See  
<<http://www.intel.com/info/hyperthreading/>> for more information including details on which processors support HT Technology.  
Intel, Pentium, Intel NetBurst, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States  
and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2001–2004, Intel Corporation  
2
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Contents  
1
Introduction..................................................................................................................9  
1.1  
Terminology.........................................................................................................11  
1.1.1 Processor Packaging Terminology.........................................................11  
References..........................................................................................................12  
1.2  
2
Electrical Specifications........................................................................................15  
2.1  
2.2  
2.3  
System Bus and GTLREF...................................................................................15  
Power and Ground Pins ......................................................................................15  
Decoupling Guidelines ........................................................................................16  
2.3.1 VCC Decoupling.....................................................................................16  
2.3.2 System Bus AGTL+ Decoupling.............................................................16  
Voltage Identification...........................................................................................16  
2.4.1 Phase Lock Loop (PLL) Power and Filter...............................................18  
Reserved, Unused Pins, and TESTHI[12:0]........................................................20  
System Bus Signal Groups .................................................................................21  
Asynchronous GTL+ Signals...............................................................................22  
Test Access Port (TAP) Connection....................................................................22  
System Bus Frequency Select Signals (BSEL[1:0])............................................22  
Maximum Ratings................................................................................................23  
Processor DC Specifications...............................................................................23  
AGTL+ System Bus Specifications .....................................................................35  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
2.10  
2.11  
2.12  
3
Package Mechanical Specifications.................................................................37  
3.1  
3.2  
3.3  
3.4  
3.5  
Package Load Specifications ..............................................................................40  
Processor Insertion Specifications ......................................................................41  
Processor Mass Specifications ...........................................................................41  
Processor Materials.............................................................................................41  
Processor Markings.............................................................................................42  
4
5
Pin Lists and Signal Descriptions.....................................................................45  
4.1  
4.2  
Processor Pin Assignments ................................................................................45  
Signal Descriptions..............................................................................................58  
Thermal Specifications and Design Considerations.................................67  
5.1  
Processor Thermal Specifications.......................................................................68  
5.1.1 Thermal Specifications...........................................................................68  
5.1.2 Thermal Metrology .................................................................................70  
5.1.2.1 Processor Case Temperature Measurement ............................70  
6
Features .......................................................................................................................71  
6.1  
6.2  
Power-On Configuration Options ........................................................................71  
Clock Control and Low Power States..................................................................71  
6.2.1 Normal State—State 1 ...........................................................................71  
6.2.2 AutoHALT Powerdown State—State 2...................................................72  
6.2.3 Stop-Grant State—State 3 .....................................................................73  
6.2.4 HALT/Grant Snoop State—State 4 ........................................................73  
6.2.5 Sleep State—State 5..............................................................................74  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
3
6.3  
Thermal Monitor..................................................................................................74  
6.3.1 Thermal Diode........................................................................................76  
7
8
Boxed Processor Specifications.......................................................................77  
7.1  
7.2  
Introduction .........................................................................................................77  
Mechanical Specifications...................................................................................78  
7.2.1 Boxed Processor Cooling Solution Dimensions.....................................78  
7.2.2 Boxed Processor Fan Heatsink Weight..................................................79  
7.2.3 Boxed Processor Retention Mechanism and Heatsink Assembly..........79  
Electrical Requirements ......................................................................................80  
7.3.1 Fan Heatsink Power Supply...................................................................80  
Thermal Specifications........................................................................................82  
7.4.1 Boxed Processor Cooling Requirements ...............................................82  
7.4.2 Variable Speed Fan ...............................................................................83  
7.3  
7.4  
Debug Tools Specifications.................................................................................85  
8.1  
Logic Analyzer Interface (LAI).............................................................................85  
8.1.1 Mechanical Considerations....................................................................85  
8.1.2 Electrical Considerations........................................................................85  
4
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Figures  
2-1  
2-2  
2-3  
2-4  
VCCVID Pin Voltage and Current Requirements.................................................17  
Typical VCCIOPLL, VCCA and VSSA Power Distribution ..................................19  
Phase Lock Loop (PLL) Filter Requirements ......................................................19  
V
CC Static and Transient Tolerance (For Intel® Pentium® 4  
Processor With 512-KB L2 Cache on 0.13 Micron Process)...............................29  
V
CC Static and Transient Tolerance (For Intel® Pentium® 4  
2-5  
Processor Extreme Edition Supporting Hyper-Threading Technology)...............31  
ITPCLKOUT[1:0] Output Buffer Diagram ............................................................34  
Test Circuit ..........................................................................................................35  
Exploded View of Processor Components on a System Board ..........................37  
Processor Package .............................................................................................38  
Processor Cross-Section and Keep-In................................................................39  
Processor Pin Detail............................................................................................39  
IHS Flatness Specification ..................................................................................40  
Processor Markings (Processors with Fixed VID)...............................................42  
Processor Markings (Processors with Multiple VID) ...........................................42  
The Coordinates of the Processor Pins As Viewed from the Top  
2-6  
2-7  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
3-7  
3-8  
of the Package ....................................................................................................43  
Example Thermal Solution (Not to Scale) ...........................................................67  
Guideline Locations for Case Temperature (TC) Thermocouple Placement ......70  
Stop Clock State Machine...................................................................................72  
Mechanical Representation of the Boxed Processor ..........................................77  
Side View Space Requirements for the Boxed Processor ..................................78  
Top View Space Requirements for the Boxed Processor ...................................79  
Boxed Processor Fan Heatsink Power Cable Connector Description.................80  
MotherBoard Power Header Placement Relative to Processor Socket ..............81  
Boxed Processor Fan Heatsink Airspace Keep-Out Requirements  
5-1  
5-2  
6-1  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
(Side 1 View).......................................................................................................82  
Boxed Processor Fan Heatsink Airspace Keep-Out Requirements  
7-7  
7-8  
(Side 2 View).......................................................................................................83  
Boxed Processor Fan Heatsink Set Points .........................................................83  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
5
Tables  
1-1  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
References..........................................................................................................12  
CCVID Pin Voltage Requirements.....................................................................17  
V
Voltage Identification Definition...........................................................................18  
System Bus Pin Groups......................................................................................21  
BSEL[1:0] Frequency Table for BCLK[1:0] .........................................................22  
Processor DC Absolute Maximum Ratings.........................................................23  
Voltage and Current Specifications.....................................................................24  
V
CC Static and Transient Tolerance (For Intel® Pentium® 4  
Processor With 512-KB L2 Cache on 0.13 Micron Process) ..............................28  
Vcc Static and Transient Tolerance (For Intel® Pentium® 4  
2-8  
Processor Extreme Edition Supporting Hyper-Threading Technology) ..............30  
AGTL+ Signal Group DC Specifications .............................................................32  
Asynchronous GTL+ Signal Group DC Specifications........................................32  
PWRGOOD and TAP Signal Group DC Specifications ......................................33  
ITPCLKOUT[1:0] DC Specifications....................................................................33  
BSEL [1:0] and VID[4:0] DC Specifications.........................................................34  
AGTL+ Bus Voltage Definitions...........................................................................35  
Description Table for Processor Dimensions......................................................38  
Package Dynamic and Static Load Specifications..............................................40  
Processor Mass ..................................................................................................41  
Processor Material Properties.............................................................................41  
Pin Listing by Pin Name......................................................................................46  
Pin Listing by Pin Number...................................................................................52  
Signal Descriptions .............................................................................................58  
Processor Thermal Design Power ......................................................................69  
Power-On Configuration Option Pins..................................................................71  
Thermal Diode Parameters.................................................................................76  
Thermal Diode Interface......................................................................................76  
Fan Heatsink Power and Signal Specifications...................................................81  
Boxed Processor Fan Heatsink Set Points .........................................................84  
2-9  
2-10  
2-11  
2-12  
2-13  
2-14  
3-1  
3-2  
3-3  
3-4  
4-1  
4-2  
4-3  
5-1  
6-1  
6-2  
6-3  
7-1  
7-2  
6
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Revision History  
Revision  
Description  
Date  
-005  
Added Thermal and Electrical Specifications for frequencies through 3.06  
GHz and included multiple VID specifications. Updated the THERMTRIP#  
and DBI# signal descriptions. Removed Deep Sleep State section. Updated  
Boxed Processor Fan Heatsink Set Points table and figure. Update Power-  
on Configuration Option pins table.  
November  
2002  
-006  
-007  
December  
2002  
Minor update to DC specifications  
Corrected Table 4-3, Signal Description. Item TRST#, last sentence.  
Measurement changed from 680 W pull-down resistor to 680 pull-down  
resistor.  
January 2003  
-008  
-009  
Added 800 MHz system bus specifications. Added IMPSEL definition.  
Updated Stop-Grant, HALT, and AutoHALT states  
April 2003  
May 2003  
Added thermal and electrical specifications for 2.40C GHz, 2.60C GHz, and  
2.80C GHz with 800 MHz system bus. Updated thermal specifications and  
thermal monitor chapter. Updated PROCHOT# pin definition.  
-010  
-011  
-012  
Added thermal and electrical specifications for 3.20C GHz. Updated  
processor markings.  
June 2003  
Added Intel® Pentium® 4 Processor Extreme Edition Supporting Hyper-  
Threading Technology  
November  
2003  
Added 3.40 GHz thermal and electrical specifications for the Intel Pentium  
4 Processor Extreme Edition and Intel Pentium 4 Processor with 512-KB L2  
Cache on 0.13 Micron Process  
February 2004  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
7
This page is intentionally left blank.  
8
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Introduction  
Introduction  
1
The Intel® Pentium® 4 processor with 512-KB L2 cache on 0.13 micron process and the Intel®  
Pentium® 4 processor Extreme Edition supporting Hyper-Threading Technology are follow-on  
processors to the Intel® Pentium® 4 processor in the 478-pin package with Intel NetBurst®  
microarchitecture. These processors use Flip-Chip Pin Grid Array (FC-PGA2) package technology,  
and plug into a 478-pin surface mount, Zero Insertion Force (ZIF) socket, referred to as the  
mPGA478B socket. The Pentium 4 processor with 512-KB L2 cache on 0.13 micron process and  
the Pentium 4 processor Extreme Edition supporting Hyper-Threading Technology, like the  
Pentium 4 processor in the 478-pin package, are based on the same Intel 32-bit microarchitecture  
and maintain the tradition of compatibility with IA-32 software. The Pentium 4 processor with  
512-KB L2 cache on 0.13 micron process contains an on-die 512-KB advanced transfer L2 cache.  
The Pentium 4 processor Extreme Edition supporting Hyper-Threading Technology contains an  
on-die 512-KB level 2 (L2) advanced transfer cache and an on-die 2-MB integrated level 3 (L3)  
cache. Both processors are on a 0.13 micron process.  
This document covers the Pentium 4 processors with 512-KB L2 cache on 0.13 micron process and  
the Pentium 4 processor Extreme Edition supporting Hyper-Threading Technology.  
Note: Unless otherwise specified in this document, the term “Pentium 4 processor on 0.13 micron  
process” (or simply processor) refers to both the Pentium 4 processor with 512-KB L2 cache on  
0.13 micron process and the Pentium 4 processor Extreme Edition supporting Hyper-Threading  
Technology.  
Hyper-Threading Technology1 is a new feature in the Pentium 4 processor on 0.13 micron process  
at 800 MHz system bus. It is also on the Pentium 4 processor with 512-KB L2 cache on  
0.13 micron process at 3.06 GHz/533 MHz system bus. HT Technology allows a single, physical  
Pentium 4 processor on 0.13 micron process to function as two logical processors. While some  
execution resources (such as caches, execution units, and buses) are shared, each logical processor  
has its own architecture state with its own set of general-purpose registers, control registers to  
provide increased system responsiveness in multitasking environments, and headroom for next  
generation multi-threaded applications. Intel recommends enabling HT Technology with Microsoft  
Windows* XP Professional or Windows* XP Home, and disabling HT Technology via the BIOS  
for all previous versions of Windows operating systems. For more information on Hyper-  
Threading Technology, see www.intel.com/info/hyperthreading. Refer to Section 6.1 for HT  
Technology configuration details.  
The Intel NetBurst microarchitecture features include hyper-pipelined technology, a rapid  
execution engine, a 400 MHz, 533 MHz, or 800 MHz system bus, and an execution trace cache.  
The hyper-pipelined technology doubles the pipeline depth in the Pentium 4 processor on  
0.13 micron process, allowing the processor to reach much higher core frequencies. The rapid  
execution engine allows the two integer ALUs in the processor to run at twice the core frequency;  
this allows many integer instructions to execute in 1/2 clock cycle. The 400 MHz, 533 MHz, or  
800 MHz system bus is a quad-pumped bus running off a 100 MHz or a 133 MHz system clock,  
making 3.2 Gbytes/sec, 4.3 Gbytes/sec, or 6.4 Gbytes/sec data transfer rates possible. The  
execution trace cache is a first-level cache that stores approximately 12-K decoded micro-  
operations that removes the instruction decoding logic from the main execution path, thereby  
increasing performance.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
9
Introduction  
Additional features within the Intel NetBurst microarchitecture include advanced dynamic  
execution, advanced transfer cache, enhanced floating point and multi-media unit, and Streaming  
SIMD Extensions 2 (SSE2). The advanced dynamic execution improves speculative execution and  
branch prediction internal to the processor. The advanced transfer cache is a 512-KB, on-die level 2  
(L2) cache. A new floating point and multi-media unit has been implemented that provides  
superior performance for multi-media and mathematically intensive applications. Finally, SSE2  
adds 144 new instructions for double-precision floating point, SIMD integer, and memory  
management. Power management capabilities (such as AutoHALT, Stop-Grant, and Sleep) have  
been retained.  
The Streaming SIMD Extensions 2 (SSE2) enable break-through levels of performance in multi-  
media applications including 3-D graphics, video decoding/encoding, and speech recognition. The  
new packed double-precision floating-point instructions enhance performance for applications that  
require greater range and precision, including scientific and engineering applications and advanced  
3-D geometry techniques (such as ray tracing).  
The 2-MB L3 cache is available with only the Pentium 4 processor Extreme Edition. The  
additional third level of cache is located on the processor die and is designed specifically to meet  
the compute needs of high-end gamers and other power users. The integrated level 3 cache is  
available in 2-MB and is coupled with the 800 MHz system bus to provide a high bandwidth path  
to memory. The efficient design of the integrated Level 3 cache provides a faster path to large data  
sets stored in cache on the processor. This results in reduced average memory latency and increased  
throughput for larger workloads.  
The Intel NetBurst microarchitecture system bus on the Pentium 4 processor on 0.13 micron  
process uses a split-transaction, deferred reply protocol like the Pentium 4 processor in the 478-pin  
package. This system bus is not compatible with the P6 processor family bus. The Intel NetBurst  
microarchitecture system bus uses Source-Synchronous Transfer (SST) of address and data to  
improve performance by transferring data four times per bus clock (4X data transfer rate, as in  
AGP 4X). Along with the 4X data bus, the address bus can deliver addresses two times per bus  
clock and is referred to as a “double-clocked” or 2X address bus. Working together, the 4X data  
bus and 2X address bus provide a data bus bandwidth of up to 6.4 Gbytes/second.  
Intel will enable support components for the Pentium 4 processor on 0.13 micron process including  
heatsinks, heatsink retention mechanisms, and sockets. Manufacturability is a high priority; hence,  
mechanical assembly can be completed from the top of the motherboard, and should not require  
any special tooling.  
The processor system bus uses a variant of GTL+ signalling technology called Assisted Gunning  
Transceiver Logic (AGTL+) signal technology.  
10  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Introduction  
1.1  
Terminology  
A ‘#’ symbol after a signal name refers to an active low signal, indicating that the signal is in the  
active state when driven to a low level. For example, when RESET# is low, a reset has been  
requested. Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of  
signals where the name does not imply an active state but describes part of a binary sequence  
(such as address or data), the ‘#’ symbol indicates that the signal is inverted. For example,  
D[3:0] = ‘HLHLrefers to a hex ‘A, and D[3:0]# = ‘LHLH’ also refers to a hex ‘A(H= High logic  
level, L= Low logic level).  
The term “System Bus” refers to the interface between the processor and system core logic  
(also known as the chipset components). The system bus is a multiprocessing interface to  
processors, memory, and I/O.  
1.1.1  
Processor Packaging Terminology  
Commonly used terms are explained here for clarification:  
Intel Pentium 4 processor in the 478-pin package — 0.18-micron Pentium 4 processor core  
in the FC-PGA2 package.  
Intel Pentium 4 processor in the 423-pin package — 0.18-micron Pentium 4 processor core  
in the PGA package.  
Intel Pentium 4 processor with 512-KB L2 cache on 0.13 micron process — 0.13 micron  
version of Pentium 4 processor in the 478-pin package core in the FC-PGA2 package with a  
512-KB L2 cache.  
Intel Pentium 4 processor Extreme Edition supporting Hyper-Threading Technology —  
0.13 micron version of Pentium 4 processor in the 478-pin package core in the FC-PGA2  
package with a 512-KB L2 cache and a 2-MB L3 cache.  
Processor — For this document, the term processor shall mean Pentium 4 processor with  
512-KB L2 cache on 0.13 micron process and the Pentium 4 processor Extreme Edition  
supporting Hyper-Threading Technology.  
Keep-out zone — The area on or near the processor that system design can not utilize. This  
area must be kept free of all components to make room for the processor package, retention  
mechanism, heatsink, and heatsink clips.  
Hyper-Threading Technology — Hyper-Threading Technology allows a single, physical  
Pentium 4 processor to function as two logical processors when the necessary system  
ingredients are present. For more information, see: www.intel.com/info/hyperthreading.  
Intel875P chipset — Chipset that supports DDR memory technology for the Pentium 4  
processor with 512-KB L2 cache on 0.13 micron process. This chipset also supports the  
Pentium 4 processor Extreme Edition supporting Hyper-Threading Technology in platforms  
that meet the thermal design guidelines for this processor.  
Intel865G/865GV/865PE chipset — Chipset that supports DDR memory technology for  
the Pentium 4 processor with 512-KB L2 cache on 0.13 micron process.  
Intel865P chipset — Chipset that supports DDR memory technology for the Pentium 4  
processor with 512-KB L2 cache on 0.13 micron process.  
Intel850 chipset — Chipset that supports Rambus RDRAM* memory technology for  
Pentium 4 processor with 512-KB L2 cache on 0.13 micron process and Pentium 4 processor  
in the 478-pin package.  
Intel845 chipset — Chipset that supports PC133 and DDR memory technologies for the  
Pentium 4 processor with 512-KB L2 cache on 0.13 micron process and Pentium 4 processor  
in the 478-pin package.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
11  
Introduction  
Processor core — Pentium 4 processor with 512-KB L2 cache on 0.13 micron process core  
die with integrated L2 cache and the Pentium 4 processor Extreme Edition supporting Hyper-  
Threading Technology core die with integrated L2 and L3 caches.  
FC-PGA2 package — Flip-Chip Pin Grid Array package with 50-mil pin pitch and integrated  
heat spreader.  
mPGA478B socket — Surface mount, 478 pin, Zero Insertion Force (ZIF) socket with 50-mil  
pin pitch. The socket mates the processor to the system board.  
Integrated heat spreader — The surface used to make contact between a heatsink or other  
thermal solution and the processor. Integrated heat spreader is abbreviated IHS.  
Retention mechanism — The structure mounted on the system board that provides support  
and retention of the processor heatsink.  
1.2  
References  
Material and concepts available in the following documents may be beneficial when reading this  
document.  
Table 1-1. References (Sheet 1 of 2)  
Document  
Location  
http://developer.intel.com/design/  
chipsets/designex/252527.htm  
®
Intel 875P Chipset Platform Design Guide  
http://developer.intel.com/design/  
®
Intel 865G/865PE/865P Chipset Platform Design Guide  
chipsets/designex/252518.htm  
®
®
®
Intel Pentium 4 Processor in the 478-Pin Package /  
http://developer.intel.com/design/  
pentium4/guides/249888.htm  
http://developer.intel.com/design/  
chipsets/designex/298605.htm  
Intel 850 Chipset Platform Family Design Guide  
®
®
®
Intel Pentium 4 Processor in the 478-Pin Package and  
Intel 845 Chipset Platform for DDR Platform Design Guide  
®
®
®
Intel Pentium 4 Processor in the 478-Pin Package and  
http://developer.intel.com/design/  
Intel 845E Chipset Platform for DDR Platform Design Guide  
chipsets/designex/298652.htm  
®
®
®
Intel Pentium 4 Processor in the 478-Pin Package and  
http://developer.intel.com/design/  
chipsets/designex/298354.htm  
http://developer.intel.com/design/  
chipsets/designex/251925.htm  
Intel 845 Chipset Platform for SDR Platform Design Guide  
®
®
®
Intel Pentium 4 Processor in the 478-Pin Package and  
Intel 845GE/845PE Chipset Platform Design Guide  
®
®
®
Intel Pentium 4 Processor in 478-pin Package and  
http://developer.intel.com/design/  
Intel 845G/845GL/845GV Chipset Platform Design Guide  
chipsets/designex/298654.htm  
®
®
Intel Pentium 4 Processor with 512-KB L2 Cache on 0.13 Micron  
http://developer.intel.com/design/  
pentium4/guides/252161.htm  
http://developer.intel.com/design/  
pentium4/guides/290728.htm  
Process Thermal Design Guidelines  
®
®
Mechanical Enabling for the Intel Pentium 4 Processor in the 478-pin  
Package  
®
®
Assembling Intel Reference Components for the Intel Pentium  
4
http://developer.intel.com/design/  
Processor in the 478-pin Package  
pentium4/guides/298590.htm  
Voltage Regulator-Down (VRD) 10.0: for Desktop Socket 478 Design  
http://developer.intel.com/design/  
pentium4/guides/252885.htm  
Guide  
Voltage Regulator Module (VRM) 9.0 DC-DC Converter Design  
Guidelines  
http://developer.intel.com/design/  
pentium4/guides/249205.htm  
http://developer.intel.com/design/  
Pentium4/guides/249891.htm  
®
®
Intel Pentium 4 Processor VR-Down Design Guidelines  
http://developer.intel.com/design/  
CK00 Clock Synthesizer/Driver Design Guidelines  
pentium4/guides/249206.htm  
®
®
Intel Pentium 4 Processor 478-Pin Socket (mPGA478B) Socket Design http://developer.intel.com/design/  
Guidelines  
pentium4/guides/249890.htm  
12  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Introduction  
Table 1-1. References (Sheet 2 of 2)  
Document  
Location  
®
IA-32 Intel Architecture Software Developer’s Manual Volume 1:  
http://developer.intel.com/design/  
pentium4/manuals/245470.htm  
Basic Architecture  
®
IA-32 Intel Architecture Software Developer’s Manual, Volume 2:  
http://developer.intel.com/design/  
Instruction Set Reference  
pentium4/manuals/245471.htm  
®
IA-32 Intel Architecture Software Developer’s Manual, Volume 3:  
http://developer.intel.com/design/  
pentium4/manuals/245472.htm  
System Programming Guide  
http://developer.intel.com/design/  
®
AP-485 Intel Processor Identification and the CPUID Instruction  
xeon/applnots/241618.htm  
http://developer.intel.com/design/  
Xeon/guides/249679.htm  
ITP700 Debug Port Design Guide  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
13  
Introduction  
This page is intentionally left blank.  
14  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Electrical Specifications  
Electrical Specifications  
2
2.1  
System Bus and GTLREF  
Most Pentium 4 processor on 0.13 micron process system bus signals use Assisted Gunning  
Transceiver Logic (AGTL+) signalling technology. As with the P6 family of microprocessors, this  
signalling technology provides improved noise margins and reduced ringing through low voltage  
swings and controlled edge rates. Like the Pentium 4 processor in the 478-pin package, the  
termination voltage level for the Pentium 4 processor on 0.13 micron process AGTL+ signals is  
V
CC, which is the operating voltage of the processor core. The use of a termination voltage that is  
determined by the processor core allows better voltage scaling on the system bus for the Pentium 4  
processor on 0.13 micron process. Because of the speed improvements to data and address bus,  
signal integrity and platform design methods have become more critical than with previous  
processor families. Design guidelines for the Pentium 4 processor on 0.13 micron process system  
bus are detailed in the appropriate platform design guide (refer to Table 1-1).  
The AGTL+ inputs require a reference voltage (GTLREF) that is used by the receivers to determine  
if a signal is a logical 0 or a logical 1. GTLREF must be generated on the system board.  
Termination resistors are provided on the processor silicon and are terminated to its core voltage  
(VCC). The Intel® 875P chipset, Intel® 865G/865GV/865PE/865P chipsets, Intel® 850 chipset, and  
the Intel® 845 chipset also provide on-die termination. This eliminates the need to terminate the  
bus on the system board for most AGTL+ signals. However, some AGTL+ signals do not include  
on-die termination and must be terminated on the system board. For more information, refer to the  
appropriate platform design guide.  
The AGTL+ bus depends on incident wave switching. Therefore, timing calculations for AGTL+  
signals are based on flight time as opposed to capacitive deratings. Analog signal simulation of the  
system bus, including trace lengths, is highly recommended when designing a system. For more  
information, refer to the appropriate platform design guide.  
2.2  
Power and Ground Pins  
For clean on-chip power distribution, the Pentium 4 processor on 0.13 micron process has 85 VCC  
(power) and 180 VSS (ground) inputs. All power pins must be connected to VCC, while all VSS  
pins must be connected to a system ground plane.The processor VCC pins must be supplied with  
the voltage defined by the VID (Voltage ID) pins and the loadline specifications (see Figure 2-4).  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
15  
Electrical Specifications  
2.3  
Decoupling Guidelines  
Because of the large number of transistors and high internal clock speeds, the processor is capable  
of generating large average current swings between low and full power states. This may cause  
voltages on power planes to sag below their minimum values if bulk decoupling is not adequate.  
Care must be taken in the board design to ensure that the voltage provided to the processor remains  
within the specifications listed in Table 2-6. Failure to do so can result in timing violations and/or  
affect the long term reliability of the processor. For further information and design guidelines, refer  
to the appropriate platform design guide and the Intel® Pentium® 4 Processor VR-Down Design  
Guidelines.  
2.3.1  
V
Decoupling  
CC  
VCC regulator solutions need to provide sufficient decoupling capacitance to satisfy processor  
voltage specifications. This includes bulk capacitance with low effective series resistance (ESR) to  
keep the voltage rail within specifications during large swings in load current. In addition, ceramic  
decoupling capacitors are required to filter high frequency content generated by bus and processor  
activity. Consult the Voltage Regulator Down design guide and appropriate platform design guide  
for further information.  
2.3.2  
System Bus AGTL+ Decoupling  
Pentium 4 processors on 0.13 micron process integrate signal termination on the die and  
incorporate high frequency decoupling capacitance on the processor package. Decoupling must  
also be provided by the system motherboard for proper AGTL+ bus operation. For more  
information, refer to the appropriate platform design guide.  
2.4  
Voltage Identification  
The VID specification for Pentium 4 processors on 0.13 micron process is supported by the Intel®  
Pentium® 4 Processor VR-Down Design Guidelines, Voltage Regulator-Down (VRD) 10.0 Design  
Guide, and Voltage Regulator-Down (VRD) 10.0 Design Guide Addendum. The voltage set by the  
VID pins is the maximum voltage allowed by the processor. A minimum voltage is provided in  
Table 2-6 and changes with frequency. This allows processors running at a higher frequency to  
have a relaxed minimum voltage specification. The specifications have been set such that one  
voltage regulator can work with all supported frequencies.  
Pentium 4 processors on 0.13 micron process use five voltage identification pins, VID[4:0], to  
support automatic selection of power supply voltages. The VID pins for the Pentium 4 processor on  
0.13 micron process are open drain outputs driven by the processor VID circuitry. The VID signals  
rely on pull-up resistors tied to a 3.3 V (maximum) supply to set the signal to a logic high level.  
These pull-up resistors may be either external logic on the motherboard, or internal to the Voltage  
Regulator. Table 2-2 specifies the voltage level corresponding to the state of VID[4:0]. A ‘1’ in this  
table refers to a high voltage level, and a ‘0’ refers to low voltage level. The definition provided in  
Table 2-2 is not related in any way to previous P6 processors or VRs, but is compatible with the  
Pentium 4 processor in the 478-pin package. If the processor socket is empty (VID[4:0] = 11111) or  
the voltage regulation circuit cannot supply the voltage that is requested, it must disable itself. See  
the Intel® Pentium® 4 Processor VR-Down Design Guidelines, Voltage Regulator-Down (VRD)  
10.0 Design Guide, or Voltage Regulator-Down (VRD) 10.0 Design Guide Addendum for more  
details.  
16  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Electrical Specifications  
Power source characteristics must be stable when the supply to the voltage regulator is stable.  
Refer to the appropriate platform design guide for timing details of the power up sequence. Refer to  
the appropriate platform design guide for implementation details.  
The Voltage Identification circuit requires an independent 1.2 V supply. This voltage must be  
routed to the processor VCCVID pin. Figure 2-1 and Table 2-1 show the voltage and current  
requirements of the VCCVID pin.  
Table 2-1. VCCVID Pin Voltage Requirements  
Symbol  
VID  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
V
V
for Voltage Identification circuit  
CC  
–5%  
1.2  
+10%  
V
1
CC  
NOTE:  
1. This specification applies to both static and transient components. The rising edge of V VID must be  
CC  
monotonic from 0 to 1.1 V. See Figure 2-1 for current requirements. In this case, monotonic is defined as  
continuously increasing with less than 50 mV of peak to peak noise for any width greater than 2 ns  
superimposed on the rising edge.  
Figure 2-1. VCCVID Pin Voltage and Current Requirements  
1.2 V + 10%  
1.2 V - 5%  
1.0 V  
VCCVID  
VIDs latched  
30 mA  
1 mA  
4 ns  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
17  
Electrical Specifications  
Table 2-2. Voltage Identification Definition  
Processor Pins  
V
CC_MAX  
VID4  
VID3  
VID2  
VID1  
VID0  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
VRM output off  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
1.525  
1.550  
1.575  
1.600  
2.4.1  
Phase Lock Loop (PLL) Power and Filter  
VCCA and VCCIOPLL are power sources required by the PLL clock generators on the Pentium 4  
processor on 0.13 micron process. Since these PLLs are analog, they require quiet power supplies  
for minimum jitter. Jitter is detrimental to the system; it degrades external I/O timings as well as  
internal core timings (i.e., maximum frequency). To prevent this degradation, these supplies must  
be low pass filtered from VCC. A typical filter topology is shown in Figure 2-2.  
The AC low-pass requirements, with input at VCC and output measured across the capacitor  
(CA or CIO in Figure 2-2), is as follows:  
< 0.2 dB gain in pass band  
< 0.5 dB attenuation in pass band < 1 Hz  
> 34 dB attenuation from 1 MHz to 66 MHz  
> 28 dB attenuation from 66 MHz to core frequency  
Refer to the appropriate platform design guide for recommendations on implementing the filter.  
18  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Electrical Specifications  
Figure 2-2. Typical VCCIOPLL, VCCA and VSSA Power Distribution  
VCC  
L
VCCA  
CA  
PLL  
Processor  
Core  
VSSA  
CIO  
VCCIOPLL  
L
.
Figure 2-3. Phase Lock Loop (PLL) Filter Requirements  
0.2 dB  
0 dB  
–0.5 dB  
Forbidden  
Zone  
Forbidden  
Zone  
–28 dB  
–34 dB  
DC  
1 Hz  
Passband  
fpeak  
1 MHz  
66 MHz  
fcore  
High  
Frequency  
Band  
NOTES:  
1. Diagram not to scale.  
2. No specification for frequencies beyond fcore (core frequency).  
3. fpeak, if existent, should be less than 0.05 MHz.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
19  
Electrical Specifications  
2.5  
Reserved, Unused Pins, and TESTHI[12:0]  
All RESERVED pins must remain unconnected. Connection of these pins to VCC, VSS, or to any  
other signal (including each other) can result in component malfunction or incompatibility with  
future Pentium 4 processors on 0.13 micron process. See Chapter 4 for a pin listing of the processor  
and the location of all RESERVED pins.  
For reliable operation, always connect unused inputs or bidirectional signals that are not terminated  
on the die to an appropriate signal level. Note that on-die termination has been included on the  
Pentium 4 processor on 0.13 micron process to allow signals to be terminated within the processor  
silicon. Unused active low AGTL+ inputs may be left as no connects if AGTL+ termination is  
provided on the processor silicon. Table 2-3 lists details on AGTL+ signals that do not include on-  
die termination. Unused active high inputs should be connected through a resistor to ground (VSS).  
Refer to the appropriate platform design guide for the appropriate resistor values.  
Unused outputs can be left unconnected. However, this may interfere with some TAP functions,  
complicate debug probing, and prevent boundary scan testing. A resistor must be used when tying  
bidirectional signals to power or ground. When tying any signal to power or ground, a resistor will  
also allow for system testability. For unused AGTL+ input or I/O signals that don’t have on-die  
termination, use pull-up resistors of the same value in place of the on-die termination resistors  
(RTT). See Table 2-14.  
The TAP, Asynchronous GTL+ inputs, and Asynchronous GTL+ outputs do not include on-die  
termination. Inputs and used outputs must be terminated on the system board. Unused outputs may  
be terminated on the system board or left unconnected. Note that leaving unused output  
unterminated may interfere with some TAP functions, complicate debug probing, and prevent  
boundary scan testing. Signal termination for these signal types is discussed in the appropriate  
platform design guide listed in Table 1-1.  
The TESTHI pins should be tied to the processor VCC using a matched resistor, where a matched  
resistor has a resistance value within ± 20% of the impedance of the board transmission line traces.  
For example, if the trace impedance is 50 Ω, then a value between 40 and 60 is required.  
The TESTHI pins may use individual pull-up resistors or may be grouped together as follows:  
1. TESTHI[1:0]  
2. TESTHI[5:2]  
3. TESTHI[10:8]  
4. TESTHI[12:11]  
A matched resistor should be used for each group.  
Additionally, if the ITPCLKOUT[1:0] pins are not used, they may be connected individually to  
VCC using matched resistors or may be grouped with TESTHI[5:2] with a single matched resistor.  
If they are being used, individual termination with 1 kresistors is required. Tying  
ITPCLKOUT[1:0] directly to VCC or sharing a pull-up resistor to VCC will prevent use of debug  
interposers. This implementation is strongly discouraged for system boards that do not implement  
an inboard debug port.  
As an alternative, group2 (TESTHI[5:2]) and the ITPCLKOUT[1:0] pins may be tied directly to  
the processor VCC. This has no impact on system functionality. TESTHI0 and TESTHI12 may also  
be tied directly to the processor VCC if resistor termination is a problem, but matched resistor  
termination is recommended. In the case of the ITPCLKOUT[1:0] pins, direct tie to VCC is  
strongly discouraged for system boards that do not implement an inboard debug port.  
Tying any of the TESTHI pins together will prevent the ability to perform boundary scan testing.  
20  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Electrical Specifications  
2.6  
System Bus Signal Groups  
To simplify the following discussion, the system bus signals have been combined into groups by  
buffer type. AGTL+ input signals have differential input buffers that use GTLREF as a reference  
level. In this document, the term “AGTL+ Input” refers to the AGTL+ input group as well as the  
AGTL+ I/O group when receiving. Similarly, “AGTL+ Output” refers to the AGTL+ output group  
as well as the AGTL+ I/O group when driving.  
With the implementation of a source synchronous data bus comes the need to specify two sets of  
timing parameters. One set is for common clock signals that are dependent on the rising edge of  
BCLK0 (ADS#, HIT#, HITM#, etc.), and the second set is for the source synchronous signals that  
are relative to their respective strobe lines (data and address), as well as the rising edge of BCLK0.  
Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at any time  
during the clock cycle. Table 2-3 identifies which signals are common clock, source synchronous,  
and asynchronous signals.  
Table 2-3. System Bus Pin Groups  
1
Signal Group  
Type  
Signals  
2
AGTL+ Common Clock Input Common Clock BPRI#, DEFER#, RESET# , RS[2:0]#, RSP#, TRDY#  
2
2
AP[1:0]#, ADS#, BINIT#, BNR#, BPM[5:0]# , BR0# , DBSY#,  
DP[3:0]#, DRDY#, HIT#, HITM#, LOCK#, MCERR#  
AGTL+ Common Clock I/O  
Synchronous  
Signals  
Associated Strobe  
ADSTB0#  
ADSTB1#  
5
REQ[4:0]#, A[16:3]#  
5
A[35:17]#  
AGTL+ Source Synchronous Source  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP0#, DSTBN0#  
DSTBP1#, DSTBN1#  
DSTBP2#, DSTBN2#  
DSTBP3#, DSTBN3#  
I/O  
Synchronous  
AGTL+ Strobes  
Common Clock ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#  
A20M#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, SMI#,  
4,5  
Asynchronous GTL+ Input  
Asynchronous  
SLP#, STPCLK#  
4
2
Asynchronous GTL+ Output  
Asynchronous GTL+ Input/  
Asynchronous  
Asynchronous  
FERR#, IERR# , THERMTRIP#  
PROCHOT#  
4
Output  
Synchronous to  
TCK  
4
TAP Input  
TCK, TDI, TMS, TRST#  
TDO  
Synchronous to  
TCK  
4
TAP Output  
3
System Bus Clock  
Power/Other  
N/A  
BCLK[1:0], ITP_CLK[1:0]  
V
, V  
, V  
, V VID, VID[4:0], V , V  
,
SSA  
CC  
CCA  
CCIOPLL  
CC  
SS  
GTLREF[3:0], COMP[1:0], RESERVED, TESTHI[5:0, 12:8],  
N/A  
3
ITPCLKOUT[1:0], THERMDA, THERMDC, IMPSEL, DBR# ,  
PWRGOOD, SKTOCC#, V , V BSEL[1:0],  
CC_SENSE  
SS_SENSE,  
NOTES:  
1. Refer to Section 5.2 for signal descriptions.  
2. These AGTL+ signals do not have on-die termination. Refer to Section 2.5 and the ITP700 Debug Port  
Design Guide for termination requirements.  
3. In processor systems where there is no debug port implemented on the system board, these signals are used  
to support a debug port interposer. In systems with the debug port implemented on the system board, these  
signals are no connects.  
4. These signal groups are not terminated by the processor. Refer to Section 2.5, the ITP700 Debug Port  
Design Guide, and the appropriate Platform Design Guide for termination requirements and further details.  
5. The value of these pins during the active-to-inactive edge of RESET# defines the processor configuration  
options. See Section 6.1 for details.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
21  
Electrical Specifications  
2.7  
Asynchronous GTL+ Signals  
The Pentium 4 processor on 0.13 micron process does not use CMOS voltage levels on any signals  
that connect to the processor. As a result, legacy input signals (such as A20M#, IGNNE#, INIT#,  
LINT0/INTR, LINT1/NMI, PWRGOOD, SMI#, SLP#, and STPCLK#) use GTL+ input buffers.  
Legacy output FERR# and other non-AGTL+ signals (THERMTRIP#) use GTL+ output buffers.  
PROCHOT# uses GTL+ input/output buffer. All of these signals follow the same DC requirements  
as AGTL+ signals; however, the outputs are not actively driven high (during a logical 0 to 1  
transition) by the processor (the major difference between GTL+ and AGTL+). These signals do  
not have setup or hold time specifications in relation to BCLK[1:0]. However, all of the  
Asynchronous GTL+ signals are required to be asserted for at least two BCLKs for the processor to  
recognize them. See Section 2.11 for the DC specifications for the Asynchronous GTL+ signal  
groups. See Section 6.2 for additional timing requirements for entering and leaving the low power  
states.  
2.8  
2.9  
Test Access Port (TAP) Connection  
Because of the voltage levels supported by other components in the Test Access Port (TAP) logic,  
it is recommended that the Pentium 4 processor on 0.13 micron process be first in the TAP chain  
and followed by any other components within the system. A translation buffer should be used to  
connect to the rest of the chain unless one of the other components is capable of accepting an input  
of the appropriate voltage level. Similar considerations must be made for TCK, TMS, and TRST#.  
Two copies of each signal may be required, with each driving a different voltage level.  
System Bus Frequency Select Signals (BSEL[1:0])  
The BSEL[1:0] are output signals used to select the frequency of the processor input clock  
(BCLK[1:0]). Table 2-4 defines the possible combinations of the signals, and the frequency  
associated with each combination. The required frequency is determined by the processor, chipset,  
and clock synthesizer. All agents must operate at the same frequency.  
The Pentium 4 processor with 512-KB L2 cache on 0.13 micron process currently operates at a  
400 MHz, 533 MHz, or 800 MHz system bus frequency. The Pentium 4 processor Extreme Edition  
supporting Hyper-Threading Technology currently operates at 800 MHz system bus frequency.  
Individual processors will operate only at their specified system bus frequency.  
For more information about these pins, refer to Section 4.2 and the appropriate platform design  
guidelines.  
Table 2-4. BSEL[1:0] Frequency Table for BCLK[1:0]  
BSEL1  
BSEL0  
Function  
L
L
L
H
L
100 MHz  
133 MHz  
H
H
200 MHz  
H
RESERVED  
22  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Electrical Specifications  
2.10  
Maximum Ratings  
Table 2-5 lists the processor’s maximum environmental stress ratings. The processor should not  
receive a clock while subjected to these conditions. Functional operating parameters are listed in  
the DC tables. Extended exposure to the maximum ratings may affect device reliability.  
Furthermore, although the processor contains protective circuitry to resist damage from Electro  
Static Discharge (ESD), one should always take precautions to avoid high static voltages or electric  
fields.  
Table 2-5. Processor DC Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
T
Processor storage temperature  
–40  
–0.3  
–0.1  
85  
°C  
V
2
STORAGE  
V
V
Any processor supply voltage with respect to V  
1.75  
1.75  
1
CC  
SS  
AGTL+ buffer DC input voltage with respect to V  
V
inAGTL+  
SS  
Asynch GTL+ buffer DC input voltage with respect  
to V  
V
–0.1  
1.75  
5
V
inAsynch_GTL+  
SS  
I
Max VID pin current  
mA  
VID  
NOTES:  
1. This rating applies to any processor pin.  
2. Contact Intel for storage requirements in excess of one year.  
2.11  
Processor DC Specifications  
The processor DC specifications in this section are defined at the processor core silicon unless  
noted otherwise. See Chapter 4 for the pin signal definitions and signal pin assignments. Most of  
the signals on the processor system bus are in the AGTL+ signal group. The DC specifications for  
these signals are listed in Table 2-9.  
Previously, legacy signals and Test Access Port (TAP) signals to the processor used low-voltage  
CMOS buffer types. However, these interfaces now follow DC specifications similar to GTL+. The  
DC specifications for these signal groups are listed in Table 2-10.  
Table 2-6 through Table 2-10 list the DC specifications for the Pentium 4 processor on 0.13 micron  
process, and are valid only while meeting specifications for case temperature, clock frequency, and  
input voltages. Care should be taken to read all notes associated with each parameter.  
Processors with multiple VID have ICC_MAX of the highest VID for the specified frequency. For  
example, for processors through 2.80 GHz, the ICC_MAX would be the one at VID=1.525 V.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
23  
Electrical Specifications  
Table 2-6. Voltage and Current Specifications (Sheet 1 of 4)  
10  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
V
V
V
V
for Processor at  
VID=1.475 V  
2A GHz  
2.20 GHz  
2.40 GHz  
2.50 GHz  
2.60 GHz  
CC  
CC  
CC  
CC  
1.315  
1.310  
1.300  
1.300  
1.295  
1.390  
1.385  
1.380  
1.375  
1.375  
for Processor at  
VID=1.500 V  
V
CC  
Refer to  
Table 2-7  
and  
2A GHz  
2.20 GHz  
2.40 GHz  
2.50 GHz  
2.60 GHz  
1.340  
1.335  
1.330  
1.325  
1.320  
1.415  
1.410  
1.405  
1.400  
1.400  
V
1, 2, 3, 4  
(400 MHz  
FSB)  
Figure 2-4  
for Processor at  
VID=1.525 V  
2A GHz  
2.20 GHz  
2.40 GHz  
2.50 GHz  
2.60 GHz  
1.365  
1.360  
1.350  
1.350  
1.345  
1.440  
1.435  
1.430  
1.430  
1.425  
for Processor at  
VID=1.475 V  
2.26 GHz  
2.40B GHz  
2.53 GHz  
2.66 GHz  
2.80 GHz  
3.06 GHz  
1.305  
1.300  
1.295  
1.295  
1.290  
1.265  
1.380  
1.380  
1.375  
1.370  
1.370  
1.345  
V
V
V
for Processor at  
CC  
CC  
CC  
VID=1.500 V  
2.26 GHz  
2.40B GHz  
2.53 GHz  
2.66 GHz  
2.80 GHz  
3.06 GHz  
1.330  
1.330  
1.325  
1.320  
1.315  
1.290  
1.405  
1.405  
1.400  
1.395  
1.395  
1.370  
V
CC  
Refer to  
Table 2-7  
and  
V
1, 2, 3, 4  
(533 MHz  
FSB)  
Figure 2-4  
for Processor at  
VID=1.525 V  
2.26 GHz  
2.40B GHz  
2.53 GHz  
2.66 GHz  
2.80 GHz  
3.06 GHz  
1.355  
1.350  
1.345  
1.345  
1.340  
1.315  
1.435  
1.430  
1.430  
1.420  
1.420  
1.395  
for Processor at  
VID=1.550 V  
3.06 GHz  
1.340  
1.425  
24  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Electrical Specifications  
Table 2-6. Voltage and Current Specifications (Sheet 2 of 4)  
10  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
V
for Processor at  
VID=1.475 V  
2.40C GHz  
2.60C GHz  
2.80C GHz  
3 GHz  
CC  
CC  
CC  
1.295  
1.290  
1.288  
1.265  
1.260  
1.280  
1.375  
1.370  
1.369  
1.350  
1.345  
1.350  
3.20C GHz  
3.40 GHz  
V
for Processor at  
VID=1.500 V  
2.40C GHz  
2.60C GHz  
2.80C GHz  
3 GHz  
1.320  
1.315  
1.313  
1.290  
1.285  
1.305  
1.400  
1.395  
1.394  
1.375  
1.370  
1.375  
V
Refer to  
Table 2-7,  
Figure 2-4.  
and  
CC  
(800 MHz  
FSB with  
3.20C GHz  
3.40 GHz  
V
1, 2, 3, 4,13  
512-KB L2  
Cache Only)  
Table 2-8,  
Figure 2-5  
V
for Process or at  
VID=1.525 V  
2.40C GHz  
2.60C GHz  
2.80C GHz  
3 GHz  
1.345  
1.340  
1.338  
1.315  
1.310  
1.330  
1.425  
1.420  
1.419  
1.400  
1.395  
1.400  
3.20C GHz  
3.40 GHz  
V
for Processor at  
VID=1.550 V  
3 GHz  
CC  
1.340  
1.335  
1.355  
1.425  
1.420  
1.425  
3.20C GHz  
3.40 GHz  
Vcc for Processor at  
VID=1.475 V:  
3.20 GHz  
1.285  
1.310  
1.340  
1.365  
Vcc for Processor at  
VID=1.500 V:  
3.20 GHz  
Vcc for Processor at  
VID=1.525 V  
V
CC  
1.335  
1.325  
1.390  
1.380  
3.20 GHz  
3.40 GHz  
Refer to  
Table 2-8  
and  
(800 MHz  
FSB with  
2 MB L3  
Cache)  
V
1,2,4,13  
Vcc for Processor at  
Figure 2-5  
VID=1.550 V  
1.360  
1.350  
1.415  
1.405  
3.20 GHz  
3.40 GHz  
Vcc for Processor at  
VID=1.575 V  
1.375  
1.430  
3.40 GHz  
Vcc for Processor at  
VID=1.600 V  
1.400  
–5%  
1.455  
+10%  
3.40 GHz  
V
for voltage  
CC  
V
VID  
1.2  
V
9
CC  
identification circuit  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
25  
Electrical Specifications  
Table 2-6. Voltage and Current Specifications (Sheet 3 of 4)  
10  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
I
for Processor at  
VID=1.500 V  
CC  
2A GHz  
2.20 GHz  
2.40 GHz  
2.50 GHz  
44.3  
47.1  
49.8  
51.3  
I
for Processor at  
CC  
VID=1.525 V  
I
CC  
2A GHz  
2.20 GHz  
2.40 GHz  
2.50 GHz  
2.60 GHz  
45.1  
47.9  
50.7  
52.0  
53.5  
A
3,4,6,10  
(400 MHz  
FSB)  
I
for Processor  
CC  
with multiple VIDs  
2A GHz  
2.20 GHz  
2.40 GHz  
2.50 GHz  
2.60 GHz  
45.1  
47.9  
50.7  
52.0  
53.5  
I
I
for Processor at  
CC  
VID=1.500 V  
48  
2.26 GHz  
2.40B GHz  
2.53 GHz  
49.8  
51.5  
for Processor at  
CC  
VID=1.525 V  
48.6  
50.7  
52.5  
53.9  
55.9  
2.26 GHz  
2.40B GHz  
2.53 GHz  
2.66 GHz  
2.80 GHz  
I
CC  
A
3,4,6,10  
(533 MHz  
FSB)  
I
for Processor  
CC  
with multiple VIDs  
48.6  
50.7  
52.5  
53.9  
55.9  
65.4  
2.26 GHz  
2.40B GHz  
2.53 GHz  
2.66 GHz  
2.80 GHz  
3.06 GHz  
I
for Processor with  
multiple VIDs  
2.40C GHz  
2.60C GHz  
2.80C GHz  
3 GHz  
CC  
I
CC  
52.4  
55.0  
55.9  
64.8  
67.4  
71.6  
(800 MHz  
FSB with  
A
A
3,4,6,10  
512-KB L2  
Cache Only)  
3.20C GHz  
3.40 GHz  
I
I
for Processor  
CC  
CC  
with multiple VIDs:  
(800 MHz  
FSB with  
2-MB L3  
Cache)  
4,6,10,13  
3.20 GHz  
71.5  
77.7  
3.40 GHz  
26  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Electrical Specifications  
Table 2-6. Voltage and Current Specifications (Sheet 4 of 4)  
10  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
5,7,8  
23  
27  
32  
35  
5,7,11  
5,7,12  
5,7,14  
6
I
SGNT  
I
Stop-Grant  
A
CC  
Islp  
I
I
I
I
TCC active  
for PLL pins  
I
CC  
A
TCC  
CC  
CC  
60  
mA  
CC PLL  
NOTES:  
1. These voltages are targets only. A variable voltage source should exist on systems in the event that a  
different voltage is required. See Table 2-2 for more information. The VID bits will set the maximum V with  
CC  
the minimum being defined according to current consumption at that voltage.  
2. The voltage specification requirements are measured across V  
and V  
pins at the socket  
CC_SENSE  
SS_SENSE  
with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 Mminimum  
impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external  
noise from the system is not coupled in the scope probe.  
3. Refer to Table 2-7 and Figure 2-4 for the minimum, typical, and maximum V allowed for a given current.  
CC  
The processor should not be subjected to any V and I combination wherein V exceeds V for a  
CC_MAX  
CC  
CC  
CC  
given current. Failure to adhere to this specification can affect the long term reliability of the processor.  
4. V is defined at I  
.
CC_MAX  
CC_MIN  
5. The current specified is also for AutoHALT State.  
6. The maximum instantaneous current that the processor will draw while the thermal control circuit is active as  
indicated by the assertion of PROCHOT# is the same as the maximum I for the processor.  
CC  
7. I Stop-Grant and I Sleep are specified at V .  
CC_MAX  
CC  
CC  
8. These specifications apply to the processor with maximum VID setting of 1.525 V for the Pentium 4  
processor with 512-KB L2 cache on 0.13 micron process.  
9. This specification applies to both static and transient components. The rising edge of V VID must be  
CC  
monotonic from 0 to 1.1 V. See Figure 2-1 for current requirements. In this case monotonic is defined as  
continuously increasing with less than 50 mV of peak to peak noise for any width greater than 2 ns  
superimposed on the rising edge.  
10.I  
is specified for highest VID only. The processor will be shipped under multiple VIDs listed for each  
CC_MAX  
frequency; however, the I  
specifications will be the same as highest VID specified in table.  
CC_MAX  
11.These specifications apply to the processor with maximum VID setting of 1.550 V for the Pentium 4  
processor with 512-KB L2 cache on 0.13 micron process.  
12.This specification applies to processors with maximum VID setting of 1.550 V for the Pentium 4 processor  
Extreme Edition supporting Hyper-Threading Technology.  
13.Refer to Table 2-8 and Figure 2-5 for the minimum, typical, and maximum V allowed for a given current.  
CC  
The processor should not be subjected to any V and I combination wherein V exceeds V for a  
CC_MAX  
CC  
CC  
CC  
given current. Failure to adhere to this specification can affect the long term reliability of the processor.  
14.These specifications apply to processors with maximum VID setting of 1.600 V for the Pentium 4 processor  
Extreme Edition supporting Hyper-Threading Technology.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
27  
Electrical Specifications  
Table 2-7. VCC Static and Transient Tolerance (For Intel® Pentium® 4 Processor With 512-KB  
L2 Cache on 0.13 Micron Process at Frequencies up to and Including 3.2 GHz)  
1,2,3  
Voltage Deviation from VID Setting (V)  
Icc (A)  
Maximum  
Typical  
Minimum  
0
0.000  
–0.010  
–0.019  
–0.029  
–0.038  
–0.048  
–0.057  
–0.067  
–0.076  
–0.085  
–0.095  
–0.105  
–0.114  
–0.124  
–0.133  
–0.025  
–0.036  
–0.047  
–0.058  
–0.069  
–0.079  
–0.090  
–0.101  
–0.112  
–0.123  
–0.134  
–0.145  
–0.156  
–0.166  
–0.177  
–0.050  
–0.062  
–0.075  
–0.087  
–0.099  
–0.111  
–0.124  
–0.136  
–0.148  
–0.160  
–0.173  
–0.185  
–0.197  
–0.209  
–0.222  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
NOTES:  
1. The loadline specifications include both static and transient limits.  
2. This table is intended to aid in reading discrete points on the following loadline figure.  
3. The loadlines specify voltage limits at the die measured at V  
and V  
pins. Voltage  
SS_SENSE  
CC_SENSE  
regulation feedback for voltage regulator circuits must be taken from processor V and V pins. Refer to  
CC  
SS  
®
®
the Intel Pentium 4 Processor VR-Down Design Guidelines for V and V socket loadline specifications  
CC  
SS  
and VR implementation details.  
4. Adherence to this loadline specification for the Pentium 4 processor with 512-KB L2 cache on 0.13 micron  
process is required to ensure reliable processor operation.  
28  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Electrical Specifications  
Figure 2-4. VCC Static and Transient Tolerance (For Intel® Pentium® 4 Processor With 512-KB  
L2 Cache on 0.13 Micron Process at Frequencies up to and Including 3.2 GHz)  
VID +50 mV  
VID  
VCC  
Maximum  
VID -50 mV  
VID -100 mV  
VCC  
Typical  
VID -150 mV  
VCC  
Minimum  
VID -200 mV  
VID -250 mV  
40  
0
10  
20  
30  
50  
70  
60  
I
CC (A)  
NOTES:  
1. The loadline specification includes both static and transient limits.  
2. Refer to Table 2-7 for specific offsets from VID voltage which apply to all VID settings.  
3. The loadlines specify voltage limits at the die measured at V and V  
pins. Voltage  
SS_SENSE  
CC_SENSE  
regulation feedback for voltage regulator circuits must be taken from processor V and V pins. Refer to  
CC  
SS  
®
®
the Intel Pentium 4 Processor VR-Down Design Guidelines V and V socket loadline specifications  
CC  
SS  
and VR implementation details.  
4. Adherence to this loadline specification for the Pentium 4 processor with 512-KB L2 cache on 0.13 micron  
process is required to ensure reliable processor operation.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
29  
Electrical Specifications  
Table 2-8. Vcc Static and Transient Tolerance (For Intel® Pentium® 4 Processor Extreme  
Edition Supporting Hyper-Threading Technology, and Intel® Pentium® 4 Processor  
with 512-KB L2 Cache on 0.13 Micron Process at 3.4 GHz)  
1,2,3  
Voltage Deviation from VID Setting (V)  
Icc (A)  
Maximum  
Typical  
Minimum  
0
0
-0.019  
-0.029  
-0.039  
-0.049  
-0.059  
-0.068  
-0.078  
-0.088  
-0.098  
-0.108  
-0.118  
-0.128  
-0.138  
-0.147  
-0.157  
-0.167  
-0.177  
-0.187  
-0.197  
-0.038  
-0.049  
-0.059  
-0.070  
-0.080  
-0.091  
-0.101  
-0.112  
-0.122  
-0.133  
-0.143  
-0.154  
-0.164  
-0.175  
-0.185  
-0.196  
-0.206  
-0.217  
-0.227  
5
-0.009  
-0.019  
-0.028  
-0.037  
-0.046  
-0.056  
-0.065  
-0.074  
-0.083  
-0.093  
-0.102  
-0.111  
-0.120  
-0.130  
-0.139  
-0.148  
-0.157  
-0.167  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
NOTES:  
1. The loadline specifications include both static and transient limits.  
2. This table is intended to aid in reading discrete points on the following loadline figure.  
3. The loadlines specify voltage limits at the die measured at V and V  
pins. Voltage  
SS_SENSE  
CC_SENSE  
regulation feedback for voltage regulator circuits must be taken from processor V and V pins. Refer to  
CC  
SS  
the Voltage Regulator-Down (VRD) 10.0 Design Guide Addendum for V and V socket loadline  
CC  
SS  
specifications and VR implementation details.  
4. Adherence to this loadline specification for the processor is required to ensure reliable processor operation.  
30  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Electrical Specifications  
Figure 2-5. VCC Static and Transient Tolerance (For Intel® Pentium® 4 Processor Extreme  
Edition Supporting Hyper-Threading Technology, and Intel® Pentium® 4 Processor  
with 512-KB L2 Cache on 0.13 Micron Process at 3.4 GHz)  
VID+25 mV  
VID  
VID-25 mV  
VCC Maximum  
VID-50 mV  
VCC Typical  
VID-75 mV  
VID-100 mV  
VID-125 mV  
VCC Minimum  
VID-150 mV  
VID-175 mV  
VID-200 mV  
VID-225 mV  
VID-250 mV  
10  
0
20  
30  
40  
50  
60  
70  
80  
90  
ICC (Amperes)  
NOTES:  
1. The loadline specification includes both static and transient limits.  
2. Refer to Table 2-8 for specific offsets from VID voltage which apply to all VID settings.  
3. The loadlines specify voltage limits at the die measured at V and V  
pins. Voltage  
SS_SENSE  
CC_SENSE  
regulation feedback for voltage regulator circuits must be taken from processor V and V pins. Refer to  
CC  
SS  
the Voltage Regulator-Down (VRD) 10.0 Design Guide Addendum V and V socket loadline  
CC  
SS  
specifications and VR implementation details.  
4. Adherence to this loadline specification for the processor is required to ensure reliable processor operation.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
31  
Electrical Specifications  
.
Table 2-9. AGTL+ Signal Group DC Specifications  
1
Symbol  
Parameter  
Reference Voltage  
Min  
Max  
Unit Notes  
GTLREF  
2/3 VCC – 2%  
2/3 VCC + 2%  
V
GTLREF  
Reference Voltage  
0.63 VCC – 2%  
0.63 VCC +2%  
V
10  
Compatible  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output Low Current  
Pin Leakage High  
Pin Leakage Low  
Buffer On Resistance  
1.10*GTLREF  
VCC  
V
V
2,5  
3,5  
6
0.0  
N/A  
N/A  
N/A  
N/A  
7
0.9*GTLREF  
VOH  
IOL  
VCC  
50  
V
mA  
µA  
µA  
5
IHI  
100  
500  
11  
7
ILO  
8
RON  
4
RON  
Buffer On Resistance  
8.4  
13.2  
4, 9  
Compatible  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.  
3. VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high  
value.  
4. Refer to processor I/O Buffer Models for I/V characteristics.  
5. The VCC referred to in these specifications is the instantaneous VCC  
.
6. Vol max of 0.450 V is guaranteed when driving into a test load of 50 as indicated in Figure 2-7.  
7. Leakage to VSS with pin held at VCC  
.
8. Leakage to VCC with Pin held at 300 mV.  
9. RON value is defined for a platform that is forward compatible with future processors.  
10.GTLREF value is defined for a platform that is forward compatible with future processors.  
Table 2-10. Asynchronous GTL+ Signal Group DC Specifications  
1
Symbol  
Parameter  
Min  
Max  
Unit Notes  
VIH  
VIL  
Input High Voltage Asynch GTL+  
Input Low Voltage Asynch GTL+  
Output High Voltage  
1.10*GTLREF  
0
VCC  
V
V
V
3, 4  
4
0.9*GTLREF  
VOH  
IOL  
IHI  
VCC  
50  
2, 3  
Output Low Current  
mA 5, 7  
Pin Leakage High  
N/A  
N/A  
7
100  
500  
11  
µA  
µA  
8
ILO  
Ron  
Pin Leakage Low  
9
Buffer On Resistance Asynch GTL+  
4,6  
RON  
Buffer On Resistance Asynch GTL+  
8.4  
13.2  
4,6,10  
Compatible  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. All outputs are open-drain.  
3. The VCC referred to in these specifications refers to instantaneous VCC  
4. This specification applies to the asynchronous GTL+ signal group.  
.
5. The maximum output current is based on maximum current handling capability of the buffer and is not  
specified into the test load shown in Figure 2-7.  
6. Refer to the processor I/O Buffer Models for I/V characteristics.  
7. Vol max of 0.270 Volts is guaranteed when driving into a test load of 50 as indicated in Figure 2-7 for the  
Asynchronous GTL+ signals.  
8. Leakage to VSS with pin held at VCC  
.
9. Leakage to VCC with Pin held at 300 mV.  
10.RON value is defined for a platform that is forward compatible with future processors.  
32  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Electrical Specifications  
Table 2-11. PWRGOOD and TAP Signal Group DC Specifications  
1
Symbol  
Parameter  
Input Hysteresis  
Min  
Max  
Unit Notes  
VHYS  
200  
300  
mV  
V
6
4
Input Low to High Threshold  
Voltage  
VT+  
VT-  
1/2*(VCC+VHYS_MIN  
)
1/2*(VCC+VHYS_MAX)  
Input High to Low Threshold  
Voltage  
1/2*(VCC–VHYS_MAX  
)
1/2*(VCC–VHYS_MIN  
)
V
V
5
VOH  
IOL  
IHI  
Output High Voltage  
Output Low Current  
Pin Leakage High  
Pin Leakage Low  
N/A  
N/A  
N/A  
N/A  
8.75  
VCC  
40  
2,3,4  
mA 5,6  
100  
500  
13.75  
µA  
µA  
8
9
3
ILO  
RON  
Buffer On Resistance  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. All outputs are open-drain.  
3. Refer to I/O Buffer Models for I/V characteristics.  
4. The VCC referred to in these specifications refers to instantaneous VCC  
.
5. The maximum output current is based on maximum current handling capability of the buffer and is not  
specified into the test load shown in Figure 2-7.  
6. Vol max of 0.320 V is guaranteed when driving into a test load of 50 as indicated in Figure 2-7 for the TAP  
Signals.  
7. VHYS represents the amount of hysteresis, nominally centered about 1/2 VCC for all TAP inputs.  
8. Leakage to VSS with pin held at VCC  
.
9. Leakage to VCC with Pin held at 300 mV.  
Table 2-12. ITPCLKOUT[1:0] DC Specifications  
1
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Ron  
Buffer On Resistance  
27  
46  
2,3  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. These parameters are not tested and are based on design simulations.  
3. See Figure 2-6 for ITPCLKOUT[1:0] output buffer diagram.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
33  
Electrical Specifications  
Figure 2-6. ITPCLKOUT[1:0] Output Buffer Diagram  
VCC  
Ron  
To Debug Port  
Processor Package  
Rext  
NOTES:  
1. See Table 2-12 for range of Ron.  
2. The VCC referred to in this figure is the instantaneous Vcc.  
3. Refer to the ITP 700 Debug Port Design Guide and the appropriate platform design guidelines for the value  
of Rext.  
Table 2-13. BSEL [1:0] and VID[4:0] DC Specifications  
1
Symbol  
Parameter  
Min  
Max  
Unit  
Notes  
Ron  
Buffer On Resistance  
9.2  
14.3  
2
(BSEL)  
Ron  
(VID)  
Buffer On Resistance  
Pin Leakage High  
7.8  
12.8  
100  
2
3
IHI  
N/A  
µA  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. These parameters are not tested and are based on design simulations.  
3. Leakage to Vss with pin held at 2.50 V.  
34  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Electrical Specifications  
2.12  
AGTL+ System Bus Specifications  
Routing topology recommendations may be found in the appropriate platform design guide listed  
in Table 1-1. Termination resistors are not required for most AGTL+ signals because they are  
integrated into the processor silicon.  
Valid high and low levels are determined by the input buffers which compare a signal’s voltage  
with a reference voltage called GTLREF (known as VREF in previous documentation).  
Table 2-14 lists the GTLREF specifications. The AGTL+ reference voltage (GTLREF) should be  
generated on the system board using high precision voltage divider circuits. It is important that the  
system board impedance is held to the specified tolerance, and that the intrinsic trace capacitance  
for the AGTL+ signal group traces is known and is well-controlled. For more details on platform  
design, see the appropriate platform design guide.  
Table 2-14. AGTL+ Bus Voltage Definitions  
1
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
GTLREF  
Bus Reference Voltage  
2/3 VCC –2%  
2/3 VCC  
2/3 VCC +2%  
V
2, 3, 6  
GTLREF  
Bus Reference Voltage  
Termination Resistance  
Termination Resistance  
0.63 VCC –2%  
0.63 VCC  
50  
0.63 VCC +2%  
V
2, 3, 6, 7  
Compatible  
RTT  
45  
54  
55  
66  
4
RTT  
60  
4, 7  
5
Compatible  
COMP[1:0] COMP Resistance  
50.49  
61.3  
51  
51.51  
62.5  
COMP[1:0]  
COMP Resistance  
Compatible  
61.9  
5, 7  
NOTES:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. The tolerances for this specification have been stated generically to enable the system designer to calculate  
the minimum and maximum values across the range of VCC  
.
3. GTLREF should be generated from VCC by a voltage divider of 1% tolerance resistors or 1% tolerance,  
matched resistors. Refer to the appropriate Platform Design Guide for implementation details.  
4. RTT is the on-die termination resistance measured at VOL of the AGTL+ output driver. Refer to processor I/O  
buffer models for I/V characteristics.  
5. COMP resistance must be provided on the system board with 1% tolerance resistors. See the appropriate  
Platform Design Guide for implementation details.  
6. The VCC referred to in these specifications is the instantaneous VCC  
.
7. The specifications are for a platform to be forward compatible with future processors. A compatible platform  
is one that is designed for some level of compatibility with future processors.  
Figure 2-7. Test Circuit  
VCC  
VCC  
Rload = 50 Ω  
2.4 nH  
1.2 pF  
420 mils, 50 , 169 ps/in  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
35  
Electrical Specifications  
This page is intentionally left blank.  
36  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Package Mechanical Specifications  
Package Mechanical Specifications 3  
The Pentium 4 processor on 0.13 micron process is packaged in a Flip-Chip Pin Grid Array  
(FC-PGA2) package. Components of the package include an integrated heat spreader (IHS),  
processor die, and the substrate which is the pin carrier. Mechanical specifications for the processor  
are given in this section. See Section 1.1. for a terminology listing. The processor socket that  
accepts the Pentium 4 processor on 0.13 micron process is referred to as a 478-Pin micro PGA  
(mPGA478B) socket. See the Intel® Pentium® 4 Processor 478-Pin Socket (mPGA478B) Socket  
Design Guidelines for complete details on the mPGA478B socket.  
Note: For Figure 3-1 through Figure 3-8, the following notes apply:  
1. Unless otherwise specified, the following drawings are dimensioned in millimeters.  
2. Figures and drawings labelled as “Reference Dimensions” are provided for informational  
purposes only. Reference dimensions are extracted from the mechanical design database and  
are nominal dimensions with no tolerance information applied. Reference dimensions are not  
checked as part of the processor manufacturing process. Unless noted as such, dimensions in  
parentheses without tolerances are reference dimensions.  
3. Drawings are not to scale.  
Note: Figure 3-1 is not to scale and is for reference only. The socket and system board are supplied as a  
reference only.  
Figure 3-1. Exploded View of Processor Components on a System Board  
Heat Spreader  
31 mm  
Substrate  
478 pins  
35mm square  
mPGA478B  
Socket  
System board  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
37  
Package Mechanical Specifications  
Figure 3-2. Processor Package  
Table 3-1. Description Table for Processor Dimensions  
Dimension (mm)  
Code Letter  
Notes  
Min  
Nominal  
Max  
A1  
2.266  
0.980  
2.42  
2.378  
1.080  
2.55  
2.490  
1.180  
Original package (6 layer)  
A2  
Original package (6 layer)  
A1  
2.67  
Alternate equivalent package (8 layer)  
Alternate equivalent package (8 layer)  
A2  
1.13  
1.20  
1.27  
B1  
30.800  
30.800  
31.000  
31.000  
31.200  
31.200  
33.000  
33.000  
35.100  
32.000  
13.970  
13.970  
1.250  
B2  
C1  
Includes placement tolerance  
Includes placement tolerance  
C2  
D
34.900  
31.500  
35.000  
31.750  
D1  
G1  
Keep-In Zone dimension  
Keep-In Zone dimension  
Keep-In Zone dimension  
G2  
G3  
H
1.270  
2.030  
0.305  
L
φP  
1.950  
0.280  
2.110  
0.330  
0.254  
0.05  
PIN TP  
IHS Flatness  
Diametric True Position (Pin-to-Pin)  
38  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Package Mechanical Specifications  
Figure 3-3 details the keep-in specification for pin-side components. The Pentium 4 processor on  
0.13 micron process may contain pin-side capacitors mounted to the processor package.  
Figure 3-5 details the flatness and tilt specifications for the IHS. Tilt is measured with the reference  
datum set to the bottom of the processor susbstrate.  
Figure 3-3. Processor Cross-Section and Keep-In  
2
FCPGA  
IHS  
Substrate  
1.25mm  
13.97mm  
Component Keepin  
Socket must allow clearance  
for pin shoulders and mate  
flush with this surface  
Figure 3-4. Processor Pin Detail  
Ø 0.305±0.025  
Ø 0.65 MAX  
PINHEAD DIAMETER  
Ø 1.032 MAX  
KEEP OUT ZONE  
0.3 MAX  
SOLDER FILLET HEIGHT  
2.03±0.08  
ALL DIMENSIONS ARE IN MILIMETERS  
NOTES:  
1. Pin plating consists of 0.2 micrometers Au over 2.0 micrometer Ni.  
2. 0.254 mm diametric true position, pin-to-pin.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
39  
Package Mechanical Specifications  
Figure 3-5. IHS Flatness Specification  
IHS  
SUBSTRATE  
NOTES:  
1. Flatness is specific as overall, not per unit of length.  
2. All Dimensions are in millimeters.  
3.1  
Package Load Specifications  
Table 3-2 provides dynamic and static load specifications for the processor IHS. These mechanical  
load limits should not be exceeded during heatsink assembly, mechanical stress testing, or standard  
drop and shipping conditions. The heatsink attach solutions must not induce continuous stress onto  
the processor with the exception of a uniform load to maintain the heatsink-to-processor thermal  
interface contact. It is not recommended to use any portion of the processor substrate as a  
mechanical reference or load bearing surface for thermal solutions.  
Table 3-2. Package Dynamic and Static Load Specifications  
Parameter  
Static  
Max  
Unit  
Notes  
100  
200  
lbf  
lbf  
1, 2  
1, 3  
Dynamic  
NOTES:  
1. This specification applies to a uniform compressive load.  
2. This is the maximum static force that can be applied by the heatsink and clip to maintain the heatsink and  
processor interface.  
3. Dynamic loading specifications are defined assuming a maximum duration of 11 ms and 200 lbf is achieved  
by superimposing a 100 lbf dynamic load (1 lbm at 50 g) on the static compressive load.  
40  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Package Mechanical Specifications  
3.2  
3.3  
Processor Insertion Specifications  
The Pentium 4 processor on 0.13 micron process can be inserted and removed 15 times from a  
mPGA478B socket meeting the Intel® Pentium® 4 Processor 478-Pin Socket (mPGA478B) Socket  
Design Guidelines document.  
Processor Mass Specifications  
Table 3-3 specifies the processor’s mass. This includes all components which make up the entire  
processor product.  
Table 3-3. Processor Mass  
Processor  
Mass (grams)  
Intel® Pentium® 4 processor on 0.13 micron process  
19  
3.4  
Processor Materials  
The Pentium 4 processor on 0.13 micron process is assembled from several components. The basic  
material properties are described in Table 3-4.  
Table 3-4. Processor Material Properties  
Component  
Material  
Integrated Heat Spreader  
Substrate  
Nickel over copper  
Fiber-reinforced resin  
Gold over nickel  
Substrate pins  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
41  
Package Mechanical Specifications  
3.5  
Processor Markings  
Figure 3-6 and Figure 3-7 detail the processor top-side markings and is provided to aid in the  
identification of the Pentium 4 processors on 0.13 micron process.  
Figure 3-6. Processor Markings (Processors with Fixed VID)  
m
c
`01  
INTEL  
PENTIUM® 4  
Frequency/Cache/Bus/Voltage  
2-D Matrix Mark  
2.40 GHZ/512/800/1.50V  
S-Spec/Country of Assy  
FPO – Serial #  
SYYYY XXXXXX  
FFFFFFFF–NNNN  
Figure 3-7. Processor Markings (Processors with Multiple VID)  
m
c
`01  
INTEL  
PENTIUM® 4  
2.40 GHZ/512/800  
Frequency/Cache/Bus  
2-D Matrix Mark  
S-Spec/Country of Assy  
FPO – Serial #  
SYYYY XXXXXX  
FFFFFFFF–NNNN  
m
c
`03  
INTEL  
PENTIUM® 4  
Frequency/Cache/Bus  
2.40 GHZ/512/800  
S-Spec/Country of Assy  
FPO  
SYYYY XXXXXX  
FFFFFFFF  
unique unit identifier  
ATPO  
AAAAAAAA  
NNNN  
Serial #  
2-D Matrix Mark  
NOTE: Intel will continue to ship old and new marked parts until old mark inventory has been depleted.  
42  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Package Mechanical Specifications  
Figure 3-8. The Coordinates of the Processor Pins As Viewed from the Top of the Package  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
43  
Package Mechanical Specifications  
This page is intentionally left blank.  
44  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Pin Lists and Signal Descriptions  
Pin Lists and Signal Descriptions 4  
4.1  
Processor Pin Assignments  
This section contains pin lists for the Pentium 4 processor on 0.13 micron process. Table 4-1 is  
ordered alphabetically by pin name; Table 4-2 is ordered alphabetically by pin number.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
45  
Pin Lists and Signal Descriptions  
Table 4-1. Pin Listing by Pin Name  
Table 4-1. Pin Listing by Pin Name  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
Number  
Number  
A3#  
K2  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Asynch GTL+  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
BPM1#  
AB5  
AC4  
Y6  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input  
A4#  
K4  
BPM2#  
BPM3#  
BPM4#  
BPM5#  
BPRI#  
BR0#  
BSEL0  
BSEL1  
COMP0  
COMP1  
D0#  
A5#  
L6  
A6#  
K1  
AA5  
AB4  
D2  
A7#  
L3  
A8#  
M6  
L2  
A9#  
H6  
Common Clock Input/Output  
A10#  
A11#  
A12#  
A13#  
A14#  
A15#  
A16#  
A17#  
A18#  
A19#  
A20#  
A21#  
A22#  
A23#  
A24#  
A25#  
A26#  
A27#  
A28#  
A29#  
A30#  
A31#  
A32#  
A33#  
A34#  
A35#  
A20M#  
ADS#  
ADSTB0#  
ADSTB1#  
AP0#  
AP1#  
BCLK0  
BCLK1  
BINIT#  
BNR#  
BPM0#  
M3  
M4  
N1  
M1  
N2  
N4  
N5  
T1  
AD6  
AD5  
L24  
P1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Output  
Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
B21  
B22  
A23  
A25  
C21  
D22  
B24  
C23  
C24  
B25  
G22  
H21  
C26  
D23  
J21  
D25  
H22  
E24  
G23  
F23  
F24  
E25  
F26  
D26  
L21  
G26  
H24  
M21  
L22  
J24  
K23  
H25  
M23  
D1#  
D2#  
D3#  
R2  
P3  
D4#  
D5#  
P4  
D6#  
R3  
T2  
D7#  
D8#  
U1  
P6  
D9#  
D10#  
D11#  
D12#  
D13#  
D14#  
D15#  
D16#  
D17#  
D18#  
D19#  
D20#  
D21#  
D22#  
D23#  
D24#  
D25#  
D26#  
D27#  
D28#  
D29#  
D30#  
D31#  
D32#  
U3  
T4  
V2  
R6  
W1  
T5  
U4  
V3  
W2  
Y1  
AB1  
C6  
G1  
L5  
Common Clock Input/Output  
Source Synch  
Source Synch  
Input/Output  
Input/Output  
R5  
AC1  
V5  
Common Clock Input/Output  
Common Clock Input/Output  
AF22  
AF23  
AA3  
G2  
AC6  
Bus Clock  
Bus Clock  
Input  
Input  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
46  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Pin Lists and Signal Descriptions  
Table 4-1. Pin Listing by Pin Name  
Table 4-1. Pin Listing by Pin Name  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
Number  
Number  
D33#  
N22  
P21  
M24  
N23  
M26  
N26  
N25  
R21  
P24  
R25  
R24  
T26  
T25  
T22  
T23  
U26  
U24  
U23  
V25  
U21  
V22  
V24  
W26  
Y26  
W25  
Y23  
Y24  
Y21  
AA25  
AA22  
AA24  
E21  
G25  
P26  
V21  
AE25  
H5  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
DSTBN1#  
DSTBN2#  
DSTBN3#  
DSTBP0#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
FERR#  
K22  
R22  
W22  
F21  
J23  
P23  
W23  
B6  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Asynch AGL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Output  
D34#  
D35#  
D36#  
D37#  
D38#  
D39#  
D40#  
D41#  
D42#  
D43#  
D44#  
D45#  
D46#  
D47#  
D48#  
D49#  
D50#  
D51#  
D52#  
D53#  
D54#  
D55#  
D56#  
D57#  
D58#  
D59#  
D60#  
D61#  
D62#  
D63#  
DBI0#  
DBI1#  
DBI2#  
DBI3#  
DBR#  
DBSY#  
DEFER#  
DP0#  
DP1#  
DP2#  
DP3#  
DRDY#  
DSTBN0#  
GTLREF  
GTLREF  
GTLREF  
GTLREF  
HIT#  
AA21  
AA6  
F20  
F6  
Input  
Input  
Input  
Input  
F3  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Output  
HITM#  
E3  
IERR#  
AC3  
B2  
IGNNE#  
IMPSEL  
INIT#  
Asynch GTL+  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
TAP  
Input  
Input  
Input  
Output  
Output  
input  
AE26  
W5  
ITPCLKOUT0 AA20  
ITPCLKOUT1 AB22  
ITP_CLK0  
ITP_CLK1  
LINT0  
AC26  
AD26  
D1  
TAP  
input  
Asynch GTL+  
Asynch GTL+  
Input  
Input  
LINT1  
E5  
LOCK#  
G4  
Common Clock Input/Output  
Common Clock Input/Output  
MCERR#  
PROCHOT#  
PWRGOOD  
REQ0#  
V6  
C3  
Asynch GTL+  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Input/Output  
Input  
AB23  
J1  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
REQ1#  
K5  
REQ2#  
J4  
REQ3#  
J3  
REQ4#  
H3  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESET#  
RS0#  
A22  
A7  
AD2  
AD3  
AE21  
AF3  
AF24  
AF25  
AB25  
F1  
Common Clock Input/Output  
Common Clock Input  
E2  
J26  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
Common Clock Input/Output  
K25  
K26  
L25  
H2  
Common Clock Input  
Common Clock Input  
Common Clock Input  
E22  
Source Synch  
Input/Output  
RS1#  
G5  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
47  
Pin Lists and Signal Descriptions  
Table 4-1. Pin Listing by Pin Name  
Table 4-1. Pin Listing by Pin Name  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
Number  
Number  
RS2#  
F4  
Common Clock Input  
Common Clock Input  
VCC  
AB7  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
RSP#  
AB2  
AF26  
AB26  
B5  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
AB9  
SKTOCC#  
SLP#  
Power/Other  
Asynch GTL+  
Asynch GTL+  
Asynch GTL+  
TAP  
Output  
AC10  
AC12  
AC14  
AC16  
AC18  
AC8  
AD11  
AD13  
AD15  
AD17  
AD19  
AD7  
AD9  
AE10  
AE12  
AE14  
AE16  
AE18  
AE20  
AE6  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
SMI#  
STPCLK#  
TCK  
Y4  
D4  
TDI  
C1  
TAP  
TDO  
D5  
TAP  
TESTHI0  
TESTHI1  
TESTHI2  
TESTHI3  
TESTHI4  
TESTHI5  
TESTHI8  
TESTHI9  
TESTHI10  
TESTHI11  
TESTHI12  
THERMDA  
THERMDC  
AD24  
AA2  
AC21  
AC20  
AC24  
AC23  
U6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
TAP  
W4  
Y3  
A6  
AD25  
B3  
C4  
THERMTRIP# A2  
Output  
Input  
AE8  
TMS  
TRDY#  
TRST#  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
F7  
AF11  
AF13  
AF15  
AF17  
AF19  
AF2  
J6  
Common Clock Input  
E6  
TAP  
Input  
A10  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A12  
A14  
A16  
AF21  
AF5  
A18  
A20  
AF7  
A8  
AF9  
AA10  
AA12  
AA14  
AA16  
AA18  
AA8  
AB11  
AB13  
AB15  
AB17  
AB19  
B11  
B13  
B15  
B17  
B19  
B7  
B9  
C10  
C12  
C14  
C16  
48  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Pin Lists and Signal Descriptions  
Table 4-1. Pin Listing by Pin Name  
Table 4-1. Pin Listing by Pin Name  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
Number  
Number  
VCC  
C18  
C20  
C8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
AA11  
AA13  
AA15  
AA17  
AA19  
AA23  
AA26  
AA4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCA  
VCCIOPLL  
VCC_SENSE  
VCCVID  
VID0  
VID1  
VID2  
VID3  
VID4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D11  
D13  
D15  
D17  
D19  
D7  
AA7  
D9  
AA9  
E10  
E12  
E14  
E16  
E18  
E20  
E8  
AB10  
AB12  
AB14  
AB16  
AB18  
AB20  
AB21  
AB24  
AB3  
F11  
F13  
F15  
F17  
F19  
F9  
AB6  
AB8  
AC11  
AC13  
AC15  
AC17  
AC19  
AC2  
AD20  
AE23  
A5  
Output  
Input  
AF4  
AE5  
AE4  
AE3  
AE2  
AE1  
D10  
A11  
A13  
A15  
A17  
A19  
A21  
A24  
A26  
A3  
Output  
Output  
Output  
Output  
Output  
AC22  
AC25  
AC5  
AC7  
AC9  
AD1  
VSS  
AD10  
AD12  
AD14  
AD16  
AD18  
AD21  
AD23  
AD4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
AD8  
VSS  
A9  
AE11  
AE13  
VSS  
AA1  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
49  
Pin Lists and Signal Descriptions  
Table 4-1. Pin Listing by Pin Name  
Table 4-1. Pin Listing by Pin Name  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
Number  
Number  
VSS  
AE15  
AE17  
AE19  
AE22  
AE24  
AE7  
AE9  
AF1  
AF10  
AF12  
AF14  
AF16  
AF18  
AF20  
AF6  
AF8  
B10  
B12  
B14  
B16  
B18  
B20  
B23  
B26  
B4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
D3  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
D6  
D8  
E1  
E11  
E13  
E15  
E17  
E19  
E23  
E26  
E4  
E7  
E9  
F10  
F12  
F14  
F16  
F18  
F2  
F22  
F25  
F5  
F8  
G21  
G24  
G3  
B8  
C11  
C13  
C15  
C17  
C19  
C2  
G6  
H1  
H23  
H26  
H4  
C22  
C25  
C5  
J2  
J22  
J25  
J5  
C7  
C9  
K21  
K24  
K3  
D12  
D14  
D16  
D18  
D20  
D21  
D24  
K6  
L1  
L23  
L26  
L4  
50  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Pin Lists and Signal Descriptions  
Table 4-1. Pin Listing by Pin Name  
Table 4-1. Pin Listing by Pin Name  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
Number  
Number  
VSS  
M2  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
T6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
M22  
M25  
M5  
VSS  
U2  
VSS  
U22  
U25  
U5  
VSS  
N21  
N24  
N3  
VSS  
VSS  
V1  
VSS  
V23  
V26  
V4  
N6  
VSS  
P2  
VSS  
P22  
P25  
P5  
VSS  
W21  
W24  
W3  
W6  
Y2  
VSS  
VSS  
R1  
VSS  
R23  
R26  
R4  
VSS  
VSS  
Y22  
Y25  
Y5  
VSS  
T21  
T24  
T3  
VSS  
VSSA  
VSS_SENSE  
AD22  
A4  
Output  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
51  
Pin Lists and Signal Descriptions  
Table 4-2. Pin Listing by Pin Number  
Table 4-2. Pin Listing by Pin Number  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
Number  
Number  
A2  
THERMTRIP# Asynch GTL+  
Output  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AB1  
ITPCLK[0]  
GTLREF  
D62#  
VSS  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Output  
A3  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input  
A4  
VSS_SENSE  
VCC_SENSE  
TESTHI11  
RESERVED  
VCC  
Output  
Output  
Input  
Input/Output  
A5  
A6  
D63#  
D61#  
VSS  
Input/Output  
Input/Output  
A7  
A8  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
A9  
VSS  
A35#  
RSP#  
VSS  
Input/Output  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
VCC  
AB2  
Common Clock Input  
Power/Other  
VSS  
AB3  
VCC  
AB4  
BPM5#  
BPM1#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
VSS  
AB5  
VCC  
AB6  
VSS  
AB7  
VCC  
Power/Other  
VCC  
AB8  
VSS  
Power/Other  
VSS  
AB9  
VCC  
Power/Other  
VCC  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AC1  
VSS  
Power/Other  
VSS  
VCC  
Power/Other  
VCC  
VSS  
Power/Other  
VSS  
VCC  
Power/Other  
RESERVED  
D2#  
VSS  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Power/Other  
Power/Other  
Input/Output  
Input/Output  
VCC  
Power/Other  
VSS  
VSS  
Power/Other  
D3#  
VCC  
Power/Other  
VSS  
VSS  
Power/Other  
VSS  
VCC  
Power/Other  
TESTHI1  
BINIT#  
VSS  
Input  
VSS  
Power/Other  
Common Clock Input/Output  
Power/Other  
VSS  
Power/Other  
ITPCLK[1]  
PWRGOOD  
VSS  
Power/Other  
Power/Other  
Power/Other  
Output  
Input  
BPM4#  
GTLREF  
VSS  
Common Clock Input/Output  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input  
RESET#  
SLP#  
AP#[0]  
VSS  
Common Clock Input  
Asynch GTL+ Input  
VCC  
VSS  
Common Clock Input/Output  
Power/Other  
VCC  
AC2  
VSS  
AC3  
IERR#  
BPM2#  
VSS  
Common Clock Output  
Common Clock Input/Output  
Power/Other  
VCC  
AC4  
VSS  
AC5  
VCC  
AC6  
BPM0#  
VSS  
Common Clock Input/Output  
Power/Other  
VSS  
AC7  
VCC  
AC8  
VCC  
Power/Other  
VSS  
AC9  
VSS  
Power/Other  
VCC  
AC10  
AC11  
VCC  
Power/Other  
VSS  
VSS  
Power/Other  
52  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Pin Lists and Signal Descriptions  
Table 4-2. Pin Listing by Pin Number  
Table 4-2. Pin Listing by Pin Number  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
Number  
Number  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AD1  
VCC  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
AE4  
VID1  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
VSS  
AE5  
VID0  
VCC  
VCC  
AE6  
VSS  
AE7  
VSS  
VCC  
AE8  
VCC  
VSS  
AE9  
VSS  
VCC  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AF1  
VCC  
VSS  
VSS  
TESTHI3  
TESTHI2  
VSS  
Input  
VCC  
Input  
VSS  
VCC  
TESTHI5  
TESTHI4  
VSS  
Input  
Input  
VSS  
VCC  
VSS  
ITP_CLK0  
VSS  
input  
VCC  
Power/Other  
VSS  
AD2  
RESERVED  
RESERVED  
VSS  
VCC  
AD3  
RESERVED  
VSS  
AD4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
TAP  
Power/Other  
Power/Other  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Power/Other  
AD5  
BSEL1  
BSEL0  
VCC  
Output  
Output  
VCCIOPLL  
VSS  
AD6  
AD7  
DBR#  
IMPSEL  
VSS  
Output  
Input  
AD8  
VSS  
AD9  
VCC  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AE1  
VSS  
AF2  
VCC  
VCC  
AF3  
RESERVED  
VCCVID  
VCC  
VSS  
AF4  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Input  
VCC  
AF5  
VSS  
AF6  
VSS  
VCC  
AF7  
VCC  
VSS  
AF8  
VSS  
VCC  
AF9  
VCC  
VSS  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
VSS  
VCC  
VCC  
VCCA  
VSS  
VSS  
VCC  
VSSA  
VSS  
VSS  
VCC  
TESTHI0  
TESTHI12  
ITP_CLK1  
VID4  
Input  
VSS  
Input  
VCC  
input  
VSS  
Power/Other  
Power/Other  
Power/Other  
Output  
Output  
Output  
VCC  
AE2  
VID3  
VSS  
AE3  
VID2  
VCC  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
53  
Pin Lists and Signal Descriptions  
Table 4-2. Pin Listing by Pin Number  
Table 4-2. Pin Listing by Pin Number  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
Number  
Number  
AF22  
AF23  
AF24  
AF25  
AF26  
B2  
BCLK[0]  
Bus Clock  
Bus Clock  
Input  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Asynch GTL+  
BCLK[1]  
RESERVED  
RESERVED  
SKTOCC#  
IGNNE#  
THERMDA  
VSS  
Input  
VCC  
VSS  
VCC  
VSS  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Asynch GTL+  
Asynch AGL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
TAP  
Output  
Input  
VCC  
D4#  
B3  
Input/Output  
B4  
VSS  
B5  
SMI#  
Input  
D7#  
Input/Output  
Input/Output  
B6  
FERR#  
VCC  
Output  
D8#  
B7  
VSS  
B8  
VSS  
D12#  
LINT0  
BPRI#  
VSS  
Input/Output  
Input  
B9  
VCC  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
VSS  
D2  
Common Clock Input  
Power/Other  
VCC  
D3  
VSS  
D4  
TCK  
TAP  
Input  
VCC  
D5  
TDO  
VSS  
TAP  
Output  
VSS  
D6  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
VCC  
D7  
VCC  
VSS  
VSS  
D8  
VCC  
D9  
VCC  
VSS  
VSS  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
E1  
VCC  
VCC  
VSS  
VSS  
D0#  
Input/Output  
Input/Output  
VCC  
VSS  
D01#  
VSS  
VCC  
VSS  
D6#  
Input/Output  
Input/Output  
D9#  
VCC  
VSS  
VSS  
TDI  
Input  
VCC  
VSS  
C2  
VSS  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Asynch GTL+  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
C3  
PROCHOT#  
THERMDC  
VSS  
Input/Output  
VSS  
C4  
D5#  
Input/Output  
Input/Output  
C5  
D13#  
VSS  
C6  
A20M#  
VSS  
Input  
C7  
D15#  
D23#  
VSS  
Input/Output  
Input/Output  
C8  
VCC  
C9  
VSS  
C10  
C11  
C12  
C13  
C14  
VCC  
E2  
DEFER#  
HITM#  
VSS  
Common Clock Input  
Common Clock Input/Output  
Power/Other  
VSS  
E3  
VCC  
E4  
VSS  
E5  
LINT1  
TRST#  
Asynch GTL+  
TAP  
Input  
Input  
VCC  
E6  
54  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Pin Lists and Signal Descriptions  
Table 4-2. Pin Listing by Pin Number  
Table 4-2. Pin Listing by Pin Number  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
Number  
Number  
E7  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
F25  
F26  
G1  
G2  
G3  
G4  
G5  
G6  
G21  
G22  
G23  
G24  
G25  
G26  
H1  
VSS  
Power/Other  
E8  
VCC  
VSS  
D22#  
ADS#  
BNR#  
VSS  
Source Synch  
Input/Output  
E9  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
F1  
VCC  
VSS  
VCC  
LOCK#  
RS1#  
VSS  
Common Clock Input/Output  
Common Clock Input  
Power/Other  
VSS  
VCC  
VSS  
VSS  
Power/Other  
VCC  
D10#  
D18#  
VSS  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
VSS  
VCC  
VSS  
DBI1#  
D25#  
VSS  
Input/Output  
Input/Output  
VCC  
DBI0#  
DSTBN0#  
VSS  
Input/Output  
Input/Output  
H2  
DRDY#  
REQ4#  
VSS  
Common Clock Input/Output  
H3  
Source Synch  
Power/Other  
Input/Output  
D17#  
D21#  
VSS  
Input/Output  
Input/Output  
H4  
H5  
DBSY#  
BR0#  
D11#  
D16#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
H6  
RS0#  
VSS  
Common Clock Input  
Power/Other  
H21  
H22  
H23  
H24  
H25  
H26  
J1  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
F2  
F3  
HIT#  
RS2#  
VSS  
Common Clock Input/Output  
Common Clock Input  
Power/Other  
F4  
D26#  
D31#  
VSS  
Input/Output  
Input/Output  
F5  
F6  
GTLREF  
TMS  
Power/Other  
TAP  
Input  
Input  
F7  
REQ0#  
VSS  
Input/Output  
F8  
VSS  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
J2  
F9  
VCC  
VSS  
J3  
REQ3#  
REQ2#  
VSS  
Input/Output  
Input/Output  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
J4  
VCC  
J5  
VSS  
J6  
TRDY#  
D14#  
VSS  
Common Clock Input  
VCC  
J21  
J22  
J23  
J24  
J25  
J26  
K1  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
VSS  
VCC  
DSTBP1#  
D29#  
VSS  
Input/Output  
Input/Output  
VSS  
VCC  
VSS  
DP0#  
A6#  
Common Clock Input/Output  
VCC  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Input/Output  
Input/Output  
GTLREF  
DSTBP0#  
VSS  
Input  
K2  
A3#  
Input/Output  
K3  
VSS  
K4  
A4#  
Input/Output  
Input/Output  
D19#  
D20#  
Input/Output  
Input/Output  
K5  
REQ1#  
VSS  
K6  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
55  
Pin Lists and Signal Descriptions  
Table 4-2. Pin Listing by Pin Number  
Table 4-2. Pin Listing by Pin Number  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
Number  
Number  
K21  
K22  
K23  
K24  
K25  
K26  
L1  
VSS  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
P3  
A19#  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Input/Output  
Input/Output  
DSTBN1#  
D30#  
VSS  
Input/Output  
Input/Output  
P4  
A20#  
VSS  
P5  
P6  
A24#  
D34#  
VSS  
Input/Output  
Input/Output  
DP1#  
DP2#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
Power/Other  
P21  
P22  
P23  
P24  
P25  
P26  
R1  
DSTBP2#  
D41#  
VSS  
Input/Output  
Input/Output  
L2  
A9#  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Input/Output  
Input/Output  
L3  
A7#  
L4  
VSS  
DBI2#  
VSS  
Input/Output  
L5  
ADSTB0#  
A5#  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
L6  
R2  
A18#  
A21#  
VSS  
Input/Output  
Input/Output  
L21  
L22  
L23  
L24  
L25  
L26  
M1  
D24#  
D28#  
VSS  
R3  
R4  
R5  
ADSTB1#  
A28#  
D40#  
DSTBN2#  
VSS  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
COMP0  
DP3#  
VSS  
Input/Output  
R6  
Common Clock Input/Output  
Power/Other  
R21  
R22  
R23  
R24  
R25  
R26  
T1  
A13#  
VSS  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Input/Output  
M2  
D43#  
D42#  
VSS  
Input/Output  
Input/Output  
M3  
A10#  
A11#  
VSS  
Input/Output  
Input/Output  
M4  
M5  
A17#  
A22#  
VSS  
Input/Output  
Input/Output  
M6  
A8#  
Input/Output  
Input/Output  
T2  
M21  
M22  
M23  
M24  
M25  
M26  
N1  
D27#  
VSS  
T3  
T4  
A26#  
A30#  
VSS  
Input/Output  
Input/Output  
D32#  
D35#  
VSS  
Input/Output  
Input/Output  
T5  
T6  
T21  
T22  
T23  
T24  
T25  
T26  
U1  
VSS  
D37#  
A12#  
A14#  
VSS  
Input/Output  
Input/Output  
Input/Output  
D46#  
D47#  
VSS  
Input/Output  
Input/Output  
N2  
N3  
D45#  
D44#  
A23#  
VSS  
Input/Output  
Input/Output  
Input/Output  
N4  
A15#  
A16#  
VSS  
Input/Output  
Input/Output  
N5  
N6  
U2  
N21  
N22  
N23  
N24  
N25  
N26  
P1  
VSS  
U3  
A25#  
A31#  
VSS  
Input/Output  
Input/Output  
D33#  
D36#  
VSS  
Input/Output  
Input/Output  
U4  
U5  
U6  
TESTHI8  
D52#  
VSS  
Input  
D39#  
D38#  
COMP1  
VSS  
Input/Output  
Input/Output  
Input/Output  
U21  
U22  
U23  
U24  
Input/Output  
D50#  
D49#  
Input/Output  
Input/Output  
P2  
56  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Pin Lists and Signal Descriptions  
Table 4-2. Pin Listing by Pin Number  
Table 4-2. Pin Listing by Pin Number  
Pin  
Signal Buffer  
Type  
Pin  
Signal Buffer  
Type  
Pin Name  
Direction  
Pin Name  
Direction  
Number  
Number  
U25  
U26  
V1  
VSS  
Power/Other  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
W6  
VSS  
Power/Other  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Asynch GTL+  
Power/Other  
D48#  
VSS  
Input/Output  
W21  
W22  
W23  
W24  
W25  
W26  
Y1  
VSS  
DSTBN3#  
DSTBP3#  
VSS  
Input/Output  
Input/Output  
V2  
A27#  
A32#  
VSS  
Input/Output  
Input/Output  
V3  
V4  
D57#  
Input/Output  
Input/Output  
Input/Output  
V5  
AP1#  
MCERR#  
DBI3#  
D53#  
VSS  
Common Clock Input/Output  
Common Clock Input/Output  
D55#  
V6  
A34#  
V21  
V22  
V23  
V24  
V25  
V26  
W1  
W2  
W3  
W4  
W5  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Power/Other  
Asynch GTL+  
Input/Output  
Input/Output  
Y2  
VSS  
Y3  
TESTHI10  
STPCLK#  
VSS  
Input  
Input  
Y4  
D54#  
D51#  
VSS  
Input/Output  
Input/Output  
Y5  
Y6  
BPM3#  
D60#  
Common Clock Input/Output  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
Source Synch  
Power/Other  
Source Synch  
Source Synch  
Power/Other  
Source Synch  
Input/Output  
A29#  
A33#  
VSS  
Input/Output  
Input/Output  
VSS  
D58#  
Input/Output  
Input/Output  
D59#  
TESTHI9  
INIT#  
Input  
Input  
VSS  
D56#  
Input/Output  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
57  
Pin Lists and Signal Descriptions  
4.2  
Signal Descriptions  
Table 4-3. Signal Descriptions (Sheet 1 of 8)  
Name  
Type  
Description  
A[35:3]# (Address) define a 236-byte physical memory address space. In  
sub-phase 1 of the address phase, these pins transmit the address of a  
transaction. In sub-phase 2, these pins transmit transaction type information.  
These signals must connect the appropriate pins of all agents on the Intel®  
Pentium® 4 processor on 0.13 micron process system bus. A[35:3]# are  
protected by parity signals AP[1:0]#. A[35:3]# are source synchronous signals  
and are latched into the receiving buffers by ADSTB[1:0]#.  
Input/  
A[35:3]#  
Output  
On the active-to-inactive transition of RESET#, the processor samples a subset  
of the A[35:3]# pins to determine power-on configuration. See Section 6.1 for  
more details.  
If A20M# (Address-20 Mask) is asserted, the processor masks physical address  
bit 20 (A20#) before looking up a line in any internal cache and before driving a  
read/write transaction on the bus. Asserting A20M# emulates the 8086  
processor's address wrap-around at the 1-Mbyte boundary. Assertion of A20M#  
is only supported in real mode.  
A20M#  
Input  
A20M# is an asynchronous signal. However, to ensure recognition of this signal  
following an Input/Output write instruction, it must be valid along with the TRDY#  
assertion of the corresponding Input/Output Write bus transaction.  
ADS# (Address Strobe) is asserted to indicate the validity of the transaction  
address on the A[35:3]# and REQ[4:0]# pins. All bus agents observe the ADS#  
activation to begin parity checking, protocol checking, address decode, internal  
snoop, or deferred reply ID match operations associated with the new  
transaction.  
Input/  
ADS#  
Output  
Address strobes are used to latch A[35:3]# and REQ[4:0]# on their rising and  
falling edges. Strobes are associated with signals as shown below.  
Input/  
Signals  
REQ[4:0]#, A[16:3]#  
A[35:17]#  
Associated Strobe  
ADSTB0#  
ADSTB[1:0]#  
Output  
ADSTB1#  
AP[1:0]# (Address Parity) are driven by the request initiator along with ADS#,  
A[35:3]#, and the transaction type on the REQ[4:0]#. A correct parity signal is  
high if an even number of covered signals are low and low if an odd number of  
covered signals are low. This allows parity to be high when all the covered  
signals are high. AP[1:0]# should connect the appropriate pins of all Pentium 4  
processors on 0.13 micron process system bus agents. The following table  
defines the coverage model of these signals.  
Input/  
AP[1:0]#  
Output  
Request Signals  
A[35:24]#  
Subphase 1  
AP0#  
Subphase 2  
AP1#  
A[23:3]#  
AP1#  
AP0#  
REQ[4:0]#  
AP1#  
AP0#  
The differential pair BCLK (Bus Clock) determines the system bus frequency. All  
processor system bus agents must receive these signals to drive their outputs  
and latch their inputs.  
BCLK[1:0]  
Input  
All external timing parameters are specified with respect to the rising edge of  
BCLK0 crossing VCROSS  
.
58  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Pin Lists and Signal Descriptions  
Table 4-3. Signal Descriptions (Sheet 2 of 8)  
Name  
Type  
Description  
BINIT# (Bus Initialization) may be observed and driven by all processor system  
bus agents and if used, must connect the appropriate pins of all such agents. If  
the BINIT# driver is enabled during power-on configuration, BINIT# is asserted to  
signal any bus condition that prevents reliable future operation.  
If BINIT# observation is enabled during power-on configuration, and BINIT# is  
sampled asserted, symmetric agents reset their bus LOCK# activity and bus  
request arbitration state machines. The bus agents do not reset their IOQ and  
transaction tracking state machines upon observation of BINIT# activation. Once  
the BINIT# assertion has been observed, the bus agents will re-arbitrate for the  
system bus and attempt completion of their bus queue and IOQ entries.  
Input/  
BINIT#  
Output  
If BINIT# observation is disabled during power-on configuration, a central agent  
may handle an assertion of BINIT# as appropriate to the error handling  
architecture of the system.  
BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is  
unable to accept new bus transactions. During a bus stall, the current bus owner  
cannot issue any new transactions.  
Input/  
BNR#  
Output  
BPM[5:0]# (Breakpoint Monitor) are breakpoint and performance monitor signals.  
They are outputs from the processor which indicate the status of breakpoints and  
programmable counters used for monitoring processor performance. BPM[5:0]#  
should connect the appropriate pins of all Pentium 4 processors on 0.13 micron  
process system bus agents.  
BPM4# provides PRDY# (Probe Ready) functionality for the TAP port. PRDY# is  
a processor output used by debug tools to determine processor debug  
readiness.  
Input/  
BPM[5:0]#  
Output  
BPM5# provides PREQ# (Probe Request) functionality for the TAP port. PREQ#  
is used by debug tools to request debug operation of the processor.  
Refer to the appropriate Platform Design Guide for more detailed information.  
These signals do not have on-die termination and must be terminated on the  
system board.  
BPRI# (Bus Priority Request) is used to arbitrate for ownership of the processor  
system bus. It must connect the appropriate pins of all processor system bus  
agents. Observing BPRI# active (as asserted by the priority agent) causes all  
other agents to stop issuing new requests, unless such requests are part of an  
ongoing locked operation. The priority agent keeps BPRI# asserted until all of its  
requests are completed, then releases the bus by deasserting BPRI#.  
BPRI#  
BR0#  
Input  
BR0# drives the BREQ0# signal in the system and is used by the processor to  
request the bus. During power-on configuration this pin is sampled to determine  
the agent ID = 0.  
Input/  
Output  
This signal does not have on-die termination and must be terminated.  
BSEL[1:0] (Bus Select) are used to select the processor input clock frequency.  
Table 2-4 defines the possible combinations of the signals and the frequency  
associated with each combination. The required frequency is determined by the  
processor, chipset and clock synthesizer. All agents must operate at the same  
frequency. For more information about these pins, including termination  
recommendations refer to Section 2.9 and the appropriate platform design  
guidelines.  
Input/  
BSEL[1:0]  
COMP[1:0]  
Output  
COMP[1:0] must be terminated on the system board using precision resistors.  
Refer to the appropriate Platform Design Guide for details on implementation.  
Analog  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
59  
Pin Lists and Signal Descriptions  
Table 4-3. Signal Descriptions (Sheet 3 of 8)  
Name  
Type  
Description  
D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path  
between the processor system bus agents, and must connect the appropriate  
pins on all such agents. The data driver asserts DRDY# to indicate a valid data  
transfer.  
D[63:0]# are quad-pumped signals and will thus be driven four times in a  
common clock period. D[63:0]# are latched off the falling edge of both  
DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals correspond to a  
pair of one DSTBP# and one DSTBN#. The following table shows the grouping of  
data signals to data strobes and DBI#.  
Quad-Pumped Signal Groups  
Input/  
D[63:0]#  
DSTBN#/  
Output  
Data Group  
DBI#  
DSTBP#  
D[15:0]#  
D[31:16]#  
D[47:32]#  
D[63:48]#  
0
1
2
3
0
1
2
3
Furthermore, the DBI# pins determine the polarity of the data signals. Each  
group of 16 data signals corresponds to one DBI# signal. When the DBI# signal  
is active, the corresponding data group is inverted and therefore sampled active  
high.  
DBI[3:0]# (Data Bus Inversion) are source synchronous and indicate the polarity  
of the D[63:0]# signals. The DBI[3:0]# signals are activated when the data on the  
data bus is inverted. If more than half the data bits within a 16-bit group would  
have been asserted electrically low, the bus agent may invert the data bus  
signals for that particular sub-phase for that 16-bit group.  
DBI[3:0]# Assignment To Data Bus  
Input/  
DBI[3:0]#  
Output  
Bus Signal  
DBI3#  
Data Bus Signals  
D[63:48]#  
DBI2#  
D[47:32]#  
DBI1#  
D[31:16]#  
DBI0#  
D[15:0]#  
DBR# (Data Bus Reset) is used only in processor systems where no debug port  
is implemented on the system board. DBR# is used by a debug port interposer  
DBR#  
Output so that an in-target probe can drive system reset. If a debug port is implemented  
in the system, DBR# is a no connect in the system. DBR# is not a processor  
signal.  
DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on  
Input/ the processor system bus to indicate that the data bus is in use. The data bus is  
Output released after DBSY# is deasserted. This signal must connect the appropriate  
pins on all processor system bus agents.  
DBSY#  
DEFER# is asserted by an agent to indicate that a transaction cannot be  
guaranteed in-order completion. Assertion of DEFER# is normally the  
DEFER#  
DP[3:0]#  
Input  
responsibility of the addressed memory or Input/Output agent. This signal must  
connect the appropriate pins of all processor system bus agents.  
DP[3:0]# (Data parity) provide parity protection for the D[63:0]# signals. They are  
Input/ driven by the agent responsible for driving D[63:0]#, and must connect the  
Output appropriate pins of all Pentium 4 processor on 0.13 micron process system bus  
agents.  
60  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Pin Lists and Signal Descriptions  
Table 4-3. Signal Descriptions (Sheet 4 of 8)  
Name  
Type  
Description  
DRDY# (Data Ready) is asserted by the data driver on each data transfer,  
Input/ indicating valid data on the data bus. In a multi-common clock data transfer,  
Output DRDY# may be deasserted to insert idle clocks. This signal must connect the  
appropriate pins of all processor system bus agents.  
DRDY#  
Data strobe used to latch in D[63:0]#:  
Signals  
Associated Strobe  
DSTBN0#  
D[15:0]#, DBI0#  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
Input/  
DSTBN[3:0]#  
DSTBP[3:0]#  
DSTBN1#  
DSTBN2#  
DSTBN3#  
Output  
Data strobe used to latch in D[63:0]#:  
Signals  
Associated Strobe  
DSTBP0#  
D[15:0]#, DBI0#  
Input/  
D[31:16]#, DBI1#  
D[47:32]#, DBI2#  
D[63:48]#, DBI3#  
DSTBP1#  
DSTBP2#  
DSTBP3#  
Output  
FERR#/PBE# (floating point error/pending break event) is a multiplexed signal  
which is qualified by STPCLK#. When STPCLK# is not asserted, FERR#  
indicates a floating-point error and will be asserted when the processor detects  
an unmasked floating-point error. When STPCLK# is not asserted, FERR#/PBE#  
is similar to the ERROR# signal on the Intel 387 coprocessor, and is included for  
compatibility with systems using Microsoft MS-DOS*-type floating-point error  
reporting. When STPCLK# is asserted, an assertion of FERR#/PBE# indicates  
FERR#/PBE#  
Output that the processor has a pending break event waiting for service. The assertion  
of FERR#/PBE# indicates that the processor should be returned to the Normal  
state. When FERR#/PBE# is asserted, indicating a break event, it will remain  
asserted until STPCLK# is deasserted. For addition information on the pending  
break event functionality, including the identificatio®n of support of the feature and  
enable/disable information, refer to the IA-32 Intel Architecture Software  
®
Developer’s Manual (Vol. 1 - Vol. 3) and the Intel Processor Identification and  
the CPUID Instruction application note.  
GTLREF determines the signal reference level for AGTL+ input pins. GTLREF  
should be set at 2/3 VCC. GTLREF is used by the AGTL+ receivers to determine if  
GTLREF  
Input  
a signal is a logical 0 or logical 1. Refer to the appropriate Platform Design Guide  
for more information.  
Input/  
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation  
results. Any system bus agent may assert both HIT# and HITM# together to  
indicate that it requires a snoop stall, which can be continued by reasserting  
HIT# and HITM# together.  
HIT#  
Output  
HITM#  
Input/  
Output  
IERR# (Internal Error) is asserted by a processor as the result of an internal  
error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction  
on the processor system bus. This transaction may optionally be converted to an  
external error signal (e.g., NMI) by system core logic. The processor will keep  
IERR# asserted until the assertion of RESET#.  
IERR#  
Output  
This signal does not have on-die termination and must be terminated on the  
system board.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
61  
Pin Lists and Signal Descriptions  
Table 4-3. Signal Descriptions (Sheet 5 of 8)  
Name  
Type  
Description  
IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a  
numeric error and continue to execute noncontrol floating-point instructions. If  
IGNNE# is deasserted, the processor generates an exception on a noncontrol  
floating-point instruction if a previous floating-point instruction caused an error.  
IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.  
IGNNE#  
Input  
IGNNE# is an asynchronous signal. However, to ensure recognition of this signal  
following an Input/Output write instruction, it must be valid along with the TRDY#  
assertion of the corresponding Input/Output Write bus transaction.  
IMPSEL input will determine whether the processor uses a 50 or 60 buffer.  
This pin must be tied to GND on 50 platforms and left as NC on 60 Ω  
platforms.  
IMPSEL  
INIT#  
Input  
Input  
INIT# (Initialization), when asserted, resets integer registers inside the processor  
without affecting its internal caches or floating-point registers. The processor  
then begins execution at the power-on Reset vector configured during power-on  
configuration. The processor continues to handle snoop requests during INIT#  
assertion. INIT# is an asynchronous signal and must connect the appropriate  
pins of all processor system bus agents.  
If INIT# is sampled active on the active to inactive transition of RESET#, then the  
processor executes its Built-in Self-Test (BIST).  
ITPCLKOUT[1:0] is an uncompensated differential clock output that is a delayed  
copy of BCLK[1:0], which is an input to the processor. This clock output can be  
used as the differential clock into the ITP port that is designed onto the  
ITPCLKOUT[1:0] Output motherboard. If ITPCLKOUT[1:0] outputs are not used, they must be terminated  
properly. Refer to Section 2.5 for additional details and termination requirements.  
Refer to the ITP 700 Debug Port Design Guide for details on implementing a  
debug port.  
ITP_CLK[1:0] are copies of BCLK that are used only in processor systems where  
no debug port is implemented on the system board. ITP_CLK[1:0] are used as  
ITP_CLK[1:0]  
Input  
BCLK[1:0] references for a debug port implemented on an interposer. If a debug  
port is implemented in the system, ITP_CLK[1:0] are no connects in the system.  
These are not processor signals.  
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC  
Bus agents. When the APIC is disabled, the LINT0 signal becomes INTR, a  
maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable  
interrupt. INTR and NMI are backward compatible with the signals of those  
names on the Pentium processor. Both signals are asynchronous.  
LINT[1:0]  
Input  
Both of these signals must be software configured via BIOS programming of the  
APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the  
APIC is enabled by default after Reset, operation of these pins as LINT[1:0] is  
the default configuration.  
LOCK# indicates to the system that a transaction must occur atomically. This  
signal must connect the appropriate pins of all processor system bus agents. For  
a locked sequence of transactions, LOCK# is asserted from the beginning of the  
first transaction to the end of the last transaction.  
When the priority agent asserts BPRI# to arbitrate for ownership of the processor  
system bus, it will wait until it observes LOCK# deasserted. This enables  
symmetric agents to retain ownership of the processor system bus throughout  
the bus locked operation and ensure the atomicity of lock.  
Input/  
LOCK#  
Output  
62  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Pin Lists and Signal Descriptions  
Table 4-3. Signal Descriptions (Sheet 6 of 8)  
Name  
Type  
Description  
MCERR# (Machine Check Error) is asserted to indicate an unrecoverable error  
without a bus protocol violation. It may be driven by all processor system bus  
agents.  
MCERR# assertion conditions are configurable at a system level. Assertion  
options are defined by the following options:  
Enabled or disabled.  
Asserted, if configured, for internal errors along with IERR#.  
Input/  
MCERR#  
Output  
Asserted, if configured, by the request initiator of a bus transaction after it  
observes an error.  
Asserted by any bus agent when it observes an error in a bus transaction.  
®
For more details regarding machine check architecture, refer to the IA-32 Intel  
Software Developer’s Manual, Volume 3: System Programming Guide.  
As an output, PROCHOT# (Processor Hot) will go active when the processor  
temperature monitoring sensor detects that the processor has reached its  
maximum safe operating temperature. This indicates that the processor Thermal  
Control Circuit has been activated, if enabled. As an input, assertion of  
PROCHOT# by the system will activate the TCC, if enabled. The TCC will remain  
active until the system deasserts PROCHOT#. See Section 6.3 for more details.  
Input/  
PROCHOT#  
Output  
NOTE: The PROCHOT# signal functionality has changed from output to  
input/output on CPUID 0xF27 and beyond.  
PWRGOOD (Power Good) is a processor input. The processor requires this  
signal to be a clean indication that the clocks and power supplies are stable and  
within their specifications. ‘Clean’ implies that the signal will remain low (capable  
of sinking leakage current), without glitches, from the time that the power  
supplies are turned on until they come within specification. The signal must then  
transition monotonically to a high state.  
The PWRGOOD signal must be supplied to the processor; it is used to protect  
internal circuits against voltage sequencing issues. It should be driven high  
throughout boundary scan operation.  
PWRGOOD  
REQ[4:0]#  
Input  
REQ[4:0]# (Request Command) must connect the appropriate pins of all  
processor system bus agents. They are asserted by the current bus owner to  
define the currently active transaction type. These signals are source  
synchronous to ADSTB0#. Refer to the AP[1:0]# signal description for details on  
parity checking of these signals.  
Input/  
Output  
Asserting the RESET# signal resets the processor to a known state and  
invalidates its internal caches without writing back any of their contents. For a  
power-on Reset, RESET# must stay active for at least one millisecond after VCC  
and BCLK have reached their proper specifications. On observing active  
RESET#, all system bus agents will deassert their outputs within two clocks.  
RESET# must not be kept asserted for more than 10 ms while PWRGOOD is  
asserted.  
A number of bus signals are sampled at the active-to-inactive transition of  
RESET# for power-on configuration. These configuration options are described  
in the Section 6.1.  
RESET#  
RS[2:0]#  
Input  
Input  
This signal does not have on-die termination and must be terminated on the  
system board.  
RS[2:0]# (Response Status) are driven by the response agent (the agent  
responsible for completion of the current transaction), and must connect the  
appropriate pins of all processor system bus agents.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
63  
Pin Lists and Signal Descriptions  
Table 4-3. Signal Descriptions (Sheet 7 of 8)  
Name  
Type  
Description  
RSP# (Response Parity) is driven by the response agent (the agent responsible  
for completion of the current transaction) during assertion of RS[2:0]#, the  
signals for which RSP# provides parity protection. It must connect to the  
appropriate pins of all processor system bus agents.  
A correct parity signal is high if an even number of covered signals are low and  
low if an odd number of covered signals are low. While RS[2:0]# = 000, RSP# is  
also high, since this indicates it is not being driven by any agent guaranteeing  
correct parity.  
RSP#  
Input  
SKTOCC# (Socket Occupied) will be pulled to ground by the processor. System  
board designers may use this pin to determine if the processor is present.  
SKTOCC#  
SLP#  
Output  
Input  
SLP# (Sleep), when asserted in Stop-Grant state, causes the processor to enter  
the Sleep state. During Sleep state, the processor stops providing internal clock  
signals to all units, leaving only the Phase-Locked Loop (PLL) still operating.  
Processors in this state will not recognize snoops or interrupts. The processor  
will only recognize the assertion of the RESET# signal, deassertion of SLP#, and  
removal of the BCLK input while in Sleep state. If SLP# is deasserted, the  
processor exits Sleep state and returns to Stop-Grant state, restarting its internal  
clock signals to the bus and processor core units.  
SMI# (System Management Interrupt) is asserted asynchronously by system  
logic. On accepting a System Management Interrupt, the processor saves the  
current state and enters System Management Mode (SMM). An SMI  
Acknowledge transaction is issued, and the processor begins program execution  
from the SMM handler.  
SMI#  
Input  
Input  
If SMI# is asserted during the deassertion of RESET# the processor will tristate  
its outputs.  
Assertion of STPCLK# (Stop Clock) causes the processor to enter a low power  
Stop-Grant state. The processor issues a Stop-Grant Acknowledge transaction,  
and stops providing internal clock signals to all processor core units except the  
system bus and APIC units. The processor continues to snoop bus transactions  
and service interrupts while in Stop-Grant state. When STPCLK# is deasserted,  
the processor restarts its internal clock to all units and resumes execution. The  
assertion of STPCLK# has no effect on the bus clock; STPCLK# is an  
asynchronous input.  
STPCLK#  
TCK (Test Clock) provides the clock input for the processor Test Bus (also known  
as the Test Access Port).  
TCK  
TDI  
Input  
Input  
TDI (Test Data In) transfers serial test data into the processor. TDI provides the  
serial input needed for JTAG specification support.  
TDO (Test Data Out) transfers serial test data out of the processor. TDO provides  
the serial output needed for JTAG specification support.  
TDO  
Output  
TESTHI[12:8] and TESTHI[5:0] must be connected to a VCC power source  
through a resistor for proper processor operation. See Section 2.5 for more  
details.  
TESTHI[12:8]  
TESTHI[5:0]  
Input  
THERMDA  
THERMDC  
Other Thermal Diode Anode. See Section 6.3.1.  
Other Thermal Diode Cathode. See Section 6.3.1.  
64  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Pin Lists and Signal Descriptions  
Table 4-3. Signal Descriptions (Sheet 8 of 8)  
Name  
Type  
Description  
Assertion of THERMTRIP# (Thermal Trip) indicates the processor junction  
temperature has reached a level where permanent silicon damage may occur.  
Measurement of the temperature is accomplished through an internal thermal  
sensor which is configured to trip at approximately 135°C. Upon assertion of  
THERMTRIP#, the processor will shut off its internal clocks (thus halting program  
execution) in an attempt to reduce the processor junction temperature. To protect  
the processor, its core voltage (VCC) must be removed within 0.5 seconds of the  
assertion of THERMTRIP#.  
For processors with CPUID of 0xF24:  
Once activated, THERMTRIP# remains latched until RESET# is asserted.  
While the assertion of the RESET# signal will de-assert THERMTRIP#, if the  
processor’s junction temperature remains at or above the trip level,  
THERMTRIP# will again be asserted.  
THERMTRIP#  
Output  
For processors with CPUID of 0xF27 and beyond:  
Driving of the THERMTRIP# signal is enabled within 10 µs of the assertion  
of PWRGOOD and is disabled on de-assertion of PWRGOOD. Once  
activated, THERMTRIP# remains latched until PWRGOOD is de-asserted.  
While the de-assertion of the PWRGOOD signal will de-assert  
THERMTRIP#, if the processor’s junction temperature remains at or above  
the trip level, THERMTRIP# will again be asserted within 10 µs of the  
assertion of PWRGOOD.  
TMS (Test Mode Select) is a JTAG specification support signal used by debug  
tools.  
TMS  
Input  
Input  
TRDY# (Target Ready) is asserted by the target to indicate that it is ready to  
receive a write or implicit writeback data transfer. TRDY# must connect the  
appropriate pins of all system bus agents.  
TRDY#  
TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be  
driven low during power on Reset. This can be done with a 680 pull-down  
resistor.  
TRST#  
VCCA  
Input  
Input  
Input  
VCCA provides isolated power for the internal processor core PLLs. Refer to the  
appropriate Platform Design Guide for complete implementation details.  
VCCIOPLL provides isolated power for internal processor system bus PLLs. Follow  
the guidelines for VCCA, and refer to the appropriate Platform Design Guide for  
complete implementation details.  
VCCIOPLL  
VCC_SENSE is an isolated low impedance connection to processor core power  
(VCC). It can be used to sense or measure power near the silicon with little noise.  
VCC_SENSE  
VCCVID  
Output  
Input  
Independent 1.2 V supply must be routed to VCCVID pin for the Pentium 4  
processor on 0.13 micron process’s Voltage Identification circuit.  
VID[4:0] (Voltage ID) pins are used to support automatic selection of power  
supply voltages (VCC). Unlike previous generations of processors, these are  
open drain signals that are driven by the Pentium 4 processor on 0.13 micron  
process and must be pulled up to 3.3 V (max.) with 1 kresistors. The voltage  
supply for these pins must be valid before the VR can supply VCC to the  
processor. Conversely, the VR output must be disabled until the voltage supply  
for the VID pins becomes valid. The VID pins are needed to support the  
processor voltage specification variations. See Table 2-2 for definitions of these  
pins. The VR must supply the voltage that is requested by the pins, or disable  
itself.  
VID[4:0]  
Output  
VSSA  
Input  
VSSA is the isolated ground for internal PLLs.  
VSS_SENSE is an isolated low impedance connection to processor core VSS. It  
can be used to sense or measure ground near the silicon with little noise  
VSS_SENSE  
Output  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
65  
Pin Lists and Signal Descriptions  
This page is intentionally left blank.  
66  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Thermal Specifications and Design Considerations  
Thermal Specifications and Design  
Considerations  
5
The Pentium 4 processor on 0.13 micron process uses an Integrated Heat Spreader (IHS) for  
heatsink attachment that is intended to provide for multiple types of thermal solutions. This chapter  
provides data necessary for development of a thermal solution. See Figure 5-1 for an enlarged view  
of an example of the Pentium 4 processor on 0.13 micron process thermal solution. This is for  
illustration purposes only. For further thermal solution design details, refer to the. Intel® Pentium®  
4 Processor with 512-KB L2 Cache on 0.13 Micron Process Thermal Design Guidelines.  
Note: The processor is shipped either by itself or with a heatsink for boxed processors. See Chapter 7 for  
details on boxed processors.  
Figure 5-1. Example Thermal Solution (Not to Scale)  
Clip Assembly  
Fan/Shroud  
Heatsink  
Retention Mechanism  
Processor  
mPGA478B  
478-pin Socket  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
67  
Thermal Specifications and Design Considerations  
5.1  
Processor Thermal Specifications  
The Pentium 4 processor on 0.13 micron process requires a thermal solution to maintain  
temperatures within the operating limits as set forth in Section 5.1.1. Any attempt to operate the  
processor outside these operating limits may result in permanent damage to the processor and  
potentially other components in the system. As processor technology changes, thermal  
management becomes increasingly crucial when building computer systems. Maintaining the  
proper thermal environment is key to reliable, long-term system operation.  
A complete thermal solution includes both component and system level thermal management  
features. Component-level thermal solutions can include active or passive heatsinks attached to the  
processor IHS. Typical system level thermal solutions may consist of system fans combined with  
ducting and venting.  
For more information on designing a component level thermal solution, refer to Intel® Pentium® 4  
Processor with 512-KB L2 Cache on 0.13 Micron Process Thermal Design Guidelines.  
5.1.1  
Thermal Specifications  
To allow for the optimal operation and long-term reliability of Intel processor-based systems, the  
system/processor thermal solution should be designed such that the processor remains within the  
minimum and maximum case temperature (TC) specifications when operating at or below the  
Thermal Design Power (TDP) value listed per frequency in Table 5-1. Thermal solutions not  
designed to provide this level of thermal capability may affect the long-term reliability of the  
processor and system. For more details on thermal solution design, refer to the appropriate  
processor thermal design guidelines.  
The case temperature is defined at the geometric top center of the processor IHS. Analysis  
indicates that real applications are unlikely to cause the processor to consume maximum power  
dissipation for sustained periods of time. Intel recommends that complete thermal solution designs  
target the Thermal Design Power (TDP) indicated in Table 5-1 instead of the maximum processor  
power consumption. The Thermal Monitor feature is intended to help protect the processor in the  
unlikely event that an application exceeds the TDP recommendation for a sustained period of time.  
For more details on the usage of this feature, refer to Section 6.3. To ensure maximum flexibility  
for future requirements, systems should be designed to the Flexible Motherboard (FMB)  
guidelines, even if a processor with a lower thermal dissipation is currently planned. In all cases,  
the Thermal Monitor feature must be enabled for the processor to remain within  
specification.  
68  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Thermal Specifications and Design Considerations  
Table 5-1. Processor Thermal Design Power  
Front Side Bus Processor and Core  
Thermal Design  
Power1,2 (W)  
Minimum TC  
(°C)  
Maximum TC  
(°C)  
Notes3  
Frequency  
Frequency  
Processors with  
VID=1.500 V  
2A GHz  
52.4  
55.1  
57.8  
59.3  
5
5
5
5
68  
69  
70  
71  
2.20 GHz  
2.40 GHz  
2.50 GHz  
Processors with  
VID=1.525 V  
2A GHz  
54.3  
57.1  
59.8  
61.0  
62.6  
5
5
5
5
5
69  
70  
71  
72  
72  
2.20 GHz  
2.40 GHz  
2.50 GHz  
2.60 GHz  
400 MHz  
Processors with  
multiple VIDs  
2A GHz  
54.3  
57.1  
59.8  
61.0  
62.6  
5
5
5
5
5
69  
70  
71  
72  
72  
2.20 GHz  
2.40 GHz  
2.50 GHz  
2.60 GHz  
Processors with  
VID=1.500 V  
2.26 GHz  
2.40B GHz  
2.53 GHz  
56.0  
57.8  
59.3  
5
5
5
70  
70  
71  
Processors with  
VID=1.525 V  
2.26 GHz  
2.40B GHz  
2.53 GHz  
2.66 GHz  
2.80 GHz  
58.0  
59.8  
61.5  
66.1  
68.4  
5
5
5
5
5
70  
71  
72  
74  
75  
533 MHz  
Processors with  
multiple VIDs  
2.26 GHz  
2.40B GHz  
2.53 GHz  
2.66 GHz  
2.80 GHz  
3.06 GHz  
58.0  
59.8  
61.5  
66.1  
68.4  
81.8  
5
5
5
5
5
5
70  
71  
72  
74  
75  
69  
Processors with  
multiple VIDs  
2.40C GHz  
2.60C GHz  
2.80C GHz  
3 GHz  
66.2  
69.0  
69.7  
81.9  
82.0  
89.0  
5
5
5
5
5
5
74  
75  
75  
70  
70  
68  
800 MHz FSB  
with 512-KB L2  
Cache Only  
3.20C GHz  
3.40 GHz  
800 MHz FSB  
with 2-MB L3  
Cache  
Processors with  
multiple VIDs  
3.20 GHz  
92.1  
5
5
64  
67  
3.40 GHz  
102.9  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
69  
Thermal Specifications and Design Considerations  
NOTES:  
1. These values are specified at VCC_MAX for the processor. Systems must be designed to ensure that the  
processor is not subjected to any static VCC and ICC combination wherein VCC exceeds VCC_MAX at specified  
I
CC. Refer to loadline specifications in Chapter 2.  
2. The numbers in this column reflect Intel’s recommended design point and are not indicative of the maximum  
power the processor can dissipate under worst case conditions. For more details, refer to the  
®
®
Intel Pentium 4 Processor with 512-KB L2 Cache on 0.13 Micron Process Thermal Design Guidelines.  
3. TDP and TC are specified for highest VID only. Processors will be shipped under multiple VIDs for each  
frequency; however, the TDP and TC specifications will be the same as highest VID specified in the table.  
5.1.2  
Thermal Metrology  
5.1.2.1  
Processor Case Temperature Measurement  
The maximum and minimum case temperature (TC) for the Pentium 4 processor on 0.13 micron  
process is specified in Table 5-1. This temperature specification is meant to help ensure proper  
operation of the processor. Figure 5-2 illustrates where Intel recommends TC thermal  
measurements should be made. For detailed guidelines on temperature measurement methodology,  
refer to the Intel® Pentium® Processor 4 with 512-KB L2 Cache on 0.13 Micron Process Thermal  
Design Guidelines.  
Figure 5-2. Guideline Locations for Case Temperature (TC) Thermocouple Placement  
0.689”  
17.5 mm  
Measure Tcase  
At this point  
0.689”  
17.5 mm  
35 mm Package  
Thermal Interface  
Material should cover the  
entire surface of the  
Integrated Heat Spreader  
70  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Features  
Features  
6
6.1  
Power-On Configuration Options  
Several configuration options can be configured by hardware. The Pentium 4 processor on  
0.13 micron process samples hardware configuration at reset, on the active-to-inactive transition of  
RESET#. For specifications on these options, refer to Table 6-1.  
The sampled information configures the processor for subsequent operation. These configuration  
options cannot be changed except by another reset. All resets reconfigure the processor; for reset  
purposes, the processor does not distinguish between a “warm” reset and a “power-on” reset.  
Table 6-1. Power-On Configuration Option Pins  
Configuration Option  
Pin1  
Output tristate  
SMI#  
INIT#  
A7#  
Execute BIST  
In Order Queue pipelining (set IOQ depth to 1)  
Disable MCERR# observation  
Disable BINIT# observation  
APIC Cluster ID (0-3)  
A9#  
A10#  
A[12:11]#  
A15#  
A31#  
BR0#  
Disable bus parking  
Disable Hyper-Threading Technology  
Symmetric agent arbitration ID  
NOTE:  
1. Asserting this signal during RESET# will select the corresponding option.  
6.2  
Clock Control and Low Power States  
The use of AutoHALT, Stop-Grant, and Sleep states is allowed in Pentium 4 processor on  
0.13 micron process-based systems to reduce power consumption by stopping the clock to internal  
sections of the processor, depending on each particular state. See Figure 6-1 for a visual  
representation of the processor low power states.  
6.2.1  
Normal State—State 1  
This is the normal operating state for the processor.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
71  
Features  
6.2.2  
AutoHALT Powerdown State—State 2  
AutoHALT is a low power state entered when the processor executes the HALT instruction. The  
processor will transition to the Normal state upon the occurrence of SMI#, BINIT#, INIT#, or  
LINT[1:0] (NMI, INTR). RESET# will cause the processor to immediately initialize itself.  
The return from a System Management Interrupt (SMI) handler can be to either Normal Mode or  
the AutoHALT Power Down state. See the Intel® Architecture Software Developer's Manual,  
Volume III: System Programmer's Guide for more information.  
The system can generate a STPCLK# while the processor is in the AutoHALT Power Down state.  
When the system deasserts the STPCLK# interrupt, the processor will return execution to the  
HALT state.  
While in AutoHALT Power Down state, the processor will process bus snoops and interrupts.  
Figure 6-1. Stop Clock State Machine  
HALT Instruction and  
HALT Bus Cycle generated  
2. Auto HALT Power Down State  
1. Normal State  
BCLK running.  
Normal execution.  
INIT#, BINIT#, INTR, NMI,  
SMI#, RESET#  
Snoops and interrupts allowed.  
STPCLK# Asserted  
Snoop  
Event  
Snoop  
Event  
STPCLK#  
Asserted  
STPCLK#  
De-asserted  
STPCLK# De-asserted  
Snoop event occurs  
Occurs  
Serviced  
4. HALT/Grant Snoop State  
3. Stop Grant State  
BCLK running.  
BCLK running.  
Service snoops to caches.  
Snoops and interrupts allowed.  
Snoop event serviced  
SLP#  
SLP# De-asserted  
Asserted  
5. Sleep State  
BCLK running.  
No snoops and interrupts allowed.  
72  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Features  
6.2.3  
Stop-Grant State—State 3  
When the STPCLK# pin is asserted, the Stop-Grant state of the processor is entered 20 bus clocks  
after the response phase of the processor-issued Stop-Grant Acknowledge special bus cycle.  
Since the AGTL+ signal pins receive power from the system bus, these pins should not be driven  
(allowing the level to return to VCC) for minimum power drawn by the termination resistors in this  
state. In addition, all other input pins on the system bus should be driven to the inactive state.  
BINIT# will not be serviced while the processor is in Stop-Grant state. The event will be latched  
and can be serviced by software upon exit from the Stop-Grant state.  
RESET# will cause the processor to immediately initialize itself, but the processor will stay in  
Stop-Grant state. A transition back to the Normal state will occur with the de-assertion of the  
STPCLK# signal. When re-entering the Stop-Grant state from the Sleep state, STPCLK# should  
only be de-asserted one or more bus clocks after the de-assertion of SLP#.  
A transition to the HALT/Grant Snoop state will occur when the processor detects a snoop on the  
system bus (see Section 6.2.4). A transition to the Sleep state (see Section 6.2.5) will occur with the  
assertion of the SLP# signal.  
While in the Stop-Grant State, SMI#, INIT#, BINIT# and LINT[1:0] will be latched by the  
processor, and only serviced when the processor returns to the Normal State. Only one occurrence  
of each event will be recognized upon return to the Normal state.  
While in Stop-Grant state, the processor will process snoops on the system bus and it will latch  
interrupts delivered on the system bus.  
The PBE# signal can be driven when the processor is in Stop-Grant state. PBE# will be asserted if  
there is any pending interrupt latched within the processor. Pending interrupts that are blocked by  
the EFLAGS.IF bit being clear will still cause assertion of PBE#. Assertion of PBE# indicates to  
system logic that it should return the processor to the Normal state.  
6.2.4  
HALT/Grant Snoop State—State 4  
The processor will respond to snoop or interrupt transactions on the system bus while in Stop-Grant  
state or in AutoHALT Power Down state. During a snoop or interrupt transaction, the processor  
enters the HALT/Grant Snoop state. The processor will stay in this state until the snoop on the  
system bus has been serviced (whether by the processor or other agent on the system bus) or the  
interrupt has been latched. After the snoop is serviced or the interrupt is latched, the processor will  
return to the Stop-Grant state or AutoHALT Power Down state, as appropriate.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
73  
Features  
6.2.5  
Sleep State—State 5  
The Sleep state is a very low power state in which the processor maintains its context, maintains  
the phase-locked loop (PLL), and has stopped all internal clocks. The Sleep state can be entered  
only from Stop-Grant state. Once in the Stop-Grant state, the processor will enter the Sleep state  
upon the assertion of the SLP# signal. The SLP# pin should be asserted only when the processor is  
in the Stop-Grant state. SLP# assertions while the processor is not in the Stop-Grant state is out of  
specification, and may result in unapproved operation.  
Snoop events that occur while in Sleep State or during a transition into or out of Sleep state will  
cause unpredictable behavior.  
In the Sleep state, the processor is incapable of responding to snoop transactions or latching  
interrupt signals. No transitions or assertions of signals (with the exception of SLP# or RESET#)  
are allowed on the system bus while the processor is in Sleep state. Any transition on an input  
signal before the processor has returned to Stop-Grant state will result in unpredictable behavior.  
If RESET# is driven active while the processor is in the Sleep state and is held active as specified  
in the RESET# pin specification, the processor will reset itself, ignoring the transition through  
Stop-Grant State. If RESET# is driven active while the processor is in the Sleep State, the SLP#  
and STPCLK# signals should be deasserted immediately after RESET# is asserted to ensure that  
the processor correctly executes the Reset sequence.  
Once in the Sleep state, the SLP# pin must be de-asserted if another asynchronous system bus  
event needs to occur. The SLP# pin has a minimum assertion of one BCLK period.  
When the processor is in Sleep state, it will not respond to interrupts or snoop transactions.  
6.3  
Thermal Monitor  
The Thermal Monitor feature helps control the processor temperature by activating the Thermal  
Control Circuit (TCC) when the processor silicon reaches its maximum operating temperature. The  
TCC reduces processor power consumption by modulating (starting and stopping) the internal  
processor core clocks. The Thermal Monitor feature must be enabled for the processor to be  
operating within specifications. The temperature at which Thermal Monitor activates the thermal  
control circuit is not user configurable and is not software visible. Bus traffic is snooped in the  
normal manner, and interrupt requests are latched (and serviced during the time that the clocks are  
on) while the TCC is active.  
When the Thermal Monitor feature is enabled, and a high temperature situation exists (i.e., TCC is  
active), the clocks will be modulated by alternately turning the clocks off and on at a duty cycle  
specific to the processor (typically 30–50%). Clocks often will not be off for more than 3.0 µs  
when the TCC is active. Cycle times are processor speed dependent and will decrease as processor  
core frequencies increase. A small amount of hysteresis has been included to prevent rapid active/  
inactive transitions of the TCC when the processor temperature is near its maximum operating  
temperature. Once the temperature has dropped below the maximum operating temperature, and  
the hysteresis timer has expired, the TCC goes inactive and clock modulation ceases.  
With a properly designed and characterized thermal solution, it is anticipated that the TCC would  
only be activated for very short periods of time when running the most power intensive  
applications. The processor performance impact due to these brief periods of TCC activation is  
expected to be so minor that it would be immeasurable. An under-designed thermal solution that is  
not able to prevent excessive activation of the TCC in the anticipated ambient environment may  
74  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Features  
cause a noticeable performance loss, and in some cases may result in a TC that exceeds the  
specified maximum temperature and may affect the long-term reliability of the processor. In  
addition, a thermal solution that is significantly under-designed may not be capable of cooling the  
processor even when the TCC is active continuously. Refer to the Intel® Pentium® 4 Processor  
with 512-KB L2 Cache on 0.13 Micron Process Thermal Design Guidelines for information on  
designing a thermal solution.  
The duty cycle for the TCC, when activated by the Thermal Monitor, is factory configured and  
cannot be modified. The Thermal Monitor does not require any additional hardware, software  
drivers, or interrupt handling routines.  
The TCC may also be activated via On-Demand mode. If bit 4 of the ACPI Thermal Monitor  
Control Register is written to a 1, the TCC will be activated immediately independent of the  
processor temperature. When using On-Demand mode to activate the TCC, the duty cycle of the  
clock modulation is programmable via bits 3:1 of the same ACPI Thermal Monitor Control  
Register. In automatic mode, the duty cycle is fixed. However, in On-Demand mode, the duty cycle  
can be programmed from 12.5% on/87.5% off, to 87.5% on/12.5% off in 12.5% increments.  
On-Demand mode may be used at the same time Automatic mode is enabled. However, if the  
system tries to enable the TCC via On-Demand mode at the same time automatic mode is enabled  
AND a high temperature condition exists, the duty cycle of the automatic mode will override the  
duty cycle selected by the On-Demand mode.  
An external signal, PROCHOT# (processor hot), is asserted when the processor detects that its  
temperature is at the thermal trip point. Bus snooping and interrupt latching are also active while  
the TCC is active. The temperature at which the thermal control circuit activates is not user  
configurable and is not software visible.  
Besides the thermal sensor and TCC, the Thermal Monitor feature also includes one ACPI register,  
performance monitoring logic, bits in three model specific registers (MSR), and one I/O pin  
(PROCHOT#). All are available to monitor and control the state of the Thermal Monitor feature.  
Thermal Monitor can be configured to generate an interrupt upon the assertion or de-assertion of  
PROCHOT#.  
If automatic mode is disabled, the processor will be operating out of specification. Regardless of  
enabling of the automatic or On-Demand modes, in the event of a catastrophic cooling failure the  
processor automatically shuts down when the silicon has reached a temperature of approximately  
135 °C. At this point the system bus signal THERMTRIP# goes active and stays active until  
RESET# has been initiated. THERMTRIP# activation is independent of processor activity and  
does not generate any bus cycles. If THERMTRIP# is asserted, processor core voltage (VCC) must  
be removed within 0.5 seconds.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
75  
Features  
6.3.1  
Thermal Diode  
The Pentium 4 processor on 0.13 micron process incorporates an on-die thermal diode. A thermal  
sensor located on the system board may monitor the die temperature of the processor for thermal  
management/long term die temperature change purposes. Table 6-2 and Table 6-3 provide the  
diode parameter and interface specifications. This thermal diode is separate from the Thermal  
Monitor’s thermal sensor and cannot be used to predict the behavior of the Thermal Monitor.  
Table 6-2. Thermal Diode Parameters  
Symbol  
IFW  
Parameter  
Forward Bias Current  
Min  
Typ  
Max  
Unit  
Notes1  
5
300  
1.0030  
µA  
1
n
Diode Ideality Factor  
Series Resistance  
1.0011  
1.0021  
3.64  
2,3,4  
RT  
2,3,4,5  
NOTES:  
1. Intel does not support or recommend operation of the thermal diode under reverse bias.  
2. Characterized at 75 °C.  
3. Not 100% tested. Specified by design characterization.  
4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode  
equation:  
I
FW=Is *(e(qVD/nkT) -1)  
Where IS = saturation current, q = electronic charge, VD = voltage across the diode, k = Boltzmann Constant,  
and T = absolute temperature (Kelvin).  
5. The series resistance, RT, is provided to allow for a more accurate measurement of the diode junction  
temperature. RT as defined includes the pins of the processor but does not include any socket resistance or  
board trace resistance between the socket and the external remote diode thermal sensor. RT can be used by  
remote diode thermal sensors with automatic series resistance cancellation to calibrate out this error term.  
Another application is that a temperature offset can be manually calculated and programmed into an offset  
register in the remote diode thermal sensors as exemplified by the equation:  
Terror = [RT*(N-1)*IFWmin]/[(nk/q)*ln N]  
Where Terror = sensor temperature error, N = sensor current ration, k = Boltzmann Constant, q = electronic  
charge.  
Table 6-3. Thermal Diode Interface  
Pin Name  
Pin Number  
Pin Description  
THERMDA  
THERMDC  
B3  
C4  
diode anode  
diode cathode  
76  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Boxed Processor Specifications  
Boxed Processor Specifications  
7
7.1  
Introduction  
The Pentium 4 processor on 0.13 micron process will also be offered as an Intel boxed processor.  
Intel boxed processors are intended for system integrators who build systems from motherboards  
and standard components. The boxed Pentium 4 processor on 0.13 micron process will be supplied  
with a cooling solution. This chapter documents motherboard and system requirements for the  
cooling solution that will be supplied with the boxed Pentium 4 processor on 0.13 micron process  
This chapter is particularly important for OEMs that manufacture motherboards for system  
integrators. Unless otherwise noted, all figures in this chapter are dimensioned in millimeters and  
inches [in brackets]. Figure 7-1 shows a mechanical representation of a boxed Pentium 4 processor  
on 0.13 micron process.  
Note: Drawings in this section reflect only the specifications on the Intel boxed processor product. These  
dimensions should not be used as a generic keep-out zone for all cooling solutions. It is the system  
designer's responsibility to consider their proprietary cooling solution when designing to the  
required keep-out zone on their system platform and chassis. Refer to the Intel® Pentium® 4  
Processor with 512-KB L2 Cache on 0.13 Micron Process Thermal Design Guidelines for further  
guidance.  
Figure 7-1. Mechanical Representation of the Boxed Processor  
NOTE: The airflow is into the center and out of the sides of the fan heatsink.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
77  
Boxed Processor Specifications  
7.2  
Mechanical Specifications  
7.2.1  
Boxed Processor Cooling Solution Dimensions  
This section describes the mechanical specifications of the boxed Pentium 4 processor on  
0.13 micron process. The boxed processor will be shipped with an unattached fan heatsink.  
Figure 7-1 shows a mechanical representation of the boxed Pentium 4 processor on 0.13 micron  
process.  
Clearance is required around the fan heatsink to ensure unimpeded airflow for proper cooling. The  
physical space requirements and dimensions for the boxed processor with assembled fan heatsink  
are shown in Figure 7-2 (Side Views), and Figure 7-3 (Top View). The airspace requirements for  
the boxed processor fan heatsink must also be incorporated into new motherboard and system  
designs. Airspace requirements are shown in Figure 7-6 and Figure 7-7. Note that some figures  
have centerlines shown (marked with alphabetic designations) to clarify relative dimensioning.  
Figure 7-2. Side View Space Requirements for the Boxed Processor  
78  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Boxed Processor Specifications  
Figure 7-3. Top View Space Requirements for the Boxed Processor  
7.2.2  
7.2.3  
Boxed Processor Fan Heatsink Weight  
The boxed processor fan heatsink will not weigh more than 450 grams. See Chapter 5 and the  
Intel® Pentium® 4 Processor with 512-KB L2 Cache on 0.13 Micron Process Thermal Design  
Guidelines for details on the processor weight and heatsink requirements.  
Boxed Processor Retention Mechanism and Heatsink  
Assembly  
The boxed processor thermal solution requires a processor retention mechanism and a heatsink  
attach clip assembly to secure the processor and fan heatsink in the baseboard socket. The boxed  
processor will not ship with retention mechanisms but will ship with the heatsink attach clip  
assembly. Motherboards designed for use by system integrators should include the retention  
mechanism that supports the boxed Pentium 4 processor on 0.13 micron process. Motherboard  
documentation should include appropriate retention mechanism installation instructions.  
Note: The processor retention mechanism based on the Intel reference design should be used to ensure  
compatibility with the heatsink attach clip assembly and the boxed processor thermal solution. The  
heatsink attach clip assembly is latched to the retention tab features at each corner of the retention  
mechanism.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
79  
Boxed Processor Specifications  
The target load applied by the clips to the processor heat spreader for Intel’s reference design is  
75 ± 15 lbf (maximum load is constrained by the package load capability). It is normal to observe a  
bow or bend in the board due to this compressive load on the processor package and the socket.  
The level of bow or bend depends on the motherboard material properties and component layout.  
Any additional board stiffening devices such as plates are not necessary and should not be used  
along with the reference mechanical components and boxed processor. Using such devices increase  
the compressive load on the processor package and socket, likely beyond the maximum load that is  
specified for those components. Refer to the Intel® Pentium® 4 Processor with 512-KB L2 Cache  
on 0.13 Micron Process Thermal Design Guidelines for details on the Intel reference design.  
7.3  
Electrical Requirements  
7.3.1  
Fan Heatsink Power Supply  
The boxed processor's fan heatsink requires a +12 V power supply. A fan power cable will be  
shipped with the boxed processor to draw power from a power header on the motherboard. The  
power cable connector and pinout are shown in Figure 7-4. Motherboards must provide a matched  
power header to support the boxed processor. Table 7-1 contains specifications for the input and  
output signals at the fan heatsink connector. The fan heatsink outputs a SENSE signal, which is an  
open-collector output that pulses at a rate of two pulses per fan revolution. A motherboard pull-up  
resistor provides VOH to match the system board-mounted fan speed monitor requirements, if  
applicable. Use of the SENSE signal is optional. If the SENSE signal is not used, pin 3 of the  
connector should be tied to GND.  
Note: The motherboard must supply a constant +12 V to the processor’s power header to ensure proper  
operation of the variable speed fan for the boxed processor.  
The power header on the baseboard must be positioned to allow the fan heatsink power cable to  
reach it. The power header identification and location should be documented in the platform  
documentation, or on the system board itself. Figure 7-5 shows the location of the fan power  
connector relative to the processor socket. The motherboard power header should be positioned  
within 4.33 inches from the center of the processor socket.  
Figure 7-4. Boxed Processor Fan Heatsink Power Cable Connector Description  
Pin  
1
Signal  
GND  
Straight square pin, 3-pin terminal housing with  
polarizing ribs and friction locking ramp.  
2
3
+12V  
0.100" pin pitch, 0.025" square pin width.  
SENSE  
Waldom*/Molex* P/N 22-01-3037 or equivalent.  
Match with straight pin, friction lock header on motherboard  
Waldom/Molex P/N 22-23-2031, AMP* P/N 640456-3,  
or equivalent.  
1
2 3  
80  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Boxed Processor Specifications  
Table 7-1. Fan Heatsink Power and Signal Specifications  
Description  
Min  
Typ  
Max  
Unit  
Notes  
+12 V: 12 Volt fan power supply  
IC: Fan current draw  
10.2  
12  
13.8  
740  
V
mA  
SENSE: SENSE frequency  
2
pulses per fan revolution  
1
NOTE:  
1. Motherboard should pull this pin up to VCC with a resistor.  
Figure 7-5. MotherBoard Power Header Placement Relative to Processor Socket  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
81  
Boxed Processor Specifications  
7.4  
Thermal Specifications  
This section describes the cooling requirements of the fan heatsink solution utilized by the boxed  
processor.  
7.4.1  
Boxed Processor Cooling Requirements  
The boxed processor may be directly cooled with a fan heatsink. However, meeting the processor's  
temperature specification is also a function of the thermal design of the entire system, and is  
ultimately the responsibility of the system integrator. The processor temperature specification is  
found in Chapter 5. The boxed processor fan heatsink is able to keep the processor temperature  
within the specifications (see Table 5-1) in chassis that provide good thermal management. For the  
boxed processor fan heatsink to operate properly, it is critical that the airflow provided to the fan  
heatsink be unimpeded. Airflow is into the center and out of the sides of the fan heatsink. Airspace  
is required around the fan to ensure that the airflow through the fan heatsink is not blocked.  
Blocking the airflow to the fan heatsink reduces the cooling efficiency and decreases fan life.  
Figure 7-6 and Figure 7-7 illustrate an acceptable airspace clearance for the fan heatsink. The air  
temperature entering the fan should be kept below 40 °C. Again, meeting the processor's  
temperature specification is the responsibility of the system integrator.  
Figure 7-6. Boxed Processor Fan Heatsink Airspace Keep-Out Requirements (Side 1 View)  
82  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Boxed Processor Specifications  
Figure 7-7. Boxed Processor Fan Heatsink Airspace Keep-Out Requirements (Side 2 View)  
7.4.2  
Variable Speed Fan  
The boxed processor fan will operate at different speeds over a short range of internal chassis  
temperatures. This allows the processor fan to operate at a lower speed and noise level, while  
internal chassis temperatures are low. If internal chassis temperature increases beyond a lower set  
point, the fan speed will rise linearly with the internal temperature until the higher set point is  
reached. At that point, the fan speed is at its maximum. As fan speed increases, so does fan noise  
levels. Systems should be designed to provide adequate air around the boxed processor fan  
heatsink that remains below the lower set point. These set points, represented in Figure 7-8 and  
Table 7-2, can vary by a few degrees from fan heatsink to fan heatsink. The internal chassis  
temperature should be kept below 38 ºC. Meeting the processor’s temperature specification  
(see Chapter 5) is the responsibility of the system integrator.  
Figure 7-8. Boxed Processor Fan Heatsink Set Points  
Higher Set Point  
Highest Noise Level  
Increasing Fan  
Speed & Noise  
Lower Set Point  
Lowest Noise Level  
X
Y
Z
Internal Chassis Temperature (Degrees C)  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
83  
Boxed Processor Specifications  
Table 7-2. Boxed Processor Fan Heatsink Set Points  
Boxed Processor Fan  
Boxed Processor Fan Speed  
Notes  
Heatsink Set Point (ºC)  
Boxed Intel® Pentium® 4 Processors 2.80 GHz (and below)  
When the internal chassis temperature is below or equal to this set point,  
X 33  
the fan operates at its lowest speed. Recommended maximum internal  
chassis temperature for nominal operating environment.  
1
When the internal chassis temperature is at this point, the fan operates  
between its lowest and highest speeds. Recommended maximum internal  
chassis temperature for worst-case operating environment.  
Y = 40  
When the internal chassis temperature is above or equal to this set point,  
the fan operates at its highest speed.  
Z 43  
1
1
Boxed Intel® Pentium® 4 Processors 3 GHz (and above)  
When the internal chassis temperature is below or equal to this set point,  
X 32  
the fan operates at its lowest speed. Recommended maximum internal  
chassis temperature for nominal operating environment.  
When the internal chassis temperature is at this point, the fan operates  
between its lowest and highest speeds. Recommended maximum internal  
chassis temperature for worst-case operating environment.  
Y = 38  
When the internal chassis temperature is above or equal to this set point,  
the fan operates at its highest speed.  
Z 40  
1
NOTE:  
1. Set point variance is approximately ± 1 °C from fan heatsink to fan heatsink.  
84  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
Debug Tools Specifications  
Debug Tools Specifications  
8
Refer to the ITP 700 Debug Port Design Guide and the appropriate platform design guidelines for  
more detailed information regarding debug tools specifications (such as integration details).  
8.1  
Logic Analyzer Interface (LAI)  
Intel is working with two logic analyzer vendors to provide logic analyzer interfaces (LAIs) for use  
in debugging Pentium 4 processors on 0.13 micron process systems. Tektronix and Agilent should  
be contacted to get specific information about their logic analyzer interfaces. The following  
information is general in nature. Specific information must be obtained from the logic analyzer  
vendor.  
Due to the complexity of the Pentium 4 processor on 0.13 micron process systems, the LAI is  
critical in providing the ability to probe and capture system bus signals. There are two sets of  
considerations to keep in mind when designing a Pentium 4 processor on 0.13 micron process  
system that can make use of an LAI: mechanical and electrical.  
8.1.1  
8.1.2  
Mechanical Considerations  
The LAI is installed between the processor socket and the processor. The LAI pins plug into the  
socket, while the processor pins plug into a socket on the LAI. Cabling that is part of the LAI  
egresses the system to allow an electrical connection between the processor and a logic analyzer.  
The maximum volume occupied by the LAI, known as the keepout volume, as well as the cable  
egress restrictions, should be obtained from the logic analyzer vendor. System designers must  
make sure that the keepout volume remains unobstructed inside the system. Note that it is possible  
that the keepout volume reserved for the LAI may differ from the space normally occupied by the  
Pentium 4 processor on 0.13 micron process heatsink. If this is the case, the logic analyzer vendor  
will provide a cooling solution as part of the LAI.  
Electrical Considerations  
The LAI will also affect the electrical performance of the system bus; therefore, it is critical to  
obtain electrical load models from each of the logic analyzer vendors to be able to run system level  
simulations to prove that their tool will work in the system. Contact the logic analyzer vendor for  
electrical specifications and load models for the LAI solution they provide.  
Intel® Pentium® 4 Processor on 0.13 Micron Process Datasheet  
85  

相关型号:

RK80532PG072512

Microprocessor, 32-Bit, 2800MHz, CMOS, CPGA478, FLIP CHIP, MICRO, PGA-478
INTEL

RK80532PG072512/SL78Y

RISC Microprocessor, 32-Bit, 2800MHz, CMOS, CPGA478
INTEL

RK80532PG080512

RISC Microprocessor, 32-Bit, 3000MHz, CMOS, PPGA478
INTEL

RK80532PG088512/SL6WE

RISC Microprocessor, 32-Bit, 3200MHz, CMOS, CPGA478
INTEL

RK80532PG088512/SL792

RISC Microprocessor, 32-Bit, 3200MHz, CMOS, CPGA478
INTEL

RK80532PG0962M

RISC Microprocessor, 32-Bit, 3400MHz, CMOS, PPGA478
INTEL

RK80532RC060128

Microprocessor, 32-Bit, 2500MHz, CMOS, CPGA478, FLIP CHIP, PGA2-478
INTEL

RK80532RC064128

2600 MHz, MICROPROCESSOR, CPGA478, FLIP CHIP, PGA2-478
ROCHESTER

RK80534PC041512/SL62Q

RISC Microprocessor, 32-Bit, 2000MHz, CMOS, PPGA478
INTEL

RK80546KG0721M

RISC Microprocessor, 32-Bit, 2800MHz, CMOS, PPGA604
INTEL

RK80546KG0721M/SL7PD

RISC Microprocessor, 32-Bit, 2800MHz, CMOS, PPGA604
INTEL

RK80546KG0722MM

Microprocessor, 64-Bit, 2800MHz, CMOS, CPGA604, FLIP CHIP, MICRO PGA-604
INTEL