RC28F800C3BC70 [INTEL]

Advanced+ Boot Block Flash Memory (C3); 高级+引导块闪存( C3 )
RC28F800C3BC70
型号: RC28F800C3BC70
厂家: INTEL    INTEL
描述:

Advanced+ Boot Block Flash Memory (C3)
高级+引导块闪存( C3 )

闪存
文件: 总68页 (文件大小:1132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
£
Intel Advanced+ Boot Block Flash  
Memory (C3)  
28F800C3, 28F160C3, 28F320C3, 28F640C3 (x16)  
Datasheet  
Product Features  
Flexible SmartVoltage Technology  
2.7 V– 3.6 V Read/Program/Erase  
12 V for Fast Production Programming  
128-bit Protection Register  
64 bit Unique Device Identifier  
64 bit User Programmable OTP Cells  
1.65 V–2.5 V or 2.7 V–3.6 V I/O Option  
Extended Cycling Capability  
Minimum 100,000 Block Erase Cycles  
Reduces Overall System Power  
Software  
High Performance  
Intel® Flash Data Integrator (FDI)  
Supports Top or Bottom Boot Storage,  
Streaming Data (e.g., voice)  
Intel Basic Command Set  
Common Flash Interface (CFI)  
2.7 V– 3.6 V: 70 ns Max Access Time  
Optimized Architecture for Code Plus  
Data Storage  
Eight 4 Kword Blocks, Top or Bottom  
Parameter Boot  
Standard Surface Mount Packaging  
48-Ball µBGA*/VFBGA  
Up to One Hundred-Twenty-Seven 32  
Kword Blocks  
Fast Program Suspend Capability  
Fast Erase Suspend Capability  
64-Ball Easy BGA Packages  
48-Lead TSOP Package  
ETOX™ VIII (0.13 µm) Flash  
Flexible Block Locking  
Technology  
Lock/Unlock Any Block  
Full Protection on Power-Up  
WP# Pin for Hardware Block Protection  
16, 32 Mbit  
ETOX™ VII (0.18 µm) Flash Technology  
16, 32, 64 Mbit  
Low Power Consumption  
—9 mA Typical Read  
ETOX™ VI (0.25 µm) Flash Technology  
8, 16 and 32 Mbit  
—7 A Typical Standby with Automatic  
Power Savings Feature (APS)  
Extended Temperature Operation  
40 °C to +85 °C  
The Intel® Advanced+ Book Block Flash Memory (C3) device, manufactured on Intel’s latest  
0.13 µm and 0.18 µm technologies, represents a feature-rich solution for low-power applications.  
The C3 device incorporates low-voltage capability (3 V read, program, and erase) with high-  
speed, low-power operation. Flexible block locking allows any block to be independently locked  
or unlocked. Add to this the Intel® Flash Data Integrator (FDI) software and you have a cost-  
effective, flexible, monolithic code plus data storage solution. Intel® Advanced+ Boot Block Flash  
Memory (C3) products will be available in 48-lead TSOP, 48-ball CSP, and 64-ball Easy BGA  
packages. Additional information on this product family can be obtained by accessing the Intel®  
Flash website: http://www.intel.com/design/flash.  
Notice: This specification is subject to change without notice. Verify with your local Intel sales  
office that you have the latest datasheet before finalizing a design.  
Order Number: 290645-017  
October 2003  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY  
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN  
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS  
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES  
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER  
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The 28F800C3, 28F160C3, 28F320C3, 28F640C3 may contain design defects or errors known as errata which may cause the product to deviate from  
published specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-  
548-4725 or by visiting Intel's website at http://www.intel.com.  
Copyright © Intel Corporation, 2003  
*Third-party brands and names are the property of their respective owners.  
2
Datasheet  
Contents  
Contents  
1.0 Introduction....................................................................................................................................7  
1.1  
1.2  
1.3  
Document Purpose...............................................................................................................7  
Nomenclature .......................................................................................................................7  
Conventions..........................................................................................................................7  
2.0 Device Description ........................................................................................................................8  
2.1  
2.2  
2.3  
2.4  
2.5  
Product Overview .................................................................................................................8  
Ballout Diagram ....................................................................................................................8  
Signal Descriptions .............................................................................................................13  
Block Diagram ....................................................................................................................14  
Memory Map.......................................................................................................................15  
3.0 Device Operations.......................................................................................................................17  
3.1  
Bus Operations ...................................................................................................................17  
3.1.1 Read ......................................................................................................................17  
3.1.2 Write ......................................................................................................................17  
3.1.3 Output Disable .......................................................................................................17  
3.1.4 Standby..................................................................................................................18  
3.1.5 Reset .....................................................................................................................18  
4.0 Modes of Operation.....................................................................................................................19  
4.1  
Read Mode .........................................................................................................................19  
4.1.1 Read Array.............................................................................................................19  
4.1.2 Read Identifier .......................................................................................................19  
4.1.3 CFI Query ..............................................................................................................20  
4.1.4 Read Status Register.............................................................................................20  
4.1.4.1 Clear Status Register.............................................................................21  
Program Mode ....................................................................................................................21  
4.2.1 12-Volt Production Programming...........................................................................21  
4.2.2 Suspending and Resuming Program.....................................................................22  
Erase Mode ........................................................................................................................22  
4.3.1 Suspending and Resuming Erase .........................................................................23  
4.2  
4.3  
5.0 Security Modes ............................................................................................................................27  
5.1  
Flexible Block Locking ........................................................................................................27  
5.1.1 Locking Operation..................................................................................................28  
5.1.1.1 Locked State ..........................................................................................28  
5.1.1.2 Unlocked State.......................................................................................28  
5.1.1.3 Lock-Down State....................................................................................28  
Reading Block-Lock Status.................................................................................................28  
Locking Operations during Erase Suspend ........................................................................29  
Status Register Error Checking ..........................................................................................29  
128-Bit Protection Register.................................................................................................29  
5.5.1 Reading the Protection Register............................................................................30  
5.5.2 Programming the Protection Register....................................................................30  
5.5.3 Locking the Protection Register.............................................................................30  
5.2  
5.3  
5.4  
5.5  
5.6  
V
PP Program and Erase Voltages ......................................................................................30  
Datasheet  
3
Contents  
5.6.1 Program Protection................................................................................................ 31  
6.0 Power Consumption.................................................................................................................... 32  
6.1  
6.2  
6.3  
6.4  
6.5  
Active Power (Program/Erase/Read).................................................................................. 32  
Automatic Power Savings (APS) ........................................................................................32  
Standby Power ................................................................................................................... 32  
Deep Power-Down Mode.................................................................................................... 32  
Power and Reset Considerations .......................................................................................33  
6.5.1 Power-Up/Down Characteristics............................................................................33  
6.5.2 RP# Connected to System Reset.......................................................................... 33  
6.5.3 VCC, VPP and RP# Transitions ............................................................................33  
Power Supply Decoupling................................................................................................... 34  
6.6  
7.0 Thermal and DC Characteristics................................................................................................ 34  
7.1  
7.2  
7.3  
7.4  
Absolute Maximum Ratings................................................................................................ 34  
Operating Conditions.......................................................................................................... 35  
DC Current Characteristics................................................................................................. 35  
DC Voltage Characteristics................................................................................................. 38  
8.0 AC Characteristics ...................................................................................................................... 39  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
AC Read Characteristics .................................................................................................... 39  
AC Write Characteristics..................................................................................................... 43  
Erase and Program Timings............................................................................................... 47  
Reset Specifications ........................................................................................................... 48  
AC I/O Test Conditions....................................................................................................... 49  
Device Capacitance............................................................................................................49  
Appendix A Write State Machine States.............................................................................................50  
Appendix B Flow Charts ......................................................................................................................52  
Appendix C Common Flash Interface.................................................................................................58  
Appendix D Mechanical Specifications..............................................................................................64  
Appendix E Additional Information ....................................................................................................67  
Appendix F Ordering Information.......................................................................................................68  
4
Datasheet  
Contents  
Revision History  
Date of  
Version  
Revision  
Description  
05/12/98  
-001  
Original version  
48-Lead TSOP package diagram change  
µBGA package diagrams change  
32-Mbit ordering information change (Section 6)  
CFI Query Structure Output Table Change (Table C2)  
CFI Primary-Vendor Specific Extended Query Table Change for Optional  
Features and Command Support change (Table C8)  
Protection Register Address Change  
07/21/98  
-002  
I
test conditions clarification (Section 4.3)  
PPD  
µBGA package top side mark information clarification (Section 6)  
Byte-Wide Protection Register Address change  
V
V
Specification change (Section 4.3)  
Maximum Specification change (Section 4.3)  
test conditions clarification (Section 4.3)  
IH  
IL  
10/03/98  
12/04/98  
-003  
-004  
I
CCS  
Added Command Sequence Error Note (Table 7)  
Datasheet renamed from 3 Volt Advanced Boot Block, 8-, 16-, 32-Mbit Flash  
Memory Family.  
Added t  
/t  
and t  
(Section 4.6)  
BHWH BHEH  
QVBL  
Programming the Protection Register clarification (Section 3.4.2)  
12/31/98  
02/24/99  
-005  
-006  
Removed all references to x8 configurations  
Removed reference to 40-Lead TSOP from front page  
Added Easy BGA package (Section 1.2)  
Removed 1.8 V I/O references  
Locking Operations Flowchart changed (Appendix B)  
06/10/99  
-007  
Added t  
(Section 4.6)  
WHGL  
CFI Primary Vendor-Specific Extended Query changed (Appendix C)  
Max I changed to 25 µA  
CCD  
03/20/00  
04/24/00  
-008  
-009  
Table 10, added note indicating V Max = 3.3 V for 32-Mbit device  
CC  
Added specifications for 0.18 micron product offerings throughout document  
Added 64-Mbit density  
Changed references of 32Mbit 80ns devices to 70ns devices to reflect the  
faster product offering.  
10/12/00  
-010  
Changed VccMax=3.3V reference to indicate that the affected product is the  
0.25µm 32Mbit device.  
Minor text edits throughout document.  
Added 1.8v I/O operation documentation where applicable  
Added TSOP PCN ‘Pin-1’ indicator information  
Changed references in 8 x 8 BGA pinout diagrams from ‘GND’ to ‘Vssq’  
Added ‘Vssq’ to Pin Descriptions Information  
7/20/01  
-011  
Removed 0.4 µm references in DC characteristics table  
Corrected 64Mb package Ordering Information from 48-uBGA to 48-VFBGA  
Corrected ‘bottom’ parameter block sizes to on 8Mb device to 8 x 4KWords  
Minor text edits throughout document  
10/02/01  
2/05/02  
-012  
-013  
Added specifications for 0.13 micron product offerings throughout document  
Corrected Iccw / Ippw / Icces /Ippes values.  
Added mechanicals for 16Mb and 64Mb  
Minor text edits throughout document.  
Datasheet  
5
Contents  
Date of  
Revision  
Version  
Description  
Updated 64Mb product offerings.  
Updated 16Mb product offerings.  
4/05/02  
-014  
Revised and corrected DC Characteristics Table.  
Added mechanicals for Easy BGA.  
Minor text edits throughout document.  
3/06/03  
10/03  
-016  
-017  
Complete technical update.  
Corrected information in the Device Geometry Details table, address 0x34.  
6
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
1.0  
Introduction  
1.1  
Document Purpose  
This datasheet contains the specifications for the Intel® Advanced+ Boot Block Flash Memory  
(C3) device family. These flash memories add features such as instant block locking and protection  
registers that can be used to enhance the security of systems.  
1.2  
Nomenclature  
0x  
0b  
Hexadecimal prefix  
Binary prefix  
Byte  
Word  
Kword  
Mword  
Kb  
8 bits  
16 bits  
1024 words  
1,048,576 words  
1024 bits  
KB  
1024 bytes  
Mb  
MB  
1,048,576 bits  
1,048,576 bytes  
APS  
CUI  
OTP  
PR  
PRD  
PLR  
RFU  
SR  
Automatic Power Savings  
Command User Interface  
One Time Programmable  
Protection Register  
Protection Register Data  
Protection Lock Register  
Reserved for Future Use  
Status Register  
SRD  
WSM  
Status Register Data  
Write State Machine  
1.3  
Conventions  
The terms pin and signal are often used interchangeably to refer to the external signal connections  
on the package. (ball is the term used for CSP).  
Group Membership Brackets: Square brackets will be used to designate group membership or to  
define a group of signals with similar function (i.e. A[21:1], SR[4:1])  
Set: When referring to registers, the term set means the bit is a logical 1.  
Clear: When referring to registers, the term clear means the bit is a logical 0.  
Block: A group of bits (or words) that erase simultaneously with one block erase instruction.  
Main Block: A block that contains 32 Kwords.  
Parameter Block: A block that contains 4 Kwords.  
Datasheet  
7
£
Intel Advanced+ Boot Block Flash Memory (C3)  
2.0  
Device Description  
This section provides an overview of the Intel® Advanced+ Boot Block Flash Memory (C3) device  
features, packaging, signal naming, and device architecture.  
2.1  
Product Overview  
The C3 device provides high-performance asynchronous reads in package-compatible densities  
with a 16 bit data bus. Individually-erasable memory blocks are optimally sized for code and data  
storage. Eight 4 Kword parameter blocks are located in the boot block at either the top or bottom of  
the device’s memory map. The rest of the memory array is grouped into 32 Kword main blocks.  
The device supports read-array mode operations at various I/O voltages (1.8 V and 3 V) and erase  
and program operations at 3 V or 12 V VPP. With the 3 V I/O option, VCC and VPP can be tied  
together for a simple, ultra-low-power design. In addition to I/O voltage flexibility, the dedicated  
VPP input provides complete data protection when VPP VPPLK  
.
The device features a 128-bit protection register enabling security techniques and data protection  
schemes through a combination of factory-programmed and user-programmable OTP data  
registers. Zero-latency locking/unlocking on any memory block provides instant and complete  
protection for critical system code and data. Additional block lock-down capability provides  
hardware protection where software commands alone cannot change the block’s protection status.  
A command User Interface(CUI) serves as the interface between the system processor and internal  
operation of the device. A valid command sequence issued to the CUI initiates device automation.  
An internal Write State Machine (WSM) automatically executes the algorithms and timings  
necessary for block erase, program, and lock-bit configuration operations.  
The device offers three low-power saving features: Automatic Power Savings (APS), standby  
mode, and deep power-down mode. The device automatically enters APS mode following read  
cycle completion. Standby mode begins when the system deselects the flash memory by  
deasserting CE#. The deep power-down mode begins when RP# is asserted, which deselects the  
memory and places the outputs in a high-impedance state, producing ultra-low power savings.  
Combined, these three power-savings features significantly enhanced power consumption  
flexibility.  
2.2  
Ballout Diagram  
The C3 device is available in 48-lead TSOP, 48-ball VF BGA, 48-ball µBGA, and Easy BGA  
packages. (Refer to Figure 1 on page 9, Figure 3 on page 11, and Figure 4 on page 12,  
respectively.)  
8
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Figure 1. 48-Lead TSOP Package  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
VCCQ  
GND  
DQ15  
DQ7  
DQ14  
DQ6  
DQ13  
DQ5  
DQ12  
DQ4  
VCC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
OE#  
GND  
CE#  
A0  
A8  
64 M  
32 M  
A21  
A20  
WE#  
RP#  
VPP  
WP#  
A19  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
Advanced+ Boot Block  
48-Lead TSOP  
12 mm x 20 mm  
TOP VIEW  
16 M  
A2  
A1  
NOTES:  
1. For lower densities, upper address should be treated as NC. For example, a 16-Mbit device will have NC on  
Pins 9 and 10.  
Datasheet  
9
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Figure 2. Mark for Pin-1 indicator on 48-Lead 8Mb, 16Mb and 32Mb TSOP  
Current Mark:  
New Mark:  
£
Note: The topside marking on 8 Mb, 16 Mb, and 32 Mb Intel Advanced and Advanced + Boot Block  
48L TSOP products will convert to a white ink triangle as a Pin 1 indicator. Products without the  
white triangle will continue to use a dimple as a Pin 1 indicator. There are no other changes in  
package size, materials, functionality, customer handling, or manufacturability. Product will  
continue to meet Intel stringent quality requirements. Products affected are Intel Ordering Codes  
shown in Table 1.  
Table 1. 48-Lead TSOP  
Extended 64 Mbit  
Extended 32 Mbit  
Extended 16 Mbit  
Extended 8 Mbit  
TE28F800C3TA90  
TE28F160C3TD70  
TE28F160C3BD70  
TE28F640C3TC80  
TE28F640C3BC80  
TE28F320C3TD70  
TE28F320C3BD70  
TE28F800C3BA90  
TE28F160C3TC80  
TE28F160C3BC80  
TE28F800C3TA110  
TE28F800C3BA110  
TE28F320C3TC70  
TE28F320C3BC70  
TE28F320C3TC90  
TE28F320C3BC90  
TE28F160C3TA90  
TE28F160C3BA90  
TE28F320C3TA100  
TE28F320C3BA100  
TE28F160C3TA110  
TE28F160C3BA110  
TE28F320C3TA110  
TE28F320C3BA110  
10  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Figure 3. 48-Ball µBGA* and 48-Ball Very Fine Pitch BGA (VF BGA) Chip Size Package  
(Top View, Ball Down)1,2,3  
1
2
3
4
5
6
7
8
16M  
A
B
C
D
E
F
A13  
A11  
A8  
VPP  
WP#  
A19  
A7  
A4  
A14  
A15  
A10  
A12  
D14  
D15  
D7  
WE#  
A9  
RP#  
A21  
D11  
D12  
D4  
A18  
A20  
D2  
A17  
A6  
A5  
A3  
A2  
A1  
64M  
32M  
A16  
D5  
D8  
CE#  
D0  
A0  
VCCQ  
GND  
D6  
D3  
D9  
GND  
OE#  
D13  
VCC  
D10  
D1  
NOTES:  
1. Shaded connections indicate the upgrade address connections. Routing is not recommended in this area.  
2. A19 denotes 16 Mbit; A20 denotes 32 Mbit; A21 denotes 64 Mbit.  
3. Unused address balls are not populated.  
Datasheet  
11  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Figure 4. 64-Ball Easy BGA Package1,2  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
A
B
C
A
B
C
A1  
A6 A18 VPP VCC GND A10 A15  
A15 A10 GND VCC VPP A18 A6  
A1  
(1)  
(1)  
(1)  
(1)  
A2 A17 A19 RP# DU A20  
A11 A14  
A12 A13  
A14 A11 A20  
DU RP# A19  
A17 A2  
(1)  
(1)  
A3  
A4  
A7 WP# WE# DU A21  
A13 A12 A21  
DU WE# WP# A7  
A3  
D
D
A5 DU DU DU DU A8 A9  
A9  
A8 DU DU DU DU A5 A4  
E
F
E
F
DQ DQ DQ DQ DQ DQ DU DU  
DU DU DQ DQ DQ DQ DQ DQ  
8
1
9
3
12  
6
6
12  
3
9
1
8
CE# DQ DQ DQ DQ DQ DU DU  
DU DU DQ DQ DQ DQ  
DQ  
10  
CE#  
0
10  
11  
5
14  
14  
5
11  
0
G
H
G
H
SSQ  
SSQ  
A0 VSSQ DQ DQ DQ DQ  
V
A16  
A16  
V
D15 D13 DQ DQ VSSQ A0  
4 2  
2
4
13  
15  
(2)  
(2)  
A22 OE# VCCQ VCC VSSQ DQ VCCQ DU  
DU VCCQ D7 VSSQ VCC VCCQ OE# A22  
Bottom View - Ball Side  
7
Top View  
- Ball Side  
NOTES:  
1. A19 denotes 16 Mbit; A20 denotes 32 Mbit; A21 denotes 64 Mbit.  
2. Unused address balls are not populated.  
12  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
2.3  
Signal Descriptions  
Table 2 lists the active signals used and provides a brief description of each.  
Table 2. Signal Descriptions  
Symbol  
Type  
Name and Function  
ADDRESS INPUTS for memory addresses. Address are internally latched during a program or erase  
cycle.  
8 Mbit: AMAX= A18  
16 Mbit: AMAX = A19  
32 Mbit: AMAX = A20  
64 Mbit: AMAX = A21  
A[MAX:0]  
DQ[15:0]  
INPUT  
DATA INPUTS/OUTPUTS: Inputs data and commands during a write cycle; outputs data during read  
cycles. Inputs commands to the Command User Interface when CE# and WE# are active. Data is  
OUTPUT internally latched. The data pins float to tri-state when the chip is de-selected or the outputs are  
disabled.  
INPUT/  
CHIP ENABLE: Active-low input. Activates the internal control logic, input buffers, decoders and sense  
amplifiers. CE# is active low. CE# high de-selects the memory device and reduces power consumption  
to standby levels.  
CE#  
OE#  
INPUT  
INPUT  
OUTPUT ENABLE: Active-low input. Enables the device’s outputs through the data buffers during a  
Read operation.  
RESET/DEEP POWER-DOWN: Active-low input.  
When RP# is at logic low, the device is in reset/deep power-down mode, which drives the outputs to  
High-Z, resets the Write State Machine, and minimizes current levels (ICCD).  
RP#  
INPUT  
INPUT  
When RP# is at logic high, the device is in standard operation. When RP# transitions from logic-low to  
logic-high, the device resets all blocks to locked and defaults to the read array mode.  
WRITE ENABLE: Active-low input. WE# controls writes to the device. Address and data are latched on  
the rising edge of the WE# pulse.  
WE#  
WRITE PROTECT: Active-low input.  
When WP# is a logic low, the lock-down mechanism is enabled and blocks marked lock-down cannot  
be unlocked through software.  
WP#  
INPUT  
When WP# is logic high, the lock-down mechanism is disabled and blocks previously locked-down are  
now locked and can be unlocked and locked through software. After WP# goes low, any blocks  
previously marked lock-down revert to the lock-down state.  
See Section 5.0, “Security Modes” on page 27 for details on block locking.  
PROGRAM/ERASE POWER SUPPLY: Operates as an input at logic levels to control complete device  
protection. Supplies power for accelerated Program and Erase operations in 12 V ± 5% range. This pin  
cannot be left floating.  
Lower VPP VPPLK to protect all contents against Program and Erase commands.  
INPUT/  
POWER  
Set VPP = VCC for in-system Read, Program and Erase operations. In this configuration, VPP can  
drop as low as 1.65 V to allow for resistor or diode drop from the system supply.  
VPP  
Apply VPP to 12 V ± 5% for faster program and erase in a production environment. Applying 12 V ± 5%  
to VPP can only be done for a maximum of 1000 cycles on the main blocks and 2500 cycles on the  
boot blocks. VPP may be connected to 12 V for a total of 80 hours maximum. See Section 5.6 for  
details on VPP voltage configurations.  
VCC  
VCCQ  
GND  
DU  
POWER DEVICE CORE POWER SUPPLY: Supplies power for device operations.  
OUTPUT POWER SUPPLY: Output-driven source voltage. This ball can be tied directly to VCC if  
operating within VCC range.  
POWER  
POWER GROUND: For all internal circuitry. All ground inputs must be connected.  
DON’T USE: Do not use this ball. This ball should not be connected to any power supplies, signals or  
other balls, and must be left floating.  
-
NC  
-
NO CONNECT: Pin must be left floating.  
Datasheet  
13  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
2.4  
Block Diagram  
DQ 0-DQ15  
V
CCQ  
Output Buffer  
Input Buffer  
Identifier  
Register  
Status  
Register  
I/O Logic  
CE#  
WE#  
OE#  
Command  
User  
Interface  
Power  
Reduction  
Control  
Data  
Comparator  
RP#  
WP#  
Y-Decoder  
Y-Gating/Sensing  
Write State  
Machine  
Program/Erase  
Voltage Switch  
A[MAX:MIN]  
Input Buffer  
V
PP  
Address  
Latch  
X-Decoder  
V
CC  
GND  
Address  
Counter  
14  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
2.5  
Memory Map  
The C3 device is asymmetrically blocked, which enables system code and data integration within a  
single flash device. The bulk of the array is divided into 32 Kword main blocks that can store code  
or data, and 4 Kword boot blocks to facilitate storage of boot code or for frequently changing small  
parameters. See Table 3, “Top Boot Memory Map” on page 15 and Table 4, “Bottom Boot Memory  
Map” on page 16 for details.  
Table 3. Top Boot Memory Map  
8-Mbit  
16-Mbit  
Memory  
Addressing  
(HEX)  
32-Mbit  
Memory  
Addressing  
(HEX)  
64-Mbit Memory  
Addressing  
(HEX)  
Size  
(KW)  
Memory  
Size  
(KW)  
Size  
(KW)  
Size  
(KW)  
Blk  
Blk  
Blk  
Blk  
Addressing  
(HEX)  
7F000-  
7FFFF  
1FF000-  
1FFFFF  
4
4
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
4
4
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
FF000-FFFFF  
FE000-FEFFF  
FD000-FDFFF  
FC000-FCFFF  
FB000-FBFFF  
FA000-FAFFF  
F9000-F9FFF  
F8000-F8FFF  
F0000-F7FFF  
E8000-EFFFF  
E0000-E7FFF  
D8000-DFFFF  
4
4
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
4
4
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
3FF000-3FFFFF  
3FE000-3FEFFF  
3FD000-3FDFFF  
3FC000-3FCFFF  
3FB000-3FBFFF  
3FA000-3FAFFF  
3F9000-3F9FFF  
3F8000-3F8FFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
3D8000-3DFFFF  
7E000-  
7EFFF  
1FE000-  
1FEFFF  
7D000-  
7DFFF  
1FD000-  
1FDFFF  
4
4
4
4
7C000-  
7CFFF  
1FC000-  
1FCFFF  
4
4
4
4
7B000-  
7BFFF  
1FB000-  
1FBFFF  
4
4
4
4
7A000-  
7AFFF  
1FA000-  
1FAFFF  
4
4
4
4
1F9000-  
1F9FFF  
4
79000-79FFF  
78000-78FFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
4
4
4
1F8000-  
1F8FFF  
4
4
4
4
1F0000-  
1F7FFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1E8000-  
1EFFFF  
1E0000-  
1E7FFF  
1D8000-  
1DFFFF  
...  
32  
32  
32  
...  
2
...  
...  
...  
2
...  
...  
...  
2
...  
...  
...  
2
...  
10000-17FFF  
8000-0FFFF  
0000-07FFF  
32  
32  
32  
10000-17FFF  
08000-0FFFF  
00000-07FFF  
32  
32  
32  
10000-17FFF  
08000-0FFFF  
00000-07FFF  
32  
32  
32  
10000-17FFF  
08000-0FFFF  
00000-07FFF  
1
1
1
1
0
0
0
0
Datasheet  
15  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 4. Bottom Boot Memory Map  
8-Mbit  
Memory  
Addressing  
(HEX)  
16-Mbit  
Memory  
Addressing  
(HEX)  
32-Mbit  
Memory  
Addressing  
(HEX)  
64-Mbit Memory  
Addressing  
(HEX)  
Size  
(KW)  
Size  
(KW)  
Size  
(KW)  
Size  
(KW)  
Blk  
Blk  
Blk  
Blk  
32  
32  
32  
32  
...  
32  
32  
32  
4
22  
21  
20  
19  
...  
10  
9
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
...  
32  
32  
32  
32  
...  
32  
32  
32  
4
38  
37  
36  
35  
...  
10  
9
F8000-FFFFF  
F0000-F7FFF  
E8000-EFFFF  
E0000-E7FFF  
...  
32  
32  
32  
32  
...  
32  
32  
32  
4
70  
69  
68  
67  
...  
10  
9
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
...  
32  
32  
32  
32  
.
134  
133  
132  
131  
...  
10  
9
3F8000-3FFFFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
...  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
32  
32  
32  
4
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
8
8
8
8
7
7
7
7
4
6
4
6
4
6
4
6
4
5
4
5
4
5
4
5
4
4
4
4
4
4
4
4
4
3
4
3
4
3
4
3
4
2
4
2
4
2
4
2
4
1
4
1
4
1
4
1
4
0
4
0
4
0
4
0
16  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
3.0  
Device Operations  
The C3 device uses a CUI and automated algorithms to simplify Program and Erase operations.  
The CUI allows for 100% CMOS-level control inputs and fixed power supplies during erasure and  
programming.  
The internal WSM completely automates Program and Erase operations while the CUI signals the  
start of an operation and the status register reports device status. The CUI handles the WE#  
interface to the data and address latches, as well as system status requests during WSM operation.  
3.1  
Bus Operations  
The C3 device performs read, program, and erase operations in-system via the local CPU or  
microcontroller. Four control pins (CE#, OE#, WE#, and RP#) manage the data flow in and out of  
the flash device. Table 5 on page 17 summarizes these bus operations.  
Table 5. Bus Operations  
Mode  
RP#  
CE#  
OE#  
WE#  
DQ[15:0]  
Read  
Write  
VIH  
VIH  
VIH  
VIH  
VIL  
VIL  
VIL  
VIL  
VIH  
X
VIL  
VIH  
VIH  
X
VIH  
VIL  
VIH  
X
DOUT  
DIN  
Output Disable  
Standby  
High-Z  
High-Z  
High-Z  
Reset  
X
X
NOTE: X = Don’t Care (VIL or VIH  
)
3.1.1  
Read  
When performing a read cycle, CE# and OE# must be asserted; WE# and RP# must be deasserted.  
CE# is the device selection control; when active low, it enables the flash memory device. OE# is  
the data output control; when low, data is output on DQ[15:0]. See Figure 8, “Read Operation  
Waveform” on page 42.  
3.1.2  
Write  
A write cycle occurs when both CE# and WE# are low; RP# and OE# are high. Commands are  
issued to the Command User Interface (CUI). The CUI does not occupy an addressable memory  
location. Address and data are latched on the rising edge of the WE# or CE# pulse, whichever  
occurs first. See Figure 9, “Write Operations Waveform” on page 47.  
3.1.3  
Output Disable  
With OE# at a logic-high level (V ), the device outputs are disabled. DQ[15:0] are placed in a  
IH  
high-impedance state.  
Datasheet  
17  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
3.1.4  
3.1.5  
Standby  
Deselecting the device by bringing CE# to a logic-high level (V ) places the device in standby  
IH  
mode, which substantially reduces device power consumption without any latency for subsequent  
read accesses. In standby, outputs are placed in a high-impedance state independent of OE#. If  
deselected during a Program or Erase operation, the device continues to consume active power  
until the Program or Erase operation is complete.  
Reset  
From read mode, RP# at V for time t  
impedance state, and turns off all internal circuits. After return from reset, a time t  
deselects the memory, places output drivers in a high-  
IL  
PLPH  
is required  
PHQV  
until the initial read-access outputs are valid. A delay (t  
or t  
) is required after return from  
PHWL  
PHEL  
reset before a write cycle can be initiated. After this wake-up interval, normal operation is restored.  
The CUI resets to read-array mode, the status register is set to 0x80, and all blocks are locked. See  
Figure 10, “Reset Operations Waveforms” on page 48.  
If RP# is taken low for time t  
during a Program or Erase operation, the operation will be  
PLPH  
aborted and the memory contents at the aborted location (for a program) or block (for an erase) are  
no longer valid, since the data may be partially erased or written. The abort process goes through  
the following sequence:  
1. When RP# goes low, the device shuts down the operation in progress, a process which takes time  
t
to complete.  
PLRH  
2. After time t  
enter reset mode (if RP# is deasserted after t  
on page 48.  
, the part will either reset to read-array mode (if RP# is asserted during t  
) or  
PLRH  
PLRH  
). See Figure 10, “Reset Operations Waveforms”  
PLRH  
In both cases, after returning from an aborted operation, the relevant time t  
must be observed before a Read or Write operation is initiated, as discussed in the previous  
or t  
/t  
PHWL PHEL  
PHQV  
paragraph. However, in this case, these delays are referenced to the end of t  
RP# goes high.  
rather than when  
PLRH  
As with any automated device, it is important to assert RP# during a system reset. When the system  
comes out of reset, the processor expects to read from the flash memory. Automated flash  
memories provide status information when read during program or Block-Erase operations. If a  
CPU reset occurs with no flash memory reset, proper CPU initialization may not occur because the  
flash memory may be providing status information instead of array data. Intel® Flash memories  
allow proper CPU initialization following a system reset through the use of the RP# input. In this  
application, RP# is controlled by the same RESET# signal that resets the system CPU.  
18  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
4.0  
Modes of Operation  
4.1  
Read Mode  
The flash memory has four read modes (read array, read identifier, read status, and CFI query), and  
two write modes (program and erase). Three additional modes (erase suspend to program, erase  
suspend to read, and program suspend to read) are available only during suspended operations.  
Table 7, “Command Bus Operations” on page 24 and Table 8, “Command Codes and  
Descriptions” on page 25 summarize the commands used to reach these modes. Appendix A,  
“Write State Machine States” on page 50 is a comprehensive chart showing the state transitions.  
4.1.1  
Read Array  
When RP# transitions from V (reset) to V , the device defaults to read-array mode and will  
IL  
IH  
respond to the read-control inputs (CE#, address inputs, and OE#) without any additional CUI  
commands.  
When the device is in read array mode, four control signals control data output.  
WE# must be logic high (V )  
IH  
CE# must be logic low (V )  
IL  
OE# must be logic low (V )  
IL  
RP# must be logic high (V )  
IH  
In addition, the address of the desired location must be applied to the address pins. If the device is  
not in read-array mode, as would be the case after a Program or Erase operation, the Read Array  
command (0xFF) must be issued to the CUI before array reads can occur.  
4.1.2  
Read Identifier  
The read-identifier mode outputs three types of information: the manufacturer/device identifier, the  
block locking status, and the protection register. The device is switched to this mode by issuing the  
Read Identifier command (0x90). Once in this mode, read cycles from addresses shown in Table 6  
retrieve the specified information. To return to read-array mode, issue the Read Array command  
(0xFF).  
Datasheet  
19  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 6. Device Identification Codes  
Address1  
Item  
Data  
Description  
Base  
Offset  
Manufacturer ID  
Block  
0x00  
0x0089  
0x88C0  
8-Mbit Top Boot Device  
8-Mbit Bottom Boot Device  
16-Mbit Top Boot Device  
16-Mbit Bottom Boot Device  
32-Mbit Top Boot Device  
32-Mbit Bottom Boot Device  
64-Mbit Top Boot Device  
64-Mbit Bottom Boot Device  
Block is unlocked  
0x88C1  
0x88C2  
0x88C3  
Device ID  
Block  
0x01  
0x02  
0x88C4  
0x88C5  
0x88CC  
0x88CD  
DQ0 = 0b0  
DQ0 = 0b1  
DQ1 = 0b0  
DQ1 = 0b1  
Lock Data  
Block Lock Status2  
Block  
Block is locked  
Block is not locked-down  
Block is locked down  
Block Lock-Down Status2  
Block  
Block  
0x02  
0x80  
Protection Register Lock Status  
Multiple reads required to read  
Register Data the entire 128-bit Protection  
Register.  
0x81 -  
0x88  
Protection Register  
Block  
NOTES:  
1. The address is constructed from a base address plus an offset. For example, to read the Block Lock Status  
for block number 38 in a bottom boot device, set the address to 0x0F8000 plus the offset (0x02), i.e.  
0x0F8002. Then examine DQ0 of the data to determine if the block is locked.  
2. See Section 5.2, “Reading Block-Lock Status” on page 28 for valid lock status.  
4.1.3  
4.1.4  
CFI Query  
The CFI query mode outputs Common Flash Interface (CFI) data after issuing the Read Query  
Command (0x98). The CFI data structure contains information such as block size, density,  
command set, and electrical specifications. Once in this mode, read cycles from addresses shown in  
Appendix C, “Common Flash Interface,” retrieve the specified information. To return to read-array  
mode, issue the Read Array command (0xFF).  
Read Status Register  
The status register indicates the status of device operations, and the success/failure of that  
operation. The Read Status Register (0x70) command causes subsequent reads to output data from  
the status register until another command is issued. To return to reading from the array, issue a  
Read Array (0xFF) command.  
The status-register bits are output on DQ[7:0]. The upper byte, DQ[15:8], outputs 0x00 when a  
Read Status Register command is issued.  
20  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
The contents of the status register are latched on the falling edge of OE# or CE# (whichever occurs  
last) which prevents possible bus errors that might occur if Status Register contents change while  
being read. CE# or OE# must be toggled with each subsequent status read, or the Status Register  
will not indicate completion of a Program or Erase operation.  
When the WSM is active, SR[7] will indicate the status of the WSM; the remaining bits in the  
status register indicate whether the WSM was successful in performing the preferred operation (see  
Table 9, “Status Register Bit Definition” on page 26).  
4.1.4.1  
Clear Status Register  
The WSM can set Status Register bits 1 through 7 and can clear bits 2, 6, and 7; but, the WSM  
cannot clear Status Register bits 1, 3, 4 or 5. Because bits 1, 3, 4, and 5 indicate various error  
conditions, these bits can be cleared only through the Clear Status Register (0x50) command. By  
allowing the system software to control the resetting of these bits, several operations may be  
performed (such as cumulatively programming several addresses or erasing multiple blocks in  
sequence) before reading the status register to determine if an error occurred during that series.  
Clear the status register before beginning another command or sequence. The Read Array  
command must be issued before data can be read from the memory array. Resetting the device also  
clears the Status Register.  
4.2  
Program Mode  
Programming is executed using a two-write cycle sequence. The Program Setup command (0x40)  
is issued to the CUI followed by a second write which specifies the address and data to be  
programmed. The WSM will execute a sequence of internally timed events to program preferred  
bits of the addressed location, then verify the bits are sufficiently programmed. Programming the  
memory results in specific bits within an address location being changed to a “0.” If users attempt  
to program “1”s, the memory cell contents do not change and no error occurs.  
The Status Register indicates programming status. While the program sequence executes, status bit  
7 is “0.” The status register can be polled by toggling either CE# or OE#. While programming, the  
only valid commands are Read Status Register, Program Suspend, and Program Resume.  
When programming is complete, the program-status bits should be checked. If the programming  
operation was unsuccessful, bit SR[4] of the Status Register is set to indicate a program failure. If  
SR[3] is set, then V was not within acceptable limits, and the WSM did not execute the program  
PP  
command. If SR[1] is set, a program operation was attempted on a locked block and the operation  
was aborted.  
The status register should be cleared before attempting the next operation. Any CUI instruction can  
follow after programming is completed; however, to prevent inadvertent status-register reads, be  
sure to reset the CUI to read-array mode.  
4.2.1  
12-Volt Production Programming  
When V is between 1.65 V and 3.6 V, all program and erase current is drawn through the VCC  
PP  
pin. Note that if V is driven by a logic signal, V min = 1.65 V. That is, V must remain above  
PP  
IH  
PP  
1.65 V to perform in-system flash modifications. When V is connected to a 12 V power supply,  
PP  
the device draws program and erase current directly from the VPP pin. This eliminates the need for  
an external switching transistor to control V . Figure 7 on page 31 shows examples of how the  
PP  
flash power supplies can be configured for various usage models.  
Datasheet  
21  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
The 12 V V mode enhances programming performance during the short period of time typically  
PP  
found in manufacturing processes; however, it is not intended for extended use. 12 V may be  
applied to VPP during Program and Erase operations for a maximum of 1000 cycles on the main  
blocks and 2500 cycles on the parameter blocks. VPP may be connected to 12 V for a total of 80  
hours maximum. Stressing the device beyond these limits may cause permanent damage.  
4.2.2  
Suspending and Resuming Program  
The Program Suspend command halts an in-progress program operation so that data can be read  
from other locations of memory. Once the programming process starts, issuing the Program  
Suspend command to the CUI requests that the WSM suspend the program sequence at  
predetermined points in the program algorithm. The device continues to output status-register data  
after the Program Suspend command is issued. Polling status-register bits SR[7] and SR[2] will  
determine when the program operation has been suspended (both will be set to “1”). t  
/
WHRH1  
t
specify the program-suspend latency.  
EHRH1  
A Read-Array command can now be issued to the CUI to read data from blocks other than that  
which is suspended. The only other valid commands while program is suspended are Read Status  
Register, Read Identifier, CFI Query, and Program Resume.  
After the Program Resume command is issued to the flash memory, the WSM will continue with  
the programming process and status register bits SR[2] and SR[7] will automatically be cleared.  
The device automatically outputs status register data when read (see Figure 14, “Program Suspend  
/ Resume Flowchart” on page 53) after the Program Resume command is issued. V must remain  
PP  
at the same V level used for program while in program-suspend mode. RP# must also remain at  
PP  
V .  
IH  
4.3  
Erase Mode  
To erase a block, issue the Erase Set-up and Erase Confirm commands to the CUI, along with an  
address identifying the block to be erased. This address is latched internally when the Erase  
Confirm command is issued. Block erasure results in all bits within the block being set to “1.” Only  
one block can be erased at a time. The WSM will execute a sequence of internally timed events to  
program all bits within the block to “0,” erase all bits within the block to “1,” then verify that all  
bits within the block are sufficiently erased. While the erase executes, status bit 7 is a “0.”  
When the status register indicates that erasure is complete, check the erase-status bit to verify that  
the Erase operation was successful. If the Erase operation was unsuccessful, SR[5] of the status  
register will be set to a “1,” indicating an erase failure. If V was not within acceptable limits after  
PP  
the Erase Confirm command was issued, the WSM will not execute the erase sequence; instead,  
SR[5] of the status register is set to indicate an erase error, and SR[3] is set to a “1” to identify that  
V
supply voltage was not within acceptable limits.  
PP  
After an Erase operation, clear the status register (0x50) before attempting the next operation. Any  
CUI instruction can follow after erasure is completed; however, to prevent inadvertent status-  
register reads, it is advisable to place the flash in read-array mode after the erase is complete.  
22  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
4.3.1  
Suspending and Resuming Erase  
Since an Erase operation requires on the order of seconds to complete, an Erase Suspend command  
is provided to allow erase-sequence interruption in order to read data from—or program data to—  
another block in memory. Once the erase sequence is started, issuing the Erase Suspend command  
to the CUI suspends the erase sequence at a predetermined point in the erase algorithm. The status  
register will indicate if/when the Erase operation has been suspended. Erase-suspend latency is  
specified by t  
/t  
.
WHRH2 EHRH2  
A Read Array or Program command can now be issued to the CUI to read/program data from/to  
blocks other than that which is suspended. This nested Program command can subsequently be  
suspended to read yet another location. The only valid commands while Erase is suspended are  
Read Status Register, Read Identifier, CFI Query, Program Setup, Program Resume, Erase  
Resume, Lock Block, Unlock Block, and Lock-Down Block. During erase-suspend mode, the chip  
can be placed in a pseudo-standby mode by taking CE# to V , which reduces active current  
IH  
consumption.  
Erase Resume continues the erase sequence when CE# = V . Similar to the end of a standard  
IL  
Erase operation, the status register should be read and cleared before the next instruction is issued.  
Datasheet  
23  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 7. Command Bus Operations  
First Bus Cycle  
Addr  
Second Bus Cycle  
Command  
Notes  
Oper  
Data  
Oper  
Addr  
Data  
Read Array  
1,3  
1,3  
1,3  
1,3  
1,3  
Write  
Write  
Write  
Write  
Write  
X
X
X
X
X
0xFF  
0x90  
0x98  
0x70  
0x50  
Read Identifier  
Read  
Read  
Read  
IA  
QA  
X
ID  
QD  
CFI Query  
Read Status Register  
Clear Status Register  
SRD  
0x40/  
0x10  
Program  
2,3  
Write  
X
Write  
Write  
PA  
BA  
PD  
Block Erase/Confirm  
Program/Erase Suspend  
Program/Erase Resume  
Lock Block  
1,3  
1,3  
1,3  
1,3  
1,3  
1,3  
1,3  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
X
X
X
X
X
X
X
0x20  
0xB0  
0xD0  
0x60  
0x60  
0x60  
0xC0  
D0H  
Write  
Write  
Write  
Write  
BA  
BA  
BA  
PA  
0x01  
0xD0  
0x2F  
PD  
Unlock Block  
Lock-Down Block  
Protection Program  
X = "Don’t Care"  
PA = Prog Addr  
PD = Prog Data  
BA = Block Addr  
IA = Identifier Addr. QA = Query Addr.  
SRD = Status Reg.  
Data  
ID = Identifier Data QD = Query Data  
NOTES:  
1. Following the Read Identifier or CFI Query commands, read operations output device identification data or  
CFI query information, respectively. See Section 4.1.2 and Section 4.1.3.  
2. Either 0x40 or 0x10 command is valid, but the Intel standard is 0x40.  
3. When writing commands, the upper data bus [DQ8-DQ15] should be either VIL or VIH, to minimize current  
draw.  
Bus operations are defined in Table 5, “Bus Operations” on page 17.  
24  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 8. Command Codes and Descriptions  
Code  
(HEX)  
Device Mode  
Command Description  
This command places the device in read-array mode, which outputs array data on the data  
pins.  
FF  
Read Array  
This is a two-cycle command. The first cycle prepares the CUI for a program operation. The  
second cycle latches addresses and data information and initiates the WSM to execute the  
Program algorithm. The flash outputs status-register data when CE# or OE# is toggled. A Read  
Array command is required after programming to read array data. See Section 4.2, “Program  
Mode” on page 21.  
40  
20  
Program Set-Up  
This is a two-cycle command. Prepares the CUI for the Erase Confirm command. If the next  
command is not an Erase Confirm command, then the CUI will (a) set both SR.4 and SR.5 of  
the status register to a “1,” (b) place the device into the read-status-register mode, and (c) wait  
for another command. See Section 4.3, “Erase Mode” on page 22.  
Erase Set-Up  
Erase Confirm  
If the previous command was an Erase Set-Up command, then the CUI will close the address  
and data latches and begin erasing the block indicated on the address pins. During program/  
erase, the device will respond only to the Read Status Register, Program Suspend and Erase  
Suspend commands, and will output status-register data when CE# or OE# is toggled.  
D0  
Program/Erase  
Resume  
If a Program or Erase operation was previously suspended, this command will resume that  
operation.  
If the previous command was Block Unlock Set-Up, the CUI will latch the address and unlock  
the block indicated on the address pins. If the block had been previously set to Lock-Down, this  
operation will have no effect. (See Section 5.1)  
Unlock Block  
Issuing this command will begin to suspend the currently executing Program/Erase operation.  
The status register will indicate when the operation has been successfully suspended by  
setting either the program-suspend SR[2] or erase-suspend SR[6] and the WSM status bit  
SR[7] to a “1” (ready). The WSM will continue to idle in the SUSPEND state, regardless of the  
state of all input-control pins except RP#, which will immediately shut down the WSM and the  
remainder of the chip if RP# is driven to VIL. See Sections 3.2.5.1 and 3.2.6.1.  
Program Suspend  
Erase Suspend  
B0  
70  
This command places the device into read-status-register mode. Reading the device will  
output the contents of the status register, regardless of the address presented to the device.  
The device automatically enters this mode after a Program or Erase operation has been  
initiated. See Section 4.1.4, “Read Status Register” on page 20.  
Read Status  
Register  
The WSM can set the block-lock status SR[1], VPP Status SR[3], program status SR[4], and  
erase-status SR[5] bits in the status register to “1,” but it cannot clear them to “0.” Issuing this  
command clears those bits to “0.”  
Clear Status  
Register  
50  
90  
Puts the device into the read-identifier mode so that reading the device will output the  
manufacturer/device codes or block-lock status. See Section 4.1.2, “Read Identifier” on  
page 19.  
Read  
Identifier  
Block Lock, Block  
Unlock, Block  
Lock-Down Set-  
Up  
Prepares the CUI for block-locking changes. If the next command is not Block Unlock, Block  
Lock, or Block Lock-Down, then the CUI will set both the program and erase-status-register  
bits to indicate a command-sequence error. See Section 5.0, “Security Modes” on page 27.  
60  
If the previous command was Lock Set-Up, the CUI will latch the address and lock the block  
indicated on the address pins. (See Section 5.1)  
01  
2F  
98  
Lock-Block  
Lock-Down  
If the previous command was a Lock-Down Set-Up command, the CUI will latch the address  
and lock-down the block indicated on the address pins. (See Section 5.1)  
CFI  
Query  
Puts the device into the CFI-Query mode so that reading the device will output Common Flash  
Interface information. See Section 4.1.3 and Appendix C, “Common Flash Interface”.  
This is a two-cycle command. The first cycle prepares the CUI for a program operation to the  
protection register. The second cycle latches addresses and data information and initiates the  
WSM to execute the Protection Program algorithm to the protection register. The flash outputs  
status-register data when CE# or OE# is toggled. A Read Array command is required after  
programming to read array data. See Section 5.5.  
Protection  
Program  
Set-Up  
C0  
Datasheet  
25  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 8. Command Codes and Descriptions  
Code  
Device Mode  
(HEX)  
Command Description  
10  
00  
Alt. Prog Set-Up  
Operates the same as Program Set-up command. (See 0x40/Program Set-Up)  
Invalid/  
Reserved  
Unassigned commands should not be used. Intel reserves the right to redefine these codes for  
future functions.  
NOTE: See Appendix A, “Write State Machine States” for mode transition information.  
Table 9. Status Register Bit Definition  
WSMS  
7
ESS  
6
ES  
5
PS  
4
VPPS  
3
PSS  
2
BLS  
1
R
0
NOTES:  
SR[7] WRITE STATE MACHINE STATUS (WSMS)  
1 = Ready  
0 = Busy  
Check Write State Machine bit first to determine Word Program  
or Block Erase completion, before checking program or erase-  
status bits.  
SR[6] = ERASE-SUSPEND STATUS (ESS)  
1 = Erase Suspended  
0 = Erase In Progress/Completed  
When Erase Suspend is issued, WSM halts execution and sets  
both WSMS and ESS bits to “1.” ESS bit remains set to “1” until  
an Erase Resume command is issued.  
SR[5] = ERASE STATUS (ES)  
1 = Error In Block Erase  
0 = Successful Block Erase  
When this bit is set to “1,” WSM has applied the max. number  
of erase pulses to the block and is still unable to verify  
successful block erasure.  
SR[4] = PROGRAM STATUS (PS)  
1 = Error in Programming  
0 = Successful Programming  
When this bit is set to “1,” WSM has attempted but failed to  
program a word/byte.  
The VPP status bit does not provide continuous indication of  
V
PP level. The WSM interrogates VPP level only after the  
SR[3] = VPP STATUS (VPPS)  
1 = VPP Low Detect, Operation Abort  
0 = VPP OK  
Program or Erase command sequences have been entered,  
and informs the system if VPP has not been switched on. The  
VPP is also checked before the operation is verified by the  
WSM. The VPP status bit is not guaranteed to report accurate  
feedback between VPPLK and VPP1Min.  
SR[2] = PROGRAM SUSPEND STATUS (PSS)  
1 = Program Suspended  
0 = Program in Progress/Completed  
When Program Suspend is issued, WSM halts execution and  
sets both WSMS and PSS bits to “1.” PSS bit remains set to “1”  
until a Program Resume command is issued.  
SR[1] = BLOCK LOCK STATUS  
1 = Prog/Erase attempted on a locked block; Operation  
aborted.  
If a Program or Erase operation is attempted to one of the  
locked blocks, this bit is set by the WSM. The operation  
specified is aborted and the device is returned to read status  
mode.  
0 = No operation to locked blocks  
This bit is reserved for future use and should be masked out  
when polling the status register.  
SR[0] = RESERVED FOR FUTURE ENHANCEMENTS (R)  
NOTE: A Command-Sequence Error is indicated when SR[4], SR[5], and SR[7] are set.  
26  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
5.0  
Security Modes  
5.1  
Flexible Block Locking  
The C3 device offers an instant, individual block-locking scheme that allows any block to be  
locked or unlocked with no latency, enabling instant code and data protection.  
This locking scheme offers two levels of protection. The first level allows software-only control of  
block locking (useful for data blocks that change frequently), while the second level requires  
hardware interaction before locking can be changed (useful for code blocks that change  
infrequently).  
The following sections will discuss the operation of the locking system. The term “state [abc]” will  
be used to specify locking states; e.g., “state [001],” where a = value of WP#, b = bit D1 of the  
Block Lock status register, and c = bit D0 of the Block Lock status register. Figure 5, “Block  
Locking State Diagram” on page 27 displays all of the possible locking states.  
Figure 5. Block Locking State Diagram  
Locked-  
Down4,5  
Hardware  
Locked5  
Locked  
Power-Up/Reset  
[X01]  
[011]  
[011]  
WP# Hardware Control  
Software  
Locked  
Unlocked  
Unlocked  
[111]  
[110]  
[X00]  
Software Block Lock (0x60/0x01) or Software Block Unlock (0x60/0xD0)  
Software Block Lock-Down (0x60/0x2F)  
WP# hardware control  
Notes: 1. [a,b,c] represents [WP#, D1, D0]. X = Don’t Care.  
2. D1 indicates block Lock-down status. D1 = ‘0’, Lock-down has not been issued to  
this block. D1 = ‘1’, Lock-down has been issued to this block.  
3. D0 indicates block lock status. D0 = ‘0’, block is unlocked. D0 = ‘1’, block is locked.  
4. Locked-down = Hardware + Software locked.  
5. [011] states should be tracked by system software to determine difference  
between Hardware Locked and Locked-Down states.  
Datasheet  
27  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
5.1.1  
Locking Operation  
The locking status of each block can be set to Locked, Unlocked, or Lock-Down, each of which  
will be described in the following sections. See Figure 5, “Block Locking State Diagram” on  
page 27 and Figure 17, “Locking Operations Flowchart” on page 56.  
The following concisely summarizes the locking functionality.  
5.1.1.1  
Locked State  
The default state of all blocks upon power-up or reset is locked (states [001] or [101]). Locked  
blocks are fully protected from alteration. Any Program or Erase operations attempted on a locked  
block will return an error on bit SR[1] of the Status Register. The state of a locked block can be  
changed to Unlocked or Lock Down using the appropriate software commands. An Unlocked  
block can be locked by writing the Lock command sequence, 0x60 followed by 0x01.  
5.1.1.2  
5.1.1.3  
Unlocked State  
Unlocked blocks (states [000], [100], [110]) can be programmed or erased. All unlocked blocks  
return to the Locked state when the device is reset or powered down. The status of an unlocked  
block can be changed to Locked or Locked Down using the appropriate software commands. A  
Locked block can be unlocked by writing the Unlock command sequence, 0x60 followed by 0xD0.  
Lock-Down State  
Blocks that are Locked-Down (state [011]) are protected from Program and Erase operations (just  
like Locked blocks), but their protection status cannot be changed using software commands alone.  
A Locked or Unlocked block can be Locked Down by writing the Lock-Down command sequence,  
0x60 followed by 0x2F. Locked-Down blocks revert to the Locked state when the device is reset or  
powered down.  
The Lock-Down function depends on the WP# input pin. When WP# = 0, blocks in Lock Down  
[011] are protected from program, erase, and lock status changes. When WP# = 1, the Lock-Down  
function is disabled ([111]) and Locked-Down blocks can be individually unlocked by software  
command to the [110] state, where they can be erased and programmed. These blocks can then be  
relocked [111] and unlocked [110] as required while WP# remains high. When WP# goes low,  
blocks that were previously Locked Down return to the Lock-Down state [011], regardless of any  
changes made while WP# was high. Device reset or power-down resets all blocks, including those  
in Lock-Down, to Locked state.  
5.2  
Reading Block-Lock Status  
The Lock status of each block can be read in read-identifier mode of the device by issuing the read-  
identifier command (0x90). Subsequent reads at Block Address + 0x00002 will output the Lock  
status of that block. The Lock status is represented by DQ0 and DQ1. DQ0 indicates the Block  
Lock/Unlock status and is set by the Lock command and cleared by the Unlock command. It is also  
automatically set when entering Lock Down. DQ1 indicates Lock-Down status, and is set by the  
Lock-Down command. It cannot be cleared by software—only by device reset or power-down. See  
Table 6, “Device Identification Codes” on page 20 for block-status information.  
28  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
5.3  
Locking Operations during Erase Suspend  
Changes to block-lock status can be performed during an erase-suspend by using the standard  
locking command sequences to Unlock, Lock, or Lock Down a block. This is useful in the case  
when another block needs to be updated while an Erase operation is in progress.  
To change block locking during an Erase operation, first issue the Erase Suspend command (0xB0),  
then check the status register until it indicates that the Erase operation has been suspended. Next,  
write the preferred Lock command sequence to a block and the Lock status will be changed. After  
completing any preferred Lock, Read, or Program operations, resume the Erase operation with the  
Erase Resume command (0xD0).  
If a block is Locked or Locked Down during a Suspended Erase of the same block, the locking  
status bits will be changed immediately. But when the Erase is resumed, the Erase operation will  
complete.  
Locking operations cannot be performed during a Program Suspend. Refer to Appendix A, “Write  
State Machine States” on page 50 for detailed information on which commands are valid during  
Erase Suspend.  
5.4  
Status Register Error Checking  
Using nested-locking or program-command sequences during Erase Suspend can introduce  
ambiguity into status register results.  
Since locking changes are performed using a two-cycle command sequence, e.g., 0x60 followed by  
0x01 to lock a block, following the Block Lock, Block Unlock, or Block Lock-Down Setup  
command (0x60) with an invalid command will produce a Lock-Command error (SR[4] and SR[5]  
will be set to 1) in the Status Register. If a Lock-Command error occurs during an Erase Suspend,  
SR[4] and SR[5] will be set to 1 and will remain at 1 after the Erase is resumed. When Erase is  
complete, any possible error during the Erase cannot be detected via the status register because of  
the previous Lock-Command error.  
A similar situation happens if an error occurs during a Program-Operation error nested within an  
Erase Suspend.  
5.5  
128-Bit Protection Register  
The C3 device architecture includes a 128-bit protection register than can be used to increase the  
security of a system design. For example, the number contained in the protection register can be  
used to “match” the flash component with other system components, such as the CPU or ASIC,  
preventing device substitution. The Intel application note, AP-657 Designing with the Advanced+  
Boot Block Flash Memory Architecture, contains additional application information.  
The 128 bits of the protection register are divided into two 64-bit segments. One of the segments is  
programmed at the Intel factory with a unique 64-bit number, which is unchangeable. The other  
segment is left blank for customer designs to program, as preferred. Once the customer segment is  
programmed, it can be locked to prevent further programming.  
Datasheet  
29  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
5.5.1  
5.5.2  
Reading the Protection Register  
The protection register is read in the read-identifier mode. The device is switched to this mode by  
issuing the Read Identifier command (0x90). Once in this mode, read cycles from addresses shown  
in Figure 6, “Protection Register Mapping” retrieve the specified information. To return to read-  
array mode, issue the Read Array command (0xFF).  
Programming the Protection Register  
The protection register bits are programmed using the two-cycle Protection Program command.  
The 64-bit number is programmed 16 bits at a time. First, issue the Protection Program Setup  
command, 0xC0. The next write to the device will latch in address and data, and program the  
specified location. The allowable addresses are shown in Table 6, “Device Identification Codes” on  
page 20. See Figure 18, “Protection Register Programming Flowchart” on page 57. Attempts to  
address Protection Program commands outside the defined protection register address space should  
not be attempted. Attempting to program to a previously locked protection register segment will  
result in a Status Register error (Program Error bit SR[4] and Lock Error bit SR[1] will be set to 1).  
5.5.3  
Locking the Protection Register  
The user-programmable segment of the protection register is lockable by programming bit 1 of the  
PR-LOCK location to 0. See Figure 6, “Protection Register Mapping” on page 30. Bit 0 of this  
location is programmed to 0 at the Intel factory to protect the unique device number. This bit is set  
using the Protection Program command to program 0xFFFD to the PR-LOCK location. After these  
bits have been programmed, no further changes can be made to the values stored in the protection  
register. Protection Program commands to a locked section will result in a Status Register error  
(Program Error bit SR[4] and Lock Error bit SR[1] will be set to 1). Protection register lockout  
state is not reversible.  
Figure 6. Protection Register Mapping  
0x88  
64-bit Segment  
(User-Programmable)  
0x85  
0x84  
128-Bit Protection Register 0  
64-bit Segment  
(Intel Factory-Programmed)  
0x81  
0x80  
PR Lock Register 0  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
5.6  
VPP Program and Erase Voltages  
The C3 device provides in-system programming and erase in the 1.65 V–3.6 V range. For fast  
production programming, 12 V programming can be used. Refer to Figure 7, “Example Power  
Supply Configurations” on page 31.  
30  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
5.6.1  
Program Protection  
In addition to the flexible block locking, the V programming voltage can be held low for absolute  
PP  
hardware write protection of all blocks in the flash device. When V is below or equal to V  
,
PP  
PPLK  
any Program or Erase operation will result in an error, prompting the corresponding status-register  
bit (SR[3]) to be set.  
Figure 7. Example Power Supply Configurations  
System Supply  
System Supply  
VCC  
VPP  
VCC  
12 V Supply  
VPP  
Prot#  
(Logic Signal)  
10  
KΩ  
12 V Fast Programming  
Low-Voltage Programming  
Absolute Write Protection With V  
VPPLK  
Absolute Write Protection via Logic Signal  
PP  
System Supply  
(Note 1)  
System Supply  
VCC  
VCC  
VPP  
VPP  
12 V Supply  
Low Voltage and 12 V Fast Programming  
Low-Voltage Programming  
0645_06  
NOTE:  
1. A resistor can be used if the VCC supply can sink adequate current based on resistor value. See AP-657  
Designing with the Advanced+ Boot Block Flash Memory Architecture for details.  
Datasheet  
31  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
6.0  
Power Consumption  
Intel Flash devices have a tiered approach to power savings that can significantly reduce overall  
system power consumption. The Automatic Power Savings (APS) feature reduces power  
consumption when the device is selected but idle. If CE# is deasserted, the flash enters its standby  
mode, where current consumption is even lower. If RP# is deasserted, the flash enter deep power-  
down mode for ultra-low current consumption. The combination of these features can minimize  
memory power consumption, and therefore, overall system power consumption.  
6.1  
6.2  
6.3  
Active Power (Program/Erase/Read)  
With CE# at a logic-low level and RP# at a logic-high level, the device is in the active mode. Refer  
to the DC Characteristic tables for I current values. Active power is the largest contributor to  
CC  
overall system power consumption. Minimizing the active current could have a profound effect on  
system power consumption, especially for battery-operated devices.  
Automatic Power Savings (APS)  
Automatic Power Savings provides low-power operation during read mode. After data is read from  
the memory array and the address lines are idle, APS circuitry places the device in a mode where  
typical current is comparable to I  
new location is read.  
. The flash stays in this static state with outputs valid until a  
CCS  
Standby Power  
When CE# is at a logic-high level (V ), the flash memory is in standby mode, which disables  
IH  
much of the device’s circuitry and substantially reduces power consumption. Outputs are placed in  
a high-impedance state independent of the status of the OE# signal. If CE# transitions to a logic-  
high level during Erase or Program operations, the device will continue to perform the operation  
and consume corresponding active power until the operation is completed.  
System engineers should analyze the breakdown of standby time versus active time, and quantify  
the respective power consumption in each mode for their specific application. This approach will  
provide a more accurate measure of application-specific power and energy requirements.  
6.4  
Deep Power-Down Mode  
The deep power-down mode is activated when RP# = V . During read modes, RP# going low de-  
IL  
selects the memory and places the outputs in a high-impedance state. Recovery from deep power-  
down requires a minimum time of t  
operations.  
for Read operations, and t  
/t  
for Write  
PHQV  
PHWL PHEL  
32  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
During program or erase modes, RP# transitioning low will abort the in-progress operation. The  
memory contents of the address being programmed or the block being erased are no longer valid as  
the data integrity has been compromised by the abort. During deep power-down, all internal  
circuits are switched to a low-power savings mode (RP# transitioning to V or turning off power  
IL  
to the device clears the status register).  
6.5  
Power and Reset Considerations  
6.5.1  
Power-Up/Down Characteristics  
In order to prevent any condition that may result in a spurious write or erase operation, it is  
recommended to power-up VCC and VCCQ together. Conversely, VCC and VCCQ must power-  
down together.  
It is also recommended to power-up VPP with or after VCC has reached VCC . Conversely, VPP  
min  
must powerdown with or slightly before VCC.  
If VCCQ and/or VPP are not connected to the VCC supply, then VCC should attain VCC before  
min  
applying VCCQ and VPP. Device inputs should not be driven before supply voltage reaches  
VCC  
.
min  
Power supply transitions should only occur when RP# is low.  
6.5.2  
RP# Connected to System Reset  
The use of RP# during system reset is important with automated program/erase devices since the  
system expects to read from the flash memory when it comes out of reset. If a CPU reset occurs  
without a flash memory reset, proper CPU initialization will not occur because the flash memory  
may be providing status information instead of array data. Intel recommends connecting RP# to the  
system CPU RESET# signal to allow proper CPU/flash initialization following system reset.  
System designers must guard against spurious writes when V voltages are above V  
. Because  
CC  
LKO  
both WE# and CE# must be low for a command write, driving either signal to V will inhibit  
IH  
writes to the device. The CUI architecture provides additional protection since alteration of  
memory contents can only occur after successful completion of the two-step command sequences.  
The device is also disabled until RP# is brought to V , regardless of the state of its control inputs.  
IH  
By holding the device in reset during power-up/down, invalid bus conditions during power-up can  
be masked, providing yet another level of memory protection.  
6.5.3  
VCC, VPP and RP# Transitions  
The CUI latches commands as issued by system software and is not altered by V or CE#  
PP  
transitions or WSM actions. Its default state upon power-up, after exit from reset mode or after  
V
transitions above V  
(Lockout voltage), is read-array mode.  
CC  
LKO  
After any program or Block-Erase operation is complete (even after V transitions down to  
PP  
V
), the CUI must be reset to read-array mode via the Read Array command if access to the  
PPLK  
flash-memory array is desired.  
Datasheet  
33  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
6.6  
Power Supply Decoupling  
Flash memory power-switching characteristics require careful device decoupling. System  
designers should consider the following three supply current issues:  
Standby current levels (I  
Read current levels (I  
)
CCS  
)
CCR  
Transient peaks produced by falling and rising edges of CE#.  
Transient current magnitudes depend on the device outputs’ capacitive and inductive loading. Two-  
line control and proper decoupling capacitor selection will suppress these transient voltage peaks.  
Each flash device should have a 0.1 µF ceramic capacitor connected between each V and GND,  
CC  
and between its V and VSS. These high- frequency, inherently low-inductance capacitors should  
PP  
be placed as close as possible to the package leads.  
7.0  
Thermal and DC Characteristics  
7.1  
Absolute Maximum Ratings  
Warning: Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage.  
These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended,  
and extended exposure beyond the “Operating Conditions” may affect device reliability.  
.
NOTICE: Specifications are subject to change without notice. Verify with your local Intel Sales office that you have  
the latest datasheet before finalizing a design.  
Parameter  
Extended Operating Temperature  
Maximum Rating  
Notes  
During Read  
–40 °C to +85 °C  
During Block Erase and Program  
Temperature under Bias  
–40 °C to +85 °C  
–40 °C to +85 °C  
–65 °C to +125 °C  
–0.5 V to +3.7 V  
Storage Temperature  
Voltage On Any Pin (except VCC and VPP) with Respect to GND  
1
VPP Voltage (for Block Erase and Program) with Respect to GND –0.5 V to +13.5 V  
1,2,3  
V
CC and VCCQ Supply Voltage with Respect to GND  
–0.2 V to +3.6 V  
100 mA  
Output Short Circuit Current  
4
NOTES:  
1. Minimum DC voltage is –0.5 V on input/output pins. During transitions, this level may  
undershoot to –2.0 V for periods <20 ns. Maximum DC voltage on input/output pins is VCC  
+0.5 V which, during transitions, may overshoot to VCC +2.0 V for periods <20 ns.  
2. Maximum DC voltage on VPP may overshoot to +14.0 V for periods <20 ns.  
3. VPP Program voltage is normally 1.65 V–3.6 V. Connection to a 11.4 V–12.6 V supply can be  
done for a maximum of 1000 cycles on the main blocks and 2500 cycles on the parameter  
blocks during program/erase. VPP may be connected to 12 V for a total of 80 hours maximum.  
4. Output shorted for no more than one second. No more than one output shorted at a time.  
34  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
7.2  
Operating Conditions  
Table 10. Temperature and Voltage Operating Conditions  
Symbol  
TA  
Parameter  
Notes  
Min  
Max  
Units  
Operating Temperature  
VCC Supply Voltage  
–40  
2.7  
+85  
3.6  
3.6  
3.6  
2.5  
2.5  
3.6  
12.6  
°C  
VCC1  
1, 2  
1, 2  
1
Volts  
VCC2  
3.0  
VCCQ1  
VCCQ2  
VCCQ3  
VPP1  
2.7  
I/O Supply Voltage  
Supply Voltage  
1.65  
1.8  
Volts  
1
1, 3  
3
1.65  
11.4  
100,000  
Volts  
Volts  
VPP2  
Cycling  
Block Erase Cycling  
Cycles  
NOTES:  
1. VCC and VCCQ must share the same supply when they are in the VCC1 range.  
2. VCCMax = 3.3 V for 0.25µm 32-Mbit devices.  
3. Applying VPP = 11.4 V–12.6 V during a program/erase can only be done for a maximum of 1000 cycles on  
the main blocks and 2500 cycles on the parameter blocks. VPP may be connected to 12 V for a total of  
80 hours maximum.  
7.3  
DC Current Characteristics  
Table 11. DC Current Characteristics (Sheet 1 of 3)  
V
2.7 V–3.6 V 2.7 V–2.85 V  
2.7 V–3.6 V 1.65 V–2.5 V  
2.7 V–3.3 V  
1.8 V–2.5 V  
CC  
Test  
Conditions  
Sym  
Parameter  
V
Unit  
CCQ  
Note  
Typ Max  
Typ  
Max  
Typ  
Max  
VCC  
CCMax  
VCCQ  
=
V
=
ILI  
Input Load Current  
1,2  
± 1  
± 1  
± 1  
µA  
VCCQMax  
V
IN = VCCQ  
or GND  
VCC  
CCMax  
VCCQ  
=
V
Output Leakage  
Current  
=
ILO  
1,2  
± 10  
± 10  
± 10  
µA  
V
CCQMax  
VIN = VCCQ  
or GND  
Datasheet  
35  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 11. DC Current Characteristics (Sheet 2 of 3)  
V
2.7 V–3.6 V 2.7 V–2.85 V  
2.7 V–3.6 V 1.65 V–2.5 V  
2.7 V–3.3 V  
1.8 V–2.5 V  
CC  
Test  
Conditions  
Sym  
Parameter  
V
Unit  
CCQ  
Note  
Typ Max  
Typ  
Max  
Typ  
Max  
VCC Standby Current  
for 0.13 and 0.18  
Micron Product  
VCC  
=
1
7
15  
25  
20  
50  
150  
250  
µA  
VCCMax  
CE# = RP#  
= VCCQ  
or during  
Program/  
Erase  
ICCS  
VCC Standby Current  
for 0.25 Micron  
Product  
1
10  
20  
50  
150  
250  
µA Suspend  
WP# =  
VCCQ or  
GND  
VCC Power-Down  
Current for 0.13 and  
0.18 Micron Product  
VCC  
=
1,2  
1,2  
7
7
9
15  
25  
18  
7
7
8
20  
25  
15  
7
7
9
20  
25  
15  
µA  
µA  
mA  
V
CCMax  
VCCQ  
=
V
CCQMax  
ICCD  
VIN = VCCQ  
VCC Power-Down  
or GND  
RP# = GND  
0.2 V  
Current for 0.25  
Product  
VCC Read Current for  
0.13 and 0.18 Micron  
Product  
VCC  
CCMax  
VCCQ  
CCQMax  
=
1,2,3  
V
=
V
OE# = VIH  
CE# =VIL  
f = 5 MHz,  
,
ICCR  
VCC Read Current for  
0.25 Micron Product  
1,2,3  
1
10  
18  
8
15  
9
15  
mA  
µA  
IOUT=0 mA  
Inputs = VIL  
or VIH  
RP# = GND  
0.2 V  
VPP VCC  
VPP Deep Power-  
Down Current  
IPPD  
0.2  
18  
5
0.2  
18  
5
0.2  
18  
5
VPP =VPP1,  
mA Program in  
Progress  
55  
55  
55  
ICCW  
VCC Program Current  
1,4  
VPP = VPP2  
(12v)  
Program in  
Progress  
8
16  
8
22  
45  
15  
10  
21  
16  
30  
45  
45  
10  
21  
16  
30  
45  
45  
mA  
VPP = VPP1,  
mA Erase in  
Progress  
ICCE  
VCC Erase Current  
1,4  
VPP = VPP2  
(12v) ,  
Erase in  
mA  
Progress  
VCC Erase Suspend  
Current for 0.13 and  
0.18 Micron Product  
7
15  
25  
50  
50  
200  
200  
50  
50  
200  
200  
µA  
µA  
CE# = VIH,  
Erase  
Suspend in  
Progress  
ICCES  
/
1,4,5  
ICCWS  
VCC Erase Suspend  
Current for 0.25  
Micron Product  
10  
36  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 11. DC Current Characteristics (Sheet 3 of 3)  
V
2.7 V–3.6 V 2.7 V–2.85 V  
2.7 V–3.6 V 1.65 V–2.5 V  
2.7 V–3.3 V  
1.8 V–2.5 V  
CC  
Test  
Conditions  
Sym  
Parameter  
V
Unit  
CCQ  
Note  
Typ Max  
Typ  
Max  
Typ  
Max  
2
±15  
2
±15  
2
±15  
µA VPP VCC  
IPPR  
VPP Read Current  
1,4  
50  
200  
50  
200  
50  
200  
µA VPP > VCC  
VPP =VPP1,  
mA Program in  
Progress  
0.05  
8
0.1  
22  
0.05  
8
0.1  
22  
0.05  
8
0.1  
22  
IPPW  
VPP Program Current  
1,4  
1,4  
VPP = VPP2  
(12v)  
Program in  
Progress  
mA  
VPP = VPP1,  
mA Erase in  
Progress  
0.05  
8
0.1  
22  
0.05  
16  
0.1  
45  
0.05  
16  
0.1  
45  
IPPE  
VPP Erase Current  
VPP = VPP2  
(12v) ,  
Erase in  
mA  
Progress  
V
PP = VPP1,  
Program or  
µA Erase  
Suspend in  
Progress  
0.2  
50  
5
0.2  
50  
5
0.2  
50  
5
IPPES  
IPPWS Current  
/
VCC Erase Suspend  
1,4  
VPP = VPP2  
(12v) ,  
Program or  
Erase  
200  
200  
200  
µA  
Suspend in  
Progress  
NOTES:  
1. All currents are in RMS unless otherwise noted. Typical values at nominal VCC, TA = +25 °C.  
2. The test conditions VCCMax, VCCQMax, VCCMin, and VCCQMin refer to the maximum or minimum VCC or  
CCQ voltage listed at the top of each column. VCCMax = 3.3 V for 0.25µm 32-Mbit devices.  
V
3. Automatic Power Savings (APS) reduces ICCR to approximately standby levels in static operation (CMOS  
inputs).  
4. Sampled, not 100% tested.  
5. ICCES or ICCWS is specified with device de-selected. If device is read while in erase suspend, current draw  
is sum of ICCES and ICCR. If the device is read while in program suspend, current draw is the sum of ICCWS  
and ICCR  
.
Datasheet  
37  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
7.4  
DC Voltage Characteristics  
Table 12. DC Voltage Characteristics  
V
2.7 V–3.6 V  
2.7 V–3.6 V  
2.7 V–2.85 V  
1.65 V–2.5 V  
2.7 V–3.3 V  
1.8 V–2.5 V  
CC  
Sym  
Parameter  
V
Unit Test Conditions  
CCQ  
Note  
Min  
Max  
Min  
Max  
Min  
Max  
Input Low  
Voltage  
VCC *  
VIL  
–0.4  
2.0  
–0.4  
0.4  
–0.4  
0.4  
V
V
0.22 V  
Input High  
Voltage  
VCCQ  
+0.3V  
VCCQ  
0.4V  
VCCQ  
+0.3V  
VCCQ  
0.4V  
VCCQ  
+0.3V  
VIH  
CC = VCCMin  
Output Low  
Voltage  
VOL  
–0.1  
0.1  
-0.1  
0.1  
-0.1  
0.1  
V
V
V
CC = VCCMin  
Output High  
Voltage  
VCCQ  
–0.1V  
VCCQ  
0.1V  
VCCQ  
0.1V  
VOH  
V
I
CCQ = VCCQMin  
OH = –100 µA  
VPP Lock-  
Complete Write  
Protection  
VPPLK  
VPP1  
VPP2  
1
1
1.0  
3.6  
1.0  
3.6  
1.0  
3.6  
V
V
Out Voltage  
VPP during  
Program /  
Erase  
1.65  
11.4  
1.65  
11.4  
1.65  
11.4  
1,2  
12.6  
12.6  
12.6  
V
Operations  
VCC Prog/  
Erase  
Lock  
VLKO  
1.5  
1.2  
1.5  
1.2  
1.5  
1.2  
V
Voltage  
VCCQ Prog/  
Erase  
Lock  
VLKO2  
V
Voltage  
NOTES:  
1. Erase and Program are inhibited when VPP < VPPLK and not guaranteed outside the valid VPP ranges of VPP1 and VPP2  
.
2. Applying VPP = 11.4 V–12.6 V during program/erase can only be done for a maximum of 1000 cycles on the main blocks and  
2500 cycles on the parameter blocks. VPP may be connected to 12 V for a total of 80 hours maximum.  
38  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
8.0  
AC Characteristics  
8.1  
AC Read Characteristics  
Table 13. Read Operations—8 Mbit Density  
Density  
Product  
8 Mbit  
90 ns  
3.0 V – 3.6 V 2.7 V – 3.6 V  
110 ns  
3.0 V – 3.6 V 2.7 V – 3.6 V  
#
Sym  
Parameter  
Unit  
V
CC  
Note  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
R1  
tAVAV Read Cycle Time  
3,4  
80  
90  
100  
110  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
tAVQV Address to Output Delay  
tELQV CE# to Output Delay  
tGLQV OE# to Output Delay  
tPHQV RP# to Output Delay  
tELQX CE# to Output in Low Z  
tGLQX OE# to Output in Low Z  
tEHQZ CE# to Output in High Z  
tGHQZ OE# to Output in High Z  
Output Hold from  
3,4  
80  
80  
90  
90  
100  
100  
30  
110  
110  
30  
1,3,4  
1,3,4  
3,4  
30  
30  
150  
150  
150  
150  
2,3,4  
2,3,4  
2,3,4  
2,3,4  
0
0
0
0
0
0
0
0
20  
20  
20  
20  
20  
20  
20  
20  
Address, CE#, or OE#  
Change, Whichever  
R10  
tOH  
2,3,4  
0
0
0
0
ns  
Occurs First  
NOTES:  
1. OE# may be delayed up to tELQV– GLQV  
2. Sampled, but not 100% tested.  
3. See Figure 8, “Read Operation Waveform” on page 42.  
t
after the falling edge of CE# without impact on tELQV.  
4. See Figure 11, “AC Input/Output Reference Waveform” on page 49 for timing measurements and maximum allowable input  
slew rate.  
Datasheet  
39  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 14. Read Operations—16 Mbit Density  
Density  
16 Mbit  
90 ns  
Product  
70 ns  
80 ns  
110 ns  
Para-  
Sym mete  
r
#
Unit Notes  
V
2.7 V–3.6 V 2.7 V–3.6 V 3.0 V–3.6 V 2.7 V–3.6 V 3.0 V–3.6V 2.7 V–3.6V  
Min Max Min Max Min Max Min Max Min Max Min Max  
CC  
R1  
R2  
t
Read Cycle Time  
ns  
ns  
3,4  
3,4  
70  
80  
80  
90  
100  
110  
AVAV  
t
Address to  
Output Delay  
AVQ  
V
70  
70  
80  
80  
80  
80  
90  
90  
100  
100  
30  
110  
110  
30  
t
CE# to Output  
Delay  
ELQ  
V
R3  
R4  
R5  
R6  
R7  
R8  
R9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,3,4  
1,3,4  
3,4  
t
t
OE# to Output  
Delay  
GLQ  
V
20  
20  
30  
30  
RP# to Output  
Delay  
PHQ  
V
150  
150  
150  
150  
150  
150  
t
CE# to Output in  
Low Z  
ELQ  
X
2,3,4  
2,3,4  
2,3,4  
2,3,4  
0
0
0
0
0
0
0
0
0
0
0
0
t
t
OE# to Output in  
Low Z  
GLQ  
X
CE# to Output in  
High Z  
EHQ  
Z
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
t
OE# to Output in  
High Z  
GHQ  
Z
Output Hold from  
Address, CE#, or  
OE# Change,  
Whichever  
R10  
t
ns  
2,3,4  
0
0
0
0
0
0
OH  
Occurs First  
NOTES:  
1. OE# may be delayed up to tELQV– GLQV  
2. Sampled, but not 100% tested.  
3. See Figure 8, “Read Operation Waveform” on page 42.  
t
after the falling edge of CE# without impact on tELQV.  
4. See Figure 11, “AC Input/Output Reference Waveform” on page 49 for timing measurements and maximum allowable input  
slew rate.  
40  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 15. Read Operations—32 Mbit Density  
Density  
32 Mbit  
Product  
70 ns  
90 ns  
100 ns  
110 ns  
Para-  
meter  
#
Sym  
Unit Notes  
V
2.7 V–3.6 V 2.7 V–3.6 V 3.0 V–3.3 V 2.7 V–3.3 V 3.0 V–3.3 V 2.7 V–3.3 V  
Min Max Min Max Min Max Min Max Min Max Min Max  
CC  
R1  
R2  
t
Read Cycle Time  
ns  
ns  
3,4  
3,4  
70  
90  
90  
100  
100  
110  
AVAV  
t
Address to Output  
Delay  
AVQ  
V
70  
70  
90  
90  
90  
90  
100  
100  
30  
100  
100  
30  
110  
110  
30  
t
CE# to Output  
Delay  
ELQ  
V
R3  
R4  
R5  
R6  
R7  
R8  
R9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1,3,4  
1,3,4  
3,4  
t
t
OE# to Output  
Delay  
GLQ  
V
20  
20  
30  
RP# to Output  
Delay  
PHQ  
V
150  
150  
150  
150  
150  
150  
t
CE# to Output in  
Low Z  
ELQ  
X
2,3,4  
2,3,4  
2,3,4  
2,3,4  
0
0
0
0
0
0
0
0
0
0
0
0
t
t
OE# to Output in  
Low Z  
GLQ  
X
CE# to Output in  
High Z  
EHQ  
Z
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
t
OE# to Output in  
High Z  
GHQ  
Z
Output Hold from  
Address, CE#, or  
OE# Change,  
Whichever  
R10  
t
ns  
2,3,4  
0
0
0
0
0
0
OH  
Occurs First  
NOTES:  
1. OE# may be delayed up to tELQV– GLQV  
2. Sampled, but not 100% tested.  
3. See Figure 8, “Read Operation Waveform” on page 42.  
t
after the falling edge of CE# without impact on tELQV.  
4. See Figure 11, “AC Input/Output Reference Waveform” on page 49 for timing measurements and maximum allowable  
input slew rate.  
Datasheet  
41  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 16. Read Operations — 64 Mbit Density  
Density  
Product  
64 Mbit  
70 ns  
2.7 V–3.6 V  
80 ns  
#
Sym  
Parameter  
Unit  
V
2.7 V–3.6 V  
CC  
Note  
Min  
Max  
Min  
Max  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
tAVAV Read Cycle Time  
3,4  
3,4  
70  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVQV Address to Output Delay  
tELQV CE# to Output Delay  
tGLQV OE# to Output Delay  
tPHQV RP# to Output Delay  
tELQX CE# to Output in Low Z  
tGLQX OE# to Output in Low Z  
tEHQZ CE# to Output in High Z  
tGHQZ OE# to Output in High Z  
70  
70  
80  
80  
1,3,4  
1,3,4  
3,4  
20  
20  
150  
150  
2,3,4  
2,3,4  
2,3,4  
2,3,4  
0
0
0
0
20  
20  
20  
20  
Output Hold from Address, CE#, or OE#  
Change, Whichever Occurs First  
R10  
tOH  
2,3,4  
0
0
ns  
NOTES:  
1. OE# may be delayed up to tELQV– GLQV  
2. Sampled, but not 100% tested.  
3. See Figure 8, “Read Operation Waveform” on page 42.  
t
after the falling edge of CE# without impact on tELQV.  
4. See Figure 11, “AC Input/Output Reference Waveform” on page 49 for timing measurements and  
maximum allowable input slew rate.  
Figure 8. Read Operation Waveform  
R1  
R2  
R3  
Address [A]  
CE# [E]  
R8  
R4  
R9  
OE# [G]  
WE# [W]  
R7  
R6  
R10  
Data [D/Q]  
RST# [P]  
R5  
42  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
8.2  
AC Write Characteristics  
Table 17. Write Operations—8 Mbit Density  
Density  
Product  
3.0 V – 3.6 V  
2.7 V – 3.6 V  
Note  
4,5  
8 Mbit  
90 ns  
110 ns  
100  
#
Sym  
Parameter  
80  
Unit  
V
CC  
90  
110  
Min  
Min  
Min  
Min  
tPHWL  
/
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
RP# High Recovery to WE# (CE#) Going Low  
CE# (WE#) Setup to WE# (CE#) Going Low  
WE# (CE#) Pulse Width  
150  
150  
0
150  
150  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tPHEL  
tELWL  
tWLEL  
/
4,5  
4,5  
0
50  
50  
50  
0
0
70  
60  
70  
0
tWLWH  
tELEH  
/
60  
50  
60  
0
70  
60  
70  
0
tDVWH  
tDVEH  
/
Data Setup to WE# (CE#) Going High  
Address Setup to WE# (CE#) Going High  
CE# (WE#) Hold Time from WE# (CE#) High  
Data Hold Time from WE# (CE#) High  
Address Hold Time from WE# (CE#) High  
WE# (CE#) Pulse Width High  
2,4,5  
2,4,5  
4,5  
tAVWH  
tAVEH  
/
tWHEH  
tEHWH  
/
/
/
tWHDX  
tEHDX  
2,4,5  
2,4,5  
2,4,5  
0
0
0
0
tWHAX  
tEHAX  
0
0
0
0
tWHWL /  
tEHEL  
30  
30  
30  
30  
tVPWH  
tVPEH  
/
W10  
W11  
W12  
VPP Setup to WE# (CE#) Going High  
VPP Hold from Valid SRD  
3,4,5  
3,4  
200  
0
200  
0
200  
0
200  
0
ns  
ns  
ns  
tQVVL  
tBHWH  
tBHEH  
/
WP# Setup to WE# (CE#) Going High  
3,4  
0
0
0
0
W13  
W14  
tQVBL  
WP# Hold from Valid SRD  
3,4  
3,4  
0
0
0
0
ns  
ns  
tWHGL  
WE# High to OE# Going Low  
30  
30  
30  
30  
NOTES:  
1. Write pulse width (tWP) is defined from CE# or WE# going low (whichever goes low last) to CE# or WE# going high (whichever  
goes high first). Hence, tWP = tWLWH = tELEH = tWLEH = tELWH. Similarly, write pulse width high (tWPH) is defined from CE# or  
WE# going high (whichever goes high first) to CE# or WE# going low (whichever goes low last). Hence,  
t
WPH = tWHWL = tEHEL = tWHEL = tEHWL.  
2. Refer to Table 7, “Command Bus Operations” on page 24 for valid AIN or DIN  
3. Sampled, but not 100% tested.  
.
4. See Figure 11, “AC Input/Output Reference Waveform” on page 49 for timing measurements and maximum allowable input  
slew rate.  
5. See Figure 9, “Write Operations Waveform” on page 47.  
Datasheet  
43  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 18. Write Operations—16 Mbit Density  
Density  
Product  
16 Mbit  
90 ns  
80  
70 ns  
80 ns  
110 ns  
100  
#
Sym  
Parameter  
3.0 V – 3.6 V  
2.7 V – 3.6 V  
Unit  
V
CC  
70  
80  
90  
110  
Min  
Note  
Min  
Min  
Min Min  
Min  
tPHWL  
tPHEL  
/
RP# High Recovery to WE# (CE#) Going  
Low  
W1  
4,5  
150  
0
150  
0
150 150  
150  
150  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tELWL  
tWLEL  
/
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
CE# (WE#) Setup to WE# (CE#) Going Low 4,5  
0
50  
50  
50  
0
0
60  
50  
60  
0
0
70  
60  
70  
0
tWLWH  
tELEH  
/
WE# (CE#) Pulse Width  
1,4,5  
2,4,5  
2,4,5  
4,5  
45  
40  
50  
0
50  
40  
50  
0
70  
60  
70  
0
tDVWH  
tDVEH  
/
Data Setup to WE# (CE#) Going High  
Address Setup to WE# (CE#) Going High  
tAVWH  
tAVEH  
/
tWHEH  
tEHWH  
/
/
/
CE# (WE#) Hold Time from WE# (CE#)  
High  
tWHDX  
tEHDX  
Data Hold Time from WE# (CE#) High  
Address Hold Time from WE# (CE#) High  
WE# (CE#) Pulse Width High  
2,4,5  
2,4,5  
1,4,5  
0
0
0
0
0
0
tWHAX  
tEHAX  
0
0
0
0
0
0
tWHWL /  
tEHEL  
25  
30  
30  
30  
30  
30  
tVPWH  
tVPEH  
/
W10  
W11  
W12  
VPP Setup to WE# (CE#) Going High  
VPP Hold from Valid SRD  
3,4,5  
3,4  
200  
0
200  
0
200 200  
200  
0
200  
0
ns  
ns  
ns  
tQVVL  
0
0
0
0
tBHWH  
tBHEH  
/
WP# Setup to WE# (CE#) Going High  
3,4  
0
0
0
0
W13  
tQVBL  
WP# Hold from Valid SRD  
3,4  
3,4  
0
0
0
0
0
0
ns  
ns  
W14  
tWHGL  
WE# High to OE# Going Low  
30  
30  
30  
30  
30  
30  
NOTES:  
1. Write pulse width (tWP) is defined from CE# or WE# going low (whichever goes low last) to CE# or WE# going high  
(whichever goes high first). Hence, tWP = tWLWH = tELEH = tWLEH = tELWH. Similarly, write pulse width high (tWPH) is defined  
from CE# or WE# going high (whichever goes high first) to CE# or WE# going low (whichever goes low last). Hence,  
t
WPH = tWHWL = tEHEL = tWHEL = tEHWL.  
2. Refer to Table 7, “Command Bus Operations” on page 24 for valid AIN or DIN  
3. Sampled, but not 100% tested.  
.
4. See Figure 11, “AC Input/Output Reference Waveform” on page 49 for timing measurements and maximum allowable input  
slew rate.  
5. See Figure 9, “Write Operations Waveform” on page 47.  
44  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 19. Write Operations—32 Mbit Density  
Density  
Product  
32 Mbit  
70 ns  
90 ns  
100 ns  
110 ns  
100  
#
Sym  
Parameter  
3.0 V – 3.6 V6  
2.7 V – 3.6 V  
Note  
90  
Unit  
V
CC  
70  
90  
100  
Min  
110  
Min  
Min  
Min  
Min  
Min  
tPHWL  
tPHEL  
/
RP# High Recovery to WE# (CE#)  
Going Low  
W1  
W2  
4,5  
4,5  
150  
0
150  
0
150  
150  
0
150  
150  
0
ns  
ns  
tELWL  
tWLEL  
/
CE# (WE#) Setup to WE# (CE#)  
Going Low  
0
0
tWLWH  
/
W3  
WE# (CE#) Pulse Width  
1,4,5  
45  
60  
60  
70  
70  
70  
ns  
tELEH  
tDVWH  
tDVEH  
/
/
/
/
/
W4  
W5  
W6  
W7  
W8  
W9  
W10  
Data Setup to WE# (CE#) Going High  
2,4,5  
2,4,5  
4,5  
40  
50  
0
40  
60  
0
50  
60  
0
60  
70  
0
60  
70  
0
60  
70  
0
ns  
ns  
ns  
ns  
ns  
ns  
tAVWH  
tAVEH  
Address Setup to WE# (CE#) Going  
High  
tWHEH  
tEHWH  
CE# (WE#) Hold Time from WE#  
(CE#) High  
tWHDX  
tEHDX  
Data Hold Time from WE# (CE#)  
High  
2,4,5  
2,4,5  
1,4,5  
0
0
0
0
0
0
tWHAX  
tEHAX  
Address Hold Time from WE# (CE#)  
High  
0
0
0
0
0
0
tWHWL /  
tEHEL  
WE# (CE#) Pulse Width High  
25  
30  
30  
30  
30  
30  
tVPWH  
tVPEH  
/
VPP Setup to WE# (CE#) Going High  
VPP Hold from Valid SRD  
3,4,5  
3,4  
200  
0
200  
0
200  
0
200  
0
200  
0
200  
0
ns  
ns  
ns  
W11 tQVVL  
tBHWH  
W12  
/
WP# Setup to WE# (CE#) Going  
High  
3,4  
0
0
0
0
0
0
tBHEH  
W13 tQVBL  
W14 tWHGL  
NOTES:  
WP# Hold from Valid SRD  
3,4  
3,4  
0
0
0
0
0
0
ns  
ns  
WE# High to OE# Going Low  
30  
30  
30  
30  
30  
30  
1. Write pulse width (tWP) is defined from CE# or WE# going low (whichever goes low last) to CE# or WE# going high (whichever  
goes high first). Hence, tWP = tWLWH = tELEH = tWLEH = tELWH. Similarly, write pulse width high (tWPH) is defined from CE# or  
WE# going high (whichever goes high first) to CE# or WE# going low (whichever goes low last). Hence,  
t
WPH = tWHWL = tEHEL = tWHEL = tEHWL.  
2. Refer to Table 7, “Command Bus Operations” on page 24 for valid AIN or DIN  
3. Sampled, but not 100% tested.  
.
4. See Figure 11, “AC Input/Output Reference Waveform” on page 49 for timing measurements and maximum allowable input  
slew rate.  
5. See Figure 9, “Write Operations Waveform” on page 47.  
6. VCCMax = 3.3 V for 32-Mbit 0.25 Micron product.  
Datasheet  
45  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 20. Write Operations—64Mbit Density  
Density  
64 Mbit  
80 ns  
Min  
#
Sym  
Parameter  
Product  
Unit  
V
2.7 V – 3.6 V Note  
CC  
tPHWL  
tPHEL  
/
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
W10  
RP# High Recovery to WE# (CE#) Going Low  
CE# (WE#) Setup to WE# (CE#) Going Low  
WE# (CE#) Pulse Width  
4,5  
4,5  
150  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tELWL  
tWLEL  
/
tWLWH  
tELEH  
/
1,4,5  
2,4,5  
2,4,5  
4,5  
60  
40  
60  
0
tDVWH  
tDVEH  
/
Data Setup to WE# (CE#) Going High  
Address Setup to WE# (CE#) Going High  
CE# (WE#) Hold Time from WE# (CE#) High  
Data Hold Time from WE# (CE#) High  
Address Hold Time from WE# (CE#) High  
WE# (CE#) Pulse Width High  
tAVWH  
tAVEH  
/
tWHEH  
tEHWH  
/
/
/
tWHDX  
tEHDX  
2,4,5  
2,4,5  
1,4,5  
0
tWHAX  
tEHAX  
0
tWHWL /  
tEHEL  
30  
tVPWH  
tVPEH  
/
VPP Setup to WE# (CE#) Going High  
VPP Hold from Valid SRD  
3,4,5  
3,4  
200  
0
ns  
ns  
ns  
W11 tQVVL  
tBHWH  
W12  
/
WP# Setup to WE# (CE#) Going High  
3,4  
0
tBHEH  
W13 tQVBL  
W14 tWHGL  
NOTES:  
WP# Hold from Valid SRD  
3,4  
3,4  
0
ns  
ns  
WE# High to OE# Going Low  
30  
1. Write pulse width (tWP) is defined from CE# or WE# going low (whichever goes low last) to CE# or  
WE# going high (whichever goes high first). Hence, tWP = tWLWH = tELEH = tWLEH = tELWH  
.
Similarly, write pulse width high (tWPH) is defined from CE# or WE# going high (whichever goes  
high first) to CE# or WE# going low (whichever goes low last). Hence,  
t
WPH = tWHWL = tEHEL = tWHEL = tEHWL.  
2. Refer to Table 7, “Command Bus Operations” on page 24 for valid AIN or DIN  
3. Sampled, but not 100% tested.  
.
4. See Figure 11, “AC Input/Output Reference Waveform” on page 49 for timing measurements and  
maximum allowable input slew rate.  
5. See Figure 9, “Write Operations Waveform” on page 47.  
46  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Figure 9. Write Operations Waveform  
W5  
W8  
W6  
Address [A]  
CE# [E]  
W3  
W2  
W9  
WE# [W]  
OE# [G]  
W4  
W7  
Data [D/Q]  
W1  
RP# [P]  
W10  
Vpp [V]  
8.3  
Erase and Program Timings  
Table 21. Erase and Program Timings  
V
1.65 V–3.6 V  
11.4 V–12.6 V  
PP  
Symbol  
Parameter  
Unit  
Note  
Typ  
Max  
Typ  
Max  
4-KW Parameter Block  
Word Program Time  
tBWPB  
tBWMB  
1, 2, 3  
0.10  
0.30  
0.03  
0.12  
s
s
32-KW Main Block  
Word Program Time  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
0.8  
12  
22  
0.5  
1
2.4  
200  
200  
4
0.24  
8
1
185  
185  
4
Word Program Time for 0.13  
and 0.18 Micron Product  
µs  
µs  
s
t
t
WHQV1 / tEHQV1  
Word Program Time for 0.25  
Micron Product  
8
4-KW Parameter Block  
Erase Time  
WHQV2 / tEHQV2  
WHQV3 / tEHQV3  
WHRH1 / tEHRH1  
0.4  
0.6  
32-KW Main Block  
Erase Time  
t
t
5
5
s
Program Suspend Latency  
Erase Suspend Latency  
1,3  
1,3  
5
5
10  
20  
5
5
10  
20  
µs  
µs  
tWHRH2 / tEHRH2  
NOTES:  
1. Typical values measured at TA= +25 °C and nominal voltages.  
2. Excludes external system-level overhead.  
3. Sampled, but not 100% tested.  
Datasheet  
47  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
8.4  
Reset Specifications  
Table 22. Reset Specifications  
V
2.7 V – 3.6 V  
Max  
CC  
Symbol  
Parameter  
Notes  
Unit  
Min  
RP# Low to Reset during Read  
(If RP# is tied to VCC, this specification is not  
applicable)  
tPLPH  
1, 2  
100  
ns  
tPLRH1  
RP# Low to Reset during Block Erase  
RP# Low to Reset during Program  
3
3
22  
12  
µs  
µs  
tPLRH2  
NOTES:  
1. If tPLPH is < 100 ns the device may still reset but this is not guaranteed.  
2. If RP# is asserted while a Block Erase or Word Program operation is not executing, the reset will complete  
within 100 ns.  
3. Sampled, but not 100% tested.  
Figure 10. Reset Operations Waveforms  
V
IH  
RP# (P)  
tPHQV  
tPHWL  
tPHEL  
VIL  
t PLPH  
(A) Reset during Read Mode  
Abort  
Complete  
t PLRH  
tPHQV  
tPHWL  
tPHEL  
VIH  
VIL  
RP# (P)  
t PLPH  
t PLPH  
t PLRH  
<
(B) Reset during Program or Block Erase,  
Abort Deep  
Complete Power-  
tPHQV  
tPHWL  
tPHEL  
Down  
t PLRH  
VIH  
VIL  
RP# (P)  
t PLPH  
(C) Reset Program or Block Erase,  
>
t PLPH t PLRH  
48  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
8.5  
AC I/O Test Conditions  
Figure 11. AC Input/Output Reference Waveform  
VCCQ  
Test Points  
Input  
V
CCQ/2  
VCCQ/2  
Output  
0V  
NOTE: Input timing begins, and output timing ends, at V  
/2. Input rise and fall times (10% to 90%) < 5 ns.  
CCQ  
Worst case speed conditions are when V = V Min.  
CC  
CC  
Figure 12. Transient Equivalent Testing Load Circuit  
VCCQ  
R1  
Device  
Under Test  
Out  
CL  
R2  
NOTE: See Table 17 for component values.  
Table 23. Test Configuration Component Values for Worst Case Speed Conditions  
Test Configuration  
Min Standard Test  
C
(pF)  
R
(k)  
R (k)  
2
L
1
V
50  
25  
25  
CCQ  
NOTE: C includes jig capacitance.  
L
8.6  
Device Capacitance  
T = 25 °C, f = 1 MHz  
A
Symbol  
Parameter§  
Typ  
Max  
Unit  
Condition  
V = 0.0 V  
IN  
C
C
Input Capacitance  
Output Capacitance  
6
8
8
pF  
pF  
IN  
12  
V
= 0.0 V  
OUT  
OUT  
§Sampled, not 100% tested.  
Datasheet  
49  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Appendix A Write State Machine States  
This table shows the command state transitions based on incoming commands.  
Command Input (and Next State)  
Data  
When  
Read  
Program  
Setup (10/  
40H)  
Erase  
Setup  
(20H)  
Erase  
Confirm  
(D0H)  
Prog/Ers  
Suspend  
(B0H)  
Prog/Ers  
Resume  
(D0)  
Clear  
Status  
(50H)  
Read Array  
(FFH)  
Read Status  
(70H)  
Current State  
SR.7  
Read Array  
Read Status  
Read Config.  
Read Query  
“1”  
“1”  
“1”  
“1”  
Array  
Status  
Config  
CFI  
Read Array  
Read Array  
Read Array  
Read Array  
Prog. Setup  
Prog. Setup  
Prog. Setup  
Prog. Setup  
Ers. Setup  
Ers. Setup  
Ers. Setup  
Ers. Setup  
Read Array  
Read Array  
Read Array  
Read Array  
Read Sts.  
Read Sts.  
Read Sts.  
Read Sts.  
Read Array  
Read Array  
Read Array  
Read Array  
Lock  
Cmd. Error  
Lock  
(Done)  
Lock Setup  
“1”  
Status  
Lock Command Error  
Lock (Done)  
Lock Cmd. Error  
Lock Cmd. Error  
Lock Oper. (Done)  
Prot. Prog. Setup  
“1”  
“1”  
“1”  
Status  
Status  
Status  
Read Array  
Read Array  
Prog. Setup  
Prog. Setup  
Ers. Setup  
Ers. Setup  
Read Array  
Read Array  
Read Sts.  
Read Sts.  
Read Array  
Read Array  
Protection Register Program  
Protection Register Program (Not Done)  
Ers. Setup Read Array  
Program  
Prot. Prog.  
(Not Done)  
“0”  
Status  
Prot. Prog. (Done)  
Prog. Setup  
“1”  
“1”  
Status  
Status  
Read Array  
Prog. Setup  
Read Sts.  
Read Array  
Prog. Sus.  
Status  
Program (Not Done)  
Prog. Susp. Status  
“0”  
“1”  
“1”  
“1”  
Status  
Status  
Array  
Program (Not Done)  
Program (Not Done)  
Prog. Sus.  
Read Array  
Program Suspend  
Read Array  
Prog. (Not  
Done)  
Prog. Sus. Rd.  
Array  
Program  
Prog. Sus.  
Status  
Prog. Sus.  
Rd. Array  
(Not Done)  
Prog. Susp. Read  
Array  
Prog. Sus.  
Read Array  
Program Suspend  
Read Array  
Prog. (Not  
Done)  
Prog. Sus. Rd.  
Array  
Program  
(Not Done)  
Prog. Sus.  
Status  
Prog. Sus.  
Rd. Array  
Prog. Susp. Read  
Config  
Prog. Sus.  
Read Array  
Program Suspend  
Read Array  
Prog. (Not  
Done)  
Prog. Sus. Rd.  
Array  
Program  
(Not Done)  
Prog. Sus.  
Status  
Prog. Sus.  
Rd. Array  
Config  
Prog. Susp. Read  
Query  
Prog. Sus.  
Read Array  
Program Suspend  
Read Array  
Prog. (Not  
Done)  
Prog. Sus. Rd.  
Array  
Program  
Prog. Sus.  
Status  
Prog. Sus.  
Rd. Array  
“1”  
“1”  
“1”  
“1”  
“0”  
CFI  
(Not Done)  
Program (Done)  
Erase Setup  
Status  
Status  
Status  
Status  
Read Array  
Prog. Setup  
Ers. Setup  
Read Array  
Read Status  
Read Array  
Erase  
(Not Done)  
Erase Cmd.  
Error  
Erase  
(Not Done)  
Erase Command Error  
Erase Command Error  
Erase Cmd. Error  
Erase (Not Done)  
Read Array  
Prog. Setup  
Ers. Setup  
Read Array  
Read Status  
Read Array  
Erase Sus.  
Status  
Erase (Not Done)  
Erase (Not Done)  
Erase Sus.  
Read Array  
Ers. Sus.  
Rd. Array  
Ers. Sus. Rd.  
Array  
Erase Sus.  
Status  
Ers. Sus.  
Rd. Array  
Ers. Susp. Status  
Erase Susp. Array  
“1”  
“1”  
“1”  
Status  
Array  
Prog. Setup  
Prog. Setup  
Prog. Setup  
Erase  
Erase  
Erase  
Erase  
Erase  
Erase  
Erase  
Erase  
Erase Sus.  
Read Array  
Ers. Sus.  
Rd. Array  
Ers. Sus. Rd.  
Array  
Erase Sus.  
Status  
Ers. Sus.  
Rd. Array  
Ers. Susp. Read  
Config  
Erase Sus.  
Read Array  
Ers. Sus.  
Rd. Array  
Ers. Sus. Rd.  
Array  
Erase Sus.  
Status  
Ers. Sus.  
Rd. Array  
Config  
Ers. Susp. Read  
Query  
Erase Sus.  
Read Array  
Ers. Sus.  
Rd. Array  
Ers. Sus. Rd.  
Array  
Erase Sus.  
Status  
Ers. Sus.  
Rd. Array  
“1”  
“1”  
CFI  
Prog. Setup  
Prog. Setup  
Erase (Done)  
Status  
Read Array  
Ers. Setup  
Read Array  
Read Sts.  
Read Array  
50  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Command Input (and Next State)  
Lock Setup  
(60H)  
Lock Down  
Confirm  
(2FH)  
Read Config  
(90H)  
Read Query  
(98H)  
Prot. Prog.  
Setup (C0H)  
Lock Confirm  
(01H)  
Unlock Confirm  
(D0H)  
Current State  
Read Array  
Read Status  
Read Config.  
Read Query  
Lock Setup  
Read Config.  
Read Config.  
Read Config.  
Read Config.  
Read Query  
Read Query  
Read Query  
Read Query  
Lock Setup  
Lock Setup  
Lock Setup  
Lock Setup  
Prot. Prog. Setup  
Prot. Prog. Setup  
Prot. Prog. Setup  
Prot. Prog. Setup  
Read Array  
Read Array  
Read Array  
Read Array  
Locking Command Error  
Lock Operation (Done)  
Read Array  
Lock Cmd. Error  
Read Config.  
Read Config.  
Read Query  
Read Query  
Lock Setup  
Lock Setup  
Prot. Prog. Setup  
Prot. Prog. Setup  
Lock Oper.  
(Done)  
Read Array  
Prot. Prog. Setup  
Protection Register Program  
Prot. Prog.  
(Not Done)  
Protection Register Program (Not Done)  
Prot. Prog.  
(Done)  
Read Config.  
Read Query  
Lock Setup  
Prot. Prog. Setup  
Program  
Read Array  
Prog. Setup  
Program  
(Not Done)  
Program (Not Done)  
Prog. Susp.  
Status  
Prog. Susp.  
Read Config.  
Prog. Susp.  
Read Query  
Program  
(Not Done)  
Program Suspend Read Array  
Prog. Susp.  
Read Array  
Prog. Susp.  
Prog. Susp.  
Read Query  
Program  
Program Suspend Read Array  
Program Suspend Read Array  
Program Suspend Read Array  
Read Config.  
(Not Done)  
Prog. Susp.  
Read Config.  
Prog. Susp.  
Read Config.  
Prog. Susp.  
Read Query  
Program  
(Not Done)  
Prog. Susp.  
Read Query.  
Prog. Susp.  
Read Config.  
Prog. Susp.  
Read Query  
Program  
(Not Done)  
Program  
(Done)  
Read Config.  
Read Config.  
Read Query  
Read Query  
Lock Setup  
Prot. Prog. Setup  
Read Array  
Read Array  
Erase  
Setup  
Erase  
(Not Done)  
Erase Command Error  
Erase Cmd.  
Error  
Lock Setup  
Prot. Prog. Setup  
Erase (Not Done)  
Erase  
(Not Done)  
Erase Susp.  
Status  
Ers. Susp. Read  
Config.  
Erase Suspend  
Read Query  
Erase  
Lock Setup  
Lock Setup  
Lock Setup  
Erase Suspend Read Array  
(Not Done)  
Erase Suspend  
Array  
Ers. Susp. Read  
Config.  
Erase Suspend  
Read Query  
Erase  
(Not Done)  
Erase Suspend Read Array  
Erase Suspend Read Array  
Erase Suspend Read Array  
Eras Sus. Read  
Config  
Erase Suspend  
Read Config.  
Erase Suspend  
Read Query  
Erase  
(Not Done)  
Eras Sus. Read  
Query  
Erase Suspend  
Read Config.  
Erase Suspend  
Read Query  
Erase  
(Not Done)  
Lock Setup  
Lock Setup  
Ers.(Done)  
Read Config.  
Read Query  
Prot. Prog. Setup  
Read Array  
Datasheet  
51  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Appendix B Flow Charts  
Figure 13. Word Program Flowchart  
WORD PROGRAM PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Program Data = 0x40  
Write  
Write  
Read  
Write 0x40,  
Word Address  
Setup  
Addr = Location to program  
(Setup)  
Data = Data to program  
Addr = Location to program  
Data  
Write Data,  
Word Address  
(Confirm)  
Status register data: Toggle CE# or  
OE# to update Status Register  
None  
None  
Program  
Suspend  
Loop  
Read Status  
Register  
Check SR[7]  
1 = WSM Ready  
0 = WSM Busy  
Idle  
No  
Suspend?  
Yes  
0
SR[7] =  
Repeat for subsequent Word Program operations.  
Full Status Register check can be done after each program, or  
after a sequence of program operations.  
1
Full Status  
Check  
(if desired)  
Write 0xFF after the last operation to set to the Read Array  
state.  
Program  
Complete  
FULL STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[3]:  
1 = PP Error  
Idle  
Idle  
None  
V
1
1
1
VPP Range  
Error  
SR[3] =  
0
Check SR[4]:  
1 = Data Program Error  
None  
Program  
Error  
Check SR[1]:  
1 = Block locked; operation aborted  
SR[4] =  
0
Idle  
None  
SR[3] MUST be cleared before the Write State Machine will  
allow further program attempts.  
Device  
SR[1] =  
0
Protect Error  
If an error is detected, clear the Status Register before  
continuing operations - only the Clear Staus Register  
command clears the Status Register error bits.  
Program  
Successful  
52  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Figure 14. Program Suspend / Resume Flowchart  
PROGRAM SUSPEND / RESUME PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Read  
Status  
Data = 0x70  
Addr = Any address  
Write  
Write  
Write 0xB0  
Any Address  
(Program Suspend)  
(Read Status)  
Program Data = 0xB0  
Suspend Addr = Any address  
Write 0x70  
Any Address  
Status register data  
Toggle CE# or OE# to update Status  
register  
Read  
None  
Read Status  
Register  
Addr = Any address  
Check SR[7]:  
Idle  
Idle  
None  
None  
1 = WSM ready  
0 = WSM busy  
0
SR[7] =  
1
Check SR[2]:  
1 = Program suspended  
0 = Program completed  
0
Program  
Completed  
SR[2] =  
1
Read  
Array  
Data = 0xFF  
Addr = Any address  
Write  
Read  
Write  
Write 0xFF  
(Read Array)  
Read array data from block other than  
the one being programmed  
None  
Read Array  
Data  
(Read  
Array)  
Write 0xFF  
Program Data = 0xD0  
Resume Addr = Any address  
Read Array  
Data  
Done  
Reading  
No  
Yes  
Write 0xD0  
Any Address  
(Program Resume)  
Program  
Resumed  
Datasheet  
53  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Figure 15. Erase Suspend / Resume Flowchart  
ERASE SUSPEND / RESUME PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Read  
Status  
Data = 0x70  
Addr = Any address  
Write  
Write  
Write 0xB0,  
Any Address  
(Erase Suspend)  
(Read Status)  
Erase  
Data = 0xB0  
Suspend Addr = Any address  
Write 0x70,  
Any Address  
Status Register data. Toggle CE# or  
OE# to update Status register;  
Addr = Any Address  
Read  
Idle  
None  
None  
None  
Read Status  
Register  
Check SR[7]:  
1 = WSM ready  
0 = WSM busy  
0
SR[7] =  
1
Check SR[6]:  
1 = Erase suspended  
0 = Erase completed  
Idle  
0
Erase  
Completed  
SR[6] =  
1
Read Array Data = 0xFF or 0x40  
or Program Addr = Any address  
Write  
Write 0xFF  
Read or  
Write  
Read array or program data from/to  
block other than the one being erased  
None  
Read Array  
Data  
Program Data = 0xD0  
Resume Addr = Any address  
Write  
(Read Array)  
Done  
0
Reading  
1
Write 0xD0,  
Any Address  
(Erase Resume)  
(Read Array)  
Write 0xFF  
Erase  
Resumed  
Read Array  
Data  
54  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Figure 16. Block Erase Flowchart  
BLOCK ERASE PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Block  
Erase  
Setup  
Data = 0x20  
Addr = Block to be erased (BA)  
Write  
Write 0x20,  
(Block Erase)  
Block Address  
Erase Data = 0xD0  
Confirm Addr = Block to be erased (BA)  
Write  
Read  
Write 0xD0,  
(Erase Confirm)  
Block Address  
Status Register data. Toggle CE# or  
None  
OE# to update Status register data  
Suspend  
Erase  
Loop  
Read Status  
Register  
Check SR[7]:  
1 = WSM ready  
0 = WSM busy  
Idle  
None  
No  
Suspend  
Erase  
0
Yes  
SR[7] =  
1
Repeat for subsequent block erasures.  
Full Status register check can be done after each block erase  
or after a sequence of block erasures.  
Full Erase  
Status Check  
(if desired)  
Write 0xFF after the last operation to enter read array mode.  
Block Erase  
Complete  
FULL ERASE STATUS CHECK PROCEDURE  
Read Status  
Register  
Bus  
Command  
Operation  
Comments  
Check SR[3]:  
1 = PP Range Error  
Idle  
Idle  
Idle  
None  
None  
None  
V
1
VP P Range  
Error  
SR[3] =  
0
Check SR[4,5]:  
Both 1 = Command Sequence Error  
1,1  
1
Command  
Sequence Error  
Check SR[5]:  
1 = Block Erase Error  
SR[4,5] =  
0
Check SR[1]:  
1 = Attempted erase of locked block;  
erase aborted.  
Block Erase  
Error  
Idle  
None  
SR[5] =  
0
SR[1,3] must be cleared before the Write State Machine will  
allow further erase attempts.  
1
Block Locked  
Error  
SR[1] =  
0
Only the Clear Status Register command clears SR[1, 3, 4, 5].  
If an error is detected, clear the Status register before  
attempting an erase retry or other error recovery.  
Block Erase  
Successful  
Datasheet  
55  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Figure 17. Locking Operations Flowchart  
LOCKING OPERATIONS PROCEDURE  
Start  
Bus  
Command  
Comments  
Operation  
Write 0x60,  
Block Address  
Lock  
Setup  
Data = 0x60  
Addr = Any Address  
(Lock Setup)  
Write  
Lock,  
Unlock, or  
Lock-Down  
Data = 0x01 (Block Lock)  
0xD0 (Block Unlock)  
Write either  
0x01/0xD0/0x2F,  
Block Address  
(Lock Confirm)  
Write  
Write  
0x2F (Lock-Down Block)  
Confirm Addr = Block to lock/unlock/lock-down  
Read Data = 0x90  
(Optional) Device ID Addr = Any Address  
Write 0x90  
(Read Device ID)  
Read  
(Optional)  
Block Lock Block Lock status data  
Read Block  
Lock Status  
Status  
Addr = Block address + offset 2  
Idle  
(Optional)  
None  
Confirm locking change on D[1,0] .  
Locking  
No  
Change?  
Yes  
Read  
Array  
Data = 0xFF  
Addr = Any address  
Write  
Write 0xFF  
Any Address  
(Read Array)  
Lock Change  
Complete  
56  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Figure 18. Protection Register Programming Flowchart  
PROTECTION REGISTER PROGRAMMING PROCEDURE  
Bus  
Operation  
Start  
Command  
Comments  
Program Data = 0xC0  
PR Setup Addr = First Location to Program  
Write  
Write  
Read  
Write 0xC0,  
PR Address  
(Program Setup)  
(Confirm Data)  
Protection Data = Data to Program  
Program Addr = Location to Program  
Write PR  
Address & Data  
Status Register Data. Toggle CE# or  
None  
OE# to Update Status Register Data  
Read Status  
Register  
Check SR[7]:  
1 = WSM Ready  
0 = WSM Busy  
Idle  
None  
Program Protection Register operation addresses must be  
within the Protection Register address space. Addresses  
outside this space will return an error.  
0
SR[7] =  
1
Repeat for subsequent programming operations.  
Full Status  
Check  
(if desired)  
Full Status Register check can be done after each program, or  
after a sequence of program operations.  
Write 0xFF after the last operation to set Read Array state.  
Program  
Complete  
FULL STATUS CHECK PROCEDURE  
Read Status  
Register Data  
Bus  
Operation  
Command  
Comments  
Check SR[1], SR[3], SR[4]:  
0,1,1 = VPP Range Error  
Idle  
Idle  
Idle  
None  
1
SR[3], SR[4] =  
0
VPP Range Error  
Program Error  
Check SR[1], SR[3], SR[4]:  
0,0,1 = Programming Error  
None  
None  
Check SR[1], SR[3], SR[4]:  
1,0,1 = Block locked; operation aborted  
1
1
SR[3], SR[4] =  
SR[3] must be cleared before the Write State Machine will  
allow further program attempts.  
0
Only the Clear Staus Register command clears SR[1, 3, 4].  
Register Locked;  
Program Aborted  
If an error is detected, clear the Status register before  
attempting a program retry or other error recovery.  
SR[3], SR[4] =  
0
Program  
Successful  
Datasheet  
57  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Appendix C Common Flash Interface  
This appendix defines the data structure or “database” returned by the Common Flash Interface  
(CFI) Query command. System software should parse this structure to gain critical information  
such as block size, density, x8/x16, and electrical specifications. Once this information has been  
obtained, the software will know which command sets to use to enable flash writes, block erases,  
and otherwise control the flash component. The Query is part of an overall specification for  
multiple command set and control interface descriptions called Common Flash Interface, or CFI.  
C.1  
Query Structure Output  
The Query database allows system software to obtain information for controlling the flash device.  
This section describes the device’s CFI-compliant interface that allows access to Query data.  
Query data are presented on the lowest-order data outputs (DQ0-DQ7) only. The numerical offset  
value is the address relative to the maximum bus width supported by the device. On this family of  
devices, the Query table device starting address is a 0x10, which is a word address for x16 devices.  
For a word-wide (x16) device, the first two Query-structure bytes, ASCII “Q” and “R,” appear on  
the low byte at word addresses 0x10 and 0x11. This CFI-compliant device outputs 0x00 data on  
upper bytes. The device outputs ASCII “Q” in the low byte (DQ0-DQ7) and 0x00 in the high byte  
(DQ8-DQ15).  
At Query addresses containing two or more bytes of information, the least significant data byte is  
presented at the lower address, and the most significant data byte is presented at the higher address.  
In all of the following tables, addresses and data are represented in hexadecimal notation, so the  
“h” suffix has been dropped. In addition, since the upper byte of word-wide devices is always  
“0x00,” the leading “00” has been dropped from the table notation and only the lower byte value is  
shown. Any x16 device outputs can be assumed to have 0x00 on the upper byte in this mode.  
Table 24. Summary of Query Structure Output as a Function of Device and Mode  
Device  
Hex Offset  
Hex Code  
ASCII Value  
00010:  
00011:  
00012:  
51  
52  
59  
"Q"  
"R"  
"Y"  
Device Addresses  
Table 25. Example of Query Structure Output of x16 Devices (Sheet 1 of 2)  
Word Addressing:  
Offset  
A[X-0]  
Hex Code  
Value  
DQ[16:0]  
0x00010  
0x00011  
0x00012  
0x00013  
0051  
0052  
"Q"  
"R"  
0059  
"Y"  
P_IDLO  
PrVendor  
58  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 25. Example of Query Structure Output of x16 Devices (Sheet 2 of 2)  
0x00014  
0x00015  
0x00016  
0x00017  
0x00018  
...  
P_IDHI  
PLO  
ID #  
PrVendor  
TblAdr  
AltVendor  
ID #  
PHI  
A_IDLO  
A_IDHI  
...  
...  
C.2  
Query Structure Overview  
The Query command causes the flash component to display the Common Flash Interface (CFI)  
Query structure or “database.” The structure sub-sections and address locations are summarized  
below.  
Table 26. Query Structure  
Description1  
Offset  
Sub-Section Name  
0x00000  
Manufacturer Code  
Device Code  
0x00001  
0x(BA+2)2  
Block Status register  
Reserved  
Block-specific information  
0x00004-0xF  
Reserved for vendor-specific information  
CFI query identification  
string  
0x00010  
Command set ID and vendor data offset  
System interface  
information  
0x0001B  
0x00027  
P3  
Device timing & voltage information  
Flash device layout  
Device geometry definition  
Primary Intel-specific  
Extended Query Table  
Vendor-defined additional information specific to the Primary  
Vendor Algorithm  
NOTES:  
1. Refer to the Query Structure Output section and offset 0x28 for the detailed definition of offset address as a  
function of device bus width and mode.  
2. BA = Block Address beginning location (i.e., 0x08000 is block 1’s beginning location when the block size is  
32K-word).  
3. Offset 15 defines “P” which points to the Primary Intel-specific Extended Query Table.  
C.3  
Block Status Register  
The Block Status Register indicates whether an erase operation completed successfully or whether  
a given block is locked or can be accessed for flash program/erase operations.  
Block Erase Status (BSR[1]) allows system software to determine the success of the last block  
erase operation. BSR[1] can be used just after power-up to verify that the VCC supply was not  
accidentally removed during an erase operation.  
Datasheet  
59  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 27. Block Status Register  
Offset  
Length  
Description  
Block Lock Status Register  
Add.  
Value  
BA+2 --00 or --01  
BSR[0] Block lock status  
0 = Unlocked  
BA+2 (bit 0): 0 or 1  
1 = Locked  
0x(BA+2)1  
1
BSR[1] Block lock-down status  
0 = Not locked down  
BA+2 (bit 1): 0 or 1  
BA+2 (bit 2-7): 0  
1 = Locked down  
BSR[7:2]: Reserved for future use  
NOTES:  
1. BA = Block Address beginning location (i.e., 0x08000 is block 1’s beginning location when the block size is  
32K-word).  
C.4  
CFI Query Identification String  
The Identification String provides verification that the component supports the Common Flash  
Interface specification. It also indicates the specification version and supported vendor-specified  
command set(s).  
Table 28. CFI Identification  
Offset  
Length  
Description  
Add.  
Hex Code  
Value  
10:  
11:  
12:  
--51  
--52  
--59  
“Q”  
“R”  
“Y”  
0x10  
3
Query-unique ASCII string “QRY“  
Primary vendor command set and control interface ID code  
16-bit ID code for vendor-specified algorithms  
13:  
14:  
--03  
--00  
0x13  
0x15  
0x17  
0x19  
2
2
2
2
15:  
16:  
--35  
--00  
Extended Query Table primary algorithm address  
Alternate vendor command set and control interface ID code  
0x0000 means no second vendor-specified algorithm exists  
17:  
18:  
--00  
--00  
Secondary algorithm Extended Query Table address  
0x0000 means none exists  
19:  
1A:  
--00  
--00  
Table 29. System Interface Information  
Offset  
Length  
Description  
logic supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
Add.  
Hex Code  
Value  
V
V
V
CC  
0x1B  
0x1C  
0x1D  
1
1B:  
--27  
2.7 V  
logic supply maximum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
CC  
1
1
1C:  
1D:  
--36  
--B4  
3.6 V  
[programming] supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
PP  
11.4 V  
60  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Offset  
Length  
Description  
Add.  
Hex Code  
Value  
V
[programming] supply maximum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
PP  
0x1E  
1
1E:  
--C6  
12.6 V  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
1
1
1
1
1
1
1
1
“n” such that typical single word program time-out =2n µs  
“n” such that typical max. buffer write time-out = 2n µs  
“n” such that typical block erase time-out = 2n ms  
1F:  
20:  
21:  
22:  
23:  
24:  
25:  
26:  
--05  
--00  
--0A  
--00  
--04  
--00  
--03  
--00  
32 µs  
NA  
1 s  
“n” such that typical full chip erase time-out = 2n ms  
NA  
“n” such that maximum word program time-out = 2n times typical  
“n” such that maximum buffer write time-out = 2n times typical  
“n” such that maximum block erase time-out = 2n times typical  
“n” such that maximum chip erase time-out = 2n times typical  
512µs  
NA  
8s  
NA  
C.5  
Device Geometry Definition  
Table 30. Device Geometry Definition  
Hex  
Code  
Offset  
0x27  
Length  
Description  
Add.  
Value  
1
2
“n” such that device size = 2n in number of bytes  
27  
See Table 31  
x8 async  
x16 async  
x8/x16 async  
28:  
29:  
--01  
--00  
0x28  
Flash device interface:  
x16  
0
28:00,29:00 28:01,29:00 28:02,29:00  
2A:  
2B:  
--00  
--00  
0x2A  
0x2C  
2
“n” such that maximum number of bytes in write buffer = 2n  
Number of erase block regions within device:  
1. x = 0 means no erase blocking; the device erases in “bulk”  
2. x specifies the number of device or partition regions  
with one or more contiguous same-size erase blocks.  
3. Symmetrically blocked partitions have one blocking region  
4. Partition size = (total blocks) x (individual block size)  
1
2C:  
--02  
2
Erase Block Region 1 Information  
2D:  
2E:  
2F:  
30:  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
0x2D  
0x2D  
4
See Table 31  
See Table 31  
Erase Block Region 2 Information  
31:  
32:  
33:  
34:  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
14  
Datasheet  
61  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 31. Device Geometry Details  
16 Mbit  
32 Mbit  
64 Mbit  
Address  
-B  
-T  
-B  
-T  
-B  
-T  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
--15  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--1E  
--00  
--00  
--01  
-15  
--01  
--00  
--00  
--00  
--02  
--1E  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--16  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--3E  
--00  
--00  
--01  
-16  
--01  
-00  
--17  
--01  
-00  
--17  
--01  
-00  
-00  
-00  
-00  
-00  
-00  
-00  
--02  
--3E  
-00  
--02  
--07  
-00  
--02  
--7E  
-00  
-00  
--20  
--00  
--7E  
-00  
--00  
--01  
--07  
-00  
--01  
--07  
-00  
--20  
--00  
--00  
--01  
--20  
--00  
C.6  
Intel-Specific Extended Query Table  
Certain flash features and commands are optional. The Intel-Specific Extended Query table  
specifies this and other similar types of information.  
Table 32. Primary-Vendor Specific Extended Query (Sheet 1 of 2)  
Offset1  
P = 0x15  
Description  
(Optional Flash Features and Commands)  
Length  
Address  
Hex Code  
Value  
0x(P+0)  
0x(P+1)  
0x(P+2)  
35:  
36:  
37:  
--50  
--52  
--49  
“P”  
“R”  
“I”  
Primary extended query table  
Unique ASCII string “PRI”  
3
0x(P+3)  
0x(P+4)  
1
1
Major version number, ASCII  
Minor version number, ASCII  
38:  
39:  
--31  
--30  
“1”  
“0”  
Optional feature and command support (1=yes,  
0=no)  
bits 9–31 are reserved; undefined bits are “0.” If bit  
31 is “1” then another 31 bit field of optional  
features follows at the end of the bit-30 field.  
3A:  
3B:  
3C:  
3D:  
--66  
--00  
--00  
--00  
0x(P+5)  
0x(P+6)  
0x(P+7)  
0x(P+8)  
bit 0 Chip erase supported  
bit 0 = 0  
No  
Yes  
Yes  
No  
bit 1 Suspend erase supported  
bit 2 Suspend program supported  
bit 3 Legacy lock/unlock supported  
bit 4 Queued erase supported  
bit 5 Instant individual block locking supported  
bit 6 Protection bits supported  
bit 1 = 1  
bit 2 = 1  
bit 3 = 0  
bit 4 = 0  
bit 5 = 1  
bit 6 = 1  
bit 7 = 0  
bit 8 = 0  
4
No  
Yes  
Yes  
No  
bit 7 Page mode read supported  
bit 8 Synchronous read supported  
No  
62  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Table 32. Primary-Vendor Specific Extended Query (Sheet 2 of 2)  
Offset1  
P = 0x15  
Description  
(Optional Flash Features and Commands)  
Length  
Address  
Hex Code  
Value  
Supported functions after suspend: Read Array,  
Status, Query  
Other supported operations are:  
bits 1–7 reserved; undefined bits are “0”  
3E:  
--01  
0x(P+9)  
1
bit 0 Program supported after erase suspend  
bit 0 = 1  
Yes  
3F:  
40:  
--03  
--00  
Block status register mask  
0x(P+A)  
0x(P+B)  
bits 2–15 are Reserved; undefined bits are “0”  
bit 0 Block Lock-Bit Status Register active  
bit 1 Block Lock-Down Bit Status active  
2
bit 0 = 1  
Yes  
Yes  
bit 1 = 1  
V
logic supply highest performance program/  
CC  
erase voltage  
0x(P+C)  
1
1
41:  
42:  
--33  
--C0  
3.3 V  
bits 0–3 BCD value in 100 mV  
bits 4–7 BCD value in volts  
V
optimum program/erase supply voltage  
PP  
0x(P+D)  
bits 0–3 BCD value in 100 mV  
bits 4–7 HEX value in volts  
12.0 V  
NOTES:  
1. The variable P is a pointer which is defined at CFI offset 0x15.  
Table 33. Protection Register Information  
Offset1  
P = 0x35  
Description  
(Optional Flash Features and Commands)  
Hex  
Code  
Length  
Address  
Value  
Number of Protection register fields in JEDEC ID space.  
“00h,” indicates that 256 protection bytes are available  
0x(P+E)  
1
43:  
--01  
01  
0x(P+F)  
0x(P+10)  
(0xP+11)  
44:  
45:  
46:  
--80  
--00  
--03  
80h  
00h  
8 byte  
Protection Field 1: Protection Description  
This field describes user-available One Time Programmable (OTP)  
Protection register bytes. Some are pre-programmed with device-  
unique serial numbers. Others are user programmable. Bits 0–15  
point to the Protection register Lock byte, the section’s first byte.  
The following bytes are factory pre-programmed and user-  
programmable.  
4
0x(P+12)  
47:  
48:  
--03  
8 byte  
bits 0–7 = Lock/bytes JEDEC-plane physical low address  
bits 8–15 = Lock/bytes JEDEC -plane physical high address  
bits 16–23 = “n” such that 2n = factory pre-programmed bytes  
bits 24–31 = “n” such that 2n = user programmable bytes  
0x(P+13)  
Reserved for future use  
NOTES:  
1. The variable P is a pointer which is defined at CFI offset 0x15.  
Datasheet  
63  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Appendix D Mechanical Specifications  
Figure 19. µBGA* and VF BGA Package Drawing & Dimensions  
R0  
Ball A1  
Corner  
Ball A1  
Corner  
D
S1  
S2  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2 1  
A
B
C
D
A
B
C
E
D
E
F
e
E
F
b
Top View - Bump Side down  
Bottom View -Bump side up  
A
1
A2  
A
Seating  
Plan  
Y
Side View  
Note: Drawing not to scale  
Millimeters  
Nom  
Inches  
Nom  
Dimensions  
Package Height  
Ball Height  
Package Body Thickness  
Ball (Lead) Width  
Package Body Length 8M (.25)  
Package Body Length 16M (.25/.18/.13) 32M (.25/.18/.13)  
Package Body Length 64M (.18)  
Package Body Width 8M (.25)  
Package Body Width 16M (.25/.18/.13) 32M (.18/.13)  
Package Body Width 32M (.25)  
Package Body Width 64M (.18)  
Symbol  
A
A1  
A2  
b
D
D
D
E
E
E
E
e
Min  
Max  
Min  
Max  
0.0394  
1.000  
0.150  
0.0059  
0.0128  
0.665  
0.375  
7.910  
7.286  
7.700  
6.500  
6.964  
10.850  
9.000  
0.750  
46  
0.0262  
0.0148  
0.325  
7.810  
7.186  
7.600  
6.400  
6.864  
0.425  
8.010  
7.386  
7.800  
6.600  
7.064  
10.860  
9.100  
0.0167  
0.2829  
0.2992  
0.2520  
0.2702  
0.4232  
0.3504  
0.2868  
0.3031  
0.2559  
0.2742  
0.4272  
0.3543  
0.0295  
46  
0.2908  
0.3071  
0.2598  
0.2781  
0.4276  
0.3583  
10.750  
8.900  
Pitch  
Ball (Lead) Count 8M, 16M  
N
Ball (Lead) Count 32M  
N
47  
47  
Ball (Lead) Count 64M  
N
48  
48  
Seating Plane Coplanarity  
Y
0.100  
1.430  
1.118  
1.325  
1.475  
1.707  
3.650  
2.725  
0.0039  
0.0563  
0.0440  
0.0522  
0.0581  
0.0672  
0.1437  
0.1073  
Corner to Ball A1 Distance Along D 8M (.25)  
Corner to Ball A1 Distance Along D 16M (.25/.18/.13) 32M (.18/.13)  
Corner to Ball A1 Distance Along D 64M (.18)  
Corner to Ball A1 Distance Along E 8M (.25)  
Corner to Ball A1 Distance Along E 16M (.25/.18/.13) 32M (.18/.13)  
Corner to Ball A1 Distance Along E 32M (.25)  
Corner to Ball A1 Distance Along E 64M (.18)  
S1  
S1  
S1  
S2  
S2  
S2  
S2  
1.230  
0.918  
1.125  
1.275  
1.507  
3.450  
2.525  
1.330  
1.018  
1.225  
1.375  
1.607  
3.550  
2.625  
0.0484  
0.0361  
0.0443  
0.0502  
0.0593  
0.1358  
0.0994  
0.0524  
0.0401  
0.0482  
0.0541  
0.0633  
0.1398  
0.1033  
64  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Figure 20. TSOP Package Drawing & Dimensions  
Z
A
2
See Notes 1, 2, 3 and 4  
Pin 1  
e
See Detail B  
E
Y
D
1
A
1
D
Seating  
Plane  
See Detail A  
A
Detail A  
Detail B  
C
b
0
L
A5568-02  
Dimensions  
Family: Thin Small Ou-tLine Package  
Symbol  
Millimeters  
Nom  
Inches  
Nom  
Min  
Max  
1.200  
Notes  
Min  
Max  
Notes  
Package Height  
Standoff  
A
A1  
A2  
b
0.047  
0.050  
0.002  
Package Body Thickness  
Lead Width  
0.950 1.000 1.050  
0.150 0.200 0.300  
0.100 0.150 0.200  
18.200 18.400 18.600  
11.800 12.000 12.200  
0.500  
0.037 0.039 0.041  
0.006 0.008 0.012  
0.004 0.006 0.008  
0.717 0.724 0.732  
0.465 0.472 0.480  
0.0197  
Lead Thickness  
c
Plastic Body Length  
Package Body Width  
Lead Pitch  
D1  
E
e
Terminal Dimension  
Lead Tip Length  
Lead Count  
D
19.800 20.000 20.200  
0.500 0.600 0.700  
48  
0.780 0.787 0.795  
0.020 0.024 0.028  
48  
L
N
Lead Tip Angle  
Ø
Y
0°  
3°  
5°  
0°  
3°  
5°  
Seating Plane Coplanarity  
Lead to Package Offset  
0.100  
0.004  
Z
0.150 0.250 0.350  
0.006 0.010 0.014  
1. One dimple on package denotes Pin 1.  
2. If two dimples, then the larger dimple denotes Pin 1.  
3. Pin 1 will always be in the upper left corner of the package, in reference to the product mark.  
4. Pin 1 will always supersede above pin one notes.  
Datasheet  
65  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Figure 21. Easy BGA Package Drawing & Dimension  
Ball A1  
Corner  
Ball A1  
Corner  
D
S1  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
S2  
A
B
C
D
E
A
B
C
D
E
b
e
E
F
F
G
H
G
H
Top View - Ball side down  
A1  
Bottom View - Ball Side Up  
A2  
A
Seating  
Plane  
Y
Side View  
Note: Drawing not to scale  
Dimensions Table  
Millimeters  
Min  
Inches  
Min  
Symbol  
A
Nom  
Max Notes  
1.200  
Nom  
Max  
Package Height  
0.0472  
1
Ball Height  
A
A
0.250  
0.0098  
2
Package Body Thickness  
Ball (Lead) Width  
Package Body Width  
Package Body Length  
Pitch  
Ball (Lead) Count  
Seating Plane Coplanarity  
Corner to Ball A1 Distance Along D  
Corner to Ball A1 Distance Along E  
0.780  
0.430  
10.000  
13.000  
1.000  
64  
0.0307  
0.0169  
0.3937  
0.5118  
0.0394  
64  
b
D
E
[e]  
N
Y
0.330  
9.900  
12.900  
0.530  
10.100  
13.100  
0.0130  
0.3898  
0.5079  
0.0209  
0.3976  
0.5157  
1
1
0.100  
1.600  
3.100  
0.0039  
0.0630  
0.1220  
1
S
S
1.400  
2.900  
1.500  
3.000  
1
1
0.0551  
0.1142  
0.0591  
0.1181  
2
Note: (1) Package dimensions are for reference only. These dimensions are estimates based  
on die size, and are subject to change.  
66  
Datasheet  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Appendix E Additional Information  
Order Number  
Document/Tool  
297938  
292216  
3 Volt Advanced+ Boot Block Flash Memory Specification Update  
AP-658 Designing for Upgrade to the Advanced+ Boot Block Flash Memory  
AP-657 Designing with the Advanced+ Boot Block Flash Memory  
Architecture  
292215  
Contact your Intel  
Representative  
Intel® Flash Data Integrator (FDI) Software Developer’s Kit  
297874  
IFDI Interactive: Play with Intel® Flash Data Integrator on Your PC  
NOTES:  
1. Please call the Intel Literature Center at (800) 548-4725 to request Intel documentation. International  
customers should contact their local Intel or distribution sales office.  
2. Visit Intel’s World Wide Web home page at ‘http://www.intel.com/design/flash’ for technical  
documentation and tools.  
Datasheet  
67  
£
Intel Advanced+ Boot Block Flash Memory (C3)  
Appendix F Ordering Information  
Figure 22. Component Ordering Information  
T E 2 8 F 3 2 0 C 3 T C 7 0  
Access Speed (ns)  
(70, 80, 90, 100, 110)  
Package  
TE = 48-Lead TSOP  
GT = 48-Ball µBGA* CSP  
GE = VF BGA CSP  
RC = Easy BGA  
Lithography  
A = 0.25 µm  
C = 0.18 µm  
D = 0.13 µm  
Product line designator  
for all Intel® Flash products  
T = Top Parameter Boot  
B = Bottom Parameter Boot  
Device Density  
640 = x16 (64 Mbit)  
320 = x16 (32 Mbit)  
160 = x16 (16 Mbit)  
800 = x16 (8 Mbit)  
Product Family  
C3 = 3 Volt Advanced+ Boot Block  
VCC = 2.7 V–3.6 V  
VPP = 2.7 V–3.6 V or  
11.4 V–12.6 V  
VALID COMBINATIONS (All Extended Temperature)  
48-Lead TSOP  
48-Ball µBGA* CSP  
48-Ball VF BGA  
Easy BGA  
Extended  
64 Mbit  
TE28F640C3TC80  
TE28F640C3BC80  
GE28F640C3TC80  
GE28F640C3BC80  
RC28F640C3TC80  
RC28F640C3BC80  
TE28F320C3TD70  
TE28F320C3BD70  
RC28F320C3TD70  
RC28F320C3BD70  
TE28F320C3TC70  
TE28F320C3BC70  
TE28F320C3TC90  
TE28F320C3BC90  
TE28F320C3TA100  
TE28F320C3BA100  
GE28F320C3TD70  
GE28F320C3BD70  
GE28F320C3TC70  
GE28F320C3BC70  
GE28F320C3TC90  
GE28F320C3BC90  
RC28F320C3TD90  
RC28F320C3BD90  
RC28F320C3TC90  
RC28F320C3BC90  
RC28F320C3TA100  
RC28F320C3BA100  
GT28F320C3TA100  
GT28F320C3BA100  
GT28F320C3TA110  
GT28F320C3BA110  
Extended  
32 Mbit  
TE28F320C3TA110  
TE28F320C3BA110  
RC28F320C3TA110  
RC28F320C3BA110  
TE28F160C3TD70  
TE28F160C3BD70  
RC28F160C3TD70  
RC28F160C3BD70  
TE28F160C3TC70  
RC28F160C3TC70  
GE28F160C3TD70  
GE28F160C3BD70  
GE28F160C3TC70  
GE28F160C3BC70  
GE28F160C3TC80  
GE28F160C3BC80  
GE28F160C3TC90  
GE28F160C3BC90  
TE28F160C3BC70  
RC28F160C3BC70  
TE28F160C3TC80  
TE28F160C3BC80  
TE28F160C3TC90  
TE28F160C3BC90  
TE28F160C3TA90  
TE28F160C3BA90  
TE28F160C3TA110  
TE28F160C3BA110  
GT28F160C3TA90  
GT28F160C3BA90  
GT28F160C3TA110  
GT28F160C3BA110  
RC28F160C3TC80  
RC28F160C3BC80  
RC28F160C3TC90  
RC28F160C3BC90  
RC28F160C3TA90  
RC28F160C3BA90  
RC28F160C3TA110  
RC28F160C3BA110  
Extended  
16 Mbit  
TE28F800C3TA90  
TE28F800C3BA90  
TE28F800C3TA110  
TE28F800C3BA110  
GE28F800C3TA70  
GE28F800C3BA70  
GE28F800C3TA90  
GE28F800C3BA90  
RC28F800C3TA90  
RC28F800C3BA90  
RC28F800C3TA110  
RC28F800C3BA110  
Extended  
8 Mbit  
NOTE: The second line of the 48-ball µBGA package top side mark specifies assembly codes. For samples  
only, the first character signifies either “E” for engineering samples or “S” for silicon daisy chain  
samples. All other assembly codes without an “E” or “S” as the first character are production units.  
68  
Datasheet  

相关型号:

RC28F800C3BD70

Advanced+ Boot Block Flash Memory (C3)
INTEL

RC28F800C3TA110

Advanced+ Boot Block Flash Memory (C3)
INTEL

RC28F800C3TA70

Advanced+ Boot Block Flash Memory (C3)
INTEL

RC28F800C3TA90

Advanced+ Boot Block Flash Memory (C3)
INTEL

RC28F800C3TC70

Advanced+ Boot Block Flash Memory (C3)
INTEL

RC28F800C3TD70

Advanced+ Boot Block Flash Memory (C3)
INTEL

RC28F800F3B120

Flash, 512KX16, 120ns, PBGA64, BGA-64
INTEL

RC28F800F3B95

Flash, 512KX16, 95ns, PBGA64, BGA-64
INTEL

RC2951

Adjustable Micropower Voltage Regulator
FAIRCHILD

RC2951M

Fixed & Adjustable Voltage Regulator
ETC

RC2951M-3.3

Fixed & Adjustable Voltage Regulator
ETC

RC2951M33

VOLT REGULATOR|FIXED/ADJUSTABLE|+3.3/+1.24 TO 29V|BIPOLAR|SOP|8PIN|PLASTIC
FAIRCHILD