RC28F800F3B95 [INTEL]

Flash, 512KX16, 95ns, PBGA64, BGA-64;
RC28F800F3B95
型号: RC28F800F3B95
厂家: INTEL    INTEL
描述:

Flash, 512KX16, 95ns, PBGA64, BGA-64

内存集成电路
文件: 总52页 (文件大小:335K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3 Volt Fast Boot Block Flash Memory  
28F800F3 and 28F160F3  
Product Features  
High Performance  
Supports Code Plus Data Storage  
Up to 60 MHz Effective Zero Wait-State  
Performance  
Synchronous Burst-Mode Reads  
Asynchronous Page-Mode Reads  
SmartVoltage Technology  
Optimized for Intel® Flash Data  
Integrator (IFDI) and other Intel®  
Software  
Fast Program Suspend Capability  
Fast Erase Suspend Capability  
Flexible Blocking Architecture  
Eight 4-Kword Blocks for Data  
32-Kword Main Blocks for Code  
Top or Bottom Boot Configurations  
Extended Cycling Capability  
2.7 V3.6 V Read and Write Operations  
for Low Power Designs  
12 V VPP Fast Factory Programming  
Flexible I/O Voltage  
1.65 V I/O Reduces Overall System  
Power Consumption  
Minimum 100,000 Block Erase Cycles  
Low Power Consumption  
5 V-Safe I/O Enables Interfacing to  
5 V Devices  
Automatic Power Savings Mode  
Decreases Power Consumption  
Enhanced Data Protection  
Absolute Write Protection with  
VPP = GND  
Automated Program and Block Erase  
Algorithms  
Block Locking  
Block Erase/Program Lockout during  
Power Transitions  
Command User Interface for  
Automation  
Status Register for System Feedback  
Industry-Standard Packaging  
56-Lead SSOP  
Density Upgrade Path  
—8 and 16 Mbit  
Manufactured on ETOX™ V Flash  
56-Lead TSOP  
Technology  
µBGA* CSP  
Intel® Easy BGA  
Intel® 3 Volt Fast Boot Block Flash memory offers the highest performance synchronous burst  
reads—making it an ideal memory solution for burst CPUs. The Intel 3 Volt Fast Boot Block  
Flash memory also supports asynchronous page mode operation for non-clocked memory  
subsystems. Combining high read performance with the intrinsic nonvolatility of flash memory  
eliminates the traditional redundant memory paradigm of shadowing code from a slower  
nonvolatile storage source to a faster execution memory device, (e.g., SRAM SDRAM), for  
improved system performance. By adding 3 Volt Fast Boot Block Flash memory to your system  
you could reduce the total memory requirement, which helps increase reliability and reduce  
overall system power consumption—all while reducing system cost.  
This family of products is manufactured on Intel® 0.4 µm ETOX™ V process technology. They  
are available in a wide variety of industry-standard packaging technologies.  
Notice: This document contains information on products in full production. The specifications  
are subject to change without notice. Verify with your local Intel sales office that you have the lat-  
est datasheet before finalizing a design.  
Order Number: 290644-005  
January 2000  
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no  
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties  
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are  
not intended for use in medical, life saving, or life sustaining applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
The 28F800F3 and 28F160F3 may contain design defects or errors known as errata which may cause the product to deviate from published  
specifications. Current characterized errata are available on request.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-  
548-4725 or by visiting Intel's website at http://www.intel.com.  
Copyright © Intel Corporation 1998–2000  
*Other brands and names are the property of their respective owners.  
28F800F3 and 28F160F3  
Contents  
1.0  
Introduction..................................................................................................................1  
1.1 Product Overview..................................................................................................1  
Product Description..................................................................................................2  
2.0  
2.1  
2.2  
2.3  
Pinouts ..................................................................................................................2  
Pin Description ......................................................................................................2  
Memory Blocking Organization .............................................................................7  
2.3.1 Parameter Blocks.....................................................................................7  
2.3.2 Main Blocks..............................................................................................7  
3.0  
4.0  
Principles of Operation..........................................................................................10  
3.1  
Bus Operations....................................................................................................10  
3.1.1 Read.......................................................................................................10  
3.1.2 Output Disable........................................................................................10  
3.1.3 Standby ..................................................................................................11  
3.1.4 Write.......................................................................................................11  
3.1.5 Reset......................................................................................................11  
Command Definitions.............................................................................................12  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Read Array Command.........................................................................................13  
Read Identifier Codes Command........................................................................13  
Read Status Register Command.........................................................................14  
Clear Status Register Command.........................................................................14  
Block Erase Command........................................................................................14  
Program Command.............................................................................................15  
Block Erase Suspend/Resume Command..........................................................16  
Program Suspend/Resume Command ...............................................................16  
Set Read Configuration Command .....................................................................17  
4.9.1 Read Configuration – (RCR.15) .............................................................18  
4.9.2 Frequency Configuration Code Setting (FCC) – (RCR.13-11)...............18  
4.9.3 Data Output Configuration – (RCR.9) ....................................................20  
4.9.4 Wait # Configuration – (RCR.8)..............................................................21  
4.9.5 Burst Sequence – (RCR.7).....................................................................21  
4.9.6 Clock Configuration – (RCR.6)...............................................................22  
4.9.7 Burst Length – (RCR.2—0) ....................................................................22  
4.9.8 Continuous Burst Length........................................................................22  
5.0  
Data Protection .........................................................................................................27  
5.1  
5.2  
5.3  
VPP VPPLK for Complete Protection..................................................................27  
WP# = VIL for Block Locking ...............................................................................27  
WP# = VIH for Block Unlocking ...........................................................................27  
iii  
28F800F3 and 28F160F3  
6.0  
7.0  
V
Voltages...............................................................................................................28  
PP  
Power Consumption...............................................................................................28  
7.1  
7.2  
7.3  
7.4  
Active Power .......................................................................................................28  
Automatic Power Savings ...................................................................................28  
Standby Power....................................................................................................28  
Power-Up/Down Operation .................................................................................29  
7.4.1 RST# Connection...................................................................................29  
7.4.2 VCC, VPP and RST# Transitions.............................................................29  
Power Supply Decoupling...................................................................................29  
7.5.1 VPP Trace on Printed Circuit Boards......................................................30  
7.5  
8.0  
Electrical Specifications........................................................................................30  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
Absolute Maximum Ratings ................................................................................30  
Extended Temperature Operating Conditions.....................................................31  
Capacitance ........................................................................................................31  
DC Characteristics—Extended Temperature......................................................32  
AC Characteristics—Read-Only Operations—Extended Temperature...............35  
AC Characteristics—Write Operations—Extended Temperature .......................41  
AC Characteristics—Reset Operation—Extended Temperature ........................43  
Extended Temperature Block Erase and Program Performance........................44  
9.0  
Ordering Information..............................................................................................45  
Additional Information...........................................................................................46  
10.0  
iv  
28F800F3 and 28F160F3  
Revision History  
Date of  
Version  
Revision  
Description  
05/12/98  
11/15/98  
-001  
-002  
Original version  
Minor text modifications  
Revised Page mode read waveform  
Revised Single synchronous read waveform  
Improved automotive specifications  
Changed name from Fast Boot Block Flash Memory Family 8 and  
16 Mbit.  
03/22/99  
09/17/99  
-003  
-004  
Added Easy BGA pinout graphic  
Added TSOP and Easy BGA part number nomenclature  
Minor text modifications  
Revised Figure 1, 8x8 Easy BGA Package Ballout  
Revised Section 4.9.2, Frequency Configuration  
Added Figure 7, Data Output with FCC Setting at Code 3  
Revised Figure 12, Block Erase Suspend/Resume Flowchart  
Revised t  
, and t  
Specification  
ELCH  
CHQX  
Added t  
Specification  
EHEL  
01/12/2000  
-005  
Corrected TSOP Pinout Diagram  
Corrected Frequency Configuration Settings Table  
Added I  
and I  
specifications  
CCES  
CCWS  
Increased t  
and t  
ELCH  
CHQV  
v
28F800F3 and 28F160F3  
1.0  
Introduction  
This datasheet contains 8- and 16-Mbit 3 Volt Intel® Fast Boot Block Flash memory information.  
Section 1.0 provides a flash memory overview. Sections 2.0 through 8.0 describe the memory  
functionality and electrical specifications for extended temperature product offerings.  
1.1  
Product Overview  
The 3 Volt Fast Boot Block Flash memory provides density upgrades with pinout compatibility for  
8- and 16-Mbit densities. This family of products is a high-performance, low-voltage memory with  
a 16-bit data bus and individually erasable blocks. These blocks are optimally-sized for code and  
data storage. Eight 4-Kword parameter blocks are positioned at either the top (denoted by -T  
suffix) or bottom (denoted by -B suffix) of the address map. The rest of the device is grouped into  
32-Kword main blocks. The upper two (or lower two) parameter blocks can be locked (WP# = VIL)  
for complete code protection.  
The device’s optimized architecture and interface dramatically increase read performance beyond  
previously attainable levels. It supports synchronous burst reads and asynchronous page-mode  
reads from main blocks (parameter blocks support single synchronous and asynchronous reads).  
Upon initial power-up or return from reset, the main blocks of the device default to a page-mode  
read configuration. Page-mode read configuration is ideal for non-clocked memory systems and is  
compatible with page-mode ROM. Synchronous burst reads are enabled by configuring the read  
configuration register using the standard two-bus-cycle algorithm. In synchronous burst mode, the  
CLK input increments an internal burst address generator, synchronizes the flash memory with the  
host CPU, and outputs data on every rising (or falling) CLK edge up to 60 MHz. An output signal,  
WAIT#, is also provided to ease CPU-to-flash memory communication and synchronization during  
continuous burst operations that are not initiated on a four-word boundary.  
In addition to the enhanced architecture and optimized interface, this family of products  
incorporates SmartVoltage technology which enables fast 12 Volt factory programming and 2.7 V–  
3.6 V in system programming for low power designs. Specifically designed for low-voltage  
systems, 3 Volt Fast Boot Block Flash memory components support read operations at 2.7 V–3.6 V  
(3.0 V–3.6 V for automotive temperature) VCC and block erase and program operations at 2.7 V–  
3.6 V (3.0 V–3.6 V for automotive temperature) and 12 V VPP. The 12 V VPP option renders the  
fastest program performance to increase factory programming throughput. With the 2.7 V –3.6 V  
(3.0 V–3.6 V for automotive temperature) VPP option, VCC and VPP can be tied together for a  
simple, low power design. In addition to the voltage flexibility, the dedicated VPP pin gives  
complete data protection when VPP VPPLK  
.
The flexible input/output (I/O) voltage feature of the device helps reduce system power  
consumption and simplifies interfacing to sub 2.7 V CPUs. Powered by the VCCQ pins, the I/O  
buffers can operate independently of the core voltage. The Flexible I/O ring of the device works in  
three modes:  
1. With VCCQ voltage at 1.65 V, the I/Os can swing between GND and 1.65 V, reducing I/O power  
consumption by 65% over standard 3 V flash memory components.  
2. With VCCandVCCQ at 2.7 V–3.6V the device is an ideal fit for single supply voltage, low power,  
and battery-powered applications.  
3. The 5 V-safe feature allows easy interface to 5 V I/O systems by tolerating 5 V CMOS input  
levels. This helps ease CPU interfacing by adapting to CPU’s bus voltage without using  
buffers or level shifters.  
1
28F800F3 and 28F160F3  
The device’s Command User Interface (CUI) serves as the interface between the system processor  
and internal flash memory operation. A valid command sequence written to the CUI initiates  
device automation. This automation is controlled by an internal Write State Machine (WSM) which  
automatically executes the algorithms and timings necessary for block erase and program  
operations. The status register provides WSM feedback by signifying block erase or program  
completion and status.  
Block erase and program automation allows erase and program operations to be executed using an  
industry-standard two-write command sequence. A block erase operation erases one block at a  
time, and data is programmed in word (16 bit) increments. The erase suspend feature allows system  
software to suspend an ongoing block erase operation in order to read from or program data to any  
other block. The program suspend feature allows system software to suspend an ongoing program  
operation in order to read from any other location.  
The 3 Volt Fast Boot Block Flash memory devices offer two low-power savings features:  
Automatic Power Savings (APS) and standby mode. The device automatically enters APS mode  
following the completion of a read cycle. Standby mode is initiated when the system deselects the  
device by driving CE# inactive or RST# active. RST# also resets the device to read array, provides  
write protection, and clears the status register. Combined, these two features significantly reduce  
power consumption.  
2.0  
Product Description  
This section describes the pinout and block architecture of the device family.  
2.1  
Pinouts  
Intel 3 Volt Fast Boot Block Flash memory provides upgrade paths in each package pinout up to  
the 16-Mbit density. The family is available in Easy BGA, µBGA CSP, 56-lead SSOP and 56-lead  
TSOP packages. Pinouts for the 8- and 16-Mbit components are illustrated in Figure 1, Figure 2,  
Figure 3 and Figure 4.  
2.2  
Pin Description  
The pin description table describes pin usage.  
2
28F800F3 and 28F160F3  
Figure 1. 8 x 8 Easy BGA Package Ballout  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
A
B
C
A
B
C
A1  
A2  
A3  
A4  
A6  
A18 VPP VCC GND A10  
A15  
A14  
A13  
A9  
A15  
A14  
A13  
A9  
A10 GND VCC VPP A18  
A6  
A1  
A2  
A3  
A4  
(1)  
(1)  
A17  
A19 RST# CLK A20  
A11  
A12  
A8  
A11 A20  
CLK RST# A19  
A17  
(1)  
(1)  
A7 WP# WE# ADV# A21  
A12 A21 ADV# WE# WP# A7  
D
D
A5 DU DU DU DU  
A8 DU DU  
DU DU  
A5  
E
F
E
F
DQ8 DQ1 DQ9 DQ3 DQ12 DQ6 DU DU  
CE# DQ0 DQ10 DQ11 DQ5 DQ14 DU DU  
DU DU DQ6 DQ12 DQ3 DQ9 DQ1 DQ8  
DU DU DQ14 DQ5 DQ11 DQ10  
CE#  
DQ0  
G
H
G
H
A0 VSSQ DQ2 DQ4 DQ13 DQ15 GND A16  
A16 GND D15 D13 DQ4 DQ2 VSSQ A0  
(1)  
(1)  
A22  
OE# VCCQ VCC VSSQ DQ7 VCCQ WAIT#  
Top View - Ball Side Down  
WAIT# VCCQ D7 VSSQ VCC VCCQ OE# A22  
Bottom View - Ball Side Up  
EasyPin01  
NOTES:  
1. A20 is only valid on 32-Mbit densities and above, A21 is only valid on 64-Mbit densities and above, A22 is only  
valid on 128-Mbit densities and above. All locations are populated with solder balls.  
2. Shaded connections on the Top View indicate possible future upgrade address connections.  
3. Reference the Preliminary Mechanical Specification for Easy BGA Package at the Intel® Flash Packaging  
Data website, http://developer.intel.com/design/flash/packdata/index.htm, for detailed package specifications.  
3
28F800F3 and 28F160F3  
Figure 2. 56-Ball µBGA* Package Ballout  
Pin #1  
Indicator  
1
2
3
4
5
6
7
8
9
10  
A1  
A
B
C
A15  
A12  
GND  
CLK  
VCC  
VPP  
A4  
A20  
A19  
A14  
A11  
A8  
A9  
ADV#  
RST#  
DQ4  
WE#  
WP#  
DQ11  
A17  
A5  
A6  
A2  
A3  
A21  
A13  
A18  
A7  
A10  
D
E
F
VCCQ  
DQ7  
DQ13  
DQ12  
DQ5  
DQ9  
DQ0  
CE#  
DQ10  
DQ2  
A16  
DQ15  
DQ6  
VCC  
DQ3  
DQ1  
DQ8  
OE#  
A0  
WAIT# GND  
DQ14  
GND  
VCCQ  
GND  
Top View, Ball Side Down  
10  
A1  
9
8
7
6
5
4
3
2
1
A
B
C
A4  
VPP  
VCC  
CLK  
GND  
A12  
A15  
A2  
A3  
A5  
A6  
A17  
A19  
WE#  
WP#  
DQ11  
ADV#  
RST#  
DQ4  
A20  
A8  
A9  
A11  
A14  
A7  
A18  
A21  
A10  
A13  
D
E
F
CE#  
A0  
DQ0  
DQ9  
DQ10  
DQ12  
DQ13  
DQ7  
VCCQ  
OE#  
DQ1  
DQ8  
DQ2  
DQ3  
VCC  
DQ5  
DQ6  
DQ15  
GND  
A16  
GND  
VCCQ  
GND  
DQ14  
WAIT#  
Bottom View, Ball Side Up  
NOTES:  
1. Shaded connections on the Top View indicate upgrade address connections. Lower density devices will not  
have upper address solder balls. Routing is not recommended in this area.  
2. A20 and A21 are the upgrade addresses for potential 32-Mbit and 64-Mbit devices.  
3. Reference the µBGA* Package Mechanical and Shipping Media Specification at the Intel® Flash Packaging  
Data website, http://developer.intel.com/design/flash/packdata/index.htm, for detailed package specifications.  
4
28F800F3 and 28F160F3  
Figure 3. SSOP Pinout  
16-Mbit 8-Mbit  
8-Mbit 16-Mbit  
VCC  
CLK  
ADV#  
GND  
NC  
A15  
A14  
A13  
VCC  
CLK  
ADV#  
GND  
NC  
A15  
A14  
A13  
1
2
3
4
5
6
7
8
56  
55  
54  
53  
52  
51  
50  
49  
WE#  
RST#  
VPP  
WP#  
NC  
A1  
A2  
A3  
WE#  
RST#  
VPP  
WP#  
A19  
A1  
A2  
A3  
--A20 32-Mbit  
A12  
A11  
A10  
A9  
A8  
9
A12  
A11  
A10  
A9  
A8  
NC  
GND  
DQ6  
DQ14  
DQ7  
DQ15  
GND  
VCCQ  
A16  
WAIT#  
DQ13  
DQ5  
DQ12  
DQ4  
VCC  
A4  
A5  
A6  
A7  
A17  
A18  
DQ9  
DQ1  
DQ8  
DQ0  
OE#  
GND  
CE#  
A0  
A4  
A5  
A6  
A7  
A17  
A18  
DQ9  
DQ1  
DQ8  
DQ0  
OE#  
GND  
CE#  
A0  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
56-Lead SSOP  
16 mm x 23.7 mm  
--A21 64-Mbit  
NC  
GND  
DQ6  
DQ14  
DQ7  
DQ15  
GND  
VCCQ  
A16  
WAIT#  
DQ13  
DQ5  
DQ12  
DQ4  
VCC  
TOP VIEW  
NC  
NC  
VCCQ  
DQ2  
DQ10  
DQ3  
DQ11  
VCCQ  
DQ2  
DQ10  
DQ3  
DQ11  
NOTE: A20 and A21 are the upgrade addresses for potential 32-Mbit and 64-Mbit devices.  
Figure 4. TSOP Pinout  
16Mbit  
8Mbit  
8Mbit  
16Mbit  
28F800F3  
28F800F3  
28F800F3  
28F160F3  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
NC  
NC  
GND  
ADV#  
CLK  
VCC  
WE#  
RST#  
VPP  
WP#  
A19  
A18  
A17  
A7  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
NC  
NC  
GND  
ADV#  
CLK  
VCC  
WE#  
RST#  
VPP  
WP#  
NC  
A18  
A17  
A7  
1
2
3
4
5
6
7
8
WAIT#  
A16  
VCCQ  
WAIT#  
A16  
VCCQ  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
GND  
DQ15  
DQ7  
DQ14  
DQ6  
GND  
DQ13  
DQ5  
DQ12  
DQ4  
VCC  
GND  
DQ15  
DQ7  
DQ14  
DQ6  
GND  
DQ13  
DQ5  
DQ12  
DQ4  
VCC  
--A21 64MBit  
--A20 32MBit  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
56-Lead TSOP  
14 mm x 20 mm  
Top View  
DQ  
DQ  
DQ131  
DQ131  
DQ10  
DQ2  
VCCQ  
DQ9  
DQ1  
DQ8  
DQ0  
OE#  
GND  
CE#  
A0  
DQ10  
DQ2  
VCCQ  
DQ9  
DQ1  
DQ8  
DQ0  
OE#  
GND  
CE#  
A0  
A6  
A5  
A4  
A3  
A2  
A1  
A6  
A5  
A4  
A3  
A2  
A1  
NC  
NC  
NOTE: A20 and A21 are the upgrade addresses for potential 32-Mbit and 64-Mbit devices.  
5
28F800F3 and 28F160F3  
Table 1. Pin Descriptions  
Sym  
Type  
Name and Function  
ADDRESS INPUTS: Inputs for addresses during read and write operations. Addresses are internally  
latched during read and write cycles.  
A
A  
INPUT  
0
19  
8-Mbit: A  
, 16-Mbit: A  
0–19  
0–18  
DATA INPUT/OUTPUTS: Inputs data and commands during write cycles, outputs data during memory  
array, status register (DQ –DQ ), and identifier code read cycles. Data pins float to high-impedance  
when the chip is deselected or outputs are disabled. Data is internally latched during a write cycle.  
DQ  
DQ  
INPUT/  
OUTPUT  
0
0
7
15  
CLOCK: Synchronizes the flash memory to the system operating frequency during synchronous burst  
mode read operations. When configured for synchronous burst-mode reads, the address is latched on  
the first rising (or falling, depending upon the read configuration register setting) CLK edge when ADV#  
is active or upon a rising ADV# edge, whichever occurs first. CLK is ignored during asynchronous  
page-mode read and write operations.  
CLK  
INPUT  
ADDRESS VALID: Indicates that a valid address is present on the address inputs. Addresses are  
latched on the rising edge of ADV# during read and write operations. ADV# may be tied active during  
asynchronous read and write operations.  
ADV#  
CE#  
INPUT  
INPUT  
INPUT  
CHIP ENABLE: Activates the device’s control logic, input buffers, decoders, and sense amplifiers.  
CE#-high deselects the device and reduces power consumption to standby levels.  
RESET: When driven low, RST# inhibits write operations which provides data protection during power  
transitions, and it resets internal automation. RST#-high enables normal operation. Exit from reset sets  
the device to asynchronous read array mode.  
RST#  
OE#  
WE#  
INPUT  
INPUT  
OUTPUT ENABLE: Gates data outputs during a read cycle.  
WRITE ENABLE: Controls writes to the CUI and array. Addresses and data are latched on the rising  
edge of the WE# pulse.  
WRITE PROTECTION: Provides a method for locking and unlocking two parameter blocks.  
When WP# is at logic low, lockable blocks are locked. If a program or erase operation is attempted on  
a locked block, SR.1 and either SR.4 [program] or SR.5 [block erase] will be set to indicate the  
operation failed.  
WP#  
INPUT  
When WP# is at logic high, the lockable blocks are unlocked and can be programmed or erased.  
WAIT: Provides data valid feedback only when configured for synchronous burst mode and the burst  
WAIT#  
OUTPUT  
length is set to continuous. This signal is gated by OE# and CE# and is internally pull-up to V  
via a  
CCQ  
resistor. WAIT# from several components can be tied together to form one system WAIT# signal.  
BLOCK ERASE AND PROGRAM POWER SUPPLY (2.7 V–3.6 V, 11.4 V–12.6 V): For erasing array  
blocks or programming data, a valid voltage must be applied to this pin. With V V , memory  
PP  
PPLK  
contents cannot be altered. Block erase and program with an invalid V voltage should not be  
PP  
attempted.  
VPP  
SUPPLY  
SUPPLY  
Applying 11.4 V–12.6 V to V can only be done for a maximum of 1000 cycles on main blocks and  
PP  
2500 cycles on the parameter blocks.V may be connected to 12 V for a total of 80 hours maximum  
PP  
(see Section 6.0 for details).  
DEVICE POWER SUPPLY (2.7 V–3.6 V): With VCC V  
, all write attempts to the flash memory are  
LKO  
VCC  
inhibited. Device operations at invalid VCC voltages should not be attempted.  
OUTPUT POWER SUPPLY (1.65 V–2.5 V, 2.7 V–3.6 V): Enables all outputs to be driven to 1.65 V to  
2.5 V or 2.7 V to 3.6 V. When VCCQ equals 1.65 V–2.5 V, V voltage must not exceed 3.3 V and  
CC  
should be regulated to 2.7 V–2.85 V to achieve lowest power operation (see DC Characteristics for  
detailed information).  
VCCQ  
SUPPLY  
For 5 V-tolerant operation VCCQ must equal VCC voltage and must be regulated to 2.7 V to 3.6 V.  
This input may be tied directly to VCC  
.
GND  
NC  
SUPPLY  
GROUND: Do not float any ground pins.  
NO CONNECT: Lead is not internally connected; it may be driven or floated. (Pins noted as possible  
upgrades to 32-Mbit and 64-Mbit densities can be connected to the appropriate address lines to pre-  
enable designs for possible future devices.).  
6
28F800F3 and 28F160F3  
2.3  
Memory Blocking Organization  
The 3 Volt Fast Boot Block Flash memory family is an asymmetrically-blocked architecture that  
enables system integration of code and data within a single flash device. For the address locations  
of each block, see the memory maps in Figure 5, “8- and 16-Mbit Top Boot Memory Map” on  
page 8 (top boot blocking) and Figure 6, “8- and 16-Mbit Bottom Boot Memory Map” on page 9  
(bottom boot blocking).  
2.3.1  
2.3.2  
Parameter Blocks  
The 3 Volt Fast Boot Block Flash memory architecture includes parameter blocks to facilitate  
storage of frequently updated small parameters that would normally be stored in an EEPROM. By  
using software techniques, the word-rewrite functionality of EEPROMs can be emulated. Each 8-  
and 16-Mbit device contains eight 4-Kwords (4,096-words) parameter blocks.  
Main Blocks  
After the parameter blocks, the remainder of the array is divided into equal size main blocks for  
code and/or data storage. The main blocks are the area of the device that support four-, eight-, and  
continuous burst operations. The 8-Mbit device contains fifteen 32-Kword (32,768-word) main  
blocks, and the 16-Mbit device contains thirty-one 32-Kword (32,768-word) main blocks.  
7
28F800F3 and 28F160F3  
Figure 5. 8- and 16-Mbit Top Boot Memory Map  
8-Mbit  
16-Mbit  
Address Range  
Address Range  
4-Kword  
Parameter Block 38  
FF000H - FFFFFH  
4-Kword  
Parameter Block 22  
7F000H - 7FFFFH  
4-Kword  
Parameter Block 37  
FE000H - FEFFFH  
FD000H - FDFFFH  
FC000H - FCFFFH  
FB000H - FBFFFH  
4-Kword  
Parameter Block 21  
7E000H -7EFFFH  
4-Kword  
Parameter Block 36  
7D000H - 7DFFFH  
4-Kword  
Parameter Block 20  
4-Kword  
Parameter Block 35  
7C000H - 7CFFFH  
4-Kword  
Parameter Block 19  
4-Kword  
Parameter Block 34  
7B000H - 7BFFFH  
4-Kword  
Parameter Block 18  
4-Kword  
FA000H - FAFFFH  
F9000H - F9FFFH  
F8000H - F8FFFH  
Parameter Block 33  
7A000H - 7AFFFH  
4-Kword  
Parameter Block 17  
4-Kword  
Parameter Block 32  
4-Kword  
Parameter Block 16  
79000H - 79FFFH  
4-Kword  
Parameter Block 31  
4-Kword  
Parameter Block 15  
78000H - 78FFFH  
32-Kword  
Main Block 30  
F0000H - F7FFFH  
E8000H - EFFFFH  
E0000H - E7FFFH  
D8000H - DFFFFH  
D0000H - D7FFFH  
C8000H - CFFFFH  
C0000H - C7FFFH  
B8000H - BFFFFH  
B0000H - B7FFFH  
A8000H - AFFFFH  
A0000H - A7FFFH  
98000H - 9FFFFH  
32-Kword  
32-Kword  
Main Block 29  
Main Block 14  
70000H - 77FFFH  
32-Kword  
32-Kword  
Main Block 28  
Main Block 13  
68000H - 6FFFFH  
32-Kword  
32-Kword  
Main Block 27  
Main Block 12  
60000H - 67FFFH  
32-Kword  
32-Kword  
Main Block 26  
Main Block 11  
58000H - 5FFFFH  
32-Kword  
32-Kword  
Main Block 25  
Main Block 10  
50000H - 57FFFH  
32-Kword  
32-Kword  
Main Block 24  
Main Block 9  
48000H - 4FFFFH  
32-Kword  
32-Kword  
Main Block 23  
Main Block 8  
40000H - 47FFFH  
32-Kword  
Main Block 7  
32-Kword  
Main Block 22  
38000H - 3FFFFH  
32-Kword  
Main Block 6  
32-Kword  
Main Block 21  
30000H - 37FFFH  
32-Kword  
Main Block 5  
32-Kword  
Main Block 20  
28000H - 2FFFFH  
32-Kword  
Main Block 4  
32-Kword  
Main Block 19  
20000H - 27FFFH  
32-Kword  
Main Block 3  
32-Kword  
Main Block 18  
18000H - 1FFFFH  
90000H - 97FFFH  
88000H - 8FFFFH  
80000H - 87FFFH  
32-Kword  
Main Block 2  
32-Kword  
Main Block 17  
10000H - 17FFFH  
32-Kword  
Main Block1  
32-Kword  
Main Block 16  
08000H - 0FFFFH  
32-Kword  
Main Block 0  
32-Kword  
Main Block 15  
00000H - 07FFFH  
78000H - 7FFFFH  
70000H - 77FFFH  
68000H - 6FFFFH  
60000H - 67FFFH  
58000H - 5FFFFH  
50000H - 57FFFH  
48000H - 4FFFFH  
32-Kword  
Main Block 14  
32-Kword  
Main Block 13  
32-Kword  
Main Block 12  
32-Kword  
Main Block 11  
32-Kword  
Main Block 10  
32-Kword  
Main Block 9  
32-Kword  
Main Block 8  
40000H - 47FFFH  
38000H - 3FFFFH  
32-Kword  
Main Block 7  
32-Kword  
Main Block 6  
30000H - 37FFFH  
28000H - 2FFFFH  
20000H - 27FFFH  
18000H - 1FFFFH  
10000H - 17FFFH  
08000H - 0FFFFH  
00000H - 07FFFH  
32-Kword  
Main Block 5  
32-Kword  
Main Block 4  
32-Kword  
Main Block 3  
32-Kword  
Main Block 2  
32-Kword  
Main Block 1  
32-Kword  
Main Block 0  
0644_05  
8
28F800F3 and 28F160F3  
Figure 6. 8- and 16-Mbit Bottom Boot Memory Map  
8-Mbit  
16-Mbit  
Address Range  
32-Kword  
Address Range  
F8000H - FFFFFH  
F0000H - F7FFFH  
E8000H - EFFFFH  
E0000H - E7FFFH  
D8000H - DFFFFH  
D0000H - D8FFFH  
C8000H - CFFFFH  
C0000H - C7FFFH  
B8000H - BFFFFH  
B0000H - B7FFFH  
A8000H - AFFFFH  
A0000H - A7FFFH  
98000H - AFFFFH  
78000H - 7FFFFH  
Main Block 22  
32-Kword  
Main Block 38  
32-Kword  
Main Block 21  
70000H - 77FFFH  
32-Kword  
Main Block 37  
32-Kword  
Main Block 20  
68000H - 6FFFFH  
32-Kword  
Main Block 36  
32-Kword  
Main Block 19  
60000H - 67FFFH  
32-Kword  
Main Block 35  
32-Kword  
Main Block 18  
58000H - 5FFFFH  
32-Kword  
Main Block 34  
32-Kword  
Main Block 17  
50000H - 57FFFH  
32-Kword  
Main Block 33  
32-Kword  
Main Block 16  
48000H - 4FFFFH  
32-Kword  
Main Block 32  
32-Kword  
Main Block 15  
40000H - 47FFFH  
32-Kword  
Main Block 31  
32-Kword  
Main Block 14  
38000H - 3FFFFH  
32-Kword  
Main Block 30  
32-Kword  
Main Block 13  
30000h - 37FFFh  
32-Kword  
Main Block 29  
32-Kword  
28000H - 2FFFFH  
Main Block 12  
32-Kword  
Main Block 28  
32-Kword  
Main Block 11  
20000H - 27FFFH  
32-Kword  
Main Block 27  
32-Kword  
Main Block 10  
18000H - 1FFFFH  
32-Kword  
Main Block 26  
32-Kword  
Main Block 9  
10000H - 17FFFH  
32-Kword  
Main Block 25  
90000H - 97FFFH  
88000H - 8FFFFH  
80000H - 87FFFH  
32-Kword  
08000H - 0FFFFH  
Main Block 8  
32-Kword  
Main Block 24  
32-Kword  
Main Block 23  
4-Kword  
Parameter Block 7  
32-Kword  
Main Block 22  
07000H - 07FFFH  
78000H - 7FFFFH  
70000H - 77FFFH  
68000H - 6FFFFH  
60000h - 67FFFh  
58000H - 5FFFFH  
50000H - 57FFFH  
48000H - 4FFFFH  
4-Kword  
Parameter Block 6  
32-Kword  
Main Block 21  
06000H - 06FFFH  
4-Kword  
Parameter Block 5  
32-Kword  
Main Block 20  
05000H - 05FFFH  
4-Kword  
Parameter Block 4  
32-Kword  
Main Block 19  
04000H - 04FFFH  
4-Kword  
Parameter Block 3  
32-Kword  
Main Block 18  
03000H - 03FFFH  
4-Kword  
Parameter Block 2  
32-Kword  
Main Block 17  
02000H - 02FFFH  
4-Kword  
Parameter Block 1  
32-Kword  
Main Block 16  
01000H - 01FFFH  
4-Kword  
Parameter Block 0  
32-Kword  
Main Block 15  
00000H - 00FFFH  
40000H - 47FFFH  
38000H - 3FFFFH  
32-Kword  
Main Block 14  
32-Kword  
Main Block 13  
30000H - 37FFFH  
28000H - 2FFFFH  
20000H - 27FFFH  
18000H - 1FFFFH  
10000H - 17FFFH  
08000H - 0FFFFH  
32-Kword  
Main Block 12  
32-Kword  
Main Block 11  
32-Kword  
Main Block 10  
32-Kword  
Main Block 9  
32-Kword  
Main Block 8  
4-Kword  
Parameter Block 7  
07000H - 07FFFH  
06000H - 06FFFH  
05000H - 05FFFH  
04000H - 04FFFH  
03000H - 03FFFH  
4-Kword  
Parameter Block 6  
4-Kword  
Parameter Block 5  
4-Kword  
Parameter Block 4  
4-Kword  
Parameter Block 3  
4-Kword  
Parameter Block 2  
02000H - 02FFFH  
01000H - 01FFFH  
00000H - 00FFFH  
4-Kword  
Parameter Block 1  
4-Kword  
Parameter Block 0  
0644_06  
9
28F800F3 and 28F160F3  
3.0  
Principles of Operation  
The 3 Volt Fast Boot Block Flash memory components include an on-chip Write State Machine  
(WSM) to manage block erase and program. It allows for CMOS-level control inputs, fixed power  
supplies, and minimal processor overhead with RAM-like interface timings.  
3.1  
Bus Operations  
The local CPU reads and writes flash memory in-system. All flash memory read and write cycles  
conform to standard microprocessor bus cycles.  
3.1.1  
Read  
The flash memory has three read modes available: read array, identifier codes, and status register.  
These modes are accessible independent of the VPP voltage. The appropriate read command (Read  
Array, Read Identifier Codes, or Read Status Register) must be written to the CUI to enter the  
requested read mode. Upon initial power-up or exit from reset, the device defaults to read array  
mode.  
When reading information from main blocks in read array mode, the device supports two high-  
performance read configurations: synchronous burst mode and asynchronous page mode. Page  
mode and synchronous burst-mode reads are enabled by writing the Set Read Configuration  
Register command to any device address.  
Synchronous burst mode is enabled by writing to the read configuration register. This sets the read  
configuration, burst order, burst length, and frequency configuration. In synchronous burst mode,  
the device latches the initial address then outputs a sequence of data with respect to the input CLK  
and read configuration setting. Synchronous burst reads can be terminated after one cycle in main  
blocks. Asynchronous page mode is the default state and provides a high data transfer rate for non-  
clocked memory subsystems. In this state, data is internally read and stored in a high-speed page  
buffer. A1:0 addresses data in the page buffer. The page size is four words.  
Read operations from the parameter blocks, identifier codes and status register transpire as single-  
synchronous or asynchronous read cycles. The read configuration register setting determines  
whether or not read operations are synchronous or asynchronous.  
For all read operations, CE# must be driven active to enable the devices, ADV# must be driven low  
to open the internal address latch, and OE# must be driven low to activate the outputs. In  
asynchronous mode, the address is latched when ADV# is driven high. In synchronous mode, the  
address is latched by ADV# going high or ADV# low in conjunction with a rising (falling) clock  
edge, whichever occurs first. WE# must be at VIH. Figure 17 through Figure 22 illustrate the  
different read cycles.  
3.1.2  
Output Disable  
With OE# at a logic-high level (VIH), the device outputs are disabled. Output pins DQ0–DQ15 are  
placed in a high-impedance state.  
10  
28F800F3 and 28F160F3  
3.1.3  
3.1.4  
Standby  
Deselecting the device by bringing CE# to a logic-high level (VIH) places the device in standby  
mode, which substantially reduces device power consumption. In standby, outputs are placed in a  
high-impedance state independent of OE#. If deselected during program or erase operation, the  
device continues to consume active power until the program or erase operation is complete.  
Write  
Commands are written to the CUI using standard microprocessor write timings when ADV#, WE#,  
and CE# are active and OE# is inactive. The CUI does not occupy an addressable memory location.  
The address is latched on the rising edge of ADV#, WE#, or CE# (whichever occurs first) and data  
needed to execute a command is latched on the rising edge of WE# or CE# (whichever goes high  
first). Write operations are asynchronous. Therefore, CLK is ignored during write operations.  
Figure 23, “AC Waveform for Write Operations” on page 42 illustrates a write operation.  
3.1.5  
Reset  
The device enters a reset mode when RST# is driven low. In reset mode, internal circuitry is turned  
off and outputs are placed in a high-impedance state.  
After return from reset, a time tPHQV is required until outputs are valid, and a delay (tPHWL or  
tPHEL) is required before a write sequence can be initiated. After this wake-up interval, normal  
operation is restored. The device defaults to read array mode, the status register is set to 80H, and  
the read configuration register defaults to asynchronous page-mode reads.  
If RST# is taken low during a block erase or program operation, the operation will be aborted and  
the memory contents at the aborted location are no longer valid. See Figure 24, “AC Waveform for  
Reset Operation” on page 43 for detailed information regarding reset timings.  
11  
28F800F3 and 28F160F3  
4.0  
Command Definitions  
Device operations are selected by writing specific commands into the CUI. Table 3 defines these  
commands.  
Table 2. Bus Operations  
Mode  
Notes  
RST#  
CE#  
ADV#  
OE#  
WE#  
Address  
V
DQ  
0–15  
PP  
Reset  
V
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
High Z  
High Z  
High Z  
IL  
IH  
IH  
IH  
Standby  
V
V
V
V
IH  
Output Disable  
Read  
V
V
V
V
V
IL  
IL  
IH  
IH  
IH  
1,2  
3,4  
V
V
V
V
V
D
OUT  
IL  
IL  
IL  
IL  
IL  
See  
Table 4  
See  
Table 4  
Read Identifier Codes  
Write  
V
V
V
V
X
X
IH  
IH  
IL  
IL  
IH  
V
VIH  
V
X
D
IN  
IL  
NOTES:  
1. Refer to DC Characteristics. When VPP VPPLK, memory contents can be read, but not altered.  
2. X can be VIL or VIH for control and address input pins and VPPLK or VPP1 or VPP2 for VPP. See DC  
Characteristics for VPPLK and VPP1 or VPP2 voltages.  
3. Command writes involving block erase or program are reliably executed when VPP = VPP1 or VPP2 and VCC  
CC1 or VCC2 (see Section 8.0 for operating conditions at different temperatures).  
4. Refer to Table 3 for valid DIN during a write operation.  
=
V
Table 3. Command Definitions(1)  
First Bus Cycle  
Second Bus Cycle  
Bus Cycles  
Required  
Command  
Notes  
Oper(2)  
Addr(3)  
Data(4)  
Oper(2)  
Addr(3)  
Data(4)  
Read Array/Reset  
1
2  
2
Write  
Write  
Write  
Write  
Write  
X
X
X
X
X
FFH  
90H  
70H  
50H  
20H  
Read Identifier Codes  
Read Status Register  
Clear Status Register  
Block Erase  
5
Read  
Read  
IA  
X
ID  
SRD  
1
2
6,7  
Write  
Write  
BA  
D0H  
WD  
40H  
or  
Program  
2
6,7,8  
Write  
X
WA  
10H  
Block Erase and Program Suspend  
Block Erase and Program Resume  
Set Read Configuration  
1
1
2
6
6
Write  
Write  
Write  
X
X
B0H  
D0H  
60H  
RCD  
Write  
RCD  
03H  
NOTES:  
1. Commands other than those shown above are reserved by Intel for future device implementations and  
should not be used.  
2. Bus operations are defined in Table 2.  
3. X = Any valid address within the device.  
IA = Identifier Code Address.  
BA = Address within the block being erased.  
WA = Address of memory location to be written.  
RCD = Data to be written to the read configuration register. This data is presented to the device on A  
all other address inputs to “0.” See Table 6, “Read Configuration Register Definition” on page 17 for a  
description of the read configuration register bits.  
; set  
15-0  
12  
28F800F3 and 28F160F3  
4. SRD = Data read from status register. See Table 5, “Status Register Definition” on page 15 for a description  
of the status register bits.  
WD = Data to be written at location WA. Data is latched on the rising edge of WE# or CE# (whichever goes  
high first).  
ID = Data read from identifier codes. See Table 4 for manufacturer and device codes.  
5. Following the Read Identifier Codes command, read operations access manufacturer, device codes, and  
read configuration register.  
6. Following a block erase, program, and suspend operation, read operations access the status register.  
7. To issue a block erase, program, or suspend operation to a lockable block, hold WP# at VIH.  
8. Either 40H or 10H are recognized by the WSM as the program setup.  
4.1  
4.2  
Read Array Command  
Upon initial device power-up or exit from reset, the device defaults to read array mode. The read  
configuration register defaults to asynchronous page mode. The Read Array command also causes  
the device to enter read array mode. The device remains enabled for reads until another command  
is written. Once the internal WSM has started a block erase or program, the device will not  
recognize the Read Array command until the WSM completes its operation or unless the WSM is  
suspended via an Erase or Program Suspend command. The Read Array command functions  
independently of the VPP voltage.  
Read Identifier Codes Command  
The identifier code operation is initiated by writing the Read Identifier Codes command. After  
writing the command, read cycles retrieve the manufacturer and device codes (see Table 4 for  
identifier code values). Page mode and burst reads are not supported in this read mode. To  
terminate the operation, write another valid command, like the Read Array command. The Read  
Identifier Codes command functions independently of the VPP voltage.  
Table 4. Identifier Codes  
Code  
Manufacturer Code  
8 Mbit  
Address  
Data  
00000H  
00001H  
00001H  
00001H  
00001H  
00005H  
0089H  
88F1H  
88F2H  
88F3H  
88F4H  
RCD(1)  
-T  
-B  
-T  
-B  
Device Code  
16 Mbit  
Read Configuration Register  
NOTE: 1. Read Configuration Register = RCD.  
13  
28F800F3 and 28F160F3  
4.3  
4.4  
4.5  
Read Status Register Command  
The status register can be read at any time by writing the Read Status Register command to the  
CUI. After writing this command, all subsequent read operations output status register data until  
another valid command is written. Page mode and burst reads are not supported in this read mode.  
The status register content is updated and latched on the rising edge of ADV# or rising (falling)  
CLK edge when ADV# is low during synchronous burst mode or the falling edge of OE# or CE#,  
whichever occurs first. The Read Status Register command functions independently of the VPP  
voltage.  
Clear Status Register Command  
Status register bits SR.5, SR.4, SR.3, and SR.1 are set to “1”s by the WSM and can only be cleared  
by issuing the Clear Status Register command. These bits indicate various error conditions. By  
allowing system software to reset these bits, several operations may be performed (such as  
cumulatively erasing or writing several bytes in sequence). The status register may be polled to  
determine if a problem occurred during the sequence. The Clear Status Register command  
functions independently of the applied VPP voltage. After executing this command, the device  
returns to read array mode.  
Block Erase Command  
Erase is executed one block at a time and initiated by a two-cycle command. A block erase setup is  
written first, followed by a block erase confirm. This command sequence requires appropriate  
sequencing and address within the block to be erased (erase changes all block data to FFH). Block  
preconditioning, erase, and verify are handled internally by the WSM. After the two-cycle block  
erase sequence is written, the device automatically outputs status register data when read (see  
Figure 10, “Automated Block Erase Flowchart” on page 23). The CPU can detect block erase  
completion by analyzing status register bit SR.7.  
When the block erase completes, check status register bit SR.5 for an error flag (“1”). If an error is  
detected, check status register bits SR.4, SR.3, and SR.1 to understand what caused the failure.  
After examining the status register, it should be cleared if an error was detected before issuing a  
new command. The device will remain in status register read mode until another command is  
written to the CUI.  
14  
28F800F3 and 28F160F3  
Table 5. Status Register Definition  
WSMS  
7
ESS  
6
ES  
5
PS  
4
VPPS  
3
PSS  
2
DPS  
1
R
0
NOTES:  
SR.7 = WRITE STATE MACHINE STATUS (WSMS)  
Check SR.7 to determine block erase or program completion.  
SR.6–0 are invalid while SR.7 = “0.”  
1 = Ready  
0 = Busy  
SR.6 = ERASE SUSPEND STATUS (ESS)  
When an Erase Suspend command is issued, the WSM halts  
execution and sets both SR.7 and SR.6 to “1.” SR.6 remains  
set until an Erase Resume command is written to the CUI.  
1 = Block Erase Suspended  
0 = Block Erase in Progress/Completed  
SR.5 = ERASE STATUS (ES)  
If both SR.5 and SR.4 are “1”s after a block erase or program  
attempt, an improper command sequence was entered.  
1 = Error in Block Erasure  
0 = Successful Block Erase  
SR.4 = PROGRAM STATUS (PS)  
1 = Error in Program  
0 = Successful Program  
SR.3 = VPP STATUS (VPPS)  
SR.3 does not provide a continuous VPP feedback. The WSM  
interrogates and indicates the VPP level only after a block erase  
or program operation. SR.3 is not guaranteed to report  
1 = VPP Low Detect, Operation Abort  
0 = VPP OK  
accurate feedback when VPP VPPH1 or VPPH2 or VPPLK  
.
SR.2 = PROGRAM SUSPEND STATUS (PSS)  
When a Program Suspend command is issued, the WSM halts  
execution and sets both SR.7 and SR.2 to “1.” SR.2 remains  
set until a Program Resume command is written to the CUI.  
1 = Program Suspended  
0 = Program in Progress/Completed  
SR.1 = DEVICE PROTECT STATUS (DPS)  
If a block erase or program operation is attempted on a locked  
block, SR.1 is set by the WSM and aborts the operation if  
WP# = VIL.  
1 = Block Erase or Program Attempted on a Locked Block,  
Operation Abort  
0 = Unlocked  
SR.0 = RESERVED FOR FUTURE ENHANCEMENTS (R)  
SR.0 is reserved for future use and should be masked out  
when polling the status register.  
4.6  
Program Command  
Program operation is executed by a two-cycle command sequence. Program setup (standard 40H or  
alternate 10H) is written, followed by a second write that specifies the address and data. The WSM  
then takes over, controlling the internal program algorithm. After the program sequence is written,  
the device automatically outputs status register data when read (see Figure 11, “Automated  
Program Flowchart” on page 24). The CPU can detect the completion of the program event by  
analyzing status register bit SR.7.  
When the program operation completes, check status register bit SR.4 for an error flag (“1”). If an  
error is detected, check status register bits SR.5, SR.3, and SR.1 to understand what caused the  
problem. After examining the status register, it should be cleared if an error was detected before  
issuing a new command. The device will remain in status register read mode until another  
command is written to the CUI.  
15  
28F800F3 and 28F160F3  
4.7  
Block Erase Suspend/Resume Command  
The Block Erase Suspend command allows block erase interruption to read or program data in  
another block. Once the block erase process starts, writing the Block Erase Suspend command  
requests that the WSM suspend the block erase operation after a certain latency period. The device  
continues to output status register data when read after the Block Erase Suspend command is  
issued. Status Register bits SR.7 and SR.6 indicate when the block erase operation has been  
suspended (both will be set to “1”). Specification tWHRH2 defines the block erase suspend latency.  
At this point, a Read Array command can be written to read data from blocks other than that which  
is suspended. A Program command sequence can also be issued during erase suspend to program  
data in other blocks. Using the Program Suspend command (see Section 4.8), a program operation  
can be suspended during an erase suspend. The only other valid commands while block erase is  
suspended are Read Status Register and Block Erase Resume.  
During a block erase suspend, the chip can go into a pseudo-standby mode by taking CE# to VIH,  
which reduces active current draw. VPP must remain at VPP1 or VPP2 while block erase is  
suspended. WP# must also remain at VIL or VIH.  
To resume the block erase operation, write the Block Erase Resume command to the CUI. This will  
automatically clear status register bits SR.6 and SR.7. After the Erase Resume command is written,  
the device automatically outputs status register data when read (see Figure 12, “Block Erase  
Suspend/Resume Flowchart” on page 25). Block erase cannot resume until program operations  
initiated during block erase suspend have completed.  
4.8  
Program Suspend/Resume Command  
The Program Suspend command allows program interruption to read data in other flash memory  
locations. Once the program process starts, writing the Program Suspend command requests that  
the WSM suspend the program operation after a certain latency period. The device continues to  
output status register data when read after issuing the Program Suspend command. Status register  
bits SR.7 and SR.2 indicate when the Program operation has been suspended (both will be set to  
“1”). Specification tWHRH1 defines the program suspend latency.  
At this point, a Read Array command can be written to read data from blocks other than that which  
is suspended. The only other valid commands while Program is suspended are Read Status Register  
and Program Resume.  
During a program suspend, the chip can go into a pseudo-standby mode by taking CE# to VIH,  
which reduces active current draw. VPP must remain at VPP1 or VPP2 while program is suspended.  
WP# must also remain at VIL or VIH.  
To resume the program, write the Program Resume command to the CUI. This will automatically  
clear status register bits SR.7 and SR.2. After the Program Resume command is written, the device  
automatically outputs status register data when read (see Figure 13, “Program Suspend/Resume  
Flowchart” on page 26).  
16  
 
28F800F3 and 28F160F3  
Table 6. Read Configuration Register Definition  
RM  
15  
BS  
7
R
14  
CC  
6
FC2  
13  
R
FC1  
12  
R
FC0  
11  
R
R
10  
BL2  
2
DOC  
9
WC  
8
BL1  
1
BL0  
0
5
4
3
NOTES:  
RCR.15 = READ MODE (RM)  
Read mode configuration affects reads from main blocks.  
Parameter block, status register, and identifier reads support  
single read cycles.  
0 = Synchronous Burst Reads Enabled  
1 = page mode Reads Enabled (Default)  
RCR.14 = RESERVED FOR FUTURE ENHANCEMENTS (R) These bits are reserved for future use. Set these bits to “0.”  
RCR.13–11 = FREQUENCY CONFIGURATION (FC2-0)  
See Section 4.9.2 for information about the frequency  
configuration and its effect on the initial read.  
001 = Code 1 reserved for future use  
010 = Code 2  
Undocumented combinations of bits  
011 = Code 3  
100 = Code 4  
RCR.14–11 are reserved by Intel Corporation for future  
implementations and should not be used.  
101 = Code 5  
110 = Code 6  
RCR.10 = RESERVED FOR FUTURE ENHANCEMENTS (R) These bits are reserved for future use. Set these bits to “0.”  
RCR.9 = DATA OUTPUT CONFIGURATION (DOC)  
Undocumented combinations of bits RCR.10–9 are reserved  
by Intel Corporation for future implementations and should not  
be used.  
0 = Hold Data for One Clock  
1 = Hold Data for Two Clocks  
RCR.8 = WAIT CONFIGURATION (WC)  
0 = WAIT# Asserted During Delay  
1 = WAIT# Asserted One Data Cycle Before Delay  
RCR.7 = BURST SEQUENCE (BS)  
0 = Intel Burst Order  
1 = Linear Burst Order  
RCR.6 = CLOCK CONFIGURATION (CC)  
0 = Burst Starts and Data Output on Falling Clock Edge  
1 = Burst Starts and Data Output on Rising Clock Edge  
RCR.5–3 = RESERVED FOR FUTURE ENHANCEMENTS (R) These bits are reserved for future use. Set these bits to “0.”  
RCR.2–0 = BURST LENGTH (BL2–0)  
In the asynchronous page mode, the burst length always  
equals four words. Undocumented combinations of bits  
RCR.2–0 are reserved by Intel Corporation for future  
implementations and should not be used  
001 = 4 Word Burst  
010 = 8 Word Burst  
111 = Continuous Burst  
4.9  
Set Read Configuration Command  
The Set Read Configuration command writes data to the read configuration register. This operation  
is initiated by a standard two bus cycle command sequence. The Read Configuration Setup  
command (60H) is written and the data to be written to the read configuration is presented, which  
is then followed by a second write that confirms the operation and again presents the data to be  
written to the read configuration register. The read configuration register data is placed on the  
address bus, A15:0,during both bus cycles and is latched on the rising edge of ADV#, CE#, or WE#  
(whichever occurs first). The read configuration register data sets the device’s read configuration,  
burst order, frequency configuration, burst length and all other parameters. This command  
functions independently of the applied VPP voltage. After executing this command, the device  
returns to read array mode.  
17  
28F800F3 and 28F160F3  
4.9.1  
Read Configuration – (RCR.15)  
The device supports two high performance read configurations: Synchronous burst mode and  
asynchronous page mode. Bit RCR.15 in the read configuration register sets the read configuration  
to either synchronous burst or asynchronous page mode. Asynchronous page mode is the default  
read configuration state.  
Parameter blocks, status register, and identifier modes only support single-synchronous and  
asynchronous read operations.  
4.9.2  
Frequency Configuration Code Setting (FCC) – (RCR.13-11)  
The frequency configuration code setting informs the device of the number of clocks that must  
elapse after ADV# is driven active before data will be available. This value is determined by the  
input clock frequency and the set up and hold requirements of the target system. See Table 7,  
“Frequency Configuration Settings” on page 20 for the specific input CLK frequency configuration  
codes. The frequency configuration codes in Table 7 are derived from equations (1), (2) and (3)  
with assumed values for the tAVQV, tADD, DATA parameters. Below is the example of the  
t
calculation to obtain the frequency configuration code:  
Flash performance can be determined by the following equations:  
{1/Frequency (MHz)}1000 = CLK Period (ns)  
(1)  
(2)  
(3)  
n(CLK Period) tAVQ V (ns) + tADD(ns) + tDATA (ns)  
n-2 = Frequency Configuration Code (FCC)*  
n : # of Clock periods (rounded up to the next integer)  
*Must use FCC = n - 1 when operating in the continous burst mode.  
Parameters defined by CPU:  
t
t
ADD = Clock to CE#, ADV#, or Address Valid whichever occurs last.  
DATA = Data set up to Clock  
Parameters defined by flash:  
tAVQV = Address to Output Delay  
Example:  
CPU Clock Speed = 50 MHz  
t
t
t
ADD = 6 ns (typical speed from CPU) (max)  
DATA = 4 ns (typical speed from CPU) (min)  
AVQV = 90 ns (from Section 8.5 AC Characteristic - Read Only Operations Table)  
From Eq. (1):  
From Eq. (2)  
{1/50 (MHz)}1000 = 20 ns  
n(20 ns) 90 ns + 6 ns + 4 ns  
n(20 ns) 100 ns  
n 100/20 5 (Integer)  
n - 2 = 5 - 2 = 3  
From Eq. (3)  
Frequency Code Setting to the RCR is Code 3  
The formula tAVQV (ns) + tADD(ns) + tDATA (ns) is also known as initial access time.  
18  
 
28F800F3 and 28F160F3  
Figure 7. Data Output with FCC Setting at Code 3  
tDATA  
tADD  
3rd  
CLK (C)  
CE#  
1st  
2nd  
4th  
5th  
ADV#  
A15-0  
Valid Address  
High Z  
Valid  
Valid  
DQ15-0 (D/Q)  
Output  
Output  
R13  
NOTE:  
1. Figure 7 shows the data output available and valid after 4 latencies from ADV# going low in the 1st clock  
period with the FCC setting at 3.  
Figure 8 illustrates data output latency from ADV# going active for different frequency  
configuration codes.  
Figure 8. Frequency Configuration  
CLK (C)  
A19-0 (A)  
Valid  
Address  
ADV# (V)  
Code 2  
Code 3  
Code 4  
Code 5  
Code 6  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ15-0 (D/Q)  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ15-0 (D/Q)  
DQ15-0 (D/Q)  
DQ15-0 (D/Q)  
DQ15-0 (D/Q)  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
19  
 
 
28F800F3 and 28F160F3  
Table 7. Frequency Configuration Settings  
Input CLK Frequency  
Frequency  
Configuration Code  
–95  
–120  
VCC = 3.0 V–3.6 V  
VCC = 2.7 V–3.6 V  
VCC = 2.7 V–3.6 V  
1
2
3
4
5
6
Reserved  
40 MHz  
50 MHz  
60 MHz  
66 MHz  
Reserved  
38 MHz  
47 MHz  
57 MHz  
66 MHz  
Reserved  
30 MHz  
38 MHz  
46 MHz  
53 MHz  
60 MHz  
NOTE: Table derived by using formulas (1), (2) and (3) in Section 4.9.2. Values of t  
, t  
defined by CPU,  
ADD DATA  
assumed to be 6 ns and 4 ns respectively; value of t  
per Section 8.5.  
AVQV  
4.9.3  
Data Output Configuration – (RCR.9)  
The output configuration determines the number of clocks during which data will be held valid.  
The data hold time is configurable as either one or two clocks.  
Subsequent reads in burst mode with zero wait-states can be defined by:  
tCHQV (ns) + tDATA (ns) One CLK Period  
(4)  
In Table 7, consider the CPU clock at 50 MHz, and FCC is 3. The clock period is 20 ns. This data  
applied to the formula above for the subsequent reads assuming the data output hold time is one  
clock:  
14 ns + 4 ns 20 ns  
Data output will be available and valid at every clock period.  
Consider the CPU frequency at 60 MHz, and FCC is 4. Clock period is 16.6 ns. The initial access  
time is calculated to be 100 ns (4 latencies). This condition satisfies tAVQV (ns) + tADD(ns) + tDATA  
(ns) = 90 ns + 6 ns + 4 ns = 100 ns. However, the data output hold time of one clock violates burst  
data output zero wait-states:  
t
CHQV (ns) + tDATA (ns) One CLK Period  
14 ns + 4 ns = 18 ns is not less than one clock period. To satisfy the formula above the data output  
hold time must be set a 2 clocks to correctly allow for data output setup time. This formula is also  
satisfied if the CPU has tDATA (ns) 2 ns, which yields:  
14 ns + 2 ns 16.6 ns  
In page mode reads the initial access time can be determined by the formula:  
tADD (ns) + tDATA (ns) + tAVQV (ns)  
(5)  
and subsequent reads in page mode are defined by:  
t
APA (ns) + tDATA (ns) (minimum time)  
(6)  
20  
28F800F3 and 28F160F3  
Figure 9. Output Configuration  
CLK (C)  
1 CLK  
Data Hold  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ15-0 (D/Q)  
2 CLK  
Data hold  
Valid  
Output  
DQ15-0 (D/Q)  
4.9.4  
Wait # Configuration – (RCR.8)  
The WAIT# configuration bit controls the behavior of the WAIT# output signal. This output signal  
can be set to be asserted during or one CLK cycle before an output delay when continuous burst  
length is enabled. Its setting will depend on the system and CPU characteristic.  
4.9.5  
Burst Sequence – (RCR.7)  
The burst sequence specifies the order in which data is addressed in synchronous burst mode. This  
order is programmable as either linear or Intel burst order. The continuous burst length only  
supports linear burst order. The order chosen will depend on the CPU characteristic. See Table 8  
for more details.  
Table 8. Sequence and Burst Length  
Burst Addressing Sequence (Dec.)  
8-Word Burst Length  
Starting  
Addr.  
(Dec.)  
4-Word Burst Length  
Continuous Burst  
Linear  
Linear  
Intel  
Linear  
Intel  
0
1
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3  
1-0-3-2  
2-3-0-1  
3-2-1-0  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
NA  
0-1-2-3-4-5-6-...  
1-2-3-4-5-6-7-...  
2-3-4-5-6-7-8-...  
3-4-5-6-7-8-9-...  
4-5-6-7-8-9-10-..  
5-6-7-8-9-10-11-...  
6-7-8-9-10-11-12-...  
7-8-9-10-11-12-13-...  
8-9-10-11-12-13-14-...  
...  
3
3
4
5
6
7
8
9
NA  
15  
NA  
15-16-17-18-19-20-21-...  
21  
28F800F3 and 28F160F3  
4.9.6  
Clock Configuration – (RCR.6)  
The clock configuration configures the device to start a burst cycle, output data, and assert WAIT#  
on the rising or falling edge of the clock. CLK flexibility helps ease 3 Volt Fast Boot Block Flash  
memory interface to a wide range of burst CPUs.  
4.9.7  
Burst Length – (RCR.2—0)  
The burst length is the number of words that the device will output. The device supports burst  
lengths of four and eight words. In four- or eight-word burst configuration the device will perform  
a wrap around type burst access (See Table 8). It also supports a continuous burst mode. In  
continuous burst mode, the device will linearly output data until the internal burst counter reaches  
the end of the device’s burstable address space. Bits RCR.2–0 in the read configuration register set  
the burst length.  
4.9.8  
Continuous Burst Length  
When operating in the continuous burst mode, the flash memory may incur an output delay when  
the burst sequence crosses the first 16-word boundary. The starting address dictates whether or not  
a delay will occur. If the starting address is aligned to a four-word boundary, the delay will not be  
seen. If the starting address is the end of a four-word boundary, the output delay will be equal to the  
frequency configuration setting; this is the worst case delay. The delay will only take place once  
during a continuous burst access, and if the burst sequence never crosses a 16-word boundary, the  
delay will never happen. Using the WAIT# output pin in the continuous burst configuration, the  
system is informed if this output delay occurs.  
22  
 
28F800F3 and 28F160F3  
Figure 10. Automated Block Erase Flowchart  
Start  
Bus Operation  
Command  
Comments  
Data = 20H  
Write 20H,  
Block Address  
Write  
Erase Setup  
Addr = Within Block to Be  
Erased  
Data = D0H  
Write  
Read  
Erase Confirm  
Addr = Within Block to Be  
Erased  
Write D0H,  
Block Address  
Status Register Data  
Suspend  
Blk. Erase  
Loop  
Check SR.7  
1 = WSM Ready  
0 = WSM Busy  
Read Status Register  
Standby  
No  
Repeat for subsequent block erasures.  
0
Suspend  
Block Erase  
SR.7 =  
1
Full status check can be done after each block erase or after a  
sequence of block erasures.  
Yes  
Write FFH after the last operation to place device in read array mode.  
Full Status  
Check if Desired  
Block Erase Complete  
FULL STATUS CHECK PROCEDURE  
Read Status Register  
Data (See Above)  
Bus Operation  
Command  
Comments  
Check SR.3  
Standby  
1
1 = VPP Error Detect  
SR.3 =  
VPP Range Error  
Check SR.1  
Standby  
1 = Device Protect Detect  
WP# = VIL  
0
SR.1 =  
0
1
Check SR.4, 5  
Both 1 = Command Sequence  
Error  
Standby  
Standby  
Device Protect Error  
Check SR.5  
1 = Block Erase Error  
1
1
Command Sequence  
Error  
SR.4, 5 =  
0
SR.5, SR.4, SR.3 and SR.1 are only cleared by the Clear Staus  
Register command, in cases where multiple blocks are erased before  
full status is checked.  
If an error is detected, clear the status register before attempting retry  
or other error recovery.  
SR.5 =  
0
Block Erase Error  
Block Erase  
Successful  
23  
28F800F3 and 28F160F3  
Figure 11. Automated Program Flowchart  
Bus Operation  
Command  
Comments  
Data = 40H  
Start  
Write  
Program Setup  
Addr = Location to Be  
Written  
Write 40H,  
Address  
Data = Data to Be Written  
Addr = Location to Be  
Written  
Write  
Read  
Data  
Write Data and  
Address  
Status Register Data  
Suspend  
Program  
Loop  
Check SR.7  
1 = WSM Ready  
0 = WSM Busy  
Read Status Register  
No  
Standby  
Repeat for subsequent byte writes.  
0
Suspend  
Program  
SR.7 =  
SR full status check can be done after each byte write or after a  
sequence of program operations.  
Yes  
1
Write FFH after the last byte write operation to place device in read  
array mode.  
Full Status  
Check if Desired  
Program Complete  
FULL STATUS CHECK PROCEDURE  
Read Status Register  
Data (See Above)  
Bus Operation  
Command  
Comments  
Check SR.3  
1
Standby  
SR.3 =  
VPP Range Error  
1 = VPP Error Detect  
Check SR.1  
1 = Device Protect Detect  
WP# = VIL  
0
SR.1 =  
0
Standby  
Standby  
1
1
Device Protect Error  
Check SR.4  
1 = Data Write Error  
SR.4, SR.3 and SR.1 are only cleared by the Clear Staus Register  
command, in cases where multiple locations are written before full  
status is checked.  
SR.4 =  
Program Error  
0
If an error is detected, clear the status register before attempting retry  
or other error recovery.  
Program Successful  
24  
28F800F3 and 28F160F3  
Figure 12. Block Erase Suspend/Resume Flowchart  
Bus Operation  
Write  
Command  
Comments  
Data = B0H  
Start  
Erase Suspend  
Addr = X  
Write B0H  
Status Register Data  
Addr = X  
Read  
Check SR.7  
Standby  
Standby  
1 = WSM Ready  
0 = WSM Busy  
Read Status Register  
Check SR.6  
1 = Block Erase Suspended  
0 = Block Erase Completed  
0
SR.7 =  
Data = D0H  
Addr = X  
Write  
Write  
Erase Resume  
1
0
Block Erase  
Completed  
Read Array or  
Program  
Data = FFH  
Addr = X  
SR.6 =  
1
Read Array or Program Loop  
Read  
Program  
Read or Byte  
Write?  
Read Array  
Data  
Program  
Loop  
No  
Done  
Yes  
Write D0H  
Write FFH  
Block Erase Resumed  
Read Array Data  
25  
28F800F3 and 28F160F3  
Figure 13. Program Suspend/Resume Flowchart  
Bus Operation  
Command  
Comments  
Data = B0H  
Start  
Program  
Suspend  
Write  
Addr = X  
Write B0H  
Status Register Data  
Addr = X  
Read  
Read Status Register  
Check SR.7  
Standby  
1 = WSM Ready  
0 = WSM Busy  
0
Check SR.2  
1 = Program Suspended  
0 = Program Completed  
SR.7 =  
Standby  
Write  
1
Data = FFH  
Addr = X  
Read Array  
0
SR.2 =  
Program Completed  
Read array locations from  
block other than that being  
written  
Read  
1
Data = D0H  
Addr = X  
Write FFH  
Write  
Program Resume  
Read Array Data  
Done  
No  
Reading  
Yes  
Write D0H  
Write FFH  
Program Resumed  
Read Array Data  
26  
28F800F3 and 28F160F3  
5.0  
Data Protection  
The 3 Volt Fast Boot Block Flash memory architecture features two hardware-lockable parameter  
blocks, so critical code can be kept secure while six other parameter blocks can be programmed or  
erased as necessary to facilitate EEPROM emulation.  
5.1  
5.2  
V
V  
for Complete Protection  
PPLK  
PP  
The VPP programming voltage can be held low for complete write protection of all blocks in the  
flash device. When VPP is below VPPLK, any block erase or program operation will result in a  
error, prompting the corresponding status register bit (SR.3) to be set.  
WP# = V for Block Locking  
IL  
The lockable blocks are locked when WP# = VIL; any block erase or program operation to a locked  
block will result in an error, which will be reflected in the status register. For top configuration, the  
top two parameter blocks (blocks #37, #38 for the 16 Mbit, blocks #21, #22 for the 8 Mbit) are  
lockable. For the bottom configuration, the bottom two parameter blocks (blocks #0, #1) are  
lockable. Unlocked blocks can be programmed or erased normally (unless VPP is below VPPLK).  
5.3  
WP# = VIH for Block Unlocking  
WP# controls all block locking and VPP provides protection against spurious writes. Table 9  
defines the write protection methods.  
Table 9. Write Protection Truth Table  
VPP  
WP#  
RST#  
Write Protection Provided  
X
X
V
All Blocks Locked  
All Blocks Locked  
IL  
IH  
IH  
IH  
V
X
V
V
V
IL  
V  
V  
V
Lockable Blocks Locked  
All Blocks Unlocked  
PPLK  
PPLK  
IL  
V
IH  
27  
 
28F800F3 and 28F160F3  
6.0  
VPP Voltages  
Intel 3 Volt Fast Boot Block Flash memory provides in-system programming and erase at 2.7 V–  
3.6 V (3.0 V–3.6 V for automotive temperature) VPP. For customers requiring fast programming in  
their manufacturing environment, this family of products includes an additional high-performance  
12 V programming feature.  
The 12 V VPP mode enhances programming performance during short period of time typically  
found in manufacturing processes; however, it is not intended for extended use. 12 V may be  
applied to VPP during block erase and program operations for a maximum of 1000 cycles on the  
main blocks and 2500 cycles on the parameter blocks. VPP may be connected to 12 V for a total of  
80 hours maximum. Stressing the device beyond these limits may cause permanent damage.  
7.0  
Power Consumption  
While in operation, the flash device consumes active power. However, Intel® Flash devices have  
power savings that can significantly reduce overall system power consumption. The Automatic  
Power Savings (APS) feature reduces power consumption when the device is idle. When CE# is  
not asserted, the flash enters its standby mode, where current consumption is even lower. The  
combination of these features minimizes overall memory power and system power consumption.  
7.1  
7.2  
Active Power  
With CE# at a logic-low level and RST# at a logic-high level, the device is in active mode. Active  
power is the largest contributor to overall system power consumption. Minimizing active current  
has a profound effect on system power consumption, especially for battery-operated devices.  
Automatic Power Savings  
Automatic Power Savings (APS) provides low-power operation during active mode, allowing the  
flash to put itself into a low current state when not being accessed. After data is read from the  
memory array, the device’s power consumption enters the APS mode where typical ICC current is  
comparable to ICCS. The flash stays in this static state with outputs valid until a new location is  
read.  
7.3  
Standby Power  
With CE# at a logic-high level (VIH) and the CUI in read mode, the flash memory is in standby  
mode, which disables much of the device’s circuitry and substantially reduces power consumption.  
Outputs (DQ0–DQ15) are placed in a high-impedance state independent of the status of the OE#  
signal. If CE# transitions to a logic-high level during erase or program operations, the device will  
continue to perform the operation and consume corresponding active power until the operation is  
completed.  
28  
28F800F3 and 28F160F3  
System engineers should analyze the breakdown of standby time versus active time and quantify  
the respective power consumption in each mode for their specific application. This will provide a  
more accurate measure of application-specific power and energy requirements.  
7.4  
Power-Up/Down Operation  
The device is protected against accidental block erasure or programming during power transitions.  
Power supply sequencing is not required, since the device is indifferent as to which power supply,  
VPP, VCC, or VCCQ, powers-up first.  
7.4.1  
RST# Connection  
The use of RST# during system reset is important with automated program/erase devices since the  
system expects to read from the flash memory when it comes out of reset. If a CPU reset occurs  
without a flash memory reset, proper CPU initialization will not occur because the flash memory  
may be providing status information instead of array data. Intel recommends connecting RST# to  
the system reset signal to allow proper CPU/flash initialization following system reset.  
System designers must guard against spurious writes when VCC voltages are above VLKO and VPP  
is active. Since both WE# and CE# must be low for a command write, driving either signal to VIH  
will inhibit writes to the device. The CUI architecture provides additional protection since  
alteration of memory contents can only occur after successful completion of the two-step command  
sequences. The device is also disabled until RST# is brought to VIH, regardless of the state of its  
control inputs. By holding the device in reset during power-up/down, invalid bus conditions during  
power-up can be masked, providing yet another level of memory protection.  
7.4.2  
V
, V and RST# Transitions  
CC PP  
The CUI latches commands as issued by system software and is not altered by VPP or CE#  
transitions or WSM actions. Its default state upon power-up, after exit from deep power-down  
mode or after VCC transitions above VLKO (Lockout voltage), is read array mode.  
After any block erase or program operation is complete (even after VPP transitions down to  
V
PPLK), the CUI must be reset to read array mode via the Read Array command if access to the  
flash memory array is desired.  
7.5  
Power Supply Decoupling  
Flash memory’s power switching characteristics require careful device de-coupling. System  
designers should consider three supply current issues:  
Standby current levels (ICCS  
Active current levels (ICCR  
Transient peaks produced by falling and rising edges of CE#.  
)
)
29  
28F800F3 and 28F160F3  
Transient current magnitudes depend on the device outputs’ capacitive and inductive loading. Two-  
line control and proper de-coupling capacitor selection will suppress these transient voltage peaks.  
Each flash device should have a 0.1 µF ceramic capacitor connected between each VCC and GND,  
and between its VPP and GND. These high- frequency, inherently low-inductance capacitors should  
be placed as close as possible to the package leads.  
7.5.1  
V
Trace on Printed Circuit Boards  
PP  
Designing for in-system writes to the flash memory requires special consideration of the VPPpower  
supply trace by the printed circuit board designer. The VPP pin supplies the flash memory cells  
current for programming and erasing. VPP trace widths and layout should be similar to that of VCC  
.
Adequate VPP supply traces, and de-coupling capacitors placed adjacent to the component, will  
decrease spikes and overshoots.  
8.0  
Electrical Specifications  
8.1  
Absolute Maximum Ratings  
Parameter  
Maximum Rating  
–40 °C to +125 °C  
Temperature under Bias  
Storage Temperature  
–65 °C to +125 °C  
–0.5 V to +5.5 V(1)  
–0.5 V to +13.5 V(1, 2, 4)  
–0.2 V to +5.0 V(1)  
100 mA(3)  
Voltage On Any Pin (except V , V  
, and V  
)
PP  
CC  
CCQ  
V
Voltage  
and V  
PP  
CC  
V
Voltage  
CCQ  
Output Short Circuit Current  
NOTES:  
1. All specified voltages are with respect to GND. Minimum DC voltage is –0.5 V on input/output pins and  
–0.2 V on VCC and VPP pins. During transitions, this level may undershoot to –2.0 V for periods <20 ns.  
Maximum DC voltage on input/output pins is 5.5 V and VCC and VCCQ is VCC + 0.5 V which, during transitions,  
may overshoot to VCC +2.0 V for periods <20 ns.  
2. Maximum DC voltage on VPP may overshoot to +14.0 V for periods <20 ns.  
3. Output shorted for no more than one second. No more than one output shorted at a time.  
4. VPP Program voltage is normally 2.7 V–3.6 V. Connection to supply of 11.4 V–12.6 V can only be done for  
1000 cycles on the main blocks and 2500 cycles on the parameter blocks during program/erase. V may be  
PP  
connected to 12 V for a total of 80 hours maximum.  
NOTICE: This datasheet contains information on products in full production. The specifications are subject to  
change without notice. Verify with your local Intel Sales office that you have the latest datasheet before finalizing a  
design.  
Warning: Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage.  
These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended  
and extended exposure beyond the “Operating Conditions” may affect device reliability.  
30  
28F800F3 and 28F160F3  
8.2  
Extended Temperature Operating Conditions  
Symbol  
Parameter  
Operating Temperature  
Notes  
Min  
Max  
Unit  
TA  
–40  
2.7  
+85  
2.85  
3.3  
°C  
VCC1  
VCC Supply Voltage  
VCC Supply Voltage  
VCC Supply Voltage  
I/O Voltage  
1
1
V
VCC2  
2.7  
V
VCC3  
1,4  
1,2  
1,2  
1,2,4  
1
2.7  
3.6  
V
VCCQ1  
VCCQ2  
VCCQ3  
VCCQ4  
VPP1  
1.65  
1.8  
2.5  
V
I/O Voltage  
2.5  
V
I/O Voltage  
2.7  
3.6  
V
I/O Voltage  
4.75  
2.7  
5.25  
3.6  
V
V
VPP Supply Voltage  
VPP Supply Voltage  
Block Erase Cycling  
1
VPP2  
1,4  
3
11.4  
100,000  
12.6  
V
Cycling  
Cycles  
NOTE:  
1. See DC Characteristics tables for voltage range-specific specifications.  
2. The voltage swing on the inputs, VIN is required to match VCCQ  
.
3. Applying VPP = 11.4 V–12.6 V during a program or erase can only be done for a maximum of 1000 cycles on  
the main blocks and 2500 cycles on the parameter blocks. A hard connection to VPP = 11.4 V–12.6 V is not  
allowed and can cause damage to the device.  
4. VCC, VCCQ, and VPP1 must share the same supply when all three are between 2.7 V and 3.6 V.  
8.3  
Capacitance(1)  
TA = +25 °C, f = 1 MHz  
Symbol  
Parameter  
Typ  
Max  
Unit  
Condition  
CIN  
COUT  
Input Capacitance  
Output Capacitance  
6
8
8
pF  
pF  
VIN = 0.0 V  
VOUT = 0.0 V  
12  
NOTE: 1. Sampled, not 100% tested.  
31  
28F800F3 and 28F160F3  
8.4  
DC Characteristics—Extended Temperature(1)  
V
2.7 V–3.6 V  
2.7 V–3.6 V  
2.7 V–2.85 V  
1.65 V–2.5 V  
2.7 V–3.3 V  
1.8 V–2.5 V  
CC  
Sym  
Parameter  
V
Unit  
Test Conditions  
CCQ  
Note  
Typ  
Max  
Typ  
Max  
Typ  
Max  
VCC = VCCMax  
I
Input Load Current  
2
± 1  
± 1  
± 1  
µA  
V
CCQ = VCCQMax  
= VCCQ or GND  
LI  
V
IN  
Output Leakage  
Current  
V
V
V
CC = VCCMax  
CCQ = VCCQMax  
2
± 10  
± 25  
± 10  
± 25  
± 10  
± 25  
I
I
µA  
µA  
= VCCQ or GND  
LO  
IN  
Output Leakage  
Current for WAIT#  
VCC = VCCMax  
VCC Standby Current  
3
3
30  
45  
75  
60  
20  
30  
75  
45  
150  
40  
250  
55  
ccs  
CE# = RST # = VCC  
Asynchronous  
t
= Min  
= V or V  
AVQV  
mA  
mA  
V
IN IH IL  
CE# = V  
OE# = V  
IL  
IH  
I
VCC Read Current  
CCR  
Synchronous  
CLK = 33 MHz  
CE# = V  
45  
60  
30  
45  
40  
55  
IL  
OE# = V  
IH  
Burst length = 8 Word  
V
= V or V  
PP  
PP1  
PP2  
I
I
VCC Program Current  
VCC Erase Current  
3,4  
3,4  
8
8
20  
20  
8
8
20  
20  
8
8
20  
20  
mA  
mA  
CCW  
CCE  
Program in Progress  
= V or V  
V
PP  
PP1  
PP2  
Erase in Progress  
2
±15  
2
±15  
2
±15  
µA  
µA  
V
V
V
VCC  
PP  
PP  
PP  
I
I
V
Read Current  
PPR  
PP  
PP  
2,3  
50  
200  
50  
200  
50  
200  
> VCC  
=V  
PP1  
2,4,5  
10  
2
35  
10  
25  
25  
10  
2
35  
10  
25  
25  
10  
2
35  
10  
25  
25  
mA  
mA  
mA  
mA  
Program in Progress  
= V  
V
Program Current  
PPW  
V
PP  
PP2  
Program in Progress  
= V  
V
PP  
PP1  
2,4,5  
12  
8
13  
8
13  
8
Program in Progress  
= V  
I
V
V
Erase Current  
Erase Suspend  
PPE  
PP  
V
PP  
PP2  
Program in Progress  
= V or V  
V
PP  
PP1  
PP2  
I
I
PPES  
PP  
2,3  
1,8  
50  
200  
95  
50  
200  
95  
50  
200  
250  
µA  
µA  
Program or Erase  
Suspend in Progress  
Current  
PPWS  
VCC = VCCMax  
V
Program Suspend  
CC  
I
I
CCWS  
CCES  
or Block Erase  
Suspend Current  
CE# = RST# = VCC  
WP# = Vcc or GND  
32  
28F800F3 and 28F160F3  
DC Characteristics, Continued  
V
2.7 V–3.6 V  
2.7 V–2.85 V  
1.65 V–2.5 V  
2.7 V–3.3 V  
1.8 V–2.5 V  
CC  
Sym  
Parameter  
V
2.7 V–3.6 V  
Unit  
Test Conditions  
CCQ  
Note  
Min  
Max  
Min  
Max  
Min  
Max  
0.22  
*
VCC  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
–0.4  
–0.2  
0.2  
–0.2  
0.2  
V
V
V
IL  
VCCQ  
0.2  
VCCQ  
+
0.2  
VCCQ  
0.2  
VCCQ  
+
0.2  
V
V
2.0  
5.5  
IH  
OL  
VCC = VCCMin  
VCCQ = VCCQMin  
= 100 µA  
0.10  
-0.10  
0.10  
-0.10  
0.10  
I
OL  
VCCQ  
0.1  
VCCQ  
0.1  
VCCQ  
0.1  
VCC = VCCMin  
CCQ = VCCQMin  
= –100 µA  
V
V
V
V
V
OH  
I
OH  
Complete Write  
Protection  
V
Lock-Out Voltage  
4
1.5  
3.6  
1.5  
1.5  
PPLK  
PP  
V
V
V
V
6
6
2.7  
V
V
V
V
PP1  
PP2  
PP3  
PP4  
2.7  
2.85  
12.6  
V
during Program  
PP  
and Erase Operations  
6
2.7  
3.3  
6,7  
11.4  
1.5  
12.6  
11.4  
1.5  
11.4  
12.6  
VCC Prog/Erase Lock  
Voltage  
V
1.5  
1.2  
V
V
LKO  
VCCQ Prog/Erase Lock  
Voltage  
V
1.2  
1.2  
LKO2  
NOTES:  
1. All currents are in RMS unless otherwise noted. Typical values at normal V , T = +25 °C.  
CC  
A
2. Applying V = 11.4 V–12.6 V during program/erase can only be done for a maximum of 1000 cycles on the  
PP  
main blocks and 2500 cycles on the parameter blocks. V may be connected to 12 V for a total of 80 hours  
PP  
maximum.  
3. The specification is the sum of VCC and VCCQ currents.  
4. Erases and program operations are inhibited when V V  
, and not guaranteed outside the valid V  
PP  
PP  
PPLK  
ranges of V  
and V  
.
PP1  
PP2  
5. Sampled, not 100% tested.  
6. ICCES is specified with device deselected. If device is read while in erase suspend, current draw is sum of  
CCES and ICCR  
7. Automatic Power Savings (APS) reduces ICCR to approximate standby levels, in static operation.  
8. I and I are specified with the evice disabled. If the device is read or written while in suspend mode,  
I
.
CCWS  
CCES  
the device’s current draw is I  
or I  
.
CCR  
CCW  
33  
28F800F3 and 28F160F3  
Figure 14. AC Input/Output Reference Waveform for VCC = 2.7 V—3. 6 V  
VCCQ  
Input  
VCCQ/2  
Test Points  
VCCQ/2  
Output  
0V  
NOTE: AC test inputs are driven at VCCQ min. for a Logic "1" and 0.0 V for a Logic "0." Input timing begins, and  
output timing ends, at VCCQ/2. Input rise and fall times (10% to 90%) < 5 ns. Worst case speed  
conditions are when VCCQ = 2.7 V.  
Figure 15. AC Equivalent Testing Load Circuit  
VCCQ  
R1  
Device  
Under Test  
Out  
CL  
R2  
NOTE: See table for component values.  
Test Configuration  
2.7 V Standard Test  
CL (pF)  
R1 ()  
R2 ()  
50  
50  
25K  
25K  
1.65 V Standard Test  
16.7K  
16.7K  
NOTE: CL includes jig capacitance.  
34  
 
28F800F3 and 28F160F3  
8.5  
AC Characteristics—Read-Only Operations(1,2)—Extended  
Temperature  
Product  
–95  
–120  
#
Symbol  
Parameter  
V
3.0 V— 3.6 V 2.7 V— 3.6 V 2.7 V— 3.6 V  
Unit  
CC  
Notes  
Min  
Max  
Min  
Max  
Min  
Max  
R1  
R2  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
CLK Period  
15  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLK  
(t  
)
CLK High (Low) Time  
2.5  
2.5  
2.5  
CH CL  
CHCL  
AVCH  
VLCH  
ELCH  
CHQV  
CHQX  
CHAX  
CHTL  
AVVH  
ELVH  
AVQV  
ELQV  
VLQV  
VLVH  
VHVL  
VHAX  
APA  
R3  
CLK Fall (Rise) Time  
5
5
5
R4  
Address Valid Setup to CLK  
ADV# Low Setup to CLK  
CE# Low Setup to CLK  
CLK to Output Delay  
7
7
7
7
7
7
R5  
R6  
11  
11  
11  
R7  
15  
14  
19  
16  
23  
23  
R8  
Output Hold from CLK  
3
4
3
3
3
R9  
Address Hold from CLK  
CLK to WAIT# delay  
10  
10  
10  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
Address Setup to ADV# High  
CE# Low to ADV# High  
Address to Output Delay  
CE# Low to Output Delay  
ADV# Low to Output Delay  
ADV# Pulse Width Low  
ADV# Pulse Width High  
Address Hold from ADV# High  
Page Address Access Time  
OE# Low to Output Delay  
RST# High to Output Delay  
10  
10  
10  
10  
10  
10  
90  
90  
90  
95  
95  
95  
120  
120  
120  
5
10  
10  
3
10  
10  
3
10  
10  
3
25  
25  
27  
25  
35  
30  
GLQV  
PHQV  
600  
600  
600  
t
t
CE# or OE# High to Output in  
High Z, Whichever Occurs First  
EHQZ  
GHQZ  
R22  
3
15  
15  
15  
ns  
Output Hold from Address, CE#,  
or OE# Change, Whichever  
Occurs First  
R23  
R24  
t
t
3
6
0
0
0
0
0
0
ns  
ns  
OH  
CE# High Pulse Width  
EHEL  
NOTES:  
1. See Figure 14, “AC Input/Output Reference Waveform for VCC = 2.7 V—3. 6 V” on page 34 for timing  
measurements and maximum allowable input slew rate.  
2. Data bus voltage must be less than or equal to VCCQ when a read operation is initiated to guarantee AC  
specifications.  
3. Sampled, not 100% tested.  
4. Address hold in synchronous burst mode is defined as tCHAX or tVHAX, whichever timing specification is  
satisfied first.  
5. OE# may be delayed up to tELQV–tGLQV after the falling edge of CE# without impact on tELQV  
.
6. ADV# tied to ground, t (CE# High Pulse Width) must be held high for a minimum of 15 ns.  
EHEL  
35  
28F800F3 and 28F160F3  
Figure 16. AC Waveform for CLK Input  
R3  
CLK (C)  
R2  
R1  
Figure 17. AC Waveform for Single Asynchronous Read Operations from Parameter Blocks,  
Status Register, Identifier Codes  
VIH  
Valid  
A19-0 (A)  
Address  
VIL  
R18  
R13  
R11  
R17  
VIH  
ADV# (V)  
VIL  
R16  
R22  
R15  
R14  
VIH  
VIL  
CE# (E)  
R12  
VIH  
OE# (G)  
WE# (W)  
VIL  
VIH  
VIL  
VOH  
VOL  
WAIT# (T)  
R23  
R20  
VOH  
VOL  
High Z  
Valid  
Output  
DQ15-0 (D/Q)  
RST# (R)  
R21  
VIH  
VIL  
36  
28F800F3 and 28F160F3  
Figure 18. AC Waveform for Asynchronous Page Mode Read Operations from Main Blocks  
VIH  
Valid  
Address  
A19-2 (A)  
V
IL  
VIH  
Valid  
Address  
Valid  
Address  
Valid  
Address  
Valid  
Address  
A1-0 (A)  
V
IL  
R13  
R18  
R11  
R17  
VIH  
ADV# (V)  
V
IL  
R15  
R14  
R22  
VIH  
CE# (E)  
OE# (G)  
V
IL  
VIH  
V
IL  
VIH  
WE# (W)  
V
IL  
VOH  
VOL  
WAIT# (T)  
R20  
R19  
R23  
VOH  
VOL  
High Z  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ15-0 (D/Q)  
RST# (R)  
R21  
VIH  
V
IL  
37  
28F800F3 and 28F160F3  
Figure 19. AC Waveform for Single Synchronous Read Operations from Parameter Blocks,  
Status Register, Identifier Codes  
VIH  
CLK [C]  
A19-0 [A]  
Note 1  
VIL  
R4  
R9  
VIH  
VIL  
Valid  
Address  
R13  
R11  
R17  
R18  
VIH  
VIL  
ADV# [V]  
R16  
R5  
R7  
R15  
R22  
VIH  
VIL  
CE# [E]  
R12  
R6  
R14  
VIH  
OE# [G]  
WE# [W]  
VIL  
VIH  
R8  
VIL  
VOH  
WAIT# [T]  
DQ15-0 [D/Q]  
R20  
R23  
VOL  
VOH  
High Z  
Valid  
Output  
VOL  
NOTES:  
1. 1.Depending upon the frequency configuration code value in the read configuration register, insert clock  
cycles:  
Frequency Configuration 2 insert two clock cycles  
Frequency Configuration 3 insert three clock cycles  
Frequency Configuration 4 insert four clock cycles  
Frequency Configuration 5 insert five clock cycles  
Frequency Configuration 6 insert six clock cycles  
See Section 4.9.2 for further information about the frequency configuration and its effect on the initial read.  
38  
28F800F3 and 28F160F3  
Figure 20. AC Waveform for Synchronous Burst Read Operations, Four-Word Burst Length,  
from Main Blocks  
VIH  
CLK (C)  
A19-0 (A)  
Note 1  
VIL  
R4  
VIH  
VIL  
Valid  
Address  
R9  
R18  
R11  
R17  
VIH  
VIL  
ADV# (V)  
CE# (E)  
R16  
R5  
R22  
VIH  
VIL  
R12  
R6  
VIH  
OE# (G)  
VIL  
VIH  
WE# (W)  
VIL  
VOH  
WAIT# (T)  
VOL  
R20  
R7  
R8  
R23  
VOH  
VOL  
High Z  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ15-0 (D/Q)  
NOTES:  
1. 1.Depending upon the frequency configuration code value in the read configuration register, insert clock  
cycles:  
Frequency Configuration 2 insert two clock cycles  
Frequency Configuration 3 insert three clock cycles  
Frequency Configuration 4 insert four clock cycles  
Frequency Configuration 5 insert five clock cycles  
Frequency Configuration 6 insert six clock cycles  
See Section 4.9.2 for further information about the frequency configuration and its effect on the initial read.  
39  
28F800F3 and 28F160F3  
Figure 21. AC Waveform for Continuous Burst Read, Showing an Output Delay with Data  
Output Configuration Set to One Clock  
VIH  
CLK (C)  
Note 1  
VIL  
VIH  
A19-0 (A)  
ADV# (V)  
CE# (E)  
VIL  
VIH  
VIL  
VIH  
VIL  
VIH  
OE# (G)  
VIL  
VIH  
WE# (W)  
R10  
R10  
VIL  
VOH  
WAIT# (T)  
Note 2  
VOL  
R7  
VOH  
VOL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ15-0 (D/Q)  
NOTES:  
1. This delay will only occur when burst length is configured as continuous. See Section 4.9.7 for further  
information about burst length configuration.  
2. WAIT# is configurable. It can be set to assert during or one CLK cycle before an output delay.  
See Section 4.9.2 for further information about the frequency configuration and its effect on the initial read.  
Figure 22. AC Waveform for Continuous Burst Read, Showing an Output Delay with Data  
Output Configuration Set to Two Clocks  
VIH  
CLK (C)  
Note 1  
VIL  
VIH  
A19-0 (A)  
ADV# (V)  
CE# (E)  
VIL  
VIH  
VIL  
VIH  
VIL  
VIH  
OE# (G)  
VIL  
VIH  
WE# (W)  
R10  
R10  
VIL  
VOH  
WAIT# (T)  
Note 2  
VOL  
R7  
VOH  
VOL  
Valid  
Valid  
Output  
DQ15-0 (D/Q)  
Output  
NOTES:  
1. This delay will only occur when burst length is configured as continuous. See Section 4.9.7 for further  
information about burst length configuration.  
2. WAIT# is configurable. It can be set to assert during or two CLK cycles before an output delay.  
See Section 4.9.2 for further information about the frequency configuration and its effect on the initial read.  
40  
28F800F3 and 28F160F3  
8.6  
AC Characteristics—Write Operations(1, 2)—Extended  
Temperature  
Valid for All Speed and  
Voltage Combinations  
#
Sym  
Parameter  
Unit  
Notes  
Min  
Max  
W1  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
(t  
)
RST# High Recovery to WE# (CE#) Going Low  
CE# (WE#) Setup to WE# (CE#) Going Low  
Write Pulse Width  
3
4
4
600  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PHWL PHEL  
W2  
W3  
(t  
)
ELWL WLEL  
(t  
)
75  
10  
70  
75  
75  
10  
0
WP WLWH  
W4  
ADV# Pulse Width  
VLVH  
W5  
(t  
)
Data Setup to WE# (CE#) Going High  
Address Setup to WE# (CE#) Going High  
ADV# Setup to WE# (CE#) Going High  
Address Setup to ADV# Going High  
CE# (WE#) Hold from WE# (CE#) High  
Data Hold from WE# (CE#) High  
Address Hold from WE# (CE#) High  
Address Hold from ADV# Going High  
Write Pulse Width High  
5
5
DVWH DVEH  
W6  
(t  
)
AVWH AVEH  
W7  
(t  
)
VLEH VLWH  
W8  
AVVH  
W9  
(t  
)
WHEH EHWH  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
(t  
)
0
WHDX EHDX  
(t  
)
0
WHAX EHAX  
3
VHAX  
(t  
)
6
3
20  
200  
200  
15  
0
WPH WHWL  
(t  
)
WP# Setup to WE# (CE#) Going High  
VPP Setup to WE# (CE#) Going High  
Write Recovery before Read  
BHWH BHEH  
(t  
)
)
3
VPWH VPEH  
(t  
7
WHGL EHGL  
WP# Hold from Valid SRD  
3,8  
3,8  
QVBL  
QVVL  
VPP Hold from Valid SRD  
0
NOTES:  
1. See Figure 14, “AC Input/Output Reference Waveform for VCC = 2.7 V—3. 6 V” on page 34 for timing  
measurements and maximum allowable input slew rate.  
2. A write operation can be initiated and terminated with either CE# or WE#.  
3. Sampled, not 100% tested.  
4. Write pulse width (tWP) is defined from CE# or WE# going low (whichever goes low last) to CE# or WE# going  
high (whichever goes high first). Hence, tWP = tWLWH = tELEH = tWLEH = tELWH  
.
5. Refer to Table 3 for valid AIN and DIN for block erase or program.  
6. Write pulse width high (tWPH) is defined from CE# or WE# going high (whichever goes high first) to CE# or  
WE# going low (whichever goes low last). Hence, tWPH = tWHWL = tEHEL = tWHEL = tEHWL  
7. t is 15 ns unless resuming a program suspend or erase suspend command; then 30 ns is required  
.
WHGL  
before read can be commenced.  
8. VPP should be held at VPPH1 or VPPH2 until determination of block erase or program success.  
41  
28F800F3 and 28F160F3  
Figure 23. AC Waveform for Write Operations  
Note 1  
Note 2  
Note 3  
Note 4  
Note 5  
VIH  
VIL  
Valid Address  
Valid Address  
A20-0 (A)  
W12  
W11  
W6  
W8  
VIH  
VIL  
ADV# (V)  
W4  
W7  
Note 6  
VIH  
VIL  
CE# (WE#) [E(W)]  
OE# [G]  
W2  
W9  
W16  
VIH  
VIL  
W1  
W13  
VIH  
VIL  
WE# (CE#) [W(E)]  
Note 6  
W3  
W5  
W10  
W19  
VIH  
VIL  
Valid  
SRD  
Data In  
Data In  
DATA [D/Q]  
RST# [P]  
WP# [B]  
VIH  
VIL  
W14  
W15  
W17  
W18  
VIH  
VIL  
VPPH1/2  
VPPLK  
VIL  
VPP [V]  
NOTES:  
1. VCC power-up and standby.  
2. Write block erase or program setup.  
3. Write block erase confirm or valid address and data.  
4. Automated erase or program delay.  
5. Read status register data.  
6. For read operations, OE# and CE# must be driven active, and WE# de-asserted.  
42  
 
28F800F3 and 28F160F3  
8.7  
AC Characteristics—Reset Operation—Extended  
Temperature  
Figure 24. AC Waveform for Reset Operation  
R20  
VIH  
RST# (R)  
VIL  
P1  
(A) Reset while device is in read mode  
Abort  
Complete  
P2  
R20  
VIH  
VIL  
RST# (R)  
P1  
(B) Reset during program or block erase, P1  
P2  
Abort  
Complete  
P2  
R20  
VIH  
RST# (R)  
VIL  
P1  
(C) Reset during program or block erase, P1  
P2  
Table 10. Reset Specifications(1)  
Number  
Symbol  
Parameter  
Notes  
Min  
Max  
Unit  
RST# Low to Reset during Read  
(If RST# is tied to VCC, this specification is not applicable)  
P1  
P2  
t
t
2,3  
3,4  
100  
ns  
PLPH  
RST# Low to Reset during Block Erase or Program  
22  
µs  
PLRH  
NOTES:  
1. These specifications are valid for all product versions (packages and speeds).  
2. If tPLPH is < 100 ns the device may still reset but this is not guaranteed.  
3. Sampled, but not 100% tested.  
4. If RST# is asserted while a block erase or word program operation is not executing, the reset will complete  
within 100 ns.  
43  
28F800F3 and 28F160F3  
8.8  
Extended Temperature Block Erase and Program  
Performance(1,2,3)  
2.7 V-3.6 V V  
11.4 V-12.6 V V  
PP  
PP  
#
Sym  
Parameter  
Notes  
Unit  
Typ(4)  
Max  
Typ(4)  
Max  
Program Time  
5
5
5
5
5
23.5  
0.10  
0.8  
1
200  
0.30  
2.4  
4
8
0.03  
0.24  
0.8  
1.1  
5
185  
0.10  
0.8  
4
µs  
sec  
sec  
sec  
sec  
µs  
t
WHRH1, tEHRH1  
Block Program Time (Parameter)  
Block Program Time (Main)  
Block Erase Time (Parameter)  
Block Erase Time (Main)  
W19  
tWHRH2, tEHRH2  
1.8  
6
5
5
tWHRH5, tEHRH5  
tWHRH6, tEHRH6  
NOTES:  
Program Suspend Latency  
Erase Suspend Time  
10  
20  
10  
12  
13  
10  
µs  
1. These performance numbers are valid for all speed versions.  
2. Sampled, but not 100% tested.  
3. Reference the Figure 23, “AC Waveform for Write Operations” on page 42.  
4. Typical values measured at TA = +25 °C and nominal voltages. Subject to change based on device  
characterization.  
5. Excludes system-level overhead.  
44  
28F800F3 and 28F160F3  
9.0  
Ordering Information  
D T 2 8 F 1 6 0 F 3 T 1 2 0  
Package  
DT = Extended temp.,  
56-Lead SSOP  
Access Speed (ns)  
(120,150)  
GT = Extended temp.,  
56-Ball µBGA* CSP  
TE = Extended temp.,  
56-Lead TSOP  
RC = Extended temp.,  
Easy BGA  
T = Top Blocking  
B = Bottom Blocking  
Product line designator  
for all Intel® Flash products  
Product Family  
Device Density  
F3 = 3 Volt Fast Boot Block  
VCC = 2.7 V - 3.6 V  
VPP = 2.7 V - 3.6 V or  
11.4 V - 12.6 V  
160 = x16 (16-Mbit)  
800 = x16 (8-Mbit)  
Valid Combinations  
56-Lead SSOP  
56-Lead TSOP  
8 x 8 Easy BGA  
56-Ball µBGA CSP(1)  
DT28F160F3T120  
DT28F160F3B120  
DT28F160F3T95  
DT28F160F3B95  
DT28F800F3T120  
DT28F800F3B120  
DT28F800F3T95  
DT28F800F3B95  
TE28F160F3T120  
TE28F160F3B120  
TE28F160F3T95  
TE28F800F3B95  
TE28F800F3T120  
TE28F800F3B120  
TE28F800F3T95  
TE28F800F3B95  
RC28F160F3T120  
RC28F160F3B120  
RC28F160F3T95  
RC28F800F3B95  
RC28F800F3T120  
RC28F800F3B120  
RC28F800F3T95  
RC28F800F3B95  
GT28F160F3T120  
GT28F160F3B120  
GT28F160F3T95  
GT28F800F3B95  
NOTE: 1. The 56-ball µBGA package topside mark reads F160F3. All product shipping boxes or trays provide  
the correct information regarding bus architecture.  
45  
28F800F3 and 28F160F3  
10.0  
Additional Information  
Order Number  
Document/Tool  
297939  
210830  
292213  
298161  
3 Volt Fast Boot Block Flash Memory Specification Update  
Flash Memory Databook  
AP-655 3 Volt Fast Boot Block Design Guide  
Intel® Flash Memory Chip Scale Package User’s Guide  
Contact your Intel  
Representative  
Intel® Flash Data Integrator (IFDI) Software Developer’s Kit  
297874  
IFDI Interactive: Play with Intel® Flash Data Integrator on Your PC  
NOTES:  
1. Please call the Intel Literature Center at (800) 548-4725 to request Intel documentation. International  
customers should contact their local Intel or distribution sales office.  
Visit Intel’s World Wide Web home page at http://www.intel.com or http://developer.intel.com for technical  
documentation and tools.  
46  

相关型号:

RC2951

Adjustable Micropower Voltage Regulator
FAIRCHILD

RC2951M

Fixed & Adjustable Voltage Regulator
ETC

RC2951M-3.3

Fixed & Adjustable Voltage Regulator
ETC

RC2951M33

VOLT REGULATOR|FIXED/ADJUSTABLE|+3.3/+1.24 TO 29V|BIPOLAR|SOP|8PIN|PLASTIC
FAIRCHILD

RC2951MT

VOLT REGULATOR|FIXED/ADJUSTABLE|+5V/+1.24 TO +29V|BIPOLAR|SOP|8PIN|PLASTIC
FAIRCHILD

RC2VO

Rectifier Diode, 1 Element, 0.2A, Silicon
SANKEN

RC2Z

FAST RECOVERY RECTIFIER
BL Galaxy Ele

RC3-2.5

Thermoelectric Cooler
ETC

RC3-2.5-01

Thermoelectric Cooler
ETC

RC3-2.5-01L

Thermoelectric Cooler
ETC

RC3-2.5-01LS

Thermoelectric Cooler
ETC

RC3-2.5-01S

Thermoelectric Cooler
ETC