PBL38640/2SH [INTEL]

SLIC, Bipolar, PDSO24, PLASTIC, SSOP-24;
PBL38640/2SH
型号: PBL38640/2SH
厂家: INTEL    INTEL
描述:

SLIC, Bipolar, PDSO24, PLASTIC, SSOP-24

电信 光电二极管 电信集成电路
文件: 总51页 (文件大小:2007K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, Rev. 2.0, Apr. 2005  
FlexiSLICTM  
Subscriber Line Interface Circuit  
PBL 38640/2, Version 2  
Wireline Communications  
N e v e r s t o p t h i n k i n g .  
ABM®, ACE®, AOP®, ARCOFI®, ASM®, ASP®, DigiTape®, DuSLIC®, EPIC®, ELIC®,  
FALC®, GEMINAX®, IDEC®, INCA®, IOM®, IPAT®-2, ISAC®, ITAC®, IWE®, IWORX®,  
MUSAC®, MuSLIC®, OCTAT®, OptiPort®, POTSWIRE®, QUAT®, QuadFALC®,  
SCOUT®, SICAT®, SICOFI®, SIDEC®, SLICOFI®, SMINT®, SOCRATES®, VINETIC®,  
10BaseV®, 10BaseVX® are registered trademarks of Infineon Technologies AG.  
10BaseS™, EasyPort™, FlexiSLIC™, VDSLite™ are trademarks of Infineon  
Technologies AG. Microsoft® is a registered trademark of Microsoft Corporation, Linux®  
of Linus Torvalds, Visio® of Visio Corporation, and FrameMaker® of Adobe Systems  
Incorporated.  
The information in this document is subject to change without notice.  
Edition 2005-04-14  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
81669 München, Germany  
© Infineon Technologies AG 2005.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
FlexiSLIC  
Revision History:  
Previous Version:  
2005-04-14  
DS1  
Rev. 2.0  
Page  
all  
Subjects (major changes since last revision)  
Package P-DSO-24-1 changed to P-/PG-DSO-24-8  
Package type abbreviation SOIC changed to PDSO  
Package P-LCC-28-2 changed to P-/PG-LCC-28-3  
Package P-SSOP-24-1 changed to P-/PG-SSOP-24-1  
all  
all  
all  
Page 17  
Table 5: Thermal resistance for 24-pin PDSO changed from 80.2 °C/W to  
50.3 °C/W  
Page 30  
Page 31  
Page 36  
Figure 9: SLIC/codec circuitry changed  
Table 6: values of RR, RT, RRX, RTX, RB changed, RFB removed  
Figure 11 changed  
FlexiSLIC  
PBL 38640/2  
Table of Contents  
Page  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.1  
1.2  
1.3  
1.4  
2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1  
Characterictics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4
Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Recommended Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Design Supporting Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.1  
4.2  
5
Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Two-Wire Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Two-Wire to Four-Wire Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Four-Wire to Two-Wire Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Four-Wire to Four-Wire Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Hybrid Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Longitudinal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Capacitors CTC and CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
AC - DC Separation Capacitor, CHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
High-pass Transmit Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Capacitor CLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
5.10  
5.11  
6
Battery Feed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
CODEC Receive Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Programmable Overhead Voltage (POV) . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Analog Temperature Guard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
6.1  
6.2  
6.3  
7
Loop Monitoring Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Loop Current Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Ground Key Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Ring Trip Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
7.1  
7.2  
7.3  
8
Relay Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9
Control Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Open Circuit (C3, C2, C1 = 0, 0, 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Ringing (C3, C2, C1 = 0, 0, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Active States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Tip Open State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Active Polarity Reversal State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
9.1  
9.2  
9.3  
9.4  
9.5  
Data Sheet  
4
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Table of Contents  
Page  
10  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Overvoltage Protection - General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Secondary Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.1  
10.2  
11  
12  
Power-Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Printed Circuit Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
13  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
24-pin SSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
24-pin PDSO Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
28-pin PLCC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
13.1  
13.2  
13.3  
Data Sheet  
5
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
List of Figures  
Page  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Configuration, 24L-PDSO, 24L-SSOP and 28L-PLCC (top view) . 11  
Overhead Level, VTRO, Two-Wire Port. . . . . . . . . . . . . . . . . . . . . . . . . 27  
Longit. to Metallic, BLME and Longit. to Four-Wire, BLFE Balance. . . . . 28  
Metallic to Longit., BMLE and Four-Wire to Longit. Balance, BFLE. . . . . 28  
Overhead Level, VTXO, Four-Wire Transmit Port . . . . . . . . . . . . . . . . . 28  
Frequency Response, Insertion Loss, Gain Tracking . . . . . . . . . . . . . 29  
TIPX Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Application Example of PBL 38640/2 with SICOFI®4 Codec . . . . . . . . 30  
Simplified AC Model of PBL 38640/2. . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Hybrid Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Codec Receive Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Battery Feed Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Programmable Overhead Voltage (POV). RL= 600 or Infinite . . . . . 43  
P-/PG-SSOP-24-1 (Plastic Shrink Small Outline Package). . . . . . . . . 48  
P-/PG-DSO-24-8 (Plastic Dual Small Outline Package) . . . . . . . . . . . 49  
P-/PG-LCC-28-3 (Plastic Leaded Chip Carrier Package) . . . . . . . . . . 50  
Data Sheet  
6
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
List of Tables  
Page  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SLIC Operating States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Feeding Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Battery Overhead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Internal Bias Current of RSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Data Sheet  
7
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Subscriber Line Interface Circuit  
Version 2  
1
Overview  
1.1  
Features  
• 24-pin SSOP package  
• High and low battery with automatic switching  
• 65 mW on-hook power dissipation in active state  
• On-hook transmission  
P-/PG-SSOP-24-1  
• Long loop battery feed tracks Vbat for maximum line  
voltage  
• Selectable transmit gain (1x or 0.5 x)  
• No power-up sequence  
• 43 V open loop voltage @ -48 V battery feed  
• Close tolerance current feeding  
• Constant loop voltage for line leakage < 5 mA  
(RLeak ~ > 10 k@ -48 V)  
P-/PG-DSO-24-8  
• Full longitudinal current capability during  
on-hook state  
• Longitudinal balance > 60 dB  
• Analog overtemperature protection permits transmis-  
sion while the protection circuits is active  
• Line voltage measurement  
• Polarity reversal  
• Ground key detector  
• Tip open state with ring ground detector  
• Programmable signal headroom  
• -40 oC to +85 oC ambient temperature range  
P-/PG-LCC-28-3  
Type  
Package  
PBL 38640/2 SH  
PBL 38640/2 SO  
PBL 38640/2 QN  
P-/PG-SSOP-24-1  
P-/PG-DSO-24-8  
P-/PG-LCC-28-3  
Data Sheet  
8
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Overview  
1.2  
Typical Applications  
• Basic functionality Central Office Line card  
• Digital Loop Carriers (DLC)  
1.3  
Description  
The PBL 38640/2 Subscriber Line Interface Circuit (SLIC) is a 90 V bipolar integrated  
circuit for use in PBX, Terminal adapters and other telecommunications equipment. The  
PBL 38640/2 SLIC has been optimized for low total line interface cost and for a high  
degree of flexibility in different applications.  
The PBL 38640/2 SLIC emulates resistive loop feed, programmable between 2x50 Ω  
and 2x900 , with short loop current limiting adjustable to maximum 45 mA. In the  
current limited region the loop feed is nearly constant current with a slight slope  
corresponding to 2x30 k.  
A second lower battery voltage may be connected to the device to reduce short loop  
power dissipation. The SLIC automatically switches between the two battery supply  
voltages without need for external components or external control.  
The SLIC incorporates loop current, ground key and ring-trip detection functions. The  
PBL 38640/2 is compatible with both loop and ground start signalling.  
Two- to four-wire and four- to two-wire voice frequency (VF) signal conversion is  
accomplished by the SLIC in conjunction with either a conventional CODEC/filter or with  
a programmable CODEC/filter, for example SiCoFi PEB 2466. The programmable two-  
wire impedance, complex or real, is set by a simple external network.  
Longitudinal voltages are suppressed by a feedback loop in the SLIC and the  
longitudinal balance specifications meet Bellcore TR909 requirements.  
The PBL 38640/2 SLIC package options are 24-pin SSOP, 24-pin PDSO or 28-pin  
PLCC.  
Data Sheet  
9
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Overview  
1.4  
Block Diagram  
VCC  
AGND  
DT  
DR  
Ring Trip  
Comparator  
Ring Relay  
Driver  
RRLY  
C1  
C2  
C3  
Input  
Decoder  
and  
Ground Key  
Detector  
Control  
TIPX  
HP  
DET  
Line Feed  
Controller  
and  
POV  
PSG  
Longitudinal  
Signal  
Two-wire  
Interface  
PLC  
Suppression  
LP  
RINGX  
Off - Hook  
Detector  
PLD  
REF  
RSN  
VF signal  
Transmission  
VTX  
BGND  
VBAT  
PTG  
VBAT2  
bl_sch_40  
Figure 1  
Block Diagram  
Data Sheet  
10  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Pin Configuration  
2
Pin Configuration  
PTG 1  
RRLY 2  
HP 3  
24 VTX  
23 AGND  
22 RSN  
21 REF  
20 PLC  
4
3
2
1 28 27 26  
RINGX 4  
BGND 5  
TIPX 6  
RINGX  
BGND  
TIPX  
5
6
7
8
9
25 NC  
24 REF  
PLC  
23  
22  
24-pin PDSO 19 POV  
and  
28-pin PLCC  
VBAT  
VBAT2  
POV  
24- pin SSOP  
VBAT 7  
18 PLD  
17 VCC  
16 DET  
15 C1  
21 PLD  
20 VCC  
19 NC  
VBAT2  
8
PSG 10  
NC 11  
PSG 9  
LP 10  
DT 11  
DR 12  
12 13 14 15 16 17 18  
14 C2  
13 C3  
pinout_40  
Figure 2  
Table 1  
Pin Configuration, 24L-PDSO, 24L-SSOP and 28L-PLCC (top view)  
Pin Definition and Functions  
PDSO  
SSOP  
Pin No.  
PLCC  
Name  
Pin  
Type  
Function  
Pin No.  
1
1
PTG  
Programmable transmit gain. Left open  
transmit gain = 0.0 dB, connected to AGND  
transmit gain = -6.02 dB.  
2
3
2
3
RRLY  
HP  
O
Ring relay driver output. The relay coil may  
be connected to maximum +14 V.  
Connection for high pass filter capacitor, CHP.  
Other end of CHP connects to TIPX.  
Data Sheet  
11  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Pin Configuration  
Table 1  
Pin Definition and Functions (cont’d)  
PDSO  
SSOP  
Pin No.  
PLCC  
Name  
Pin  
Type  
Function  
Pin No.  
4
5
RINGX  
The RINGX pin connects to the ring lead of  
the two-wire interface via over voltage  
protection components and ring relay (and  
optional test relay).  
5
6
6
7
BGND  
TIPX  
Battery ground, should be tied together with  
AGND.  
The TIPX pin connects to the tip lead of the  
two-wire interface via over voltage protection  
components and ring relay (and optional test  
relay).  
7
8
9
8
VBAT  
VBAT2  
PSG  
Battery supply voltage. Negative with respect  
to GND.  
An optional second (2) Battery Voltage  
connects to this pin via an external diode.  
9
10  
Programmable saturation guard. The  
resistive part of the DC feed characteristics is  
programmed by a resistor connected from  
this pin to VBAT  
.
10  
11  
12  
13  
LP  
DT  
I
Connection for low pass filter capacitor, CLP.  
Other end of CLP connects to VBAT  
.
Input to the ring trip comparator. With DR  
more positive than DT the detector output,  
DET, is at logic level low, indicating off-hook  
condition. The external ring trip network  
connects to this input.  
12  
14  
DR  
I
Input to the ring trip comparator. With DR  
more positive than DT the detector output,  
DET, is at logic level low, indicating off-hook  
condition. The external ring trip network  
connects to this input.  
13  
14  
15  
15  
16  
17  
C3  
C2  
C1  
I
I
I
C1, C2, C3 are digital inputs (positive logic,  
internal pull-up), which control the SLIC  
operating states. Refer to Table 2 for details.  
Data Sheet  
12  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Pin Configuration  
Table 1  
Pin Definition and Functions (cont’d)  
PDSO  
SSOP  
Pin No.  
PLCC  
Name  
Pin  
Type  
Function  
Pin No.  
16  
18  
DET  
O
Detector output. Active low when indicating  
loop or ring-trip detection, active high when  
indicating ground key detection.  
17  
18  
20  
21  
VCC  
PLD  
+5 V power supply.  
Programmable loop detector threshold. The  
loop detection threshold os programmed by a  
resistor connected from this pin to AGND.  
19  
22  
POV  
PLC  
Programmable overhead voltage. If pin is left  
open: The overhead voltage is internally set  
to min 2.7 V in off- hook and min 1.1 V in on-  
hook. If a resistor is connected between this  
pin and AGND: The overhead voltage can be  
set to higher values.  
Programmable line current, the constant  
current part of the DC feed characteristic is  
programmed by a resistor connected from  
this pin to AGND.  
20  
23  
21  
22  
24  
26  
REF  
RSN  
A reference, 49.9 k, resistor should be  
connected from this pin to AGND.  
Receive summing node. 200 times the AC  
current flowing into this pin equals the  
metallic (transversal) AC current flowing from  
RINGX to TIPX. Programming networks for  
two-wire impedance and receive gain  
connect to the receive node. A resistor should  
be connected from this pin to AGND.  
23  
27  
AGND  
Analog ground, should be tied together with  
BGND.  
Data Sheet  
13  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Pin Configuration  
Table 1  
Pin Definition and Functions (cont’d)  
PDSO  
SSOP  
Pin No.  
PLCC  
Name  
Pin  
Type  
Function  
Pin No.  
24  
28  
VTX  
O
Transmit vf output. The AC voltage difference  
between TIPX and RINGX, the AC metallic  
voltage, is reproduced as an unbalanced  
GND referenced signal at VTX with a gain of  
one (or one half, see pin PTG). The two-wire  
impedance programming network connects  
between VTX and RSN.  
-
4, 11,19, NC  
25  
Not Connected.  
Table 2  
State  
SLIC Operating States  
C3  
C2  
C1  
SLIC Operating Active Detector  
State  
(DET Response)  
0
1
2
0
0
0
Open circuit  
No active detector  
(DET is set high)  
0
0
1
Ringing  
Active  
Ring-trip detector  
(DET active low)  
0
1
0
Loop detector  
(DET active low)  
3
4
0
1
1
0
1
0
Active  
Tip open  
Line voltage measurement1)  
Loop detector  
(DET active low)  
5
6
7
1
1
1
0
1
1
1
0
1
Active  
Ground key detector  
(DET active high)  
Loop detector  
(DET active low)  
Ground key detector  
(DET active high)  
Active reverse  
Active reverse  
1) Previous state must be active - loop or ground key detector.  
Data Sheet  
14  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Electrical Characteristics  
3
Electrical Characteristics  
Table 3  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit Note/Test  
Condition  
Max.  
Temperature, Humidity  
Storage temperature range TStg  
-55  
-40  
150  
110  
°C  
°C  
Operating temperature  
TAmb  
range  
Operating junction  
temperature range1)  
TJ  
-40  
140  
°C  
Power Supply (-40 °C TAmb +85 °C)  
VCC with respect to A/BGND VCC  
-0.4  
VBAT  
6.5  
0.4  
V
V
V
BAT2 with respect to  
A/BGND  
BAT with respect to  
A/BGND, continuous  
VBAT2  
VBAT  
VBAT  
V
-75  
-80  
0.4  
0.4  
V
V
V
BAT with respect to  
A/BGND, 10 ms  
Power Dissipation  
Continuous power  
dissipation  
PD  
1.5  
0.3  
W
V
TAmb  
+85 °C  
Ground  
Voltage between AGND and VG  
-0.3  
BGND  
Relay Driver  
Ring relay supply voltage  
BGND V  
+14  
Ring Trip Comparator  
Input voltage  
Input current  
VDT, VDR VBAT  
IDT, IDR -5  
AGND V  
5
mA  
Digital Inputs, Outputs (C1, C2, C3, DET)  
Input voltage  
Output voltage  
VID  
VOD  
-0.4  
-0.4  
VCC  
VCC  
V
V
Data Sheet  
15  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Electrical Characteristics  
Table 3  
Absolute Maximum Ratings (cont’d)  
Symbol Values  
Typ.  
TIPX and RINGX Terminals (-40 °C TAmb +85 °C, VBAT = -50 V)  
Parameter  
Unit Note/Test  
Condition  
Min.  
-100  
Max.  
TIPX or RINGX current  
ITIPX  
,
100  
mA  
IRINGX  
TIPX or RINGX voltage,  
continuous (referenced to  
AGND)2)  
TIPX or RINGX2)  
VTA, VRA -80  
2
V
VTA, VRA VBAT  
5
V
pulse <  
- 10  
10 ms,  
tRep > 10 s  
TIPX or RINGX2)  
TIP or RING2)3)  
VTA, VRA VBAT  
10  
15  
V
V
pulse < 1 µs,  
tRep > 10 s  
- 25  
VTA, VRA VBAT  
pulse <  
- 35  
250 ns,  
tRep > 10 s  
1) The circuit includes thermal protection. Operation above max. junction temperature may degrade device  
reliability.  
2) With the diodes DVB and DVB2 included, see Figure 9.  
3) RF1 and RF2 > 20 is also required. Pulse is supplied to RING and TIP outside RF1 and RF2.  
Attention: Stresses above those values listed here may cause permanent damage  
to the device. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Maximum ratings are absolute ratings; exceeding only one of these  
values may cause irreversible damage to the integrated circuit.  
Table 4  
Operating Range  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit Note/Test  
Condition  
Ambient temperature  
VCC with respect to AGND  
TAmb  
VCC  
VBAT  
-40  
4.75 –  
-58  
85  
5.25 V  
-8  
°C  
VBAT with respect to AGND  
V
AGND with respect to BGND VG  
-100 –  
100 mV –  
Data Sheet  
16  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Electrical Characteristics  
3.1  
Characterictics  
The specification is made with following setup: -40 °C TAmb +85 °C, PTG = open (see  
pin description), VCC = +5 V ± 5%, VBAT = -58 V to -40 V, VBAT2 = -32 V, RLC = 32.4 k,  
IL = 27 mA, RL = 600 , RF1 = RF2 = 0, RREF = 49.9 k, CHP = 47 nF, CLP = 0.15 µF,  
RT = 120 k, RSG = 0 kΩ, RRX = 60 k, RR = 52.3 k, ROV = infinite.  
Current definition: current is positive if flowing into a pin unless stated otherwise.  
Table 5  
Characteristics  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit  
Note/Test  
Condition  
Two-Wire Port  
Overhead level1),  
VTRO  
2.7  
1.1  
VPeak  
VPeak  
18 mA ILDC  
On-Hook,  
Active, 1% THD  
ROV = infinite  
I
LDC 5 mA  
see Figure 3  
Input impedance2)  
ZTRX  
ZT/  
200  
Longitudinal impedance ZLOT  
ZLOR  
Longitudinal current limit ILOT  
ILOR  
,
20  
35  
/wire 0 < f < 100 Hz  
,
28  
mArms/ Active  
wire  
Data Sheet  
17  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Electrical Characteristics  
Table 5  
Characteristics (cont’d)  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit  
Note/Test  
Condition  
Longitudinal to metallic BLM  
balance (IEEE standard  
455-1985), ZTRX = 736 Ω  
63  
60  
60  
55  
59  
55  
55  
55  
66  
66  
66  
66  
66  
66  
66  
66  
dB  
0.2 kHz f ≤  
1.0 kHz  
TAMB 0-70 oC  
Normal polarity  
dB  
1.0 kHz < f <  
3.4 kHz  
TAMB 0-70 oC  
0.2 kHz f ≤  
1.0 kHz  
TAMB -40-85 oC  
dB  
dB  
dB  
1.0 kHz < f <  
3.4 kHz  
TAMB -40-85 oC  
0.2 kHz f ≤  
1.0 kHz  
Reverse polarity  
TAMB 0-70 oC  
1.0 kHz < f <  
3.4 kHz  
TAMB 0-70 oC  
0.2 kHz f ≤  
1.0 kHz  
TAMB -40-85 oC  
dB  
1.0 kHz < f <  
3.4 kHz  
TAMB -40-85 oC  
Data Sheet  
18  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Electrical Characteristics  
Table 5  
Characteristics (cont’d)  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit  
Note/Test  
Condition  
Longitudinal to metallic BLME  
balance  
63  
60  
60  
55  
59  
55  
55  
55  
66  
66  
66  
66  
66  
66  
66  
66  
dB  
0.2 kHz f ≤  
1.0 kHz  
BLME = 20 × log|ELO/VTR|,  
TAMB 0-70 oC  
see Figure 4  
dB  
1.0 kHz < f <  
3.4 kHz  
Normal polarity  
Reverse polarity  
TAMB 0-70 oC  
0.2 kHz f ≤  
1.0 kHz  
TAMB -40-85 oC  
dB  
dB  
dB  
1.0 kHz < f <  
3.4 kHz  
TAMB -40-85 oC  
0.2 kHz f ≤  
1.0 kHz  
TAMB 0-70 oC  
1.0 kHz < f <  
3.4 kHz  
TAMB 0-70 oC  
0.2 kHz f ≤  
1.0 kHz  
TAMB -40-85 oC  
dB  
1.0 kHz < f <  
3.4 kHz  
TAMB -40-85 oC  
Data Sheet  
19  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Electrical Characteristics  
Table 5  
Characteristics (cont’d)  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit  
Note/Test  
Condition  
Longitudinal to four-wire BLFE  
balance  
63  
60  
60  
55  
59  
55  
55  
55  
40  
66  
66  
66  
66  
66  
66  
66  
66  
50  
dB  
0.2 kHz f ≤  
1.0 kHz  
BLFE = 20 × log|ELO/VTX|,  
TAMB 0-70 oC  
see Figure 4  
dB  
1.0 kHz < f <  
3.4 kHz  
Normal polarity  
Reverse polarity  
TAMB 0-70 oC  
0.2 kHz f ≤  
1.0 kHz  
TAMB -40-85 oC  
dB  
dB  
dB  
1.0 kHz < f <  
3.4 kHz  
TAMB -40-85 oC  
0.2 kHz f ≤  
1.0 kHz  
TAMB 0-70 oC  
1.0 kHz < f <  
3.4 kHz  
TAMB 0-70 oC  
0.2 kHz f ≤  
1.0 kHz  
TAMB -40-85 oC  
dB  
dB  
1.0 kHz < f <  
3.4 kHz  
TAMB -40-85 oC  
Metallic to longitudinal  
balance  
BMLE  
0.2 kHz < f <  
3.4 kHz  
BMLE = 20 × log|VTR/VLO|,  
ERX = 0 V, see Figure 5  
Four-wire to longitudinal BFLE  
balance  
BFLE = 20 × log|ERX/VLO|,  
see Figure 5  
40  
50  
dB  
0.2 kHz < f <  
3.4 kHz  
Data Sheet  
20  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Electrical Characteristics  
Table 5  
Characteristics (cont’d)  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit  
Note/Test  
Condition  
Two-wire return loss3)  
r
30  
35  
dB  
dB  
0.2 kHz < f <  
1.0 kHz  
1.0 kHz < f <  
3.4 kHz  
Active, IL < 5 mA  
Active, IL < 5 mA  
Z
TRX + ZL  
------------------------  
r = 20 × log  
Z
TRX ZL  
20  
22  
TIPX idle voltage  
RINGX idle voltage  
VTI  
VRI  
-1.3  
V
V
VBAT+ –  
3.0  
VBAT+ –  
V
V
Tip open,  
IL < 5 mA  
Active, IL < 5 mA  
3.0  
Open loop voltage  
VTR  
VBAT+ –  
4.3  
Four-Wire Transmit Port (VTX)  
Overhead level4),  
Load imp. > 20 kΩ  
1% THD  
VTXO  
2.7  
1.1  
VPeak  
VPeak  
IL > 18 mA  
On-Hook, IL ≤  
5 mA  
see Figure 6  
Output offset voltage  
Output impedance  
VTX  
ZTX  
-100  
15  
100  
50  
mV  
0.2 kHz < f <  
3.4 kHz  
Four-Wire Receive Port (receive summing node = RSN)  
RSN DC voltage  
RSN impedance  
VRSNdc  
1.15 1.25 1.35  
V
IRSN = -55 µA  
0.2 kHz < f <  
3.4 kHz  
8
20  
RSN current (IRSN ) to  
metallic loop current (IL)  
gain  
αRSN  
200  
ratio  
0.3 kHz < f <  
3.4 kHz  
Frequency Response  
Two-wire to four-wire,  
relative to 0 dBm,  
1.0 kHz, ERX = 0 V, see  
Figure 7  
g2-4  
-0.20 –  
-1.0  
0.10 dB  
0.1 dB  
0.3 kHz < f <  
3.4 kHz  
f = 8 kHz, 12 kHz,  
16 kHz  
Data Sheet  
21  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Electrical Characteristics  
Table 5  
Characteristics (cont’d)  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit  
Note/Test  
Condition  
Four-wire to two-wire,  
relative to 0 dBm,  
1.0 kHz, EL = 0 V, see  
Figure 7  
g4-2  
-0.2  
0.1  
dB  
0.3 kHz < f <  
3.4 kHz  
-1.0  
-2.0  
-0.2  
0
0
0.1  
dB  
dB  
dB  
f = 8 kHz, 12 kHz  
f = 16 kHz  
0.3 kHz < f <  
3.4 kHz  
Four-wire to four-wire,  
relative to 0 dBm,  
1.0 kHz, EL = 0 V, see  
Figure 7  
g4-4  
Insertion Loss  
Two-wire to four-wire5), G2-4  
G2-4 = 20 × log|VTX/VTR|  
0 dBm, 1.0 kHz  
-0.2  
0.2  
dB  
PTG = Open  
see Figure 7  
-6.22 -6.02 -5.82 dB  
PTG = AGND  
ERX = 0 V  
Four-wire to two-wire6), G4-2  
G4-2 = 20 × log|VTR/VRX|,  
EL = 0 V, see Figure 7  
-0.2  
0.2  
dB  
0 dBm, 1.0 kHz  
Gain Tracking  
Two-wire to four-wire7),  
Ref. -10 dBm, 1.0 kHz,  
see Figure 7  
-0.1  
-0.2  
-0.1  
-0.2  
0.1  
0.2  
0.1  
0.2  
dB  
dB  
dB  
dB  
-40 dBm to  
+3 dBm  
-55 dBm to -  
40 dBm  
-40 dBm to  
+3 dBm  
-55 dBm to -  
40 dBm  
Four-wire to two-wire,  
Ref. -10 dBm, 1.0 kHz,  
see Figure 7  
Noise  
Idle channel noise at  
two-wire port8) (TIPX-  
RINGX) or four-wire  
(VTX) output  
12  
dBrnC C-message  
weighting  
dBmp Psophometrical  
weighting  
-78  
Data Sheet  
22  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Electrical Characteristics  
Table 5  
Characteristics (cont’d)  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit  
Note/Test  
Condition  
Harmonic Distortion  
Two-wire to four-wire,  
-67  
-67  
-50  
-50  
dB  
dB  
0 dBm  
0.3 kHz < f <  
3.4 kHz  
see Figure 7  
Four-wire to two-wire  
Battery Feed Characteristics  
Loop current in the  
current limited region,  
reference A, B & C  
see Figure 13  
IL  
0.92 × IL  
IL  
1.08 × mA  
IL  
18 mA IL 45 mA  
Tip open state TIPX  
ILeak  
-100 µA  
S = closed;  
R = 7 k9)  
current  
see Figure 8  
Tip open state RINGX  
ILRTo  
IL  
mA  
mA  
V
RLRTo = 0 ,  
VBat = -48 V  
RLRTo = 2.5 k,  
VBat = -48 V  
current  
see Figure 8  
17  
Tip open state RINGX  
voltage  
see Figure 8  
VRTo  
VBat  
+6  
ILRTo < 23 mA  
Tip voltage (ground  
-4  
-2.2  
-2.4  
V
Active state,  
Tip lead open (S  
open),  
start)  
see Figure 8  
Ring lead to  
ground through  
150 Ω  
Tip voltage (ground  
start)  
see Figure 8  
-6  
V
Active state,  
Tip lead to -48 V  
through 7 k(S  
closed),  
Ring lead to  
ground through  
150 Ω  
Open circuit loop current ILOC  
-100  
0
100  
µA  
RL = 0 Ω  
Data Sheet  
23  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Electrical Characteristics  
Table 5  
Characteristics (cont’d)  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit  
Note/Test  
Condition  
Loop Detector  
Programmable  
threshold,  
ILTh  
0.85 × ILTh  
ILTh  
1.15 × mA  
ILTh  
ILTh = 500/RLD  
RLD in kΩ,  
7 mA ILTh  
Tip open state  
0.85 × ILTh  
ILTh  
1.15 × mA  
ILTh  
ILTh = 500/RLD  
Ground Key Detector  
Ground key detector  
threshold  
10  
16  
22  
mA  
(ILTIPX and ILRINGX  
current difference  
to trigger ground  
key detector)  
Line Voltage Measurement  
Pulse width10)  
Ring Trip Comparator  
tLVM  
5.5  
0
µs/V  
Offset voltage  
VDTDR -20  
20  
mV  
Source  
resistance,  
RS = 0 Ω  
Input bias current  
Input common mode  
range  
IB  
-200 -20  
200  
-1  
nA  
V
IB=(IDT +IDR)/2  
VDT, VDR VBAT  
+1  
Ring Relay Driver  
Saturation voltage  
Off state leakage current ILK  
VOL  
0.2  
0.5  
10  
V
µA  
IOL = 50 mA  
VOH = 12 V  
Digital Inputs (C1, C2, C3)  
Input low voltage  
Input high voltage  
Input low current  
Input high current  
VIL  
VIH  
IIL  
0
2.5  
0.5  
VCC  
-50  
50  
V
V
µA  
µA  
VIL = 0.5 V  
VIH = 2.5 V  
IIH  
Data Sheet  
24  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Electrical Characteristics  
Table 5  
Characteristics (cont’d)  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit  
Note/Test  
Condition  
Detector Output (DET)  
Output low voltage  
Internal pull-up resistor  
to VCC  
VOL  
15  
0.7  
V
kΩ  
IOL = 0.5 mA  
Power Dissipation (VBAT -48 V, VBAT2 = -32 V)  
Power Dissipation  
P1  
10  
15  
85  
mW  
mW  
Open circuit (C1,  
C2, C3 = 0)  
Active (On-hook)  
Long current =  
0 mA  
Power Dissipation  
P2  
65  
Power Dissipation  
Power Dissipation  
P3  
P4  
730  
360  
mW  
mW  
Active (Off-hook)  
RL = 300 Ω  
Active (Off-hook)  
RL = 800 Ω  
Power Supply Currents (VBAT = -48 V)  
VCC current  
VBAT current  
VCC current  
ICC  
IBAT  
ICC  
1.2  
2.0  
mA  
mA  
mA  
Open circuit (C1,  
C2, C3 = 0)  
Open circuit (C1,  
C2, C3 = 0)  
Active, On-hook,  
Long current =  
0 mA  
-0.1  
-0.05 –  
2.8  
4.0  
VBAT current  
IBAT  
-1.5  
-1.0  
mA  
Active, On-hook,  
Long current =  
0 mA  
Power Supply Rejection Ratios  
VCC to 2- or 4-wire port  
30  
40  
36  
42  
60  
45  
dB  
dB  
dB  
Active, f = 1 kHz,  
Vn = 100 mV  
Active, f = 1 kHz,  
Vn = 100 mV  
Active, f = 1 kHz,  
Vn = 100 mV  
VBAT2 to 2- or 4-wire port  
VBAT to 2- or 4-wire port  
Data Sheet  
25  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Electrical Characteristics  
Table 5  
Characteristics (cont’d)  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit  
Note/Test  
Condition  
Temperature Guard  
Junction threshold  
temperature  
TJG  
145  
°C  
Thermal Resistance  
24-pin SSOP  
Rth, jp  
Rth, jA  
55  
66.9  
°C/W  
°C/W  
P-/PG-SSOP-24-  
1,  
4-layer PCB;  
Junction to  
ambient thermal  
resistance in  
JEDEC still air  
chamber  
24-pin PDSO  
28-pin PLCC  
Rth, jp  
Rth, jA  
43  
50.3  
°C/W  
°C/W  
P-/PG-DSO-24-8,  
4-layer PCB;  
Junction to  
ambient thermal  
resistance in  
JEDEC still air  
chamber  
Rth, jp  
Rth, jA  
39  
50.4  
°C/W  
°C/W  
P-/PG-LCC-28-3,  
4-layer PCB;  
Junction to  
ambient thermal  
resistance in  
JEDEC still air  
chamber  
1) The overhead level can be adjusted with the resistor ROV for higher levels, for example min 3.1 VPeak, and is  
specified at the two-wire port with the signal source at the four-wire receive port.  
Data Sheet  
26  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Electrical Characteristics  
2) The two-wire impedance is programmable by selection of external component values according to:  
Z
Z
TRX = ZT/(|G2-4S × αRSN|) where:  
TRX = impedance between the TIPX and RINGX terminals  
ZT = programming network between the VTX and RSN terminals  
G2-4S = transmit gain, nominally = 1 (or 0.5, see pin PTG)  
αRSN = receive current gain, nominally 200 (current defined as positive flowing into the receive summing node,  
RSN, and when flowing from ring to tip).  
3) Higher return loss values can be achieved by adding a reactive component to RT, the two-wire terminating  
impedance programming resistance, for example by dividing RT into two equal halves and connecting a  
capacitor from the common point to ground.  
4) The overhead level can be adjusted with the resistor ROV for higher levels, for example min 3.1 VPeak, and is  
specified at the four-wire transmit port, (VTX) with the signal source at the two-wire port. Note that the gain  
from the two-wire port to the four-wire transmit port is G2-4S = 1 (or 0.5, see pin PTG).  
5) Pin PTG = Open sets transmit gain to nom. 0.0 dB.  
Pin PTG = AGND sets transmit gain to nom. -6.02 dB  
Secondary protection resistor RF (see Figure 9) impacts the insertion loss as explained in Chapter 5. The  
specified insertion loss is valid for RF = 0.  
6) The specified insertion loss tolerance does not include errors caused by external components.  
7) The level is specified at the two-wire port.  
8) The two-wire idle noise is specified with the port terminated in 600 (RL), and with the four-wire receive port  
grounded (ERX = 0; see Figure 7). The four-wire idle noise at VTX is specified with the two-wire port terminated  
in 600 (RL). The noise specification is referenced to a 600 programmed two-wire impedance level at VTX.  
The four-wire receive port is grounded (ERX = 0).  
9) If | VBat + 2 V | | VBExt |, where VBat is the voltage at VBAT, the current ILeak is limited to ~ 5 mA,  
10)Previous state must be active - loop or ground key detector.  
C
TIPX  
VTX  
V TRO  
ILDC  
R L  
PBL 38640  
RT  
E RX  
RINGX  
RSN  
R RX  
Fig3_40  
Figure 3  
Overhead Level, VTRO, Two-Wire Port  
1/ωC << RL, RL = 600 , RT = 120 k, RRX = 60 kΩ  
Data Sheet  
27  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Electrical Characteristics  
TIPX  
VTX  
E LO  
C
R LT  
R LR  
V TR  
PBL 38640  
RT  
V TX  
RINGX  
RSN  
R RX  
Fig4_40  
Figure 4  
Longit. to Metallic, BLME and Longit. to Four-Wire, BLFE Balance  
1/ωC << 150 , RLT = RLR = RL /2 = 300 , RT = 120 k, RRX = 60 kΩ  
TIPX  
VTX  
C
R LT  
R LR  
V TR  
PBL 38640  
R T  
E RX  
V LO  
RINGX  
RSN  
R RX  
Fig5_40  
Figure 5  
Metallic to Longit., BMLE and Four-Wire to Longit. Balance, BFLE  
1/ωC << 150 , RLT = RLR = RL /2 = 300 , RT = 120 k, RRX = 60 kΩ  
C
TIPX  
VTX  
RL  
I LDC  
PBL 38640  
RT  
V TXO  
E L  
RINGX  
RSN  
R RX  
Fig6_40  
Figure 6  
Overhead Level, VTXO, Four-Wire Transmit Port  
1/ωC << RL, RL = 600 , RT = 120 k, RRX = 60 kΩ  
Data Sheet  
28  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Electrical Characteristics  
C
TIPX  
VTX  
RL  
V TR  
I LDC  
PBL 38640  
RT  
V TX  
E RX  
E L  
RINGX  
RSN  
R RX  
Fig7_40  
Figure 7  
Frequency Response, Insertion Loss, Gain Tracking  
1/ωC << RL, RL = 600 , RT = 120 k, RRX = 60 kΩ  
S
R
TIPX  
V
BExt  
PBL 38640  
R
LRTO  
RINGX  
Fig8_40  
Figure 8  
TIPX Voltage  
Data Sheet  
29  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Application Schematic  
4
Application Schematic  
sch_40  
Figure 9  
Application Example of PBL 38640/2 with SICOFI®4 Codec  
Data Sheet  
30  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Application Schematic  
4.1  
Recommended Components  
Resistors  
Table 6  
Resistor  
RSG  
RLD  
ROV  
RLC  
RREF  
RR  
RT  
RRX  
RTX  
RB  
R1  
R2  
Value  
Tolerance Specification  
0 Ω  
1/10 W  
1/10 W  
49.9 kΩ  
User programmable  
32.4 kΩ  
49.9 kΩ  
22.7 kΩ  
51 kΩ  
51 kΩ  
3.6 kΩ  
6.2 kΩ  
604 kΩ  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
5%  
1%  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
2 W  
604 kΩ  
249 kΩ  
280 kΩ  
330 Ω  
R3  
R4  
RRT  
RF1, RF2  
Line resistor, 40 Ω  
Table 7  
Capacitors  
Capacitor Value  
Tolerance Specification  
CVB  
CVB2  
CTC  
CRC  
CHP  
CVCC  
CLP  
100 nF  
150 nF  
2.2 nF  
2.2 nF  
47 nF  
100 nF  
150 nF  
100 nF  
220 nF  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
100 V  
100 V  
100 V  
100 V  
100 V  
10 V  
100 V  
10 V  
100 V  
CTX  
CGG  
Data Sheet  
31  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Application Schematic  
Table 7  
Capacitors (cont’d)  
Capacitor Value  
Tolerance Specification  
C1  
C2  
330 nF  
330 nF  
10%  
10%  
63 V  
63 V  
Table 8  
Diode  
DVB  
DVB2  
DBB  
Diodes  
Value  
1N4448  
1N4448  
1N4448  
1N44481)  
Tolerance Specification  
DHP  
1) It is required to connect DHP between terminals HP and ground if CHP > 47 nF  
OVP  
Secondary protection (Bournes TISP PBL2). The ground terminals of the secondary  
protection should be connected to the common ground on the Printed Board Assembly  
with a track as short and wide as possible, preferably to a ground plane.  
4.2  
Design Supporting Tools  
The following supporting tools are available for the PBL 38640/2:  
• Test board TB208 for PLCC package  
• Test board TB208SSOP for SSOP package  
• Pspice model for PBL 38640/2  
Data Sheet  
32  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Transmission  
5
Transmission  
5.1  
General  
A simplified AC model of the transmission circuit is shown in Figure 10.  
TIP  
RF  
TIPX  
HP  
IL  
ZL  
EL  
+
_
VTR  
ZTR  
VTX  
RHP  
G2-4S  
VTX  
IL  
ZT  
RING RF  
RINGX  
IL/αRSN  
RSN  
ZRX  
PBL 38640  
VRX  
ac_sch_40  
Figure 10  
Simplified AC Model of PBL 38640/2  
Circuit analysis from the AC model in Figure 10 yields following equations:  
VTX  
VTR = --------------- + IL × 2RF  
G2 4S  
[1]  
IL  
VTX VRX  
------------ = --------- + ---------  
[2]  
[3]  
α RSN  
ZT ZRX  
VTR = EL IL × ZL  
Data Sheet  
33  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Transmission  
where:  
VTX  
Is the ground referenced version of the AC metallic voltage between the  
TIPX and RINGX terminals.  
VTR  
EL  
IL  
Is the AC metallic voltage between TIP and RING.  
Is the line open circuit AC metallic voltage.  
Is the AC metallic current.  
RF  
Is a fuse resistor.  
G2-4S  
Is the programmable SLIC two-wire to four-wire gain (transmit  
direction)1).  
ZL  
Is the line impedance.  
ZRX  
ZT  
VRX  
αRSN  
Controls four- to two-wire gain.  
Determines the SLIC TIPX to RINGX impedance at voice frequencies.  
Is the analog ground referenced receive signal.  
Is the receive summing node current to metallic loop current gain.  
αRSN = 200  
1) The SLIC two-wire to four-wire gain, G2-4S, is user programmable between two fixed values. See Table 5.  
5.2  
Two-Wire Impedance  
To calculate ZTR, the impedance presented to the two-wire line by the SLIC including the  
fuse resistor RF, let VRX = 0.  
From Equation [1] and Equation [2]:  
ZT  
ZTR = ----------------------------------- + 2 RF  
αRSN × G2 4S  
[4]  
[5]  
Thus with ZTR, G2-4S, αRSN and RF known:  
ZT = αRSN × G2 4S × (ZTR 2RF)  
5.3  
Two-Wire to Four-Wire Gain  
From Equation [1] and Equation [2] with VRX = 0:  
ZT αRSN  
----------------------------------------------------  
ZT  
VTX  
---------  
G2 4  
=
=
[6]  
VTR  
----------------------------------- + 2 RF  
αRSN × G2 4S  
Data Sheet  
34  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Transmission  
5.4  
Four-Wire to Two-Wire Gain  
From Equation [1] to Equation [3] with EL = 0:  
ZT  
ZL  
VTR  
G4 2 = --------- = –  
VRX  
1
--------- --------------- ----------------------------------------------------------------  
×
×
[7]  
G2 4S  
ZRX  
ZT  
----------------------------------- + ZL + 2RF  
αRSN × G2 4S  
For applications where  
ZT  
----------------------------------- + 2 RF = ZL  
α RSN × G2 4S  
[8]  
[9]  
the expression for G4-2 simplifies to:  
ZT  
1
-------------------------  
G4 2 = –  
×
---------  
ZRX  
2 × G2 4S  
5.5  
Four-Wire to Four-Wire Gain  
From Equation [1] to Equation [3] with EL = 0:  
ZT  
ZL + 2RF  
VTX  
G4 4 = --------- = –  
VRX  
--------- ----------------------------------------------------------------  
×
[10]  
ZRX  
ZT  
----------------------------------- + ZL + 2RF  
αRSN × G2 4S  
5.6  
Hybrid Function  
The hybrid function can easily be implemented utilizing the uncommitted amplifier in  
conventional non software programmable codec/filters. Please, refer to Figure 11. Via  
impedance ZB a current proportional to VRX is injected into the summing node of the  
combination codec/filter amplifier. As can be seen from the expression for the four-wire  
to four-wire gain, G4-4, a voltage proportional to VRX is returned to VTX. This voltage is  
converted by RTX to a current flowing into the same summing node. These currents can  
be cancelled by letting:  
VTX VRX  
--------- + --------- = 0  
(EL = 0)  
RTX ZB  
[11]  
Data Sheet  
35  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Transmission  
The four-wire to four-wire gain, G4-4, includes the required phase shift and thus the  
balance network ZB can be calculated from:  
ZT  
----------------------------------- + ZL + 2RF  
α RSN × G2 4S  
VRX  
ZRX  
×
---------  
--------- ----------------------------------------------------------------  
ZB = RTX  
×
= RTX  
×
[12]  
VTX  
ZT  
ZL + 2RF  
When selecting the RTX resistance value, make sure the load resistance on the VTX  
terminal is at least 20 k.  
If calculation of the ZB formula above yields a balance network containing an inductor,  
please contact Infineon‘s support group for assistance.  
The PBL 38640/2 SLIC may also be used together with programmable CODEC/filters.  
The programmable CODEC/filter allows for system controller adjustment of hybrid  
balance to accomodate different line impedances without change of hardware. In  
addition, the transmit and receive gain may be adjusted. Please, refer to the  
programmable CODEC/filter data sheets for design information.  
RFB  
RTX  
VTX  
VT  
ZT  
ZR  
ZB  
PBL 38640  
Codec/Filter  
ZRX  
VRX  
RSN  
Hybrid_40  
Figure 11  
Hybrid Function  
Data Sheet  
36  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Transmission  
5.7  
Longitudinal Impedance  
A feedback loop within the SLIC counteracts longitudinal voltages at the two-wire port by  
injecting longitudinal currents in opposing phase. Thus longitudinal disturbances will  
appear as longitudinal currents and the TIPX and RINGX terminals will experience very  
small longitudinal voltage excursions, leaving metallic voltages well within the SLIC  
common mode range.  
The SLIC longitudinal impedance per wire, ZLOT and ZLOR, appears as typically 20 to  
longitudinal disturbances. It should be noted that longitudinal currents may exceed the  
DC loop current without disturbing the VF transmission.  
5.8  
Capacitors CTC and CRC  
The capacitors designated CTC and CRC in Figure 9, connected between TIPX and  
ground as well as between RINGX and ground, can be used for RFI filtering. The  
recommended value for CTC and CRC is 2200 pF. Higher capacitance values may be  
used, but care must be taken to prevent degradation of either longitudinal balance or  
return loss. CTC and CRC contribute to a metallic impedance of 1/(π × f × CTC) =  
1/(π × f × CRC), a TIPX to ground impedance of 1/(2π × f × CTC) and a RINGX to ground  
impedance of 1/(2π × f × CRC).  
5.9  
AC - DC Separation Capacitor, CHP  
The high pass filter capacitor connected between terminals HP and TIPX provides the  
separation of the AC and DC signals, such that only AC signals are forwarded to the VTX  
terminal. CHP positions the low end frequency response break point of the AC feedback  
loop in the SLIC. A CHP value of 150 nF will position the low end frequency response  
3 dB break point of the AC loop at 1.8 Hz (f3dB) according to f3dB = 1/(2π × RHP × CHP)  
where RHP = 600 k(see Table 9).  
5.10  
High-pass Transmit Filter  
The capacitor CTX in Figure 9 connected between the VTX output and the CODEC/filter  
forms, together with RTX and/or the input impedance of a programmable CODEC/filter, a  
high-pass RC filter. It is recommended to position the 3 dB break point of this filter  
between 30 and 80 Hz to get a faster response for the DC steps that may occur at DTMF  
signalling.  
5.11  
Capacitor CLP  
The capacitor CLP, which connects between the terminals LP and VBAT, positions the  
high end frequency break point of the low pass filter in the DC feedback loop (battery  
feed controlling loop) of the SLIC. CLP together with CHP and ZT(see Chapter 5.2) forms  
the total two-wire output impedance of the SLIC. The choice of these programmable  
Data Sheet  
37  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Battery Feed  
components have an influence on the power supply rejection ratio (PSRR) from VBAT to  
the two-wire side at sub audio frequencies.At these frequencies CLP also influences the  
transversal to longitudinal balance in the SLIC. Table 9 suggests a suitable value for  
CLP. The typical value of the transversal to longitudinal balance at 200 Hz is given in the  
table below, for the chosen value of CLP.  
Table 9  
Symbol  
RFeed  
RSG  
CLP  
Feeding Setup  
Value  
2 x 400  
Unit  
2 x 50  
0
150  
-46  
2 x 200  
60.4  
100  
2 x 800  
301  
22  
147  
47  
-43  
kΩ  
nF  
dB  
-46  
-36  
T-L bal. @  
200 Hz  
CHP  
47  
150  
150  
150  
nF  
6
Battery Feed  
The PBL 38640/2 SLIC emulates resistive loop feed, programmable between 2x50 Ω  
and 2x900 , with adjustable current limitation. In the current limited region the loop  
current has a slight slope corresponding to 2x30 , see Figure 13 reference B.  
The open loop voltage measured between the TIPX and RINGX terminals tracks the  
battery voltage VBAT. The signalling headroom, or overhead voltage VTRO, is  
programmable with a resistor ROV connected between terminal POV on the SLIC and  
ground. Please refer to Chapter 6.2. The battery voltage overhead,VOH, depends on the  
programmed signal overhead voltage VTRO. VOH defines the TIP and RING voltage at  
open loop conditions according to  
VTR(at IL = 0 mA) = |VBAT| - VOH  
Refer to Table 10 for the typical value of VOH and VOHvirt. The overhead voltage is  
changed when line corrent is approaching open loop conditions. To ensure maximum  
open loop voltage, even with a leaking telephone line, this occurs at a line current of  
approximately 6 mA. When the overhead voltage has changed, the line voltage is kept  
nearly constant with a steep slope corresponding to 2x25 (reference G in Figure 13).  
The virtual battery overhead, VOHvirt , is defined as the difference between the battery  
voltage and the crossing point of all possible resistive feeding slopes, see Figure 13  
reference J. The virtual battery overhead is a theoretical constant needed to be able to  
calculate the feeding characteristics.  
Data Sheet  
38  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Battery Feed  
Table 10  
Symbol  
VOH  
Battery Overhead  
Value (typ)  
3.0 + VTRO  
Unit  
V
V
Specification  
VOHvirt  
4.9 + VTRO  
The resistive loop feed (reference D in Figure 13) is programmed by connecting a  
resistor, RSG , between terminals PSG and VBAT according to the equation:  
R
SG + 2×104  
RFeed = ------------------------------- + 2 R F  
[13]  
200  
where RFeed is in for RSG and RF in .  
The current limit (reference C in Figure 13) is adjusted by connecting a resistor, RLC,  
between terminal PLC and ground according to the equation:  
1000  
ILProg = ----------- 4.0  
[14]  
RLC  
where RLC is in kfor ILProg in mA.  
A second lower battery voltage may be connected to the device at terminal VBAT2 to  
reduce short loop power dissipation.  
The SLIC automatically switches between the two battery supply voltages without need  
for external control. the silent battery switching occurs when the line voltage passes the  
value |VB2| - 40 × IL - (VOHvirt - 1.3), if IL > 6 mA.  
For correct functionality it is important to connect the terminal VBAT2 to the second power  
supply via the diode DVB2, see Figure 9. An optional diode DBB connected between  
terminal VB and the VB2 power supply, see Figure 9, will make sure that the SLIC  
continues to work on the second battery even if the first battery voltage disappears. If a  
second battery voltage is not used, VBAT2 is connected to VBAT on the SLIC and CVB2, DBB  
and DVB2 are removed.  
6.1  
CODEC Receive Interface  
The PBL 38640/2 SLIC has got a receive interface at the four- wire side which makes it  
possible to reduce the number of capacitors in the applications and to fit both single and  
dual battery feed CODECs. The RSN terminal, connecting to the CODEC receive output  
via the resistor RRX, is DC biased with +1.25 V. This makes it possible to compensate for  
currents floating due to DC voltage differences between RSN and the CODEC output  
without using any capacitors. This is done by connecting a resistor RR between the RSN  
Data Sheet  
39  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Battery Feed  
terminal and ground. With current directions defined as in Figure 13, current summation  
gives:  
1.25 VCODEC  
1.25  
1.25  
RR  
IRSN = IRT + IRRX + IRR = --------- + -------------------------------------- + ---------  
[15]  
[16]  
RT  
RRX  
where VCODEC is the reference voltage of the CODEC at the receive output.  
From this equation the resistor RR can be calculated as  
1.25  
RR = -------------------------------------------------------------------------------  
1.25 VCODEC  
1.25  
RT  
IRSN --------- --------------------------------------  
RRX  
For the value on IRSN, see Table 11.  
If RSN is DC decoupled from the CODEC output, then RRX can be considered to be  
infinite.  
The resistor RR has no influence in the AC transmission.  
Table 11  
Symbol  
IRSN  
Internal Bias Current of RSN  
Value (typ)  
-55  
Unit  
µA  
VTX  
RT  
DC-GND  
CODEC  
I
IRT  
RRX  
IRSN  
IRX  
_
+
RSN  
IRR  
+1.25  
UREFcodec  
RR  
codecIF  
Figure 12  
Codec Receive Interface  
Data Sheet  
40  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Battery Feed  
A
B
C
A
B
C
D
D
E
G
H
F
F
J
batfeed40  
VTR [V]  
Figure 13  
Battery Feed Characteristics  
A
VBat VOHvirt RFeed × (ILProg + 4×103)  
IL(VTR = 0V) = ILProg + --------------------------------------------------------------------------------------------------------------  
60×103  
B
C
R
Feed = 2x30 kΩ  
103  
--------- 4 ×103  
I
LConst(typ) = ILProg  
=
RLC  
VTR = |VBAT| - VOHvirt - RFeed x (ILProg + 4x10-3)  
Data Sheet  
41  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Battery Feed  
D
R
SG + 2×104  
RFeed = ------------------------------- + 2 R F  
200  
E
F
G
H
J
IL = 6 mA  
Apparent battery VBat (@ IL = 0) = |VBAT| - VOHvirt - (RFeed x 4x10-3)  
R
V
Feed = 2x25 Ω  
TROpen = |VBAT| - VOH  
Virtual battery VBatVirt (@ IL = 4 mA) = |VBAT| - VOHvirt  
Data Sheet  
42  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Battery Feed  
6.2  
Programmable Overhead Voltage (POV)  
With the POV function the overhead voltage can be increased. If the POV pin is left open  
the overhead voltage is internally set to 3.2 VPeak in off-hook and 1.3 VPeak on-hook.. If a  
resistor ROV is connected between the POV pin and AGND, the overhead voltage can be  
set to higher values, typical values can be seen in Figure 14. The ROV and  
corresponding VTRO (signal headroom) are typical values for THD < 1% and the signal  
frequency 1000 Hz.  
Observe that the four-wire output terminal VTX cannot handle more than 3.2 VPeak. So if  
the two- to four-wire gain is 0 dB, 3.2 VPeak is maximum also for the two-wire side. Signal  
levels between 3.2 and 6.4 VPeak on the two-wire side can be handled with the PTG  
shorted so that the gain G2-4S becomes -6.02 dB. Please note that:  
ZT  
RR  
G4 - 4  
has to be recalculated if the PTG is shorted.  
Please note that the maximum signal current at the two-wire side can not be higher than  
9 mA.  
How to use POV:  
1. Decide what overhead voltage (VTRO) is needed. The POV function is only needed if  
the overhead voltage exceeds 3.2 VPeak  
.
2. In Figure 14 the corresponding ROV for the decided VTRO can be found.  
If the overhead voltage exceeds 3.2 VPeak, the G2-4S gain has to be changed to -6.02 dB  
by connecting pin PTG to AGND. Please note, that the 2-wire impedance, RR and the  
4-wire to 4-wire gain has to be recalculated.  
7
6
5
4
off-hook  
on-hook  
3
2
1
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
Rov (Kohm)  
POV  
Figure 14  
Programmable Overhead Voltage (POV). RL= 600 or Infinite  
Data Sheet  
43  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Loop Monitoring Functions  
6.3  
Analog Temperature Guard  
The widely varying environmental conditions in which SLICs operate may lead to the  
chip temperature limitations being exceeded. The PBL 38640/2 SLIC reduces the DC  
line current when the chip temperature reaches approximately 145 oC and increases line  
current again automatically when the temperature drops. Accordingly transmission is not  
lost under high ambient temperature conditions.  
The detector output, DET, is forced to a logic low level when the temperature guard is  
active.  
7
Loop Monitoring Functions  
The loop current, ground key and ring-trip detectors report their status through a  
common output, DET. The particular detector to be connected to the detector pin, DET,  
is selected via the three bit control interface C1, C2 and C3. Please refer to Chapter 9  
for a description of the control interface.  
7.1  
Loop Current Detector  
The loop current detector indicates that the telephone is off-hook and that DC current is  
flowing in the loop by setting the output pin DET to a logic low level when selected. The  
loop current detector threshold value, ILTh, where the loop current detector changes  
state, is programmable with the RLD resistor. RLD connects between pin PLD and ground  
and is calculated according to:  
500  
RLD = ---------  
[17]  
ILth  
The loop current detector is internally filtered and is not influenced by the AC signal at  
the two-wire side.  
7.2  
Ground Key Detector  
The ground key detector indicates when the ground key is pressed (active) by setting the  
output pin DET to a logical high level when selected. The ground key detector circuit  
senses the difference in TIPX and RINGX currents. When the current at the RINGX side  
exceeds the current at the TIPX side with the threshold value the detector is triggered.  
For threshold current values, please refer to the datasheet.  
7.3  
Ring Trip Detector  
Ring trip detection is accomplished by connecting an external network to a comparator  
in the SLIC with inputs DT and DR. The ringing source can be balanced or unbalanced  
superimposed on VB or GND. The unbalanced ringing source may be applied to either  
Data Sheet  
44  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Relay Driver  
the ring lead or the tip lead with return via the other wire. A ring relay driven by the SLIC  
ring relay driver connects the ringing source to tip and ring.  
The ring trip function is based on a polarity change at the comparator input when the line  
goes off-hook. In the on-hook state no DC current flows through the loop and the voltage  
at comparator input DT is more positive than the voltage at input DR. When the line goes  
off-hook, while the ring relay is energized, DC current flows and the comparator input  
voltage reverses polarity.  
Figure 9 gives an example of a ring trip detector network. This network is applicable  
when the ring voltage is superimposed on VB and is injected on the ring lead of the two-  
wire port. The DC voltage across sense resistor RRT is monitored by the ring trip  
comparator input DT and DR via the network R1,R2 ,R3 ,R4 ,C1 and C2.  
When the line is on-hook (no DC current), DT is more positive than DR and the DET  
output will report logic level high, that is the detector is not tripped. When the line goes  
off-hook, while ringing, a DC current will flow through the loop including sense resistor  
RRT and will cause input DT to become more negative than input DR. This changes  
output DET to logic level low, that is tripped detector conditions. The system controller  
(or line card processor) responds by de-energizing the ring relay, that is ring trip.  
Complete filtering of the 20 Hz AC component at terminal DT and DR is not necessary.  
A toggling DET output can be examined by a software routine to determine the duty  
cycle. When the DET output is at logic level low for more than half the time, off-hook  
conditions is indicated.  
8
Relay Driver  
The PBL 38640/2 SLIC incorporates a ring relay driver designed as open collector (npn),  
with a current sinking capability of 50 mA. The drive transistor emitter is connected to  
BGND. The relay driver has an internal zener diode clamp for inductive kick back  
voltages.  
9
Control Inputs  
The SLIC has three digital control inputs, C1, C2 and C3 (see Table 2). A decoder in the  
SLIC interprets the control input condition and sets up the commanded operating state.  
C1, C2 and C3 are internally pulled up.  
9.1  
Open Circuit (C3, C2, C1 = 0, 0, 0)  
In the Open Circuit state, the TIPX and RINGX line drive amplifiers as well as other circuit  
blocks are powered down. This causes the SLIC to present a high impedance to the line.  
Power dissipation is at a minimum and no detectors are active. DET output is set high.  
Data Sheet  
45  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Overvoltage Protection  
9.2  
Ringing (C3, C2, C1 = 0, 0, 1)  
The ring relay driver and the ring trip detector are activated and the ring trip detector is  
indicating off-hook with a logic low level at the detector output. The SLIC is in the active  
normal state.  
9.3  
Active States  
TIPX is the terminal closest to ground and sources loop current while RINGX is the more  
negative terminal and sinks loop current. VF signal transmission is normal. The loop  
current or ground key detector is activated. The loop current detector is indicating off  
hook with a logic low level and the ground key detector is indicating active ground key  
with a logic high level present at the detector output.  
In PBL 38640/2 SLIC a line voltage measurement feature is available in the active state,  
which may be used for line length estimations or for line test purposes. The line voltage  
is presented on the detector output as a pulse at logic high level with a pulsewidth of  
5.5 µs/V. To start the line voltage measurement this mode has to be entered fron the  
active state with the loop or ground key detector active. The pulse presented at the DET  
output proportional to the line voltage starts when entering the line voltage measuring  
mode.  
9.4  
Tip Open State  
Tip open state is used for ground start signalling. In this state the SLICs present a high  
impedance to the line on the TIPX pin and the programmed DC characteristics, with the  
longitudinal current compensation (see Chapter 5.7) not active, to the line on the RINGX  
pin. The loop current detector is active.  
9.5  
Active Polarity Reversal State  
TIPX and RINGX polarity is reversed from the active state: RINGX is the terminal closest  
to ground and sources loop current while TIPX is the more negative terminal and sinks  
current. VF signal transmission is normal. The loop current or the ground key detector is  
activated. The loop current detector is indicating off hook with a logic low level and the  
ground key detector is indicating active ground key with a logic high level present at the  
detector output.  
10  
Overvoltage Protection  
10.1  
Overvoltage Protection - General  
The SLIC must be protected against foreign voltages on the telephone line.  
Overvoltages can result from lightning, AC power contact, induction and other causes.  
Data Sheet  
46  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Power-Up Sequence  
Refer to Table 3, TIPX and RINGX terminals, for maximum continuous and transient  
voltages that may be applied to the SLIC.  
10.2  
Secondary Protection  
The circuit shown in Figure 9 utilizes series resistors (RF1, RF2) together with a  
programmable overvoltage protector (OVP, for example Bournes TISP PBL2) as  
secondary protection.  
The TISP PBL2 is a dual forward-conducting buffered p-gate overvoltage protector. The  
protector gate references the protection (clamping) voltage to the negative supply  
voltage (that is the battery voltage, VB). As the protection voltage will track the negative  
supply voltage the overvoltage stress on the SLIC is minimized.  
Positive overvoltages are clamped to ground by a diode. Negative overvoltages are  
initially clamped close to the SLIC negative supply rail voltage and the protector will  
crowbar into a low voltage on-state condition, by firing an internal thyristor.  
A gate decoupling capacitor, CGG, is needed to carry enough charge to supply a high  
enough current to quickly turn on the thyristor in the protector. CGG should be placed  
close to the overvoltage protection device. Without the capacitor even the low  
inductance in the track to the VB supply will limit the current and delay the activation of  
the thyristor clamp.  
The fuse resistors RF serve the dual purposes of being non-destructive energy  
dissipators when transients are clamped, and of being fuses when the line is exposed to  
a power cross. If a PTC is choosen for RF, note that it is important to always use PTC’s  
in series with resistors not sensitive to temperature, as the PTC will act as a capacitance  
for fast transients and therefore will not protect the SLIC.  
11  
Power-Up Sequence  
No special power-up sequence is necessary, except that ground has to be present  
before all other power supply voltages.  
12  
Printed Circuit Board Layout  
Care in Printed Circuit Board (PCB) layout is essential for proper function. The  
components connected to the RSN input should be placed in close proximity to that pin,  
such that no interference is injected into the receive summing node (RSN). Ground plane  
surrounding the RSN pin is advisable.  
Analog Ground (AGND) should be connected to Battery Ground (BGND) on the PCB, in  
one point. The capacitors for the battery should be connected with short wide leads of  
the same length.  
Data Sheet  
47  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Package Outlines  
13  
Package Outlines  
The SLIC is provided in three different packages: 24-pin SSOP, 24-pin PDSO and 28-pin  
PLCC.  
13.1  
24-pin SSOP Package  
1)  
±0.1  
5.3  
B
+0.05  
-0.06  
0.15  
0.65  
C
0.1  
±0.2  
+0.08 2)  
0.9  
0.3  
-0.05  
M
0.15  
A C 24x  
M
0.2  
B 24x  
+0.1  
-0.05  
7.8  
24  
13  
1
12  
1)  
A
±0.13  
8.2  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Does not include dambar protrusion of 0.13 max.  
GPS01027  
Figure 15  
P-/PG-SSOP-24-1 (Plastic Shrink Small Outline Package)  
You can find all of our packages, sorts of packing and others in our  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Dimensions in mm  
SMD = Surface Mounted Device  
Data Sheet  
48  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Package Outlines  
13.2  
24-pin PDSO Package  
0.35 x 45˚  
1)  
7.6-0.2  
+0.09  
0.23  
0.4 +0.8  
1.27  
0.1  
2)  
0.35 +0.15  
0.2 24x  
±0.3  
10.3  
24  
13  
1
12  
1)  
15.6 -0.4  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Lead width can be 0.61 max. in dambar area  
gps05144  
Figure 16  
P-/PG-DSO-24-8 (Plastic Dual Small Outline Package)  
You can find all of our packages, sorts of packing and others in our  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Dimensions in mm  
SMD = Surface Mounted Device  
Data Sheet  
49  
Rev. 2.0, 2005-04-14  
FlexiSLIC  
PBL 38640/2  
Package Outlines  
13.3  
28-pin PLCC Package  
1)  
±0.08  
11.51  
±0.07  
1.27 x 45˚  
0.73  
1.27  
±0.5  
10.4  
0.1  
C
±0.13  
12.45  
7.62  
±0.1  
0.43  
M
0.18  
C A-B D 28x  
D
A
B
Index Marking  
1.45 x 45˚  
28  
11.51  
1
±0.08  
1)  
±0.13  
12.45  
1) Does not include mold protrusion of 0.25 max. per side  
GPL01023  
Figure 17  
P-/PG-LCC-28-3 (Plastic Leaded Chip Carrier Package)  
You can find all of our packages, sorts of packing and others in our  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Dimensions in mm  
SMD = Surface Mounted Device  
Data Sheet  
50  
Rev. 2.0, 2005-04-14  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

PBL38640/2SHT

SLIC, 2-4 Conversion, Bipolar, PDSO24, SSOP-24
INTEL

PBL38640/2SO

暂无描述
INTEL

PBL38640/2SOS

SLIC, Bipolar, PDSO24, SOIC-24
INFINEON

PBL38640/2SOS

SLIC, 2-4 Conversion, Bipolar, PDSO24, SOIC-24
ERICSSON

PBL38640/2SOS

SLIC, Bipolar, PDSO24, SOIC-24
INTEL

PBL38640/2SOT

SLIC, 2-4 Conversion, Bipolar, PDSO24, SOIC-24
ERICSSON

PBL38640/2SOT

暂无描述
INTEL

PBL386402

Subscriber Line Interface Circuit
ERICSSON

PBL386402QNS

Subscriber Line Interface Circuit
ERICSSON

PBL386402QNT

Subscriber Line Interface Circuit
ERICSSON

PBL386402SHT

Subscriber Line Interface Circuit
ERICSSON

PBL386402SOS

Subscriber Line Interface Circuit
ERICSSON