80960CA-33 [INTEL]

80960CA-33, -25, -16 32-BIT HIGH-PERFORMANCE EMBEDDED PROCESSOR; 80960CA - 33 , -25 , -16的32位高性能嵌入式处理器
80960CA-33
型号: 80960CA-33
厂家: INTEL    INTEL
描述:

80960CA-33, -25, -16 32-BIT HIGH-PERFORMANCE EMBEDDED PROCESSOR
80960CA - 33 , -25 , -16的32位高性能嵌入式处理器

文件: 总68页 (文件大小:966K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
80960CA-33, -25, -16  
32-BIT HIGH-PERFORMANCE EMBEDDED PROCESSOR  
• Two Instructions/Clock Sustained Execution  
• Four 59 Mbytes/s DMA Channels with Data Chaining  
• Demultiplexed 32-bit Burst Bus with Pipelining  
32-bit Parallel Architecture  
— Two Instructions/clock Execution  
— Load/Store Architecture  
Four On-Chip DMA Channels  
— 59 Mbytes/s Fly-by Transfers  
— 32 Mbytes/s Two-Cycle Transfers  
— Data Chaining  
— Sixteen 32-bit Global Registers  
— Sixteen 32-bit Local Registers  
— Manipulates 64-bit Bit Fields  
— 11 Addressing Modes  
— Full Parallel Fault Model  
— Supervisor Protection Model  
— Data Packing/Unpacking  
— Programmable Priority Method  
32-Bit Demultiplexed Burst Bus  
— 128-bit Internal Data Paths to and  
from Registers  
Fast Procedure Call/Return Model  
— Burst Bus for DRAM Interfacing  
— Address Pipelining Option  
— Fully Programmable Wait States  
— Supports 8-, 16- or 32-bit Bus Widths  
— Supports Unaligned Accesses  
— Supervisor Protection Pin  
— Full Procedure Call in 4 Clocks  
On-Chip Register Cache  
— Caches Registers on Call/Ret  
— Minimum of 6 Frames Provided  
— Up to 15 Programmable Frames  
Selectable Big or Little Endian Byte  
On-Chip Instruction Cache  
— 1 Kbyte Two-Way Set Associative  
— 128-bit Path to Instruction Sequencer  
— Cache-Lock Modes  
Ordering  
High-Speed Interrupt Controller  
— Up to 248 External Interrupts  
— 32 Fully Programmable Priorities  
— Multi-mode 8-bit Interrupt Port  
— Four Internal DMA Interrupts  
— Separate, Non-maskable Interrupt Pin  
— Context Switch in 750 ns Typical  
— Cache-Off Mode  
High Bandwidth On-Chip Data RAM  
— 1 Kbyte On-Chip Data RAM  
— Sustains 128 bits per Clock Access  
Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent  
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel.  
© INTEL CORPORATION, 1993  
November 1993  
Order Number: 270727-006  
80960CA-33, -25, -16  
32-BIT HIGH-PERFORMANCE EMBEDDED PROCESSOR  
CONTENTS  
PAGE  
1.0 PURPOSE ..................................................................................................................................................1  
2.0 80960CA OVERVIEW.................................................................................................................................1  
2.1 The C-Series Core ..............................................................................................................................2  
2.2 Pipelined, Burst Bus ...........................................................................................................................2  
2.3 Flexible DMA Controller ......................................................................................................................2  
2.4 Priority Interrupt Controller ..................................................................................................................2  
2.5 Instruction Set Summary ....................................................................................................................3  
3.0 PACKAGE INFORMATION.........................................................................................................................4  
3.1 Package Introduction ..........................................................................................................................4  
3.2 Pin Descriptions ..................................................................................................................................4  
3.3 80960CA Mechanical Data ............................................................................................................... 11  
3.3.1 80960CA PGA Pinout ............................................................................................................ 11  
3.3.2 80960CA PQFP Pinout ..........................................................................................................15  
3.4 Package Thermal Specifications ......................................................................................................18  
3.5 Stepping Register Information ..........................................................................................................20  
3.6 Suggested Sources for 80960CA Accessories..................................................................................20  
4.0 ELECTRICAL SPECIFICATIONS.............................................................................................................21  
4.1 Absolute Maximum Ratings ..............................................................................................................21  
4.2 Operating Conditions ........................................................................................................................21  
4.3 Recommended Connections ............................................................................................................21  
4.4 DC Specifications .............................................................................................................................22  
4.5 AC Specifications ..............................................................................................................................23  
4.5.1 AC Test Conditions ................................................................................................................29  
4.5.2 AC Timing Waveforms ...........................................................................................................29  
4.5.3 Derating Curves .....................................................................................................................33  
5.0 RESET, BACKOFF AND HOLD ACKNOWLEDGE .................................................................................35  
6.0 BUS WAVEFORMS .................................................................................................................................36  
7.0 REVISION HISTORY ................................................................................................................................64  
ii  
CONTENTS  
PAGE  
LIST OF FIGURES  
Figure 1  
80960CA Block Diagram ..............................................................................................................1  
80960CA PGA Pinout—View from Top (Pins Facing Down) ...................................................... 13  
80960CA PGA Pinout —View from Bottom (Pins Facing Up) .................................................... 14  
80960CA PQFP Pinout (View from Top Side) ............................................................................ 17  
Measuring 80960CA PGA and PQFP Case Temperature .......................................................... 18  
Register g0 .................................................................................................................................20  
AC Test Load .............................................................................................................................. 29  
Input and Output Clocks Waveform ............................................................................................ 29  
CLKIN Waveform ........................................................................................................................ 29  
Output Delay and Float Waveform ............................................................................................. 30  
Input Setup and Hold Waveform ................................................................................................ 30  
NMI, XINT7:0 Input Setup and Hold Waveform .......................................................................... 31  
Hold Acknowledge Timings ........................................................................................................ 31  
Bus Backoff (BOFF) Timings ...................................................................................................... 32  
Relative Timings Waveforms ...................................................................................................... 33  
Output Delay or Hold vs. Load Capacitance .............................................................................. 33  
Rise and Fall Time Derating at Highest Operating Temperature and Minimum VCC .................. 34  
ICC vs. Frequency and Temperature ........................................................................................... 34  
Cold Reset Waveform ................................................................................................................ 36  
Warm Reset Waveform .............................................................................................................. 37  
Entering the ONCE State ........................................................................................................... 38  
Clock Synchronization in the 2-x Clock Mode ............................................................................ 39  
Clock Synchronization in the 1-x Clock Mode ............................................................................ 39  
Non-Burst, Non-Pipelined Requests Without Wait States .......................................................... 40  
Non-Burst, Non-Pipelined Read Request With Wait States ....................................................... 41  
Non-Burst, Non-Pipelined Write Request With Wait States ....................................................... 42  
Burst, Non-Pipelined Read Request Without Wait States, 32-Bit Bus ........................................ 43  
Burst, Non-Pipelined Read Request With Wait States, 32-Bit Bus ............................................. 44  
Burst, Non-Pipelined Write Request Without Wait States, 32-Bit Bus ....................................... 45  
Burst, Non-Pipelined Write Request With Wait States, 32-Bit Bus ............................................. 46  
Burst, Non-Pipelined Read Request With Wait States, 16-Bit Bus ............................................ 47  
Burst, Non-Pipelined Read Request With Wait States, 8-Bit Bus ............................................... 48  
Non-Burst, Pipelined Read Request Without Wait States, 32-Bit Bus ....................................... 49  
Non-Burst, Pipelined Read Request With Wait States, 32-Bit Bus ............................................ 50  
Burst, Pipelined Read Request Without Wait States, 32-Bit Bus ............................................... 51  
Burst, Pipelined Read Request With Wait States, 32-Bit Bus ..................................................... 52  
Burst, Pipelined Read Request With Wait States, 16-Bit Bus ..................................................... 53  
Burst, Pipelined Read Request With Wait States, 8-Bit Bus ....................................................... 54  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
Figure 35  
Figure 36  
Figure 37  
Figure 38  
iii  
CONTENTS  
PAGE  
LIST OF FIGURES (continued)  
Figure 39  
Figure 40  
Figure 41  
Figure 42  
Figure 43  
Figure 44  
Figure 45  
Figure 46  
Figure 47  
Figure 48  
Figure 49  
Using External READY ............................................................................................................... 55  
Terminating a Burst with BTERM ............................................................................................... 56  
BOFF Functional Timing ............................................................................................................ 57  
HOLD Functional Timing ............................................................................................................ 58  
DREQ and DACK Functional Timing .......................................................................................... 59  
EOP Functional Timing .............................................................................................................. 59  
Terminal Count Functional Timing .............................................................................................. 60  
FAIL Functional Timing ............................................................................................................... 60  
A Summary of Aligned and Unaligned Transfers for Little Endian Regions ................................ 61  
A Summary of Aligned and Unaligned Transfers for Little Endian Regions (Continued) ............ 62  
Idle Bus Operation ...................................................................................................................... 63  
LIST OF TABLES  
80960CA Instruction Set ..............................................................................................................3  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
Pin Description Nomenclature ......................................................................................................4  
80960CA Pin Description — External Bus Signals ......................................................................5  
80960CA Pin Description — Processor Control Signals ..............................................................8  
80960CA Pin Description — DMA and Interrupt Unit Control Signals ....................................... 10  
80960CA PGA Pinout — In Signal Order ................................................................................... 11  
80960CA PGA Pinout — In Pin Order ........................................................................................ 12  
80960CA PQFP Pinout — In Signal Order ................................................................................. 15  
80960CA PQFP Pinout — In Pin Order ..................................................................................... 16  
Maximum TA at Various Airflows in oC (PGA Package Only) ..................................................... 18  
80960CA PGA Package Thermal Characteristics ...................................................................... 19  
80960CA PQFP Package Thermal Characteristics .................................................................... 19  
Die Stepping Cross Reference ................................................................................................... 20  
Operating Conditions (80960CA-33, -25, -16) ............................................................................ 21  
DC Characteristics ..................................................................................................................... 22  
80960CA AC Characteristics (33 MHz) ...................................................................................... 23  
80960CA AC Characteristics (25 MHz) ...................................................................................... 25  
80960CA AC Characteristics (16 MHz) ...................................................................................... 27  
Reset Conditions ........................................................................................................................ 35  
Hold Acknowledge and Backoff Conditions ................................................................................ 35  
iv  
80960CA-33, -25, -16  
A
32-bit demultiplexed and pipelined burst bus  
1.0 PURPOSE  
provides a 132 Mbyte/s bandwidth to a system’s  
high-speed external memory sub-system. In  
addition, the 80960CA’s on-chip caching of instruc-  
tions, procedure context and critical program data  
substantially decouple system performance from the  
wait states associated with accesses to the system’s  
slower, cost sensitive, main memory subsystem.  
This document provides electrical characteristics for  
the 33, 25 and 16 MHz versions of the 80960CA. For  
a detailed description of any 80960CA functional  
topic—other than parametric performance—consult  
the 80960CA Product Overview (Order No. 270669)  
or the i960 CA Microprocessor User’s Manual  
(Order No. 270710). To obtain data sheet updates  
and errata, please call Intel’s FaxBACK data-on-  
demand system (1-800-628-2283 or 916-356-3105).  
Other information can be obtained from Intel’s tech-  
nical BBS (916-356-3600).  
The 80960CA bus controller integrates full wait state  
and bus width control for highest system perfor-  
mance with minimal system design complexity.  
Unaligned access and Big Endian byte order support  
reduces the cost of porting existing applications to  
the 80960CA.  
2.0 80960CA OVERVIEW  
The processor also integrates four complete data-  
chaining DMA channels and a high-speed interrupt  
controller on-chip. DMA channels perform: single-  
cycle or two-cycle transfers, data packing and  
unpacking and data chaining. Block transfers—in  
addition to source or destination synchronized trans-  
fers—are provided.  
The 80960CA is the second-generation member of  
the 80960 family of embedded processors. The  
80960CA is object code compatible with the 32-bit  
80960 Core Architecture while including Special  
Function Register extensions to control on-chip  
peripherals and instruction set extensions to shift 64-  
bit operands and configure on-chip hardware.  
Multiple 128-bit internal buses, on-chip instruction  
caching and a sophisticated instruction scheduler  
allow the processor to sustain execution of two  
instructions every clock and peak at execution of  
three instructions per clock.  
The interrupt controller provides full programmability  
of 248 interrupt sources into 32 priority levels with a  
typical interrupt task switch (”latency”) time of  
750 ns.  
DMA  
DMA Controller Port  
Instruction Prefetch Queue  
Four-Channel  
Instruction Cache  
(1 KByte, Two-way  
Set Associative)  
Control  
Memory Region  
Configuration  
128-BIT CACHE BUS  
Bus  
Interrupt  
Port  
Programmable  
Interrupt Controller  
Controller  
Parallel  
Address  
Data  
Instruction  
Scheduler  
Bus Request  
Queues  
Multiply/Divide  
Unit  
1 KByte  
Data RAM  
Register-side  
Machine Bus  
Memory-side  
Machine Bus  
Execution  
Unit  
5 to 15 Sets  
Register Cache  
Six-port  
Register File  
Address  
Generation Unit  
64-Bit  
32-Bit  
SRC1 Bus  
Base Bus  
64-Bit  
SRC2 Bus  
128-Bit  
Load Bus  
64-Bit  
DST Bus  
128-Bit  
Store Bus  
F_CX001A  
Figure 1. 80960CA Block Diagram  
1
80960CA-33, -25, -16  
Demultiplexed, Burst Bus to exploit most efficient  
DRAM access modes  
2.1 The C-Series Core  
The C-Series core is a very high performance  
microarchitectural implementation of the 80960 Core  
Architecture. The C-Series core can sustain execu-  
tion of two instructions per clock (66 MIPs at  
33 MHz). To achieve this level of performance, Intel  
has incorporated state-of-the-art silicon technology  
and innovative microarchitectural constructs into the  
implementation of the C-Series core. Factors that  
contribute to the core’s performance include:  
Address Pipelining to reduce memory cost while  
maintaining performance  
32-, 16- and 8-bit modes for I/O interfacing ease  
Full internal wait state generation to reduce  
system cost  
Little and Big Endian support to ease application  
development  
Unaligned access support for code portability  
Parallel instruction decoding allows issuance of  
up to three instructions per clock  
Three-deep request queue to decouple the bus  
from the core  
Single-clock execution of most instructions  
Parallel instruction decode allows sustained,  
simultaneous execution of two single-clock  
instructions every clock cycle  
2.3 Flexible DMA Controller  
A four-channel DMA controller provides high speed  
DMA control for data transfers involving peripherals  
and memory. The DMA provides advanced features  
such as data chaining, byte assembly and disas-  
sembly and a high performance fly-by mode capable  
of transfer speeds of up to 59 Mbytes per second at  
33 MHz. The DMA controller features a performance  
and flexibility which is only possible by integrating the  
DMA controller and the 80960CA core.  
Efficient instruction pipeline minimizes pipeline  
break losses  
Register and resource scoreboarding allow simul-  
taneous multi-clock instruction execution  
Branch look-ahead and prediction allows many  
branches to execute with no pipeline break  
Local Register Cache integrated on-chip caches  
Call/Return context  
Two-way set associative, 1 Kbyte integrated  
instruction cache  
2.4 Priority Interrupt Controller  
1 Kbyte integrated Data RAM sustains a four-  
word (128-bit) access every clock cycle  
A
programmable-priority  
interrupt  
controller  
manages up to 248 external sources through the 8-  
bit external interrupt port. The Interrupt Unit also  
handles the four internal sources from the DMA  
controller and a single non-maskable interrupt input.  
The 8-bit interrupt port can also be configured to  
provide individual interrupt sources that are level or  
edge triggered.  
2.2 Pipelined, Burst Bus  
A 32-bit high performance bus controller interfaces  
the 80960CA to external memory and peripherals.  
The Bus Control Unit features a maximum transfer  
rate of 132 Mbytes per second (at 33 MHz). Inter-  
nally programmable wait states and 16 separately  
configurable memory regions allow the processor to  
interface with a variety of memory subsystems with a  
minimum of system complexity and a maximum of  
performance. The Bus Controller’s main features  
include:  
Interrupts in the 80960CA are prioritized and  
signaled within 270 ns of the request. If the interrupt  
is of higher priority than the processor priority, the  
context switch to the interrupt routine typically is  
complete in another 480 ns. The interrupt unit  
provides the mechanism for the low latency and high  
throughput interrupt service which is essential for  
embedded applications.  
2
80960CA-33, -25, -16  
2.5 Instruction Set Summary  
Table 1 summarizes the 80960CA instruction set by logical groupings. See the i960 CA Microprocessor User’s  
Manual for a complete description of the instruction set.  
Table 1. 80960CA Instruction Set  
Data  
Movement  
Bit and Bit Field  
and Byte  
Arithmetic  
Logical  
Load  
Store  
Move  
Add  
And  
Set Bit  
Subtract  
Not And  
And Not  
Or  
Clear Bit  
Multiply  
Not Bit  
Load Address  
Divide  
Alter Bit  
Remainder  
Modulo  
Exclusive Or  
Not Or  
Scan For Bit  
Span Over Bit  
Extract  
Shift  
Or Not  
*Extended Shift  
Extended Multiply  
Extended Divide  
Add with Carry  
Subtract with Carry  
Rotate  
Nor  
Modify  
Exclusive Nor  
Not  
Scan Byte for Equal  
Nand  
Comparison  
Branch  
Call/Return  
Fault  
Compare  
Unconditional Branch  
Conditional Branch  
Compare and Branch  
Call  
Conditional Fault  
Conditional Compare  
Call Extended  
Call System  
Return  
Synchronize Faults  
Compare and  
Increment  
Compare and  
Decrement  
Branch and Link  
Test Condition Code  
Check Bit  
Processor  
Management  
Debug  
Atomic  
Modify Trace Controls  
Mark  
Flush Local Registers  
Atomic Add  
Modify Arithmetic  
Controls  
Atomic Modify  
Force Mark  
Modify Process  
Controls  
*System Control  
*DMA Control  
NOTES:  
Instructions marked by (*) are 80960CA extensions to the 80960 instruction set.  
3
80960CA-33, -25, -16  
Table 2. Pin Description Nomenclature  
Symbol Description  
3.0 PACKAGE INFORMATION  
3.1 Package Introduction  
I
O
Input only pin  
Output only pin  
This section describes the pins, pinouts and thermal  
characteristics for the 80960CA in the 168-pin  
Ceramic Pin Grid Array (PGA) package and the 196-  
pin Plastic Quad Flat Package (PQFP). For complete  
package specifications and information, see the  
Packaging Handbook (Order No. 240800).  
I/O  
Pin can be either an input or output  
Pins “must be” connected as described  
S(...)  
Synchronous. Inputs must meet setup  
and hold times relative to PCLK2:1 for  
proper operation. All outputs are  
synchronous to PCLK2:1.  
S(E)  
S(L)  
Edge sensitive input  
Level sensitive input  
3.2 Pin Descriptions  
The 80960CA pins are described in this section.  
Table 2 presents the legend for interpreting the pin  
descriptions in the following tables. Pins associated  
with the 32-bit demultiplexed processor bus are  
described in Table 3. Pins associated with basic  
processor configuration and control are described in  
Table 4. Pins associated with the 80960CA DMA  
Controller and Interrupt Unit are described in Table  
5.  
A(...)  
H(...)  
Asynchronous. Inputs may be  
asynchronous to PCLK2:1.  
A(E)  
Edge sensitive input  
A(L)  
Level sensitive input  
While the processor’s bus is in the  
Hold Acknowledge or Bus Backoff state,  
the pin:  
H(1)  
H(0)  
H(Z)  
H(Q)  
is driven to VCC  
is driven to VSS  
floats  
All pins float while the processor is in the ONCE  
mode.  
continues to be a valid input  
R(...)  
While the processor’s RESET pin is low,  
the pin:  
R(1)  
R(0)  
R(Z)  
R(Q)  
is driven to VCC  
is driven to VSS  
floats  
continues to be a valid output  
4
80960CA-33, -25, -16  
Table 3. 80960CA Pin Description — External Bus Signals (Sheet 1 of 3)  
Name  
A31:2  
Type  
Description  
O
S
H(Z)  
ADDRESS BUS carries the physical address’ upper 30 bits. A31 is the most  
significant address bit; A2 is the least significant. During a bus access, A31:2 identify  
all external addresses to word (4-byte) boundaries. The byte enable signals indicate  
the selected byte in each word. During burst accesses, A3:2 increment to indicate  
successive data cycles.  
R(Z)  
D31:0  
BE3:0  
I/O  
DATA BUS carries 32-, 16- or 8-bit data quantities depending on bus width configu-  
ration. The least significant bit of the data is carried on D0 and the most significant on  
D31. When the bus is configured for 8-bit data, the lower 8 data lines, D7:0 are used.  
For 16-bit data bus widths, D15:0 are used. For 32-bit bus widths the full data bus is  
used.  
S(L)  
H(Z)  
R(Z)  
O
S
H(Z)  
BYTE ENABLES select which of the four bytes addressed by A31:2 are active during  
an access to a memory region configured for a 32-bit data-bus width. BE3 applies to  
D31:24; BE2 applies to D23:16; BE1 applies to D15:8 BE0 applies to D7:0.  
R(1)  
32-bit bus:  
BE3  
BE2  
BE1  
BE0  
–Byte Enable 3  
–Byte Enable 2  
–Byte Enable 1  
–Byte Enable 0  
–enable D31:24  
–enable D23:16  
–enable D15:8  
–enable D7:0  
For accesses to a memory region configured for a 16-bit data-bus width, the  
processor uses the BE3, BE1 and BE0 pins as BHE, A1 and BLE respectively.  
16-bit bus:  
BE3  
BE2  
BE1  
BE0  
–Byte High Enable (BHE)  
–Not used (driven high or low)  
–Address Bit 1 (A1)  
–enable D15:8  
–Byte Low Enable (BLE)  
–enable D7:0  
For accesses to a memory region configured for an 8-bit data-bus width, the  
processor uses the BE1 and BE0 pins as A1 and A0 respectively.  
8-bit bus:  
BE3  
BE2  
BE1  
BE0  
–Not used (driven high or low)  
–Not used (driven high or low)  
–Address Bit 1 (A1)  
–Address Bit 0 (A0)  
W/R  
ADS  
O
S
H(Z)  
R(0)  
WRITE/READ is asserted for read requests and deasserted for write requests. The  
W/R signal changes in the same clock cycle as ADS. It remains valid for the entire  
access in non-pipelined regions. In pipelined regions, W/R is not guaranteed to be  
valid in the last cycle of a read access.  
O
S
ADDRESS STROBE indicates a valid address and the start of a new bus access.  
ADS is asserted for the first clock of a bus access.  
H(Z)  
R(1)  
5
80960CA-33, -25, -16  
Table 3. 80960CA Pin Description — External Bus Signals (Sheet 2 of 3)  
Name  
Type  
Description  
READY  
I
READY is an input which signals the termination of a data transfer. READY is used to  
indicate that read data on the bus is valid or that a write-data transfer has completed.  
The READY signal works in conjunction with the internally programmed wait-state  
generator. If READY is enabled in a region, the pin is sampled after the programmed  
number of wait-states has expired. If the READY pin is deasserted, wait states  
S(L)  
H(Z)  
R(Z)  
continue to be inserted until READY becomes asserted. This is true for the NRAD  
,
NRDD, NWAD and NWDD wait states. The NXDA wait states cannot be extended.  
BTERM  
I
BURST TERMINATE is an input which breaks up a burst access and causes another  
address cycle to occur. The BTERM signal works in conjunction with the internally  
programmed wait-state generator. If READY and BTERM are enabled in a region, the  
BTERM pin is sampled after the programmed number of wait states has expired.  
When BTERM is asserted, a new ADS signal is generated and the access is  
completed. The READY input is ignored when BTERM is asserted. BTERM must be  
externally synchronized to satisfy BTERM setup and hold times.  
S(L)  
H(Z)  
R(Z)  
WAIT  
BLAST  
DT/R  
O
S
H(Z)  
WAIT indicates internal wait state generator status. WAIT is asserted when wait  
states are being caused by the internal wait state generator and not by the READY or  
BTERM inputs. WAIT can be used to derive a write-data strobe. WAIT can also be  
thought of as a READY output that the processor provides when it is inserting wait  
states.  
R(1)  
O
S
H(Z)  
R(0)  
BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the  
last data transfer of burst and non-burst accesses after the wait state counter reaches  
zero. BLAST remains asserted until the clock following the last cycle of the last data  
transfer of a bus access. If the READY or BTERM input is used to extend wait states,  
the BLAST signal remains asserted until READY or BTERM terminates the access.  
O
S
H(Z)  
R(0)  
DATA TRANSMIT/RECEIVE indicates direction for data transceivers. DT/R is used in  
conjunction with DEN to provide control for data transceivers attached to the external  
bus. When DT/R is asserted, the signal indicates that the processor receives data.  
Conversely, when deasserted, the processor sends data. DT/R changes only while  
DEN is high.  
DEN  
O
S
H(Z)  
R(1)  
DATA ENABLE indicates data cycles in a bus request. DEN is asserted at the start of  
the bus request first data cycle and is deasserted at the end of the last data cycle.  
DEN is used in conjunction with DT/R to provide control for data transceivers attached  
to the external bus. DEN remains asserted for sequential reads from pipelined  
memory regions. DEN is deasserted when DT/R changes.  
LOCK  
O
S
H(Z)  
BUS LOCK indicates that an atomic read-modify-write operation is in progress. LOCK  
may be used to prevent external agents from accessing memory which is currently  
involved in an atomic operation. LOCK is asserted in the first clock of an atomic  
operation and deasserted in the clock cycle following the last bus access for the  
atomic operation. To allow the most flexibility for memory system enforcement of  
locked accesses, the processor acknowledges a bus hold request when LOCK is  
asserted. The processor performs DMA transfers while LOCK is active.  
R(1)  
HOLD  
I
HOLD REQUEST signals that an external agent requests access to the external bus.  
The processor asserts HOLDA after completing the current bus request. HOLD,  
HOLDA and BREQ are used together to arbitrate access to the processor’s external  
bus by external bus agents.  
S(L)  
H(Z)  
R(Z)  
6
80960CA-33, -25, -16  
Table 3. 80960CA Pin Description — External Bus Signals (Sheet 3 of 3)  
Name  
BOFF  
Type  
Description  
I
BUS BACKOFF, when asserted, suspends the current access and causes the bus  
pins to float. When BOFF is deasserted, the ADS signal is asserted on the next clock  
cycle and the access is resumed.  
S(L)  
H(Z)  
R(Z)  
HOLDA  
O
S
H(1)  
R(Q)  
HOLD ACKNOWLEDGE indicates to a bus requestor that the processor has relin-  
quished control of the external bus. When HOLDA is asserted, the external address  
bus, data bus and bus control signals are floated. HOLD, BOFF, HOLDA and BREQ  
are used together to arbitrate access to the processor’s external bus by external bus  
agents. Since the processor grants HOLD requests and enters the Hold Acknowledge  
state even while RESET is asserted, the state of the HOLDA pin is independent of the  
RESET pin.  
BREQ  
D/C  
O
S
H(Q)  
R(0)  
BUS REQUEST is asserted when the bus controller has a request pending. BREQ  
can be used by external bus arbitration logic in conjunction with HOLD and HOLDA to  
determine when to return mastership of the external bus to the processor.  
O
S
DATA OR CODE is asserted for a data request and deasserted for instruction  
requests. D/C has the same timing as W/R.  
H(Z)  
R(Z)  
DMA  
SUP  
O
S
H(Z)  
DMA ACCESS indicates whether the bus request was initiated by the DMA controller.  
DMA is asserted for any DMA request. DMA is deasserted for all other requests.  
R(Z)  
O
S
H(Z)  
R(Z)  
SUPERVISOR ACCESS indicates whether the bus request is issued while in  
supervisor mode. SUP is asserted when the request has supervisor privileges and is  
deasserted otherwise. SUP can be used to isolate supervisor code and data  
structures from non-supervisor requests.  
7
80960CA-33, -25, -16  
Table 4. 80960CA Pin Description — Processor Control Signals (Sheet 1 of 2)  
Name  
Type  
Description  
RESET  
I
RESET causes the chip to reset. When RESET is asserted, all external signals  
return to the reset state. When RESET is deasserted, initialization begins. When  
the 2-x clock mode is selected, RESET must remain asserted for 32 CLKIN cycles  
before being deasserted to guarantee correct processor initialization. When the 1-x  
clock mode is selected, RESET must remain asserted for 10,000 CLKIN cycles  
before being deasserted to guarantee correct processor initialization. The  
CLKMODE pin selects 1-x or 2-x input clock division of the CLKIN pin.  
A(L)  
H(Z)  
R(Z)  
The processor’s Hold Acknowledge bus state functions while the chip is reset. If the  
processor’s bus is in the Hold Acknowledge state when RESET is asserted, the  
processor will internally reset, but maintains the Hold Acknowledge state on  
external pins until the Hold request is removed. If a Hold request is made while the  
processor is in the reset state, the processor bus will grant HOLDA and enter the  
Hold Acknowledge state.  
FAIL  
O
S
H(Q)  
R(0)  
FAIL indicates failure of the processor’s self-test performed at initialization. When  
RESET is deasserted and the processor begins initialization, the FAIL pin is  
asserted. An internal self-test is performed as part of the initialization process. If  
this self-test passes, the FAIL pin is deasserted; otherwise it remains asserted. The  
FAIL pin is reasserted while the processor performs an external bus self-confidence  
test. If this self-test passes, the processor deasserts the FAIL pin and branches to  
the user’s initialization routine; otherwise the FAIL pin remains asserted. Internal  
self-test and the use of the FAIL pin can be disabled with the STEST pin.  
STEST  
ONCE  
I
SELF TEST causes the processor’s internal self-test feature to be enabled or  
disabled at initialization. STEST is read on the rising edge of RESET. When  
asserted, the processor’s internal self-test and external bus confidence tests are  
performed during processor initialization. When deasserted, only the bus  
confidence tests are performed during initialization.  
S(L)  
H(Z)  
R(Z)  
I
ON CIRCUIT EMULATION, when asserted, causes all outputs to be floated. ONCE  
is continuously sampled while RESET is low and is latched on the rising edge of  
RESET. To place the processor in the ONCE state:  
A(L)  
H(Z)  
R(Z)  
(1) assert RESET and ONCE (order does not matter)  
(2) wait for at least 16 CLKIN periods in 2-x mode—or 10,000 CLKIN periods in  
1-x mode—after VCC and CLKIN are within operating specifications  
(3) deassert RESET  
(4) wait at least 32 CLKIN periods  
(The processor will now be latched in the ONCE state as long as RESET is high.)  
To exit the ONCE state, bring VCC and CLKIN to operating conditions, then assert  
RESET and bring ONCE high prior to deasserting RESET.  
CLKIN must operate within the specified operating conditions of the processor until  
Step 4 above has been completed. CLKIN may then be changed to DC to achieve  
the lowest possible ONCE mode leakage current.  
ONCE can be used by emulator products or for board testers to effectively make an  
installed processor transparent in the board.  
8
80960CA-33, -25, -16  
Table 4. 80960CA Pin Description — Processor Control Signals (Sheet 2 of 2)  
Name  
CLKIN  
Type  
Description  
I
CLOCK INPUT is an input for the external clock needed to run the processor. The  
external clock is internally divided as prescribed by the CLKMODE pin to produce  
PCLK2:1.  
A(E)  
H(Z)  
R(Z)  
CLKMODE  
PCLK2:1  
I
CLOCK MODE selects the division factor applied to the external clock input  
(CLKIN). When CLKMODE is high, CLKIN is divided by one to create PCLK2:1 and  
the processor’s internal clock. When CLKMODE is low, CLKIN is divided by two to  
create PCLK2:1 and the processor’s internal clock. CLKMODE should be tied high  
or low in a system as the clock mode is not latched by the processor. If left  
unconnected, the processor will internally pull the CLKMODE pin low, enabling the  
2-x clock mode.  
A(L)  
H(Z)  
R(Z)  
O
S
H(Q)  
R(Q)  
PROCESSOR OUTPUT CLOCKS provide a timing reference for all processor  
inputs and outputs. All input and output timings are specified in relation to PCLK2  
and PCLK1. PCLK2 and PCLK1 are identical signals. Two output pins are provided  
to allow flexibility in the system’s allocation of capacitive loading on the clock.  
PCLK2:1 may also be connected at the processor to form a single clock signal.  
VSS  
GROUND connections must be connected externally to a VSS board plane.  
POWER connections must be connected externally to a VCC board plane.  
VCC  
VCCPLL  
VCCPLL is a separate VCC supply pin for the phase lock loop used in 1-x clock mode.  
Connecting a simple lowpass filter to VCCPLL may help reduce clock jitter (TCP) in  
noisy environments. Otherwise, VCCPLL should be connected to VCC. This pin is  
implemented starting with the D-stepping. See Table 13 for die stepping  
information.  
NC  
NO CONNECT pins must not be connected in a system.  
9
80960CA-33, -25, -16  
Table 5. 80960CA Pin Description — DMA and Interrupt Unit Control Signals  
Name  
Type  
Description  
DREQ3:0  
I
DMA REQUEST causes a DMA transfer to be requested. Each of the four signals  
requests a transfer on a single channel. DREQ0 requests channel 0, DREQ1  
requests channel 1, etc. When two or more channels are requested simulta-  
neously, the channel with the highest priority is serviced first. The channel priority  
mode is programmable.  
A(L)  
H(Z)  
R(Z)  
DACK3:0  
O
S
H(1)  
DMA ACKNOWLEDGE indicates that a DMA transfer is being executed. Each of  
the four signals acknowledges a transfer for a single channel. DACK0 acknowl-  
edges channel 0, DACK1 acknowledges channel 1, etc. DACK3:0 are asserted  
when the requesting device of a DMA is accessed.  
R(1)  
EOP/TC3:0  
I/O  
A(L)  
H(Z/Q)  
R(Z)  
END OF PROCESS/TERMINAL COUNT can be programmed as either an input  
(EOP3:0) or as an output (TC3:0), but not both. Each pin is individually program-  
mable. When programmed as an input, EOPx causes the termination of a current  
DMA transfer for the channel corresponding to the EOPx pin. EOP0 corresponds  
to channel 0, EOP1 corresponds to channel 1, etc. When a channel is configured  
for source and destination chaining, the EOP pin for that channel causes  
termination of only the current buffer transferred and causes the next buffer to be  
transferred. EOP3:0 are asynchronous inputs.  
When programmed as an output, the channel’s TCx pin indicates that the channel  
byte count has reached 0 and a DMA has terminated. TCx is driven with the same  
timing as DACKx during the last DMA transfer for a buffer. If the last bus request is  
executed as multiple bus accesses, TCx will stay asserted for the entire bus  
request.  
XINT7:0  
I
EXTERNAL INTERRUPT PINS cause interrupts to be requested. These pins can  
A(E/L)  
H(Z)  
R(Z)  
be configured in three modes:  
Dedicated Mode:  
each pin is a dedicated external interrupt source. Dedicated  
inputs can be individually programmed to be level (low) or  
edge (falling) activated.  
Expanded Mode:  
the eight pins act together as an 8-bit vectored interrupt  
source. The interrupt pins in this mode are level activat-  
ed.Since the interrupt pins are active low, the vector number  
requested is the one’s complement of the positive logic  
value place on the port. This eliminates glue logic to  
interface to combinational priority encoders which output  
negative logic.  
Mixed Mode:  
XINT7:5 are dedicated sources and XINT4:0 act as the five  
most significant bits of an expanded mode vector. The least  
significant bits are set to 010 internally.  
NMI  
I
NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur.  
NMI is the highest priority interrupt recognized. NMI is an edge (falling) activated  
source.  
A(E)  
H(Z)  
R(Z)  
10  
80960CA-33, -25, -16  
80960CA PGA pinout as viewed from the top side of  
the component (i.e., pins facing down). Figure 3  
shows the complete 80960CA PGA pinout as viewed  
from the pin-side of the package (i.e., pins facing up).  
See Section 4.0, ELECTRICAL SPECIFICATIONS  
for specifications and recommended connections.  
3.3 80960CA Mechanical Data  
3.3.1 80960CA PGA Pinout  
Tables 6 and 7 list the 80960CA pin names with  
package location. Figure 2 depicts the complete  
Table 6. 80960CA PGA Pinout — In Signal Order  
Data Bus Bus Control Processor Control  
Signal Pin Signal Pin  
R3 BE3  
Address Bus  
I/O  
Signal  
A31  
A30  
A29  
A28  
A27  
A26  
A25  
A24  
A23  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
Pin  
S15  
Q13  
R14  
Q14  
S16  
R15  
S17  
Q15  
R16  
R17  
Q16  
P15  
P16  
Q17  
P17  
N16  
N17  
M17  
L16  
L17  
K17  
J17  
Signal  
RESET  
Pin  
Signal  
DREQ3  
DREQ2  
DREQ1  
DREQ0  
Pin  
A7  
D31  
D30  
D29  
D28  
D27  
D26  
D25  
D24  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
S5  
S6  
S7  
R9  
A16  
Q5  
S2  
Q4  
R2  
Q3  
S1  
R1  
Q2  
P3  
Q1  
P2  
P1  
N2  
N1  
M1  
L1  
BE2  
BE1  
BE0  
B6  
A6  
B5  
FAIL  
A2  
B2  
C3  
STEST  
ONCE  
W/R  
ADS  
S10  
R6  
DACK3  
DACK2  
DACK1  
DACK0  
A10  
A9  
A8  
CLKIN  
C13  
C14  
B14  
B13  
B8  
READY  
BTERM  
S3  
R4  
CLKMODE  
PLCK1  
EOP/TC3  
EOP/TC2  
EOP/TC1  
EOP/TC0  
A14  
A13  
A12  
A11  
PLCK2  
WAIT  
S12  
S8  
BLAST  
VSS  
Location  
DT/R  
DEN  
S11  
S9  
C7, C8, C9, C10,  
C11, C12, F15, G3,  
G15, H3, H15, J3,  
J15, K3, K15, L3,  
L15, M3, M15, Q7,  
Q8, Q9, Q10, Q11  
XINT7  
XINT6  
XINT5  
XINT4  
XINT3  
XINT2  
XINT1  
XINT0  
C17  
C16  
B17  
C15  
B16  
A17  
A15  
B15  
L2  
K1  
J1  
LOCK  
S14  
H1  
H2  
G1  
F1  
E1  
F2  
D1  
E2  
C1  
D2  
C2  
E3  
VCC  
HOLD  
HOLDA  
BREQ  
R5  
Location  
H17  
G17  
G16  
F17  
E17  
E16  
D17  
D16  
S4  
B7, B9, B11, B12,  
C6, E15, F3, F16,  
G2, H16, J2, J16, K2,  
K16, M2, M16, N3,  
N15, Q6, R7, R8,  
R10, R11  
A8  
D8  
R13  
A7  
D7  
NMI  
D15  
A6  
D6  
D/C  
S13  
R12  
Q12  
A5  
D5  
DMA  
SUP  
A4  
D4  
VCCPLL  
B10  
A3  
D3  
No Connect  
A2  
D2  
BOFF  
B1  
Location  
D1  
A1, A3, A4, A5, B3,  
B4, C4, C5, D3  
D0  
11  
80960CA-33, -25, -16  
Table 7. 80960CA PGA Pinout — In Pin Order  
Pin  
A1  
Signal  
NC  
Pin  
C1  
Signal  
D3  
Pin  
G1  
Signal  
D9  
Pin  
M1  
Signal  
D16  
Pin  
R1  
Signal  
D24  
A2  
FAIL  
C2  
D1  
G2  
VCC  
VSS  
VSS  
A7  
M2  
VCC  
VSS  
VSS  
VCC  
A14  
R2  
D27  
A3  
NC  
C3  
ONCE  
NC  
G3  
M3  
R3  
D31  
A4  
NC  
C4  
G15  
G16  
G17  
M15  
M16  
M17  
R4  
BTERM  
HOLD  
ADS  
VCC  
A5  
NC  
C5  
NC  
R5  
A6  
DREQ1  
DREQ3  
DACK1  
DACK2  
DACK3  
EOP/TC0  
EOP/TC1  
EOP/TC2  
EOP/TC3  
XINT1  
RESET  
XINT2  
C6  
VCC  
A8  
R6  
A7  
C7  
VSS  
R7  
A8  
C8  
VSS  
H1  
D11  
D10  
VSS  
VSS  
VCC  
A9  
N1  
D17  
D18  
VCC  
VCC  
A16  
A15  
R8  
VCC  
A9  
C9  
VSS  
H2  
N2  
R9  
BE0  
VCC  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
VSS  
H3  
N3  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
VSS  
H15  
H16  
H17  
N15  
N16  
N17  
VCC  
VSS  
DMA  
BREQ  
A29  
CLKIN  
CLKMODE  
XINT4  
XINT6  
XINT7  
J1  
D12  
VCC  
VSS  
VSS  
VCC  
A10  
P1  
D19  
D20  
D22  
A20  
A19  
A17  
A26  
J2  
P2  
A23  
J3  
P3  
A22  
J15  
J16  
J17  
P15  
P16  
P17  
B1  
BOFF  
STEST  
NC  
D1  
D5  
D2  
NC  
NMI  
A2  
S1  
D25  
B2  
D2  
S2  
D29  
B3  
D3  
S3  
READY  
HOLDA  
BE3  
B4  
NC  
D15  
D16  
D17  
K1  
D13  
VCC  
VSS  
VSS  
VCC  
A11  
Q1  
D21  
D23  
D26  
D28  
D30  
VCC  
VSS  
VSS  
VSS  
VSS  
VSS  
SUP  
A30  
A28  
A24  
A21  
A18  
S4  
B5  
DREQ0  
DREQ2  
VCC  
K2  
Q2  
S5  
B6  
A3  
K3  
Q3  
S6  
BE2  
B7  
K15  
K16  
K17  
Q4  
S7  
BE1  
B8  
DACK0  
VCC  
E1  
D7  
D4  
D0  
VCC  
A4  
A5  
Q5  
S8  
BLAST  
DEN  
W/R  
B9  
E2  
Q6  
S9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
VCCPLL  
VCC  
E3  
Q7  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
E15  
E16  
E17  
L1  
D15  
D14  
VSS  
VSS  
A13  
A12  
Q8  
DT/R  
WAIT  
D/C  
VCC  
L2  
Q9  
PCLK2  
PCLK1  
XINT0  
XINT3  
XINT5  
L3  
Q10  
Q11  
Q12  
Q13  
Q14  
Q15  
Q16  
Q17  
L15  
L16  
L17  
LOCK  
A31  
F1  
D8  
F2  
D6  
A27  
F3  
VCC  
VSS  
VCC  
A6  
A25  
F15  
F16  
F17  
12  
80960CA-33, -25, -16  
S
R
Q
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
2
1
2
D25  
D29  
D24  
D27  
D21  
D23  
D26  
D19  
D20  
D22  
D17  
D18  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D6  
D7  
D4  
D0  
D5  
D2  
NC  
D3  
D1  
BOFF  
STEST  
NC  
NC  
FAIL  
NC  
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
3
3
READY D31  
V
V
V
V
V
ONCE  
NC  
CC  
SS  
SS  
SS  
SS  
SS  
SS  
CC  
4
4
HOLDA BTERM D28  
BE3 HOLD D30  
NC  
NC  
5
5
NC DREQ0  
NC  
6
6
BE2  
BE1  
ADS  
V
V
V
V
V
V
V
DREQ2 DREQ1  
CC  
SS  
SS  
SS  
SS  
SS  
CC  
7
7
V
V
V
V
V
V
CC  
DREQ3  
CC  
SS  
SS  
SS  
SS  
8
8
BLAST  
DEN  
V
DACK0 DACK1  
CC  
9
9
BE0  
V
DACK2  
DACK3  
CC  
10  
11  
12  
13  
14  
15  
16  
17  
10  
11  
12  
13  
14  
15  
16  
17  
W/R  
V
V
V
CCPLL  
CC  
CC  
DT/R  
WAIT  
V
V
V
EOP/TC0  
EOP/TC1  
SS  
CC  
DMA  
SUP  
A30  
A28  
A24  
A21  
A18  
Q
V
CC  
SS  
D/C BREQ  
LOCK A29  
CLKIN PCLK2 EOP/TC2  
CLK MODE PCLK1 EOP/TC3  
NMI XINT4 XINT0 XINT1  
A31  
A27  
A25  
S
A26  
A23  
A22  
R
A20  
A19  
A17  
P
V
V
V
V
V
V
V
V
V
V
V
V
V
CC  
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
A16  
A15  
N
V
A13  
A12  
L
A7  
A4  
A2  
A3  
XINT6 XINT3 RESET  
XINT7 XINT5 XINT2  
CC  
CC  
CC  
CC  
CC  
A14  
A11  
A10  
A9  
A8  
A6  
A5  
M
K
J
H
G
F
E
D
C
B
A
F_CA002A  
Figure 2. 80960CA PGA Pinout — View from Top (Pins Facing Down)  
13  
80960CA-33, -25, -16  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
1
2
1
2
NC  
FAIL  
NC  
BOFF  
STEST  
NC  
D3  
D1  
D5  
D2  
NC  
D7  
D4  
D0  
D8  
D6  
D9  
D11  
D10  
D12  
D13  
D15  
D14  
D16  
D17  
D18  
D19  
D20  
D22  
D21  
D23  
D26  
D24  
D27  
D25  
D29  
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
3
3
ONCE  
NC  
V
V
V
V
V
D31 READY  
CC  
SS  
SS  
SS  
SS  
SS  
SS  
CC  
4
4
NC  
NC  
D28 BTERM HOLDA  
D30 HOLD BE3  
5
5
NC  
DREQ0 NC  
6
6
DREQ1 DREQ2  
V
V
V
V
V
V
V
ADS  
BE2  
BE1  
CC  
SS  
SS  
SS  
SS  
CC  
7
7
DREQ3  
V
V
CC  
SS  
CC  
8
8
DACK1 DACK0  
V
V
V
BLAST  
DEN  
SS  
SS  
CC  
Metal Lid  
9
9
DACK2  
DACK3  
V
BE0  
CC  
10  
11  
12  
13  
14  
15  
16  
17  
10  
11  
12  
13  
14  
15  
16  
17  
V
V
V
V
V
W/R  
CCPLL  
SS  
SS  
CC  
EOP/TC0  
EOP/TC1  
V
V
V
DT/R  
CC  
SS  
SS  
CC  
V
SUP  
DMA WAIT  
CC  
EOP/TC2 PCLK2 CLKIN  
A30 BREQ  
D/C  
LOCK  
A31  
EOP/TC3 PCLK1 CLK MODE  
XINT1 XINT0 XINT4 NMI  
A28  
A24  
A29  
A26  
V
V
V
V
V
V
V
V
V
V
V
CC  
A20  
CC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
RESET XINT3 XINT6  
XINT2 XINT5 XINT7  
A2  
A3  
D
A4  
V
A7  
V
A13  
A12  
L
V
A16  
A15  
N
A19  
A17  
P
A21  
A18  
Q
A23  
A22  
R
A27  
A25  
S
CC  
CC  
CC  
CC  
CC  
A5  
A6  
A8  
A9  
A10  
A11  
A14  
A
B
C
E
F
G
H
J
K
M
F_CA003A  
Figure 3. 80960CA PGA Pinout — View from Bottom (Pins Facing Up)  
14  
80960CA-33, -25, -16  
3.3.2 80960CA PQFP Pinout  
See Section 4.0, ELECTRICAL SPECIFICATIONS  
for specifications and recommended connections.  
Tables 8 and 9 list the 80960CA pin names with  
package location. Figure 4 shows the 80960CA  
PQFP pinout as viewed from the top side.  
Table 8. 80960CA PQFP Pinout — In Signal Order  
Data Bus Bus Control Processor Control  
Signal Signal Pin Signal Pin  
D31 BE3 RESET 91  
Address Bus  
Signal Pin  
A31  
I/O  
Signal  
Pin  
186  
187  
188  
189  
191  
192  
194  
195  
3
Pin  
60  
153  
152  
151  
145  
144  
143  
142  
141  
139  
138  
137  
136  
134  
133  
132  
130  
176  
175  
172  
170  
DREQ3  
DREQ2  
DREQ1  
DREQ0  
A30  
A29  
A28  
A27  
A26  
A25  
A24  
A23  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
D30  
D29  
D28  
D27  
D26  
D25  
D24  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
BE2  
BE1  
BE0  
FAIL  
45  
46  
43  
87  
85  
74  
78  
59  
58  
57  
STEST  
ONCE  
CLKIN  
CLKMODE  
PCLK2  
PCLK1  
W/R  
ADS  
164  
178  
DACK3  
DACK2  
DACK1  
DACK0  
65  
64  
63  
62  
VSS  
Location  
4
READY  
BTERM  
182  
184  
5
2, 7, 16, 24, 30, 38,  
39, 49, 56, 70, 75,  
77, 81, 83, 88, 89,  
92, 98, 105, 109,  
110, 121, 125, 131,  
135, 147, 150, 161,  
165, 173, 174, 185,  
196  
EOP/TC3  
EOP/TC2  
EOP/TC1  
EOP/TC0  
69  
68  
67  
66  
6
8
WAIT  
162  
169  
9
BLAST  
10  
11  
DT/R  
DEN  
163  
167  
XINT7  
107  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
129  
128  
124  
123  
122  
120  
119  
118  
117  
116  
114  
113  
112  
111  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
13  
14  
15  
17  
18  
19  
21  
22  
23  
25  
26  
27  
33  
34  
35  
36  
VCC  
XINT6  
XINT5  
XINT4  
XINT3  
XINT2  
XINT1  
XINT0  
106  
102  
101  
100  
95  
Location  
LOCK  
156  
1, 12, 20, 28, 32, 37,  
44, 50, 61, 71, 79,  
82, 96, 99, 103, 115,  
127, 140, 148, 154,  
168, 171, 180, 190  
HOLD  
HOLDA  
BREQ  
181  
179  
155  
94  
93  
A8  
D8  
VCCPLL  
72  
A7  
D7  
D/C  
159  
160  
158  
No Connect  
NMI  
108  
A6  
D6  
DMA  
SUP  
Location  
A5  
D5  
29, 31, 41, 42, 47,  
48, 51, 52, 53, 54,  
55, 73, 76, 80, 84,  
86, 90, 97, 104, 126,  
146, 149, 157, 166,  
177, 183, 193  
A4  
D4  
A3  
D3  
BOFF  
40  
A2  
D2  
D1  
D0  
15  
80960CA-33, -25, -16  
Pin Signal Pin  
Table 9. 80960CA PQFP Pinout — In Pin Order  
Signal  
D2  
Pin  
67  
Signal  
EOP/TC1  
EOP/TC2  
EOP/TC3  
VSS  
Pin  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
Signal  
XINT3  
XINT4  
XINT5  
VCC  
NC  
Pin  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
Signal  
A18  
A19  
VSS  
Pin  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
Signal  
NC  
1
VCC  
VSS  
D23  
D22  
D21  
D20  
VSS  
D19  
D18  
D17  
D16  
VCC  
D15  
D14  
D13  
VSS  
D12  
D11  
D10  
VCC  
D9  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
2
D1  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
DEN  
VCC  
3
D0  
4
VCC  
VSS  
VSS  
BOFF  
NC  
A20  
A21  
A22  
A23  
VCC  
A24  
A25  
A26  
A27  
A28  
NC  
BLAST  
BE0  
VCC  
5
VCC  
6
VCCPLL  
NC  
VSS  
7
XINT6  
XINT7  
NMI  
VSS  
BE1  
VSS  
8
PCLK2  
VSS  
9
NC  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
ONCE  
NC  
BE2  
BE3  
NC  
V
VSS  
VSS  
CC  
FAIL  
PCLK1  
VCC  
A2  
STEST  
NC  
A3  
ADS  
HOLDA  
VCC  
NC  
A4  
NC  
VSS  
A5  
VSS  
VSS  
VCC  
VCC  
A6  
VCC  
NC  
HOLD  
READY  
NC  
VCC  
VSS  
NC  
NC  
A7  
VSS  
NC  
CLKMODE 118  
A8  
A29  
A30  
A31  
VCC  
BREQ  
LOCK  
NC  
BTERM  
VSS  
NC  
NC  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
A9  
NC  
CLKIN  
VSS  
A10  
D31  
D30  
D29  
D28  
VCC  
D8  
NC  
V
SS  
D7  
VSS  
V
A11  
A12  
A13  
VSS  
NC  
SS  
VSS  
D6  
DREQ0  
DREQ1  
DREQ2  
DREQ3  
VCC  
NC  
RESET  
VSS  
D5  
SUP  
D/C  
D27  
D26  
NC  
D4  
XINT0  
XINT1  
XINT2  
VCC  
VCC  
NC  
V
DMA  
VSS  
CC  
DACK0  
DACK1  
DACK2  
DACK3  
EOP/TC0  
A14  
A15  
A16  
VSS  
A17  
D25  
D24  
VSS  
VSS  
NC  
WAIT  
DT/R  
W/R  
VSS  
NC  
VCC  
D3  
VSS  
VCC  
16  
80960CA-33, -25, -16  
98  
50  
99  
49  
147  
Pin 1  
196  
148  
F_CA004A  
Figure 4. 80960CA PQFP Pinout (View from Top Side)  
17  
80960CA-33, -25, -16  
TA = TC – P*θCA  
3.4 Package Thermal Specifications  
Table 10 shows the maximum TA allowable (without  
exceeding TC) at various airflows and operating  
frequencies (fPCLK).  
The 80960CA is specified for operation when TC  
(case temperature) is within the range of 0oC–100oC.  
TC may be measured in any environment to deter-  
mine whether the 80960CA is within specified oper-  
ating range. Case temperature should be measured  
at the center of the top surface, opposite the pins.  
Refer to Figure 5.  
Note that TA is greatly improved by attaching fins or a  
heatsink to the package.  
P (maximum power  
consumption) is calculated by using the typical ICC  
as tabulated in Section 4.4, DC Specifications and  
VCC of 5V.  
TA (ambient temperature) can be calculated from θCA  
(thermal resistance from case to ambient) using the  
following equation:  
Measure PGA temperature at  
center of top surface  
Measure PQFP case temperature  
at center of top surface.  
168 - Pin PGA  
Pin 196  
Pin 1  
F_CX007A  
Figure 5. Measuring 80960CA PGA and PQFP Case Temperature  
Table 10. Maximum TA at Various Airflows in oC (PGA Package Only)  
Airflow-ft/min (m/sec)  
0
200  
400  
600  
800  
1000  
fPCLK  
(MHz)  
(0)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
(5.07)  
33  
25  
16  
51  
61  
74  
66  
73  
82  
79  
83  
89  
81  
85  
90  
85  
88  
92  
87  
89  
93  
TA with  
Heatsink*  
33  
25  
16  
36  
49  
66  
47  
58  
72  
59  
67  
78  
66  
73  
82  
73  
78  
86  
75  
80  
87  
TA without  
Heatsink*  
NOTES:  
*0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).  
18  
80960CA-33, -25, -16  
Table 11. 80960CA PGA Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
Parameter  
0
200  
400  
600  
800  
1000  
(0)  
(1.01)  
(2.03)  
(3.07)  
(4.06)  
(5.07)  
θ Junction-to-Case  
(Case measured as  
shown in Figure 5)  
θJA  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
θJC  
θ Case-to-Ambient  
(No Heatsink)  
17  
13  
14  
9
11  
9
5
7.1  
3.9  
6.6  
3.4  
θ Case-to-Ambient  
(With Heatsink)*  
5.5  
NOTES:  
1. This table applies to 80960CA PGA plugged into socket or soldered directly to board.  
2. = θ + θ  
θ
JA  
JC  
CA  
*0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).  
Table 12. 80960CA PQFP Package Thermal Characteristics  
Thermal Resistance — °C/Watt  
Airflow — ft./min (m/sec)  
Parameter  
0
50  
100  
200  
400  
600  
800  
(0)  
(0.25)  
(0.50)  
(1.01)  
(2.03)  
(3.04)  
(4.06)  
θ Junction-to-Case (Case Measured  
as shown in Figure 5)  
5
5
5
5
5
5
5
9
θ Case-to-Ambient (No Heatsink)  
19  
18  
17  
15  
12  
10  
NOTES:  
1. This table applies to 80960CA PQFP soldered directly to board.  
2. = θ + θ  
θ
JA  
JC  
CA  
θ
JC  
19  
80960CA-33, -25, -16  
3.5 Stepping Register Information  
3.6 Suggested Sources for 80960CA  
Accessories  
Upon reset, register g0 contains die stepping infor-  
mation. Figure 6 shows how g0 is configured. The  
most significant byte contains an ASCII 0. The upper  
middle byte contains an ASCII C. The lower middle  
byte contains an ASCII A. The least significant byte  
contains the stepping number in ASCII. g0 retains  
this information until it is overwritten by the user  
program.  
The following is a list of suggested sources for  
80960CA accessories. This is not an endorsement of  
any kind, nor is it a warranty of the performance of  
any of the listed products and/or companies.  
Sockets  
1. 3M Textool Test and Interconnection  
Products Department  
P.O. Box 2963  
Austin, TX 78769-2963  
ASCII  
00  
0
43  
C
41 Stepping Number  
DECIMAL  
A
Stepping Number  
LSB  
2. Augat, Inc.  
Interconnection Products Group  
33 Perry Avenue  
MSB  
P.O. box 779  
Attleboro, MA 02703  
(508) 699-7646  
Figure 6. Register g0  
Table 13 contains a cross reference of the number in  
the least significant byte of register g0 to the die  
stepping number.  
3. Concept Manufacturing, Inc.  
(Decoupling Sockets)  
41484 Christy Street  
Fremont, CA 94538  
Table 13. Die Stepping Cross Reference  
(415) 651-3804  
g0 Least Significant  
Die Stepping  
Byte  
Heatsinks/Fins  
1. Thermalloy, Inc.  
01  
02  
03  
04  
B
C-1  
2021 West Valley View Lane  
Dallas, TX 75234-8993  
(214) 243-4321  
C-2,C-3  
D
FAX: (214) 241-4656  
2. E G & G Division  
60 Audubon Road  
Wakefield, MA 01880  
(617) 245-5900  
20  
80960CA-33, -25, -16  
4.0 ELECTRICAL SPECIFICATIONS  
4.1 Absolute Maximum Ratings  
NOTICE: This is a production data sheet. The  
specifications are subject to change without notice.  
*WARNING: Stressing the device beyond the  
“Absolute Maximum Ratings” may cause perma-  
nent damage. These are stress ratings only. Opera-  
tion beyond the “Operating Conditions” is not  
recommended and extended exposure beyond the  
“Operating Conditions” may affect device reliability.  
Parameter  
Maximum Rating  
o
o
Storage Temperature ................................–65 C to +150 C  
o
o
Case Temperature Under Bias .................–65 C to +110 C  
Supply Voltage wrt. V ............................. –0.5V to + 6.5V  
SS  
Voltage on Other Pins wrt. V ...........–0.5V to V  
SS  
+ 0.5V  
CC  
4.2 Operating Conditions  
Table 14. Operating Conditions (80960CA-33, -25, -16)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
VCC  
Supply Voltage  
80960CA-33  
80960CA-25  
80960CA-16  
4.75  
4.50  
4.50  
5.25  
5.50  
5.50  
V
V
V
fCLK2x  
Input Clock Frequency (2-x Mode)  
Input Clock Frequency (1-x Mode)  
80960CA-33  
80960CA-25  
80960CA-16  
0
0
0
66.66  
50  
32  
MHz  
MHz  
MHz  
fCLK1x  
80960CA-33  
80960CA-25  
80960CA-16  
8
8
8
33.33  
25  
16  
MHz  
MHz  
MHz  
(1)  
TC  
Case Temperature Under Bias  
80960CA-33, -25, -16  
PGA Package  
196-Pin PQFP  
0
0
100  
100  
oC  
oC  
NOTES:  
1. When in the 1-x input clock mode, CLKIN is an input to an internal phase-locked loop and must maintain a minimum fre-  
quency of 8 MHz for proper processor operation. However, in the 1-x mode, CLKIN may still be stopped when the pro-  
cessor either is in a reset condition or is reset. If CLKIN is stopped, the specified RESET low time must be provided once  
CLKIN restarts and has stabilized.  
Low inductance capacitors and interconnects are  
recommended for best high frequency electrical  
4.3 Recommended Connections  
performance. Inductance can be reduced by short-  
ening the board traces between the processor and  
decoupling capacitors as much as possible. Capaci-  
tors specifically designed for PGA packages will offer  
the lowest possible inductance.  
Power and ground connections must be made to  
multiple VCC and VSS (GND) pins. Every 80960CA-  
based circuit board should include power (VCC) and  
ground (VSS) planes for power distribution. Every  
VCC pin must be connected to the power plane, and  
every VSS pin must be connected to the ground  
plane. Pins identified as “NC” must not be  
connected in the system.  
For reliable operation, always connect unused inputs  
to an appropriate signal level. In particular, any  
unused interrupt (XINT, NMI) or DMA (DREQ) input  
should be connected to VCC through  
a pull-up  
Liberal decoupling capacitance should be placed  
near the 80960CA. The processor can cause tran-  
sient power surges when its numerous output buffers  
transition, particularly when connected to large  
capacitive loads.  
resistor, as should BTERM if not used. Pull-up resis-  
tors should be in the in the range of 20 Kfor each  
pin tied high. If READY or HOLD are not used, the  
unused input should be connected to ground. N.C.  
pins must always remain unconnected. Refer to  
the i960 Cx Microprocessor User’s Manual (Order  
Number 270710) for more information.  
21  
80960CA-33, -25, -16  
4.4 DC Specifications  
Table 15. DC Characteristics  
(80960CA-33, -25, -16 under the conditions described in Section 4.2, Operating Conditions.)  
Symbol  
VIL  
Parameter  
Min  
– 0.3  
2.0  
Max  
+0.8  
Units  
V
Notes  
Input Low Voltage for all pins except RESET  
Input High Voltage for all pins except RESET  
Output Low Voltage  
VIH  
VCC + 0.3  
0.45  
V
VOL  
V
IOL = 5 mA  
VOH  
Output High Voltage  
IOH = –1 mA  
IOH = – 200 µA  
2.4  
VCC – 0.5  
V
V
VILR  
VIHR  
ILI1  
Input Low Voltage for RESET  
Input High Voltage for RESET  
– 0.3  
3.5  
1.5  
V
V
VCC + 0.3  
Input Leakage Current for each pin except:  
BTERM, ONCE, DREQ3:0, STEST,  
EOP3:0/TC3:0, NMI, XINT7:0, BOFF, READY,  
HOLD, CLKMODE  
±15  
µA  
µA  
0 VIN VCC (1)  
ILI2  
Input Leakage Current for:  
BTERM, ONCE, DREQ3:0, STEST,  
EOP3:0/TC3:0, NMI, XINT7:0, BOFF  
0
0
– 300  
V
IN = 0.45V (2)  
IN = 2.4V (3,7)  
ILI3  
Input Leakage Current for:  
READY, HOLD, CLKMODE  
500  
±15  
µA  
µA  
V
ILO  
ICC  
Output Leakage Current  
0.45 VOUT VCC  
Supply Current (80960CA-33):  
ICC Max  
ICCTyp  
900  
750  
mA  
mA  
(4)  
(5)  
ICC  
Supply Current (80960CA-25):  
ICC Max  
ICCTyp  
750  
600  
mA  
mA  
(4)  
(5)  
ICC  
Supply Current (80960CA-16):  
ICC Max  
ICCTyp  
550  
400  
mA  
mA  
(4)  
(5)  
IONCE  
CIN  
ONCE-mode Supply Current  
100  
mA  
Input Capacitance for:  
CLKIN, RESET, ONCE,  
READY, HOLD, DREQ3:0, BOFF,  
XINT7:0, NMI, BTERM, CLKMODE  
0
12  
12  
12  
pF  
pF  
pF  
FC = 1 MHz  
FC = 1 MHz (6)  
FC = 1 MHz  
COUT  
Output Capacitance of each output pin  
I/O Pin Capacitance  
CI/O  
NOTES:  
1. No pullup or pulldown.  
2. These pins have internal pullup resistors.  
3. These pins have internal pulldown resistors.  
4. Measured at worst case frequency, VCC and temperature, with device operating and outputs loaded to the test conditions described in Sec-  
tion 4.5.1, AC Test Conditions.  
5.  
ICC Typical is not tested.  
6. Output Capacitance is the capacitive load of a floating output.  
7. CLKMODE pin has a pulldown resistor only when ONCE pin is deasserted.  
22  
80960CA-33, -25, -16  
4.5 AC Specifications  
Table 16. 80960CA AC Characteristics (33 MHz)  
(80960CA-33 only, under the conditions described in Section 4.2, Operating Conditions and Section 4.5.1, AC Test  
Conditions.)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
Input Clock (1,9)  
T
T
CLKIN Frequency  
CLKIN Period  
0
66.66  
MHz  
F
In 1-x Mode (f  
In 2-x Mode (f  
)
CLK1x  
30  
15  
125  
ns  
ns  
(11)  
C
)
CLK2x  
T
T
CLKIN Period Stability  
CLKIN High Time  
In 1-x Mode (f  
)
CLK1x  
±0.1%  
(12)  
(11)  
CS  
CH  
In 1-x Mode (f  
In 2-x Mode (f  
)
)
6
6
62.5  
ns  
ns  
CLK1x  
CLK2x  
T
CLKIN Low Time  
In 1-x Mode (f  
In 2-x Mode (f  
)
CLK1x  
CLK2x  
6
6
62.5  
ns  
ns  
(11)  
CL  
)
T
T
CLKIN Rise Time  
CLKIN Fall Time  
0
0
6
6
ns  
ns  
CR  
CF  
Output Clocks (1,8)  
T
CLKIN to PCLK2:1 Delay  
In 1-x Mode (f  
In 2-x Mode (f  
)
CLK1x  
CLK2x  
– 2  
2
2
25  
ns  
ns  
(3,12)  
(3)  
CP  
)
T
PCLK2:1 Period  
In 1-x Mode (f  
In 2-x Mode (f  
)
T
2T  
ns  
ns  
(12)  
(3)  
CLK1x  
C
C
)
CLK2x  
T
T
T
T
PCLK2:1 High Time  
PCLK2:1 Low Time  
PCLK2:1 Rise Time  
PCLK2:1 Fall Time  
(T/2) – 2  
T/2  
T/2  
4
ns  
ns  
ns  
ns  
(12)  
(12)  
(3)  
PH  
PL  
PR  
PF  
(T/2) – 2  
1
1
4
(3)  
Synchronous Outputs (8)  
T
T
Output Valid Delay, Output Hold  
(6,10)  
OH  
OV  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
, T  
A31:2  
BE3:0  
ADS  
3
3
6
3
4
5
3
4
14  
16  
18  
18  
16  
16  
16  
16  
16  
18  
16  
T/2 + 14  
14  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OH1 OV1  
, T  
OH2 OV2  
, T  
OH3 OV3  
, T  
W/R  
OH4 OV4  
, T  
D/C, SUP, DMA  
BLAST, WAIT  
DEN  
HOLDA, BREQ  
LOCK  
DACK3:0  
D31:0  
DT/R  
FAIL  
EOP3:0/TC3:0  
OH5 OV5  
, T  
OH6 OV6  
, T  
OH7 OV7  
, T  
OH8 OV8  
, T  
4
4
3
OH9 OV9  
, T  
OH10 OV10  
, T  
OH11 OV11  
, T  
T/2 + 3  
2
3
OH12 OV12  
, T  
OH13 OV13  
, T  
OH14 OV14  
18  
(6,10)  
(6)  
T
Output Float for all outputs  
3
22  
ns  
OF  
Synchronous Inputs (1,9,10)  
T
Input Setup  
IS  
T
T
T
T
D31:0  
BOFF  
BTERM/READY  
3
17  
7
ns  
ns  
ns  
ns  
IS1  
IS2  
IS3  
IS4  
HOLD  
7
T
Input Hold  
IH  
T
T
T
T
D31:0  
BOFF  
BTERM/READY  
5
5
2
3
ns  
ns  
ns  
ns  
IH1  
IH2  
IH3  
IH4  
HOLD  
23  
80960CA-33, -25, -16  
Table 16. 80960CA AC Characteristics (33 MHz) (Continued)  
(80960CA-33 only, under the conditions described in Section 4.2, Operating Conditions and Section 4.5.1, AC Test  
Conditions.)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
Relative Output Timings (1,2,3,8)  
T
A31:2 Valid to ADS Rising  
T – 4  
T + 4  
ns  
AVSH1  
T
BE3:0, W/R, SUP, D/C,  
AVSH2  
DMA, DACK3:0 Valid to ADS Rising  
T – 6  
T – 4  
T + 6  
T + 4  
ns  
ns  
T
A31:2 Valid to DEN Falling  
AVEL1  
T
BE3:0, W/R, SUP, INST,  
AVEL2  
DMA, DACK3:0 Valid to DEN Falling  
T – 6  
T + 6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
T
T
T
T
T
T
WAIT Falling to Output Data Valid  
Output Data Valid to WAIT Rising  
WAIT Falling to WAIT Rising  
Output Data Hold after WAIT Rising  
DT/R Hold after DEN High  
± 4  
NLQV  
DVNH  
NLNH  
NHQX  
EHTV  
TVEL  
N*T – 4  
N*T + 4  
(4)  
N*T ± 4  
(4)  
(5)  
(6)  
(N+1)*T–8  
T/2 – 7  
(N+1)*T+6  
DT/R Valid to DEN Falling  
T/2 – 4  
Relative Input Timings (1,2,3)  
T
T
T
T
T
T
T
T
RESET Input Setup (2-x Clock Mode)  
RESET Input Hold (2-x Clock Mode)  
DREQ3:0 Input Setup  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(13)  
(13)  
(7)  
IS5  
IH5  
IS6  
IH6  
IS7  
IH7  
IS8  
IH8  
5
12  
DREQ3:0 Input Hold  
7
(7)  
XINT7:0, NMI Input Setup  
7
(15)  
(15)  
(14)  
(14)  
XINT7:0, NMI Input Hold  
3
3
RESET Input Setup (1-x Clock Mode)  
RESET Input Hold (1-x Clock Mode)  
T/4 + 1  
NOTES:  
1. See Section 4.5.2, AC Timing Waveforms for waveforms and definitions.  
2. See Figure 16 for capacitive derating information for output delays and hold times.  
3. See Figure 17 for capacitive derating information for rise and fall times.  
4. Where N is the number of NRAD, NRDD, NWAD or NWDD wait states that are programmed in the Bus Controller Region Table. WAIT never goes  
active when there are no wait states in an access.  
5. N = Number of wait states inserted with READY.  
6. Output Data and/or DT/R may be driven indefinitely following a cycle if there is no subsequent bus activity.  
7. Since asynchronous inputs are synchronized internally by the 80960CA, they have no required setup or hold times to be recognized and for  
proper operation. However, to guarantee recognition of the input at a particular edge of PCLK2:1, the setup times shown must be met. Asyn-  
chronous inputs must be active for at least two consecutive PCLK2:1 rising edges to be seen by the processor.  
8. These specifications are guaranteed by the processor.  
9. These specifications must be met by the system for proper operation of the processor.  
10. This timing is dependent upon the loading of PCLK2:1. Use the derating curves of Section 4.5.3, Derating Curves to adjust the timing for  
PCLK2:1 loading.  
11. In the 1-x input clock mode, the maximum input clock period is limited to 125 ns while the processor is operating. When the processor is in  
reset, the input clock may stop even in 1-x mode.  
12. When in the 1-x input clock mode, these specifications assume a stable input clock with a period variation of less than ± 0.1% between adja-  
cent cycles.  
13. In 2-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation. However, to guarantee  
the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and hold times to the falling edge of the  
CLKIN. (See Figure 22.)  
14. In 1-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation. However, to guarantee  
the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and hold times to the rising edge of the CLKIN.  
(See Figure 23.)  
15. The interrupt pins are synchronized internally by the 80960CA. They have no required setup or hold times for proper operation. These pins  
are sampled by the interrupt controller every other clock and must be active for at least three consecutive PCLK2:1 rising edges when assert-  
ing them asynchronously. To guarantee recognition at a particular clock edge, the setup and hold times shown must be met for two consecu-  
tive PCLK2:1 rising edges.  
24  
80960CA-33, -25, -16  
Table 17. 80960CA AC Characteristics (25 MHz)  
(80960CA-25 only, under conditions described in Section 4.2, Operating Conditions and Section 4.5.1, AC Test  
Conditions.)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
Input Clock (1,9)  
T
T
CLKIN Frequency  
CLKIN Period  
0
50  
MHz  
F
In 1-x Mode (f  
In 2-x Mode (f  
)
CLK1x  
CLK2x  
40  
20  
125  
ns  
ns  
(11)  
C
)
T
T
CLKIN Period Stability  
CLKIN High Time  
In 1-x Mode (f  
)
CLK1x  
±0.1%  
(12)  
(11)  
CS  
CH  
In 1-x Mode (f  
In 2-x Mode (f  
)
)
8
8
62.5  
ns  
ns  
CLK1x  
CLK2x  
T
CLKIN Low Time  
In 1-x Mode (f  
In 2-x Mode (f  
)
CLK1x  
CLK2x  
8
8
62.5  
ns  
ns  
(11)  
CL  
)
T
T
CLKIN Rise Time  
CLKIN Fall Time  
0
0
6
6
ns  
ns  
CR  
CF  
Output Clocks (1,8)  
T
CLKIN to PCLK2:1 Delay  
In 1-x Mode (f  
In 2-x Mode (f  
)
CLK1x  
CLK2x  
– 2  
2
2
25  
ns  
ns  
(3,12)  
(3)  
CP  
)
T
PCLK2:1 Period  
In 1-x Mode (f  
In 2-x Mode (f  
)
T
2T  
ns  
ns  
(12)  
(3)  
CLK1x  
C
C
)
CLK2x  
T
T
T
T
PCLK2:1 High Time  
PCLK2:1 Low Time  
PCLK2:1 Rise Time  
PCLK2:1 Fall Time  
(T/2) – 3  
T/2  
T/2  
4
ns  
ns  
ns  
ns  
(12)  
(12)  
(3)  
PH  
PL  
PR  
PF  
(T/2) – 3  
1
1
4
(3)  
Synchronous Outputs (8)  
T
T
Output Valid Delay, Output Hold  
(6,10)  
OH  
OV  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
, T  
A31:2  
BE3:0  
ADS  
3
3
6
3
4
5
3
4
16  
18  
20  
20  
18  
18  
18  
18  
18  
20  
18  
T/2 + 16  
16  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OH1 OV1  
, T  
OH2 OV2  
, T  
OH3 OV3  
, T  
W/R  
OH4 OV4  
, T  
D/C, SUP, DMA  
BLAST, WAIT  
DEN  
HOLDA, BREQ  
LOCK  
DACK3:0  
D31:0  
DT/R  
FAIL  
EOP3:0/TC3:0  
OH5 OV5  
, T  
OH6 OV6  
, T  
OH7 OV7  
, T  
OH8 OV8  
, T  
4
4
3
OH9 OV9  
, T  
OH10 OV10  
, T  
OH11 OV11  
, T  
OH12 OV12  
T/2 + 3  
2
3
, T  
OH13 OV13  
, T  
(6,10)  
(6)  
OH14 OV14  
T
Output Float for all outputs  
3
22  
ns  
OF  
Synchronous Inputs (1,9,10)  
T
Input Setup  
IS  
T
T
T
T
D31:0  
BOFF  
BTERM/READY  
HOLD  
5
19  
9
ns  
ns  
ns  
ns  
IS1  
IS2  
IS3  
IS4  
9
T
Input Hold  
IH  
T
T
T
T
D31:0  
BOFF  
BTERM/READY  
HOLD  
5
7
2
5
ns  
ns  
ns  
ns  
IH1  
IH2  
IH3  
IH4  
25  
80960CA-33, -25, -16  
Table 17. 80960CA AC Characteristics (25 MHz) (Continued)  
(80960CA-25 only, under conditions described in Section 4.2, Operating Conditions and Section 4.5.1, AC Test  
Conditions.)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
Relative Output Timings (1,2,3,8)  
T
A31:2 Valid to ADS Rising  
T – 4  
T + 4  
ns  
AVSH1  
T
BE3:0, W/R, SUP, D/C,  
AVSH2  
DMA, DACK3:0 Valid to ADS Rising  
T – 6  
T – 4  
T + 6  
T + 4  
ns  
ns  
T
A31:2 Valid to DEN Falling  
AVEL1  
T
BE3:0, W/R, SUP, INST,  
AVEL2  
DMA, DACK3:0 Valid to DEN Falling  
T – 6  
T + 6  
ns  
ns  
ns  
ns  
T
T
T
T
T
T
WAIT Falling to Output Data Valid  
Output Data Valid to WAIT Rising  
WAIT Falling to WAIT Rising  
Output Data Hold after WAIT Rising  
DT/R Hold after DEN High  
± 4  
NLQV  
DVNH  
NLNH  
NHQX  
EHTV  
TVEL  
N*T – 4  
N*T + 4  
(4)  
N*T ± 4  
(N+1)*T–8  
(4)  
(5)  
(6)  
(N+1)*T+6 ns  
T/2 – 7  
T/2 – 4  
ns  
ns  
DT/R Valid to DEN Falling  
Relative Input Timings (1,2,3)  
T
T
T
T
T
T
T
T
RESET Input Setup (2-x Clock Mode)  
RESET Input Hold (2-x Clock Mode)  
DREQ3:0 Input Setup  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(13)  
(13)  
(7)  
IS5  
IH5  
IS6  
IH6  
IS7  
IH7  
IS8  
IH8  
7
14  
DREQ3:0 Input Hold  
9
(7)  
XINT7:0, NMI Input Setup  
9
(15)  
(15)  
(14)  
(14)  
XINT7:0, NMI Input Hold  
5
3
RESET Input Setup (1-x Clock Mode)  
RESET Input Hold (1-x Clock Mode)  
T/4 + 1  
NOTES:  
1. See Section 4.5.2, AC Timing Waveforms for waveforms and definitions.  
2. See Figure 16 for capacitive derating information for output delays and hold times.  
3. See Figure 17 for capacitive derating information for rise and fall times.  
4. Where N is the number of NRAD, NRDD, NWAD or NWDD wait states that are programmed in the Bus Controller Region Table. WAIT never goes  
active when there are no wait states in an access.  
5. N = Number of wait states inserted with READY.  
6. Output Data and/or DT/R may be driven indefinitely following a cycle if there is no subsequent bus activity.  
7. Since asynchronous inputs are synchronized internally by the 80960CA, they have no required setup or hold times to be recognized and for  
proper operation. However, to guarantee recognition of the input at a particular edge of PCLK2:1, the setup times shown must be met. Asyn-  
chronous inputs must be active for at least two consecutive PCLK2:1 rising edges to be seen by the processor.  
8. These specifications are guaranteed by the processor.  
9. These specifications must be met by the system for proper operation of the processor.  
10. This timing is dependent upon the loading of PCLK2:1. Use the derating curves of Section 4.5.3, Derating Curves to adjust the timing for  
PCLK2:1 loading.  
11. In the 1-x input clock mode, the maximum input clock period is limited to 125 ns while the processor is operating. When the processor is in  
reset, the input clock may stop even in 1-x mode.  
12. When in the 1-x input clock mode, these specifications assume a stable input clock with a period variation of less than ± 0.1% between adja-  
cent cycles.  
13. In 2-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation. However, to guarantee  
the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and hold times to the falling edge of the  
CLKIN. (See Figure 22.)  
14. In 1-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation. However, to guarantee  
the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and hold times to the rising edge of the CLKIN.  
(See Figure 23.)  
15. The interrupt pins are synchronized internally by the 80960CA. They have no required setup or hold times for proper operation. These pins  
are sampled by the interrupt controller every other clock and must be active for at least three consecutive PCLK2:1 rising edges when assert-  
ing them asynchronously. To guarantee recognition at a particular clock edge, the setup and hold times shown must be met for two consecu-  
tive PCLK2:1 rising edges.  
26  
80960CA-33, -25, -16  
Table 18. 80960CA AC Characteristics (16 MHz)  
(80960CA-16 only, under conditions described in Section 4.2, Operating Conditions and Section 4.5.1, AC Test Conditions.)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
Input Clock (1,9)  
T
T
CLKIN Frequency  
CLKIN Period  
0
32  
MHz  
F
In 1-x Mode (f  
In 2-x Mode (f  
)
CLK1x  
CLK2x  
62.5  
31.25  
125  
ns  
ns  
(11)  
C
)
T
T
CLKIN Period Stability  
CLKIN High Time  
In 1-x Mode (f  
)
CLK1x  
±0.1%  
(12)  
(11)  
CS  
CH  
In 1-x Mode (f  
In 2-x Mode (f  
)
)
10  
10  
62.5  
ns  
ns  
CLK1x  
CLK2x  
T
CLKIN Low Time  
In 1-x Mode (f  
In 2-x Mode (f  
)
CLK1x  
CLK2x  
10  
10  
62.5  
ns  
ns  
(11)  
CL  
)
T
T
CLKIN Rise Time  
CLKIN Fall Time  
0
0
6
6
ns  
ns  
CR  
CF  
Output Clocks (1,8)  
T
CLKIN to PCLK2:1 Delay  
In 1-x Mode (f  
In 2-x Mode (f  
)
CLK1x  
CLK2x  
– 2  
2
2
25  
ns  
ns  
(3,12)  
(3)  
CP  
)
T
PCLK2:1 Period  
In 1-x Mode (f  
In 2-x Mode (f  
)
T
2T  
ns  
ns  
(12)  
(3)  
CLK1x  
C
C
)
CLK2x  
T
T
T
T
PCLK2:1 High Time  
PCLK2:1 Low Time  
PCLK2:1 Rise Time  
PCLK2:1 Fall Time  
(T/2) – 4  
T/2  
T/2  
4
ns  
ns  
ns  
ns  
(12)  
(12)  
(3)  
PH  
PL  
PR  
PF  
(T/2) – 4  
1
1
4
(3)  
Synchronous Outputs (8)  
T
T
Output Valid Delay, Output Hold  
, T  
(6,10)  
OH  
OV  
T
A31:2  
BE3:0  
ADS  
3
3
6
3
4
5
3
4
18  
20  
22  
22  
20  
20  
20  
20  
20  
22  
20  
T/2 + 18  
18  
22  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OH1 OV1  
T
, T  
OH2 OV2  
, T  
T
OH3 OV3  
T
, T  
, T  
W/R  
OH4 OV4  
T
D/C, SUP, DMA  
BLAST, WAIT  
DEN  
OH5 OV5  
, T  
T
OH6 OV6  
T
, T  
, T  
OH7 OV7  
T
HOLDA, BREQ  
OH8 OV8  
, T  
T
T
LOCK  
DACK3:0  
D31:0  
4
4
3
OH9 OV9  
, T  
, T  
OH10 OV10  
T
OH11 OV11  
, T  
T
DT/R  
FAIL  
EOP3:0/TC3:0  
T/2 + 3  
2
3
OH12 OV12  
, T  
T
OH13 OV13  
T
, T  
(6,10)  
(6)  
OH14 OV14  
T
Output Float for all outputs  
3
22  
ns  
OF  
Synchronous Inputs (1,9,10)  
T
Input Setup  
IS  
T
T
T
T
D31:0  
BOFF  
BTERM/READY  
HOLD  
5
21  
9
ns  
ns  
ns  
ns  
IS1  
IS2  
IS3  
IS4  
9
T
Input Hold  
IH  
T
T
T
T
D31:0  
BOFF  
BTERM/READY  
HOLD  
5
7
2
5
ns  
ns  
ns  
ns  
IH1  
IH2  
IH3  
IH4  
27  
80960CA-33, -25, -16  
Table 18. 80960CA AC Characteristics (16 MHz) (Continued)  
(80960CA-16 only, under conditions described in Section 4.2, Operating Conditions and Section 4.5.1, AC Test Conditions.)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
Relative Output Timings (1,2,3,8)  
T
A31:2 Valid to ADS Rising  
BE3:0, W/R, SUP, D/C,  
DMA, DACK3:0 Valid to ADS Rising  
T – 4  
T + 4  
ns  
AVSH1  
T
AVSH2  
T – 6  
T – 6  
T + 6  
T + 6  
ns  
ns  
T
A31:2 Valid to DEN Falling  
AVEL1  
T
BE3:0, W/R, SUP, INST,  
AVEL2  
DMA, DACK3:0 Valid to DEN Falling  
T – 6  
T + 6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
T
T
T
T
T
T
WAIT Falling to Output Data Valid  
Output Data Valid to WAIT Rising  
WAIT Falling to WAIT Rising  
Output Data Hold after WAIT Rising  
DT/R Hold after DEN High  
± 4  
NLQV  
DVNH  
NLNH  
NHQX  
EHTV  
TVEL  
N*T – 4  
N*T + 4  
(4)  
N*T ± 4  
(4)  
(5)  
(6)  
(N+1)*T–8  
(N+1)*T+6  
T/2 – 7  
T/2 – 4  
DT/R Valid to DEN Falling  
Relative Input Timings (1,2,3)  
T
T
T
T
T
T
T
T
RESET Input Setup (2-x Clock Mode)  
RESET Input Hold (2-x Clock Mode)  
DREQ3:0 Input Setup  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(13)  
(13)  
(7)  
IS5  
IH5  
IS6  
IH6  
IS7  
IH7  
IS8  
IH8  
9
16  
DREQ3:0 Input Hold  
11  
(7)  
XINT7:0, NMI Input Setup  
9
(15)  
(15)  
(14)  
(14)  
XINT7:0, NMI Input Hold  
5
3
RESET Input Setup (1-x Clock Mode)  
RESET Input Hold (1-x Clock Mode)  
T/4 + 1  
NOTES:  
1. See Section 4.5.2, AC Timing Waveforms for waveforms and definitions.  
2. See Figure 16 for capacitive derating information for output delays and hold times.  
3. See Figure 17 for capacitive derating information for rise and fall times.  
4. Where N is the number of NRAD, NRDD, NWAD or NWDD wait states that are programmed in the Bus Controller Region Table. WAIT never goes  
active when there are no wait states in an access.  
5. N = Number of wait states inserted with READY.  
6. Output Data and/or DT/R may be driven indefinitely following a cycle if there is no subsequent bus activity.  
7. Since asynchronous inputs are synchronized internally by the 80960CA, they have no required setup or hold times to be recognized and for  
proper operation. However, to guarantee recognition of the input at a particular edge of PCLK2:1, the setup times shown must be met. Asyn-  
chronous inputs must be active for at least two consecutive PCLK2:1 rising edges to be seen by the processor.  
8. These specifications are guaranteed by the processor.  
9. These specifications must be met by the system for proper operation of the processor.  
10. This timing is dependent upon the loading of PCLK2:1. Use the derating curves of Section 4.5.3, Derating Curves to adjust the timing for  
PCLK2:1 loading.  
11. In the 1-x input clock mode, the maximum input clock period is limited to 125 ns while the processor is operating. When the processor is in  
reset, the input clock may stop even in 1-x mode.  
12. When in the 1-x input clock mode, these specifications assume a stable input clock with a period variation of less than ± 0.1% between adja-  
cent cycles.  
13. In 2-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation. However, to guarantee  
the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and hold times to the falling edge of the CLKIN.  
(See Figure 22.)  
14. In 1-x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation. However, to guarantee  
the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and hold times to the rising edge of the CLKIN.  
(See Figure 23.)  
15. The interrupt pins are synchronized internally by the 80960CA. They have no required setup or hold times for proper operation. These pins are  
sampled by the interrupt controller every other clock and must be active for at least three consecutive PCLK2:1 rising edges when asserting  
them asynchronously. To guarantee recognition at a particular clock edge, the setup and hold times shown must be met for two consecutive  
PCLK2:1 rising edges.  
28  
80960CA-33, -25, -16  
4.5.1 AC Test Conditions  
The AC Specifications in Section 4.5 are tested with  
the 50 pF load shown in Figure 7. Figure 16 shows  
how timings vary with load capacitance.  
Output Pin  
C
L
Specifications are measured at the 1.5V crossing  
point, unless otherwise indicated. Input waveforms  
are assumed to have a rise and fall time of 2 ns  
from 0.8V to 2.0V. See Section 4.5.2, AC Timing  
Waveforms for AC spec definitions, test points and  
illustrations.  
C
= 50 pF for all signals  
L
F_CX008A  
Figure 7. AC Test Load  
4.5.2 AC Timing Waveforms  
1.5V  
CLKIN  
T
CP  
T
2.4V  
1.5V  
0.45V  
1.5V  
PCLK2:1  
T
T
PL  
PH  
T
PF  
T
PR  
F_CX009A  
Figure 8. Input and Output Clocks Waveform  
T
T
CR  
CF  
2.0V  
1.5V  
0.8V  
T
CH  
T
CL  
T
C
F_CX010A  
Figure 9. CLKIN Waveform  
29  
80960CA-33, -25, -16  
1.5V  
Min  
PCLK2:1  
1.5V  
T
OV  
Max  
T
OH  
Outputs  
Outputs  
1.5V  
1.5V  
T
OF  
Max  
1.5V  
Min  
1.5V  
F_CX011A  
Figure 10. Output Delay and Float Waveform  
PCLK2:1  
1.5V  
1.5V  
1.5V  
T
T
IH  
IS  
Min  
Max  
Inputs:  
(READY, HOLD, BTERM,  
BOFF, DREQ3:0,  
Valid  
D31:0 on reads)  
F_CX012A  
Figure 11. Input Setup and Hold Waveform  
T
T
- OUTPUT DELAY - The maximum output delay is referred to  
OV  
OH  
as the Output Valid Delay (T ). The minimum output delay is  
OV  
referred to as the Output Hold (T ).  
OH  
T
- OUTPUT FLOAT DELAY - The output float condition occurs  
OF  
when the maximum output current becomes less that I in magnitude.  
LO  
T
T
- INPUT SETUP AND HOLD - The input setup and hold requirements  
specify the sampling window during which synchronous inputs must be  
stable for correct processor operation.  
IS  
IH  
30  
80960CA-33, -25, -16  
PCLK2:1  
1.5V  
1.5V  
1.5V  
T
IH  
T
IS  
Min  
1.5V  
Min  
1.5V  
NMI, XINT7:0  
Valid  
F_CX013A  
Figure 12. NMI, XINT7:0 Input Setup and Hold Waveform  
1.5V  
PCLK2:1  
Outputs:  
1.5V  
OV  
1.5V  
OF  
T
T
Max  
Max  
Min  
Min  
A31:2, D31:0, BE3:0,  
ADS, BLAST, WAIT, W/R,  
DT/R, DEN, LOCK,  
1.5V Valid  
Valid  
D/C, SUP, DMA  
T
T
T
IH  
IS  
Min  
IS  
T
IH  
Min  
Min  
Min  
1.5V  
1.5V  
1.5V  
HOLD  
T
T
OV  
OV  
Min Max  
Min Max  
HOLDA  
1.5V  
1.5V  
1.5V  
T
T
- OUTPUT DELAY - The maximum output delay is referred to  
OV  
OH  
as the Output Valid Delay (T ). The minimum output delay is  
OV  
referred to as the Output Hold (T ).  
OH  
T
- OUTPUT FLOAT DELAY - The output float condition occurs  
OF  
when the maximum output current becomes less that I in magnitude.  
LO  
T
T
- INPUT SETUP AND HOLD - The input setup and hold requirements  
specify the sampling window during which synchronous inputs must be  
stable for correct processor operation.  
IS  
IH  
F_CX014A  
Figure 13. Hold Acknowledge Timings  
31  
80960CA-33, -25, -16  
1.5V  
PCLK2:1  
1.5V  
OV  
1.5V  
T
T
OF  
Max  
Min  
Max  
Min  
Outputs:  
A31:2, D31:0, BE3:0,  
1.5V Valid  
1.5V  
Valid  
ADS, BLAST, WAIT, W/R,  
DT/R, DEN, LOCK,  
D/C, SUP, DMA  
1.5V  
T
T
IS  
IS  
T
T
IH  
IH  
BOFF  
1.5V  
1.5V  
1.5V  
F_CX015A  
Figure 14. Bus Backoff (BOFF) Timings  
32  
80960CA-33, -25, -16  
1.5V  
PCLK2:1  
ADS  
1.5V  
1.5V  
1.5V  
1.5V  
1.5V  
T
AVSH  
A31:2, BE3:0,  
W/R, LOCK,  
1.5V  
SUP, D/C, DMA  
1.5V  
Out  
1.5V  
D31:0  
T
NLQV  
1.5V  
T
T
NHQX  
DVHN  
1.5V  
WAIT  
DT/R  
T
T
AVEL  
NLNH  
1.5V  
T
T
VEL  
EHTV  
DEN  
1.5V  
1.5V  
V
V
IH  
IL  
In  
D31:0  
F_CX016A  
Figure 15. Relative Timings Waveforms  
4.5.3 Derating Curves  
nom + 10  
All outputs except: LOCK,  
DMA, SUP, BREQ, DACK3:0,  
EOP3:0/TC3:0, FAIL  
nom + 5  
LOCK, DMA, SUP, BREQ,  
DACK3:0, EOP3:0/TC3:0, FAIL  
nom  
50  
100  
150  
C
(pF)  
L
Note: PCLK Load = 50pF  
F_CX017A  
Figure 16. Output Delay or Hold vs. Load Capacitance  
33  
80960CA-33, -25, -16  
0.8V to 2.0V  
10  
8
0.8V to 2.0V  
10  
8
6
6
4
2
4
2
50  
100  
C
150  
50  
100  
C
150  
(pF)  
(pF)  
L
L
a) All outputs except: LOCK, DMA, SUP, HOLDA, BREQ  
DACK3:0, EOP3:0/TC3:0, FAIL  
b) LOCK, DMA, SUP, HOLDA, BREQ, DACK3:0,  
EOP3:0/TC3:0, FAIL  
F_CX019A  
Figure 17. Rise and Fall Time Derating at Highest Operating Temperature and Minimum VCC  
900  
T
= 100° C  
C
T
= 0° C  
C
0
33  
0
f
(MHz)  
PCLK  
I
- I  
CC CC  
under test conditions  
Figure 18. ICC vs. Frequency and Temperature  
F_CX020A  
34  
80960CA-33, -25, -16  
Table 20 lists the condition of each processor output  
pin while HOLDA is asserted (low).  
5.0 RESET, BACKOFF AND HOLD  
ACKNOWLEDGE  
Table 20. Hold Acknowledge  
and Backoff Conditions  
Table 19 lists the condition of each processor output  
pin while RESET is asserted (low).  
Pins  
State During HOLDA  
Floating  
Table 19. Reset Conditions  
A31:2  
D31:0  
State During Reset  
(HOLDA inactive)1  
Floating  
Pins  
BE3:0  
W/R  
Floating  
A31:2  
D31:0  
BE3:0  
W/R  
Floating  
Floating  
Floating  
ADS  
Floating  
Driven high (Inactive)  
Driven low (Read)  
Driven high (Inactive)  
Driven high (Inactive)  
Driven low (Active)  
Driven low (Receive)  
Driven high (Inactive)  
Driven high (Inactive)  
Driven low (Inactive)  
Floating  
WAIT  
Floating  
BLAST  
DT/R  
Floating  
ADS  
Floating  
WAIT  
DEN  
Floating  
BLAST  
DT/R  
LOCK  
BREQ  
D/C  
Floating  
Driven (High or low)  
Floating  
DEN  
LOCK  
BREQ  
D/C  
DMA  
Floating  
SUP  
Floating  
FAIL  
Driven high (Inactive)  
Driven high (Inactive)  
Driven (If output)  
DMA  
Floating  
DACK3:0  
EOP3:0/TC3:0  
SUP  
Floating  
FAIL  
Driven low (Active)  
Driven high (Inactive)  
Floating (Set to input mode)  
DACK3:0  
EOP3:0/TC3:0  
NOTES:  
1. With regard to bus output pin state only, the Hold  
Acknowledge state takes precedence over the reset  
state. Although asserting the RESET pin will internally  
reset the processor, the processor’s bus output pins  
will not enter the reset state if it has granted Hold  
Acknowledge to a previous HOLD request (HOLDA is  
active). Furthermore, the processor will grant new  
HOLD requests and enter the Hold Acknowledge state  
even while in reset.  
For example, if HOLDA is inactive and the processor is  
in the reset state, then HOLD is asserted, the proces-  
sor’s bus pins enter the Hold Acknowledge state and  
HOLDA is granted. The processor will not be able to  
perform memory accesses until the HOLD request is  
removed, even if the RESET pin is brought high. This  
operation is provided to simplify boot-up synchroniza-  
tion among multiple processors sharing the same bus.  
35  
80960CA-33, -25, -16  
6.0 BUS WAVEFORMS  
Figure 19. Cold Reset Waveform  
36  
80960CA-33, -25, -16  
Figure 20. Warm Reset Waveform  
37  
80960CA-33, -25, -16  
Figure 21. Entering the ONCE State  
38  
80960CA-33, -25, -16  
1.5V  
1.5V  
1.5V  
1.5V  
CLKIN  
T
T
IS  
IH  
RESET  
1.5V  
1.5V  
PCLK2:1  
(Case 1)  
1.5V  
1.5V  
1.5V  
Max  
Min  
Min  
Max  
Max  
Min  
T
CP  
T
CP  
T
CP  
PCLK2:1  
(Case 2)  
1.5V  
1.5V  
1.5V  
SYNC  
Note: Case 1 and Case 2 show two possible polarities of PCLK2:1  
F_CX024A  
Figure 22. Clock Synchronization in the 2-x Clock Mode  
2x CLK  
CLKIN  
1.5V  
1.5V  
T
T
IH  
IS  
RESET  
1.5V  
Note: In 1x clock mode, the RESET pin is actually sampled on the falling edge of 2xCLK. 2xCLK is an internal signal  
generated by the PLL and is not available on an external pin. Therefore, RESET is specified relative to the rising  
edge of CLKIN. The RESET pin is sampled when PCLK is high.  
F_CX025A  
Figure 23. Clock Synchronization in the 1-x Clock Mode  
39  
80960CA-33, -25, -16  
External  
Ready  
Pipe-  
Lining  
Byte  
Order  
Bus  
Width  
Burst  
0
Function  
NWDD  
18-17  
NWAD  
16-12  
NXDA  
11-10  
NRDD  
9-8  
NRAD  
7-3  
Control  
Bit  
22  
21  
20-19  
2
1
31-23  
0
0..0  
0
0
X
xx  
0
X
x
X
xx  
0
Disabled  
0
X
xx  
0
00  
Disabled  
0
OFF  
0
Value  
00000  
00000  
A
D
A
D
A
D
PCLK  
ADS  
A31:4, SUP,  
DMA, D/C,  
Valid  
Valid  
Valid  
BE3:0, LOCK  
W/R  
BLAST  
DT/R  
DEN  
A3:2  
Valid  
Valid  
Valid  
WAIT  
D31:0  
In  
Out  
In  
F_CX026A  
Figure 24. Non-Burst, Non-Pipelined Requests Without Wait States  
40  
80960CA-33, -25, -16  
External  
Ready  
Pipe-  
Lining  
Byte  
Order  
Bus  
Width  
Burst  
0
Function  
Bit  
NWDD  
18-17  
NWAD  
16-12  
NXDA  
11-10  
NRDD  
9-8  
NRAD  
7-3  
Control  
22  
21  
20-19  
2
1
31-23  
0
0..0  
0
0
X
xx  
3
X
x
X
xx  
X
xxxxx  
Disabled  
0
X
xx  
1
01  
Disabled  
0
OFF  
0
Value  
00011  
A
3
A
2
1
D
1
PCLK  
ADS  
A31:2, BE3:0  
Valid  
W/R  
BLAST  
DT/R  
DEN  
DMA, D/C,  
SUP, LOCK  
Valid  
WAIT  
D31:0  
In  
F_CX027A  
Figure 25. Non-Burst, Non-Pipelined Read Request With Wait States  
41  
80960CA-33, -25, -16  
External  
Ready  
Pipe-  
Lining  
Byte  
Order  
Bus  
Width  
Burst  
0
NWDD  
18-17  
NWAD  
16-12  
NXDA  
11-10  
NRDD  
9-8  
NRAD  
7-3  
Function  
Bit  
Control  
22  
21  
20-19  
2
1
31-23  
0
0..0  
0
0
X
xx  
X
X
x
X
xx  
3
Disabled  
0
X
xx  
1
01  
Disabled  
0
OFF  
0
Value  
xxxxxx  
00011  
A
3
2
1
D
1
A
PCLK  
ADS  
A31:2,  
BE3:0  
Valid  
W/R  
BLAST  
DT/R  
DEN  
SUP, DMA,  
D/C, LOCK  
Valid  
WAIT  
D31:0  
Out  
F_CX028A  
Figure 26. Non-Burst, Non-Pipelined Write Request With Wait States  
42  
80960CA-33, -25, -16  
External  
Ready  
Pipe-  
Lining  
Byte  
Order  
Bus  
Width  
Burst  
0
Function  
Bit  
NWDD  
18-17  
NWAD  
16-12  
NXDA  
11-10  
NRDD  
9-8  
NRAD  
7-3  
Control  
22  
21  
20-19  
2
1
31-23  
0
0..0  
0
0
0
00  
0
X
x
X
xx  
X
xxxxx  
Enabled  
1
32-Bit  
10  
0
00  
Disabled  
0
OFF  
0
Value  
00000  
A
D
D
D
D
A
PCLK  
ADS  
A31:4, SUP,  
DMA, D/C,  
Valid  
BE3:0, LOCK  
W/R  
BLAST  
DT/R  
DEN  
A3:2  
00  
01  
10  
11  
WAIT  
D31:0  
In1  
In2  
In3  
In0  
F_CX029A  
Figure 27. Burst, Non-Pipelined Read Request Without Wait States, 32-Bit Bus  
43  
80960CA-33, -25, -16  
External  
Ready  
Pipe-  
Lining  
Byte  
Order  
Bus  
Width  
Function  
Burst  
0
NWDD  
18-17  
NWAD  
16-12  
NXDA  
11-10  
NRDD  
9-8  
NRAD  
7-3  
Control  
Bit  
22  
21  
20-19  
2
1
31-23  
0
0..0  
0
0
2
1
01  
X
xx  
X
xxxxx  
Enabled  
1
X
x
32-bit  
10  
1
01  
Disabled  
0
OFF  
0
Value  
00010  
A
2
1
D
1
D
1
D
1
D
1
A
PCLK  
ADS  
A31:4, SUP,  
DMA, D/C,  
Valid  
BE3:0, LOCK  
W/R  
BLAST  
DT/R  
DEN  
A3:2  
WAIT  
00  
01  
10  
11  
In2  
In3  
In0  
In1  
D31:0  
F_CX030A  
Figure 28. Burst, Non-Pipelined Read Request With Wait States, 32-Bit Bus  
44  
80960CA-33, -25, -16  
External  
Byte  
Order  
Pipe-  
Lining  
Bus  
Width  
Ready  
Function  
Bit  
Burst  
0
NWDD  
18-17  
NWAD  
16-12  
NXDA  
11-10  
NRDD  
9-8  
NRAD  
7-3  
Control  
22  
21  
20-19  
2
1
31-23  
0
0..0  
0
0
X
xxxxx  
X
xx  
0
00  
0
Enabled  
1
X
x
32-bit  
10  
0
00  
Disabled  
0
OFF  
0
Value  
00000  
A
D
D
D
D
A
PCLK  
ADS  
A31:4, SUP,  
DMA, D/C,  
Valid  
BE3:0, LOCK  
W/R  
BLAST  
DT/R  
DEN  
A3:2  
00  
01  
10  
11  
WAIT  
D31:0  
Out0  
Out1  
Out2  
Out3  
F_CX031A  
Figure 29. Burst, Non-Pipelined Write Request Without Wait States, 32-Bit Bus  
45  
80960CA-33, -25, -16  
External  
Ready  
Pipe-  
Lining  
Byte  
Order  
Bus  
Width  
Function  
Bit  
Burst  
0
NWDD  
18-17  
NWAD  
16-12  
NXDA  
11-10  
NRDD  
9-8  
NRAD  
7-3  
Control  
22  
21  
20-19  
2
1
31-23  
0
0..0  
0
0
X
xxxxx  
X
xx  
1
01  
2
Enabled  
1
X
x
32-bit  
10  
1
01  
Disabled  
0
OFF  
0
Value  
00010  
A
2
1
D
1
D
1
D
1
D
1
A
PCLK  
ADS  
A31:4, SUP,  
DMA, D/C,  
Valid  
BE3:0, LOCK  
W/R  
BLAST  
DT/R  
DEN  
A3:2  
WAIT  
00  
01  
10  
11  
Out3  
Out2  
Out0  
Out1  
D31:0  
F_CX032A  
Figure 30. Burst, Non-Pipelined Write Request With Wait States, 32-Bit Bus  
46  
80960CA-33, -25, -16  
External  
Pipe-  
Lining  
Byte  
Order  
Bus  
Width  
Ready  
Burst  
0
Function  
Bit  
NWDD  
18-17  
NWAD  
16-12  
NXDA  
11-10  
NRDD  
9-8  
NRAD  
7-3  
Control  
22  
21  
20-19  
2
1
31-23  
0
0..0  
0
0
1
01  
2
X
xx  
Enabled  
1
X
x
X
xxxxx  
16-bit  
01  
1
01  
Disabled  
0
OFF  
0
Value  
00010  
A
2
1
D
1
D
1
D
1
D
1
A
PCLK  
ADS  
SUP, DMA,  
D/C, LOCK,  
A31:4, BE3/BHE,  
BE0/BLE  
Valid  
W/R  
BLAST  
DT/R  
DEN  
A3:2  
A3:2 = 00 or 10  
A3:2 = 01 or 11  
BE1/A1  
WAIT  
D31:0  
D15:0  
A1=1  
D15:0  
A1=0  
D15:0  
A1=1  
D15:0  
A1=0  
F_CX033A  
Figure 31. Burst, Non-Pipelined Read Request With Wait States, 16-Bit Bus  
47  
80960CA-33, -25, -16  
External  
Ready  
Pipe-  
Lining  
Byte  
Order  
Bus  
Width  
Function  
Bit  
Burst  
0
NWDD  
18-17  
NWAD  
16-12  
NXDA  
11-10  
NRDD  
9-8  
NRAD  
7-3  
Control  
22  
21  
20-19  
2
1
31-23  
0
0..0  
0
0
1
01  
2
X
x
X
xx  
X
xxxxx  
Enabled  
1
8-bit  
00  
1
01  
Disabled  
0
OFF  
0
Value  
00010  
A
2
1
D
1
D
1
D
1
D
1
A
PCLK  
ADS  
SUP, DMA,  
D/C, LOCK,  
A31:4  
Valid  
W/R  
BLAST  
DT/R  
DEN  
A3:2  
A3:2 = 00, 01, 10 or 11  
BE1/A1,  
BE0/A0  
A1:0 = 00  
A1:0 = 01  
A1:0 = 10  
A1:0 =11  
WAIT  
D31:0  
D7:0  
Byte 1  
D7:0  
Byte 2  
D7:0  
Byte 3  
D7:0  
Byte 0  
F_CX034A  
Figure 32. Burst, Non-Pipelined Read Request With Wait States, 8-Bit Bus  
48  
80960CA-33, -25, -16  
External  
Byte  
Order  
Pipe-  
Lining  
Bus  
Width  
Ready  
Burst  
0
Function  
Bit  
NWDD  
18-17  
NWAD  
16-12  
NXDA  
11-10  
NRDD  
9-8  
NRAD  
7-3  
Control  
22  
21  
20-19  
2
1
31-23  
0
0
0
X
xx  
0
X
xx  
Disabled  
0
X
x
X
X
xx  
X
xx  
X
x
ON  
1
Value  
0..0  
00000  
xxxxx  
A
A'  
D
A''  
D'  
A'''  
D''  
A''''  
D'''  
D''''  
PCLK  
ADS  
A31:4, SUP,  
DMA, D/C,  
LOCK  
Valid  
Valid  
Valid  
Valid  
Valid  
Invalid  
Invalid  
W/R  
A3:2  
BE3:0  
Valid  
Valid  
Valid  
Valid  
Valid  
Invalid  
IN  
IN  
D
IN  
D'  
IN  
D''  
IN  
D'''  
D31:0  
WAIT  
D''''  
BLAST  
DT/R  
DEN  
Non-Pipelined Request Concludes  
Pipelined Reads Begin.  
Pipelined Reads Conclude,  
Non-Pipelined Requests Begin.  
F_CX035A  
Figure 33. Non-Burst, Pipelined Read Request Without Wait States, 32-Bit Bus  
49  
80960CA-33, -25, -16  
External  
Ready  
Pipe-  
Lining  
Byte  
Order  
Bus  
Width  
Burst  
0
NWDD  
18-17  
NWAD  
16-12  
NXDA  
11-10  
NRDD  
9-8  
NRAD  
7-3  
Function  
Bit  
Control  
22  
21  
20-19  
2
1
31-23  
0
0..0  
0
0
1
X
xx  
X
xx  
X
xxxxx  
Disabled  
1
X
x
X
xx  
X
xx  
X
x
ON  
1
Value  
00001  
A
1
A'  
D
1
D'  
PCLK  
ADS  
A31:4, SUP,  
DMA, D/C,  
LOCK  
Valid  
Valid  
Invalid  
Invalid  
Invalid  
W/R  
A3:2  
BE3:0  
Valid  
Valid  
IN  
D
IN  
D'  
D31:0  
WAIT  
BLAST  
DT/R  
DEN  
Non-Pipelined Request Concludes  
Pipelined Reads Begin.  
Pipelined Reads Conclude,  
Non-Pipelined Requests Begin.  
F_CX036A  
Figure 34. Non-Burst, Pipelined Read Request With Wait States, 32-Bit Bus  
50  
80960CA-33, -25, -16  
External  
Pipe-  
Lining  
Byte  
Order  
Bus  
Width  
Ready  
Burst  
0
NWDD  
18-17  
NWAD  
16-12  
NXDA  
11-10  
NRDD  
9-8  
NRAD  
7-3  
Function  
Control  
22  
21  
20-19  
2
1
31-23  
Bit  
0
0..0  
0
0
0
00  
0
X
xx  
Enabled  
1
X
x
X
xxxxx  
32-bit  
10  
X
xx  
Disabled  
0
ON  
1
Value  
00000  
A
D
D
D
A'  
D
D'  
D'  
PCLK  
ADS  
A31:4, SUP,  
DMA, D/C,  
In-  
Valid  
Valid  
Valid  
BE3:0, LOCK  
In-  
Valid  
W/R  
A3:2  
In-  
Valid  
00  
01  
10  
11  
Valid Valid  
IN  
D
IN  
D
IN  
IN  
IN  
D
IN  
D
D31:0  
D
D
WAIT  
BLAST  
DT/R  
DEN  
Pipelined Reads  
Conclude, Non-Pipelined  
Requests Begin  
Non-pipelined Request  
Concludes, Pipelined  
Reads Begin  
F_CX037A  
Figure 35. Burst, Pipelined Read Request Without Wait States, 32-Bit Bus  
51  
80960CA-33, -25, -16  
External  
Ready  
Pipe-  
Lining  
Byte  
Bus  
Width  
Function  
Order  
Burst  
0
NWDD  
18-17  
NWAD  
16-12  
NXDA  
11-10  
NRDD  
9-8  
NRAD  
7-3  
Control  
Bit  
22  
21  
20-19  
2
1
31-23  
0
0..0  
0
0
2
1
01  
X
xx  
X
xxxxx  
Enabled  
1
X
x
32-bit  
10  
X
xx  
Disabled  
0
ON  
1
Value  
00010  
D'  
A
2
1
D
1
D
1
D
1
A'  
D
2
1
PCLK  
ADS  
A31:4, SUP,  
In-  
valid  
DMA, D/C,  
Valid  
Valid  
BE3:0, LOCK  
In-  
valid  
W/R  
A3:2  
In-  
valid  
00  
01  
10  
11  
Valid  
IN  
D
IN  
D
IN  
D
IN  
D'  
IN  
D
D31:0  
WAIT  
BLAST  
DT/R  
DEN  
Pipelined reads conclude,  
Non-pipelined requests begin.  
Non-pipelined request concludes,  
pipelined reads begin.  
F_CX038A  
Figure 36. Burst, Pipelined Read Request With Wait States, 32-Bit Bus  
52  
80960CA-33, -25, -16  
External  
Ready  
Pipe-  
Lining  
Byte  
Order  
Bus  
Width  
Function  
Bit  
Burst  
0
NWDD  
18-17  
NWAD  
16-12  
NXDA  
11-10  
NRDD  
9-8  
NRAD  
7-3  
Control  
22  
21  
20-19  
2
1
31-23  
0
0..0  
0
0
1
01  
2
X
xx  
Enabled  
1
X
x
X
xxxxx  
16-bit  
10  
X
xx  
Disabled  
0
ON  
1
Value  
00010  
D'  
A
2
1
D
1
D
1
D
1
A'  
D
2
1
PCLK  
ADS  
A31:4, SUP,  
DMA, D/C,  
In-  
valid  
Valid  
Valid  
BE0/BLE,  
BE3/BHE,  
LOCK  
In-  
valid  
W/R  
In-  
valid  
A3:2 = 00 or 10  
A3:2 = 01 or 11  
Valid  
Valid  
A3:2  
In-  
valid  
BE1/A1  
D15:0  
A1=1  
D15:0  
A1=0  
D15:0  
A1=0  
D15:0  
D'  
D15:0  
A1=1  
D31:0  
WAIT  
BLAST  
DT/R  
DEN  
Non-pipelined request concludes,  
pipelined reads begin.  
Pipelined reads conclude,  
Non-pipelined requests begin.  
F_CX040A  
Figure 37. Burst, Pipelined Read Request With Wait States, 16-Bit Bus  
53  
80960CA-33, -25, -16  
External  
Ready  
Pipe-  
Lining  
Byte  
Bus  
Width  
Function  
Order  
Burst  
0
NWDD  
18-17  
NWAD  
16-12  
NXDA  
11-10  
NRDD  
9-8  
NRAD  
7-3  
Control  
Bit  
22  
21  
20-19  
2
1
31-23  
0
0..0  
0
0
1
01  
2
X
x
X
xx  
X
xxxxx  
Enabled  
1
8-bit  
10  
X
xx  
Disabled  
0
ON  
1
Value  
00010  
A
2
1
D
1
D
1
D
1
A'  
D
2
1
D'  
PCLK  
ADS  
A31:4, SUP,  
In-  
valid  
Valid  
Valid  
DMA, D/C,  
LOCK  
In-  
valid  
W/R  
A3:2  
In-  
valid  
A3:2 = 00, 01, 10, or 11  
Valid  
BE1/A1,  
BE0/A0  
In-  
valid  
A1:0 = 00  
A1:0 = 01  
A1:0 = 10 A1:0 = 11  
Valid  
D7:0  
D7:0  
Byte 1  
Byte 2  
D7:0  
D'  
D7:0  
Byte 0  
D7:0  
Byte 3  
D31:0  
WAIT  
BLAST  
DT/R  
DEN  
Pipelined reads conclude,  
Non-pipelined requests begin.  
Non-pipelined request concludes,  
pipelined reads begin.  
F_CX039A  
Figure 38. Burst, Pipelined Read Request With Wait States, 8-Bit Bus  
54  
80960CA-33, -25, -16  
Quad-Word Read Request  
= 0, N = 0, N = 0  
Quad-Word Write Request  
N
N
= 1, N  
= 0, N = 0  
WAD  
WDD  
Ready Enabled  
WDA  
RAD  
RDD  
Ready Enabled  
XDA  
PCLK  
ADS  
A31:4, SUP,  
DMA, INST,  
D/C, BE3:0,  
Valid  
Valid  
LOCK  
W/R  
BLAST  
DT/R  
DEN  
READY  
BTERM  
A3:2  
00  
01 10  
11  
00  
01  
10  
11  
WAIT  
D31:0  
D0  
D1 D2 D3  
D0  
D1  
D2  
D3  
F_CX041A  
Figure 39. Using External READY  
55  
80960CA-33, -25, -16  
Quad-Word Write Request  
= 0, N = 0, N = 0  
N
WAD  
WDD  
Ready Enabled  
WDA  
PCLK  
ADS  
A31:4, SUP,  
DMA, INST,  
D/C, BE3:0,  
LOCK  
Valid  
W/R  
BLAST  
DT/R  
DEN  
READY  
BTERM  
See Note  
A3:2  
00  
01  
10  
11  
WAIT  
D31:0  
D1  
D2  
D3  
D0  
Note: READY adds memory access time to data transfers, whether or not the  
bus access is a burst access. BTERM interrupts a bus access, whether or not  
the bus access has more data transfers pending. Either the READY signal or  
the BTERM signal will terminate a bus access if the signal is asserted during  
the last (or only) data transfer of the bus access.  
F_CX042A  
Figure 40. Terminating a Burst with BTERM  
56  
80960CA-33, -25, -16  
Regenerate ADS  
ADS  
BLAST  
READY  
BURST  
BURST  
NON-BURST  
MAY CHANGE  
RESUME REQUEST  
BOFF  
SUSPEND REQUEST  
A31:2, SUP,  
DMA, D/C,  
BE3:0, WAIT,  
DEN, DT/R  
D31:0,  
(WRITES)  
Begin Request  
End Request  
BOFF May be asserted to suspend request  
BOFF may not  
be asserted  
BOFF may not  
be asserted  
Note: READY/BTERM must be enabled; N  
, N  
RAD  
, N = 0  
, N  
RDD WAD WDD  
F_CX043A  
Figure 41. BOFF Functional Timing  
57  
80960CA-33, -25, -16  
Word Read  
Request  
Word Read Request  
=1, N =1  
N
=0,  
=0  
Hold State  
Hold State  
N
RAD  
RAD  
XDA  
N
XDA  
PCLK2:1  
ADS  
A31:2, SUP,  
DMA, D/C,  
Valid  
Valid  
BE3:0, WAIT,  
DEN, DT/R  
BLAST  
HOLD  
HOLDA  
F_CX044A  
Figure 42. HOLD Functional Timing  
58  
80960CA-33, -25, -16  
System  
Clock  
PCLK2:1  
ADS  
Start DMA  
Bus Request  
End of DMA  
Bus Request  
! (BLAST  
& READY  
& !WAIT)  
DMA  
Acknowledge  
(See Note)  
DACKx  
(All Modes)  
High To Prevent  
Next Bus Cycle  
DREQx  
(Case 1)  
DMA  
Request  
t
t
High To Prevent  
Next Bus Cycle  
IS5  
IH5  
DREQx  
(Case 2)  
t
t
IS5  
IH5  
Note:  
1. Case 1: DREQ must deassert before DACK deasserts. Applications are Fly-By and some packing and  
unpacking modes in which loads are followed by loads or stores are followed by stores.  
2. Case 2: DREQ must be deasserted by the second clock (rising edge) after DACK is driven high.  
Applications are non Fly-By transfers and adjacent load-stores or store-loads.  
3. DACKx is asserted for the duration of a DMA bus request. The request may consist of multiple bus  
accesses (defined by ADS and BLAST. Refer to i960 Cx Microprocessor User’s Manual for “access”,  
“request” definitions.  
F_CX018A  
Figure 43. DREQ and DACK Functional Timing  
PCLK2:1  
EOP  
2 CLKs Min  
15 CLKs Max  
Note: EOP has the same AC Timing Requirements as DREQ to prevent unwanted DMA requests. EOP is NOT edge  
triggered. EOP must be  
held for a minimum of 2 clock cycles then deasserted within 15 clock cycles.  
F_CX045A  
Figure 44. EOP Functional Timing  
59  
80960CA-33, -25, -16  
PCLK2  
DREQ  
ADS  
DACK  
TC  
Note: Terminal Count becomes active during the last bus request of a buffer transfer. If the  
last LOAD/STORE bus request is executed as multiple bus accesses, the TC will be active  
®
for the entire bus request. Refer to the i960 Cx Microprocessor User’s Manual for  
further information.  
F_CX046A  
Figure 45. Terminal Count Functional Timing  
RESET  
FAIL  
(Bus Test)  
Pass  
(Internal Self-Test)  
Pass  
Fail  
Fail  
102 Cycles  
~65,000 Cycles  
5 Cycles  
F_CX047A  
Figure 46. FAIL Functional Timing  
60  
80960CA-33, -25, -16  
0
0
4
1
8
2
12  
3
16  
4
20  
5
24  
6
Byte Offset  
Word Offset  
Short Request (Aligned)  
Byte, Byte Requests  
Short-Word  
Load/Store  
Short Request (Aligned)  
Byte, Byte Requests  
Word Request (Aligned)  
Byte, Short, Byte, Requests  
Short, Short Requests  
Word  
Load/Store  
Byte, Short, Byte Requests  
One Double-Word Burst (Aligned)  
Byte, Short, Word, Byte Requests  
Short, Word, Short Requests  
Double-Word  
Load/Store  
Byte, Word, Short, Byte Requests  
Word, Word Requests  
One Double-Word  
Request (Aligned)  
F_CX048A  
Figure 47. A Summary of Aligned and Unaligned Transfers for Little Endian Regions  
61  
80960CA-33, -25, -16  
0
4
1
8
2
12  
3
16  
4
20  
5
24  
6
Byte Offset  
0
Word Offset  
One Three-Word  
Request (Aligned)  
Byte, Short, Word,  
Word, Byte Requests  
Short, Word, Word,  
Short Requests  
Triple-Word  
Load/Store  
Byte, Word, Word,  
Short, Byte Requests  
Word, Word,  
Word Requests  
Word, Word,  
Word Requests  
Word,  
Word,  
Word  
Requests  
One Four-Word  
Request (Aligned)  
Byte, Short, Word, Word,  
Word, Byte Requests  
Short, Word, Word, Word,  
Short Requests  
Quad-Word  
Load/Store  
Byte, Word, Word, Word,  
Short, Byte Requests  
Word, Word, Word,  
Word Requests  
Double-  
Word,  
Double-  
Word,  
Requests  
F_CX049A  
Figure 48. A Summary of Aligned and Unaligned Transfers for Little Endian Regions (Continued)  
62  
80960CA-33, -25, -16  
Read Request  
NWAD=2, NXDA = 0  
Ready Disabled  
Write Request  
Idle Bus  
(not in Hold Acknowledge state)  
N
WAD=2, NXDA = 0  
Ready Disabled  
PCLK  
ADS  
A31:4, SUP,  
DMA, INST,  
D/C, BE3:0  
Valid  
Valid  
Valid  
Valid  
LOCK  
W/R  
BLAST  
DT/R  
DEN  
A3:2  
Valid  
Valid  
WAIT  
D31:0  
Out  
In  
READY,  
BTERM  
F_CX050A  
Figure 49. Idle Bus Operation  
63  
80960CA-33, -25, -16  
7.0 REVISION HISTORY  
This data sheet supersedes data sheet 270727-005. Specification changes in the 80960CA data sheet are a  
result of design changes. The sections significantly changed since the previous revision are:  
Last  
Rev.  
Section  
Description  
Table 11. 80960CA PGA Package Thermal  
Characteristics  
-005  
Removed references and notes pertaining to  
θJ-CAP and θJ-PIN.  
Table 12. 80960CA PQFP package Thermal  
Characteristics  
-005  
-005  
Removed references and notes pertaining to θJL  
and θJB.  
3.3 80960CA Mechanical Data  
Removed section containing information on  
Package Dimensions. Moved section header to  
encompass Pinout tables and diagrams.  
3.7 Suggested Sources for 80960CA  
Accessories  
-005  
-005  
Removed entire section containing information  
about 80960CA accessories.  
Tables 16, 17 and18 80960CA AC Charac-  
teristics (33-, 25- and 16MHz, respectively)  
TTVEL maximum deleted.  
TNHQX and TEHTV minimums changed:  
WAS:  
IS:  
TNHQX  
TEHTV  
(N+1)*T-6  
T/2 - 6  
(N+1)*T-8  
T/2 - 7  
All  
-005  
All timing diagrams and waveforms have been  
redrawn to conform to consistent format.  
Data sheet formatting has been changed to  
conform to corporate standards. Specific  
formatting changes are not itemized in this revision  
history.  
64  

相关型号:

80960CF-16

SPECIAL ENVIRONMENT 80960CF-30, -25, -16 32-BIT HIGH-PERFORMANCE SUPERSCALAR PROCESSOR
INTEL

80960CF-25

SPECIAL ENVIRONMENT 80960CF-30, -25, -16 32-BIT HIGH-PERFORMANCE SUPERSCALAR PROCESSOR
INTEL

80960CF-30

SPECIAL ENVIRONMENT 80960CF-30, -25, -16 32-BIT HIGH-PERFORMANCE SUPERSCALAR PROCESSOR
INTEL

80960CF-33

80960CF-40, -33, -25, -16 32-BIT HIGH-PERFORMANCE SUPERSCALAR EMBEDDED MICROPROCESSOR
INTEL

80960CF-40

80960CF-40, -33, -25, -16 32-BIT HIGH-PERFORMANCE SUPERSCALAR EMBEDDED MICROPROCESSOR
INTEL

80960HA

80960HA/HD/HT 32-Bit High-Performance Superscalar Processor
INTEL

80960HD

80960HA/HD/HT 32-Bit High-Performance Superscalar Processor
INTEL

80960HT

80960HA/HD/HT 32-Bit High-Performance Superscalar Processor
INTEL

80960JA

EMBEDDED 32-BIT MICROPROCESSOR
INTEL

80960JA-25

EMBEDDED 32-BIT MICROPROCESSOR
INTEL

80960JA-33

EMBEDDED 32-BIT MICROPROCESSOR
INTEL

80960JC

80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
INTEL