80960CF-25 [INTEL]

SPECIAL ENVIRONMENT 80960CF-30, -25, -16 32-BIT HIGH-PERFORMANCE SUPERSCALAR PROCESSOR; 特殊环境80960CF - 30 , -25 , -16的32位高性能超标量处理器
80960CF-25
型号: 80960CF-25
厂家: INTEL    INTEL
描述:

SPECIAL ENVIRONMENT 80960CF-30, -25, -16 32-BIT HIGH-PERFORMANCE SUPERSCALAR PROCESSOR
特殊环境80960CF - 30 , -25 , -16的32位高性能超标量处理器

文件: 总62页 (文件大小:1174K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
32-BIT HIGH-PERFORMANCE SUPERSCALAR  
PROCESSOR  
Socket and Object Code Compatible with 80960CA  
Two Instructions/Clock Sustained Execution  
Four 59 Mbytes/s DMA Channels with Data Chaining  
#
#
#
Demultiplexed 32-bit Burst Bus with Pipelining  
#
32-bit Parallel Architecture  
Ð Two Instructions/clock Execution  
Ð Load/Store Architecture  
Y
Y
High Bandwidth On-Chip Data RAM  
Ð 1 Kbytes On-Chip RAM for Data  
Ð Sustain 128 bits per clock access  
Ð Sixteen 32-bit Global Registers  
Ð Sixteen 32-bit Local Registers  
Ð Manipulate 64-bit Bit Fields  
Ð 11 Addressing Modes  
Ð Full Parallel Fault Model  
Ð Supervisor Protection Model  
Y
Four On-Chip DMA Channels  
Ð 59 Mbytes/s Fly-by Transfers  
Ð 32 Mbytes/s Two-Cycle Transfers  
Ð Data Chaining  
Ð Data Packing/Unpacking  
Ð Programmable Priority Method  
Y
Y
Fast Procedure Call/Return Model  
Ð Full Procedure Call in 4 clocks  
Y
32-Bit Demultiplexed Burst Bus  
Ð 128-bit Internal Data Paths to and  
from Registers  
On-Chip Register Cache  
Ð Burst Bus for DRAM Interfacing  
Ð Address Pipelining Option  
Ð Fully Programmable Wait States  
Ð Supports 8, 16 or 32-bit Bus Widths  
Ð Supports Unaligned Accesses  
Ð Supervisor Protection Pin  
Ð Caches Registers on Call/Ret  
Ð Minimum of 6 Frames provided  
Ð Up to 15 Programmable Frames  
Y
Y
Y
On-Chip Instruction Cache  
Ð 4 Kbyte Two-Way Set Associative  
Ð 128-bit Path to Instruction Sequencer  
Ð Cache-Lock Modes  
Y
Y
Selectable Big or Little Endian Byte  
Ordering  
Ð Cache-Off Mode  
High-Speed Interrupt Controller  
Ð Up to 248 External Interrupts  
Ð 32 Fully Programmable Priorities  
Ð Multi-mode 8-bit Interrupt Port  
Ð Four Internal DMA Interrupts  
Ð Separate, Non-maskable Interrupt Pin  
Ð Context Switch in 750 ns Typical  
On-Chip Data Cache  
Ð 1 Kbyte Direct-Mapped,  
Write Through  
Ð 128 bits per Clock Access on  
Cache Hit  
Product Grades Available  
b
a
Ð SE3: 40 C to 110 C  
§
§
*Other brands and names are the property of their respective owners.  
Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including infringement of any patent or  
copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products. Intel retains the right to make  
changes to these specifications at any time, without notice. Microcomputer Products may have minor variations to this specification known as errata.  
©
COPYRIGHT INTEL CORPORATION, 1995  
January 1995  
Order Number: 271328-001  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
271328–1  
Figure 1. 80960CF Die Photo  
2
Special Environment 80960CF-30, -25, -16  
32-Bit High Performance Superscalar Processor  
CONTENTS  
PAGE  
CONTENTS  
PAGE  
1.0 PURPOSE ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5  
FIGURES  
Figure 1  
Figure 2  
Figure 3  
80960CF Die Photo ÀÀÀÀÀÀÀÀÀÀÀÀ 2  
80960CF Block Diagram ÀÀÀÀÀÀÀ 5  
2.0 i960 CF PROCESSOR  
OVERVIEW ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5  
Example Pin Description  
Entry ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8  
2.1 The C-Series Core ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6  
2.2 Pipelined, Burst Bus ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6  
2.3 Flexible DMA Controller ÀÀÀÀÀÀÀÀÀÀÀÀÀ 6  
2.4 Priority Interrupt Controller ÀÀÀÀÀÀÀÀÀÀÀ 6  
2.5 Instruction Set Summary ÀÀÀÀÀÀÀÀÀÀÀÀÀ 7  
Figure 4a 80960CF PGA Pinout (View  
from Top Side) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16  
Figure 4b 80960CF PGA Pinout (View  
from Bottom Side) ÀÀÀÀÀÀÀÀÀÀÀÀ 17  
Figure 5  
Figure 6  
Figure 7  
168-Lead Ceramic PGA  
Package Dimensions ÀÀÀÀÀÀÀÀÀ 18  
3.0 PACKAGE INFORMATION ÀÀÀÀÀÀÀÀÀÀÀÀ 8  
3.1 Package Introduction ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8  
3.2 Pin Descriptions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8  
3.3 80960CF Pinout ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 14  
3.4 Mechanical Data ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 18  
3.5 Package Thermal Specifications ÀÀÀÀ 20  
3.6 Stepping Register Information ÀÀÀÀÀÀ 21  
80960CF PGA Package  
Thermal Characteristics ÀÀÀÀÀÀÀ 20  
Measuring 80960CF PGA  
Case Temperature ÀÀÀÀÀÀÀÀÀÀÀÀ 21  
Figure 8  
Figure 9  
Register G0 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 21  
AC Test Load ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 30  
Figure 10a Input and Output Clocks  
Waveform ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 30  
3.7 Suggested Sources for 80960CF  
Accessories ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 21  
Figure 10b CLKIN Waveform ÀÀÀÀÀÀÀÀÀÀÀÀÀ 30  
4.0 ELECTRICAL SPECIFICATIONS ÀÀÀÀÀ 22  
4.1 Absolute Maximum Ratings ÀÀÀÀÀÀÀÀÀ 22  
4.2 Operating Conditions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 22  
4.3 Recommended Connections ÀÀÀÀÀÀÀÀ 22  
4.4 DC Specifications ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 23  
4.5 AC Specifications ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 24  
Figure 11 Output Delay and Float  
Waveform ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 31  
Figure 12a Input Setup and Hold  
Waveform ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 31  
Figure 12b NMI, XINT7:0 Input Setup  
and Hold Waveform ÀÀÀÀÀÀÀÀÀÀ 31  
Figure 13 Hold Acknowledge  
Timings ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 32  
5.0 RESET, BACKOFF AND HOLD  
ACKNOWLEDGE ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 35  
Figure 14 Bus Back-Off (BOFF)  
Timings ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 32  
6.0 BUS WAVEFORMS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 36  
3
CONTENTS  
Figure 15 Relative Timings  
PAGE  
CONTENTS  
Figure 31 Burst, Non-Pipelined Read  
Request with Wait States,  
PAGE  
Waveforms ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 33  
8-Bit Bus ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 48  
Figure 16 Output Delay or Hold vs Load  
Capacitance ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 33  
Figure 32 Non-Burst, Pipelined Read  
Request without Wait States,  
Figure 17 Rise and Fall Time Derating at  
Highest Operating  
Temperature and Minimum  
32-Bit Bus ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 49  
Figure 33 Non-Burst, Pipelined Read  
Request with Wait States,  
V
CC  
ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 34  
32-Bit Bus ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 50  
Figure 18  
I
vs Frequency and  
CC  
Temperature ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 34  
Figure 34 Burst, Pipelined Read  
Request without Wait States,  
Figure 19 Cold Reset Waveform ÀÀÀÀÀÀÀÀÀ 36  
Figure 20 Warm Reset Waveform ÀÀÀÀÀÀÀÀ 37  
Figure 21 Entering the ONCE State ÀÀÀÀÀÀ 38  
32-Bit Bus ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 51  
Figure 35 Burst, Pipelined Read  
Requests with Wait States,  
32-Bit Bus ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 52  
Figure 22a Clock Synchronization in the  
2x Clock Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 39  
Figure 36 Burst, Pipelined Read  
Requests with Wait States,  
Figure 22b Clock Synchronization in the  
1x Clock Mode ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 39  
16-Bit Bus ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 53  
Figure 37 Burst, Pipelined Read  
Requests with Wait States,  
Figure 23 Non-Burst, Non-Pipelined  
Requests without Wait  
8-Bit Bus ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 54  
States ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 40  
Figure 38 Using External READY ÀÀÀÀÀÀÀÀ 55  
Figure 24 Non-Burst, Non-Pipelined  
Read Request with Wait  
Figure 39 Terminating a Burst with  
BTERM ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 56  
States ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 41  
Figure 25 Non-Burst, Non-Pipelined  
Write Request with Wait  
Figure 40 BOFF Functional Timing ÀÀÀÀÀÀ 57  
Figure 41 HOLD Functional Timing ÀÀÀÀÀÀ 57  
States ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 42  
Figure 42 DREQ and DACK Functional  
Timing ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 58  
Figure 26 Burst, Non-Pipelined Read  
Request without Wait States,  
32-Bit Bus ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 43  
Figure 43 EOP Functional Timing ÀÀÀÀÀÀÀ 58  
Figure 27 Burst, Non-Pipelined Read  
Request with Wait States,  
Figure 44 Terminal Count Functional  
Timing ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 59  
32-Bit Bus ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 44  
Figure 45 FAIL Functional Timing ÀÀÀÀÀÀÀ 59  
Figure 28 Burst, Non-Pipelined Write  
Request without Wait States,  
Figure 46 A Summary of Aligned and  
Unaligned Transfers for Little  
32-Bit Bus ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 45  
Endian Regions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 60  
Figure 29 Burst, Non-Pipelined Write  
Request with Wait States,  
Figure 47 A Summary of Aligned and  
Unaligned Transfers for Little  
Endian Regions  
32-Bit Bus ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 46  
Figure 30 Burst, Non-Pipelined Read  
Request with Wait States,  
(Continued) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 61  
Figure 48 Idle Bus Operation ÀÀÀÀÀÀÀÀÀÀÀÀ 62  
16-Bit Bus ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 47  
4
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
tions every clock, and peak at execution of three  
instructions per clock.  
1.0 PURPOSE  
This document previews electrical characterizations  
of Intel’s i960 CF embedded microprocessor (avail-  
able in 33, 25 and 16 MHz). For a detailed descrip-  
tion of any i960 CF processor functional topicÐoth-  
er than parametric performanceÐrefer to the latest  
i960 CA Microprocessor Reference Manual (Order  
No. 270710) and the i960 CF Reference Manual Ad-  
dendum (Order No. 272188).  
A 32-bit demultiplexed and pipelined burst bus pro-  
vides a 132 Mbyte/s bandwidth to a system’s high-  
speed external memory sub-system. In addition, the  
80960CF’s on-chip caching of instructions, proce-  
dure context and critical program data substantially  
decouples system performance from the wait states  
associated with accesses to the system’s slower,  
cost sensitive, main memory sub-system.  
The 80960CF bus controller also integrates full wait  
state and bus width control for highest system per-  
formance with minimal system design complexity.  
Unaligned access and Big Endian byte order support  
reduces the cost of porting existing applications to  
the 80960CF.  
2.0 i960 CF PROCESSOR OVERVIEW  
Intel’s i960 CF microprocessor is the performance  
follow-on product to the i960 CA processor. The  
i960 CF product is socket- and object code-compati-  
ble with the CA; this makes CA-to-CF design up-  
grades straightforward. The i960 CF processor’s in-  
struction cache is 4 Kbytes (CA device has 1 Kbyte);  
CF data cache is 1 Kbyte (CA device has no data  
cache). This extra cache on the CF product adds a  
significant performance boost over the CA. The  
80960CF is object code compatible with the 32-bit  
80960 Core Architecture while including Special  
Function Register extensions to control on-chip pe-  
ripherals, and instruction set extensions to shift 64-  
bit operands and configure on-chip hardware. Multi-  
ple 128-bit internal busses, on-chip instruction cach-  
ing and a sophisticated instruction scheduler allow  
the processor to sustain execution of two instruc-  
The processor also integrates four complete data-  
chaining DMA channels and a high-speed interrupt  
controller on-chip. The DMA channels perform: sin-  
gle-cycle or two-cycle transfers, data packing and  
unpacking, and data chaining. Block transfers, in ad-  
dition to source or destination synchronized trans-  
fers, are provided.  
The interrupt controller provides full programmability  
of 248 interrupt sources into 32 priority levels with a  
typical interrupt task switch (‘‘latency’’) time of  
750 ns.  
271328–2  
Figure 2. 80960CF Block Diagram  
5
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
2.1. The C-Series Core  
Ð Demultiplexed, Burst Bus to exploit most efficient  
DRAM access modes.  
The C-Series core is a very high performance micro-  
architectural implementation of the 80960 Core Ar-  
chitecture. The C-Series core can sustain execution  
of two instructions per clock (66 MIPs at 33 MHz).  
To achieve this level of performance, Intel has incor-  
porated state-of-the-art silicon technology and inno-  
vative microarchitectural constructs into the imple-  
mentation of the C-Series core. Factors that contrib-  
ute to the core’s performance include:  
Ð Address Pipelining to reduce memory cost while  
maintaining performance.  
Ð 32-, 16- and 8-bit modes for I/O interfacing ease.  
Ð Full internal wait state generation to reduce sys-  
tem cost.  
Ð Little and Big Endian support to ease application  
development.  
Ð Unaligned access support for code portability.  
Ð Parallel instruction decoding allows issue of up  
to three instructions per clock.  
Ð Three-deep request queue to decouple the bus  
from the core.  
Ð Most instructions execute in a single clock.  
Ð Parallel instruction decode allows sustained,  
simultaneous execution of two single-clock in-  
structions every clock cycle.  
2.3. Flexible DMA Controller  
A four channel DMA controller provides high speed  
DMA control for data transfers involving peripherals  
and memory. The DMA provides advanced features  
such as data chaining, byte assembly and disassem-  
bly, and a high performance fly-by mode capable of  
transfer speed of up to 59 Mbytes per second at  
33 MHz. The DMA controller features a performance  
and flexibility which is only possible by integrating  
the DMA controller and the 80960CF core.  
Ð Efficient instruction pipeline minimizes pipeline  
break losses.  
Ð Register and resource scoreboarding allow  
simultaneous multi-clock instruction execution.  
Ð Branch look-ahead and prediction allows many  
branches to execute with no pipeline break.  
Ð Local Register Cache integrated on-chip caches  
Call/Return context.  
Ð Two-way set associative, 4 Kbyte integrated in-  
struction cache.  
2.4. Priority Interrupt Controller  
Ð Direct mapped,  
through, write allocate.  
1 Kbyte data cache, write  
A programmable-priority interrupt controller man-  
ages up to 248 external sources through the 8-bit  
external interrupt port. The Interrupt Unit also han-  
dles the four internal sources from the DMA control-  
ler, and a single non-maskable interrupt input. The  
8-bit interrupt port can also be configured to provide  
individual interrupt sources that are level or edge  
triggered.  
Ð 1 Kbyte integrated Data RAM sustains a four-  
word (128-bit) access every clock cycle.  
2.2. Pipelined, Burst Bus  
A 32-bit high performance bus controller interfaces  
the 80960CF to external memory and peripherals.  
The Bus Control Unit features a maximum transfer  
rate of 132 Mbytes per second (at 33 MHz). Internal-  
ly programmable wait states and 16 separately con-  
figurable memory regions allow the processor to in-  
terface with a variety of memory subsystems with a  
minimum of system complexity and a maximum of  
performance. The Bus Controller’s main features in-  
clude:  
Interrupts in the 80960CF are prioritized and sig-  
naled within 270 ns of the request. If the interrupt is  
of higher priority than the processor priority, the con-  
text switch to the interrupt routine typically is com-  
plete in another 480 ns. The interrupt unit provides  
the mechanism for the low latency and high through-  
put interrupt service which is essential for embedded  
applications.  
6
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
2.5. Instruction Set Summary  
The following table summarizes the 80960CF instruction set by logical groupings. See the i960 CA Microproc-  
essor Reference Manual for a complete description of the instruction set.  
Data  
Arithmetic  
Logical  
Bit, Bit Field  
and Byte  
Movement  
Load  
Store  
Add  
And  
Set Bit  
Clear Bit  
Subtract  
Multiply  
Divide  
Not And  
And Not  
Or  
Move  
Load Address  
Not Bit  
Alter Bit  
Remainder  
Modulo  
Shift  
Exclusive Or  
Not Or  
Or Not  
Nor  
Scan for Bit  
Span over Bit  
Extract  
*Extended  
Shift  
Modify  
Scan Byte for Equal  
Exclusive Nor  
Not  
Nand  
Extended  
Multiply  
Extended  
Divide  
Add with  
Carry  
Subtract with  
Carry  
Rotate  
Comparison  
Branch  
Call and Return  
Fault  
Compare  
Conditional  
Compare  
Unconditional  
Branch  
Call  
Conditional  
Fault  
Call Extended  
Call System  
Return  
Conditional  
Branch  
Synchronize  
Faults  
Compare and  
Increment  
Compare and  
Branch  
Branch and Link  
Compare and  
Decrement  
Test Condition Code  
Check Bit  
Debug  
Processor  
Atomic  
Management  
Modify Trace  
Controls  
Mark  
Modify  
Atomic Add  
Atomic Modify  
Process  
Controls  
Force Mark  
Modify  
Arithmetic  
Controls  
*System Control  
*DMA Control  
Flush Local  
Registers  
NOTE:  
Instructions marked by (*) are 80960CF extensions to the 80960 instruction set.  
7
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Table 1. Pin Description Nomenclature  
Symbol Description  
3.0 PACKAGE INFORMATION  
3.1. Package Introduction  
I
O
Input only pin  
Output only pin  
This section describes the pins, pinouts and thermal  
characteristics for the 80960CF in the 168-pin Ce-  
ramic Pin Grid Array (PGA) package. For complete  
package specifications and information, see the Intel  
Packaging Outlines and Dimensions Guide (Order  
No. 231369).  
I/O  
-
Pin can be either an input or output  
Pins ‘‘must be’’ connected as  
described  
S( . . . ) Synchronous. Inputs must meet setup  
and hold times relative to PCLK2:1 for  
proper operation. All outputs are  
synchronous to PCLK2:1.  
3.2. Pin Descriptions  
S(E) Edge sensitive input  
S(L) Level sensitive input  
The 80960CF pins are described in this section. Ta-  
ble 1 presents the legend for interpreting the pin de-  
scriptions in the following tables.  
A( . . . ) Asynchronous. Inputs may be  
asynchronous to PCLK2:1.  
A(E) Edge sensitive input  
Pins associated with the 32-bit demultiplexed proc-  
essor bus are described in Table 2. Pins associated  
with basic processor configuration and control are  
described in Table 3. Pins associated with the  
80960CF DMA Controller and Interrupt Unit are de-  
scribed in Table 4.  
A(L) Level sensitive input  
H( . . . ) While the processor’s bus is in the  
Hold Acknowledge or Bus Backoff  
state, the pin:  
H(1) is driven to V  
H(0) is driven to V  
H(Z) floats  
CC  
SS  
Figure 3 provides an example pin description table  
entry. ‘‘I/O’’ signifies that data pins are input-output.  
‘‘S’’ indicates pins are synchronous to PCLK2:1.  
‘‘H(Z)’’ indicates that these pins float while the proc-  
essor bus is in a Hold Acknowledge state. ‘‘R(Z)’’  
indicates that the pins also float while RESET is low.  
H(Q) continues to be a valid output  
R( . . . ) While the processor’s RESET pin is  
low, the pin  
R(1) is driven to V  
R(0) is driven to V  
R(Z) floats  
CC  
All pins float while the processor is in the ONCE  
mode.  
SS  
R(Q) continues to be a valid output  
Name Type  
Description  
D31:0  
I/O DATA BUS carries 32-, 16- or 8-bit data quantities depending on bus width configuration.  
The least significant bit of the data is carried on D0 and the most significant on D31. When  
the bus is configured for 8-bit data, the lower 8 data lines, D7:0 are used. For 16-bit bus  
widths, D15:0 are used. For 32-bit bus widths the full data bus is used.  
S(L)  
H(Z)  
R(Z)  
Figure 3. Example Pin Description Entry  
8
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Table 2. 80960CF Pin DescriptionÐExternal Bus Signals  
Name  
A31:2  
Type  
Description  
O
S
ADDRESS BUS carries the physical address upper 30 bits. A31 is the most  
significant address bit and A2 is the least significant. During a bus access, A31:2  
identify all external addresses to word (4-byte) boundaries. The byte enable  
signals indicate the selected byte in each word. During burst accesses, A3 and A2  
increment to indicate successive data cycles.  
H(Z)  
R(Z)  
D31:0  
I / O  
S(L)  
H(Z)  
R(Z)  
DATA BUS carries 32-, 16- or 8-bit data quantities depending on bus width  
configuration. The least significant bit of the data is carried on D0 and the most  
significant on D31. When the bus is configured for 8-bit data, the lower 8 data  
lines, D7:0 are used. For 16-bit bus widths, D15:0 are used. For 32-bit bus widths  
the full data bus is used.  
BE3  
BE2  
BE1  
BE0  
O
S
BYTE ENABLES select which of the four bytes addressed by A31:2 are active  
during an access to a memory region configured for a 32-bit data-bus width. BE3  
applies to D31:24; BE2 applies to D23:16; BE1 applies to D15:8; and BE0 applies  
to D7:0.  
H(Z)  
R(1)  
32-bit bus:  
BE3  
BE2  
BE1  
BE0  
Byte Enable 3  
Byte Enable 2  
Byte Enable 1  
Byte Enable 0  
enable D31:24  
enable D23:16  
enable D15:8  
enable D7:0  
For accesses to a memory region configured for a 16-bit data-bus width, the  
processor directly encodes BE3, BE1 and BE0 to provided BHE, A1 and BLE  
respectively.  
16-bit bus:  
BE3  
BE2  
BE1  
BE0  
Byte High Enable (BHE)  
enable D15:8  
Not used (is driven high or low)  
Address Bit 1 (A1)  
Byte Low Enable (BLE)  
enable D7:0  
For accesses to a memory region configured for an 8-bit data bus width, the  
processor directly encodes BE1 and BE0 to provide A1 and A0 respectively.  
8-bit bus:  
BE3  
BE2  
BE1  
BE0  
Not used (is driven high or low)  
Not used (is driven high or low)  
Address Bit 1 (A1)  
Address Bit 0 (A0)  
W/R  
O
S
WRITE/READ is asserted for read requests and deasserted for write requests.  
The W/R signal changes in the same clock cycle as ADS. It remains valid for the  
entire access in non-pipelined regions. In pipelined regions, W/R is not  
guaranteed valid in the last cycle of a read access.  
H(Z)  
R(0)  
ADS  
O
S
ADDRESS STROBE indicates valid address and the start of a new bus access.  
ADS is asserted for the first clock of a bus access.  
H(Z)  
R(1)  
READY  
I
READY is an input which signals the termination of a data transfer. READY is  
used to indicate that read data on the bus is valid, or that a write-data transfer has  
completed. The READY signal works in conjunction with the internally  
programmed wait-state generator. If READY is enabled in a region, the pin is  
sampled after the programmed number of wait-states has expired. If the READY  
pin is deasserted, wait states continue to be inserted until READY becomes  
S(L)  
H(Z)  
R(Z)  
asserted. This is true for the N  
N
, N  
, N  
RAD RDD WAD  
, and N  
wait states. The  
WDD  
wait states cannot be extended.  
XDA  
9
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Table 2. 80960CF Pin DescriptionÐExternal Bus Signals (Continued)  
Name  
Type  
Description  
BTERM  
I
BURST TERMINATEÐThe burst terminate signal breaks up a burst access and  
causes another address cycle to occur. The BTERM signal works in conjunction  
with the internally programmed wait-state generator. If READY and BTERM are  
enabled in a region, the BTERM pin is sampled after the programmed number of  
wait states has expired. When BTERM is asserted, a new ADS signal is generated  
and the access is completed. The READY input is ignored when BTERM is  
asserted. BTERM must be externally synchronized to satisfy the BTERM setup  
and hold times.  
S(L)  
H(Z)  
R(Z)  
WAIT  
O
S
H(Z)  
R(1)  
WAIT indicates internal wait state generator status. WAIT is asserted when wait  
states are being caused by the internal wait state generator and not by the  
READY or BTERM inputs. WAIT can be used to derive a write-data strobe. WAIT  
can also be thought of as a READY output that the processor provides when it is  
inserting wait states.  
BLAST  
O
S
H(Z)  
R(0)  
BURST LAST indicates the last transfer in a bus access. BLAST is asserted in the  
last data transfer of burst and non-burst accesses after the wait state counter  
reaches zero. BLAST remains asserted until the clock following the last cycle of  
the last data transfer of a bus access. If the READY or BTERM input is used to  
extend wait states, the BLAST signal remains asserted until READY or BTERM  
terminates the access.  
DT/R  
DEN  
O
S
H(Z)  
R(0)  
DATA TRANSMIT/RECEIVE indicates direction for data transceivers. DT/R is  
used in conjunction with DEN to provide control for data transceivers attached to  
the external bus. When DT/R is asserted, the signal indicates that the processor  
receives data. Conversely, when deasserted, the processor sends data. DT/R  
changes only while DEN is high.  
O
S
H(Z)  
R(1)  
DATA ENABLE indicates data cycles in a bus request. DEN is asserted at the  
start of the bus request first data cycle and is deasserted at the end of the last  
data cycle. DEN is used in conjunction with DT/R to provide control for data  
transceivers attached to the external bus. DEN remains asserted for sequential  
reads from pipelined memory regions. DEN is deasserted when DT/R changes.  
LOCK  
O
S
H(Z)  
R(1)  
BUS LOCK indicates that an atomic read-modify-write operation is in progress.  
LOCK may be used to prevent external agents from accessing memory which is  
currently involved in an atomic operation. LOCK is asserted in the first clock of an  
atomic operation, and deasserted in the clock cycle following the last bus access  
for the atomic operation. To allow the most flexibility for a memory system  
enforcement of locked accesses, the processor acknowledges a bus hold request  
when LOCK is asserted. The processor performs DMA transfers while LOCK is  
active.  
HOLD  
BOFF  
I
HOLD REQUEST signals that an external agent requests access to the external  
bus. The processor asserts HOLDA after completing the current bus request.  
HOLD, HOLDA and BREQ are used together to arbitrate access to the  
processor’s external bus by external bus agents.  
S(L)  
H(Z)  
R(Z)  
I
BUS BACKOFF ÐThe backoff pin, when asserted, suspends the current access  
and causes the bus pins to float. When deasserted, the ADS signal is asserted on  
the next clock cycle and the access is resumed.  
S(L)  
H(Z)  
R(Z)  
10  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Table 2. 80960CF Pin DescriptionÐExternal Bus Signals (Continued)  
Name  
Type  
Description  
HOLDA  
O
S
HOLD ACKNOWLEDGE indicates to a bus requestor that the processor has  
relinquished control of the external bus. When HOLDA is asserted, the external  
address bus, data bus and bus control signals are floated. HOLD, BOFF, HOLDA  
and BREQ are used together to arbitrate access to the processor’s external bus  
by external bus agents. Since the processor grants HOLD requests and enters the  
Hold Acknowledge state even while RESET is asserted, HOLDA pin state is  
independent of the RESET pin.  
H(1)  
R(Q)  
BREQ  
D/C  
O
S
BUS REQUEST is asserted when the bus controller has a request pending. BREQ  
can be used by external bus arbitration logic in conjunction with HOLD and  
HOLDA to determine when to return mastership of the external bus to the  
processor.  
H(Q)  
R(0)  
O
S
DATA OR CODE is asserted for a data request and deasserted for instruction  
requests. D/C has the same timing as W/R.  
H(Z)  
R(Z)  
DMA  
SUP  
O
S
DMA ACCESS indicates whether the bus request was initiated by the DMA  
controller. DMA is asserted for any DMA request. DMA is deasserted for all other  
requests.  
H(Z)  
R(Z)  
O
S
SUPERVISOR ACCESS indicates whether the bus request is issued while in  
supervisor mode. SUP is asserted when the request has supervisor privileges, and  
is deasserted otherwise. SUP can be used to isolate supervisor code and data  
structures from non-supervisor requests.  
H(Z)  
R(Z)  
Table 3. 80960CF Pin DescriptionÐProcessor Control Signals  
Description  
Name  
Type  
RESET  
I
RESET causes the chip to reset. When RESET is asserted, all external signals return  
to the reset state. When RESET is deasserted, initialization begins. When the 2-x clock  
mode is selected, RESET must remain asserted for 16 PCLK2:1 cycles before being  
deasserted in order to guarantee correct processor initialization. When the 1-x clock  
mode is selected, RESET must remain asserted for 10,000 PCLK2:1 cycles before  
being deasserted in order to guarantee correct initialization. The CLKMODE pin  
selects 1-x or 2-x input clock division of the CLKIN pin.  
A(L)  
H(Z)  
R(Z)  
N(Z)  
The processor’s Hold Acknowledge bus state functions while the chip is reset. If the  
processor’s bus is in the Hold Acknowledge state when RESET is asserted, the  
processor will internally reset, but maintains the Hold Acknowledge state on external  
pins until the Hold request is removed. If a hold request is made while the processor is  
in the reset state, the processor bus grants HOLDA and enters the Hold Acknowledge  
state.  
FAIL  
O
S
FAIL indicates failure of the processor’s self-test performed at initialization. When  
RESET is deasserted and the processor begins initialization, the FAIL pin is asserted.  
An internal self-test is performed as part of the initialization process. If this self-test  
passes, the FAIL pin is deasserted otherwise it remains asserted. The FAIL pin is  
reasserted while the processor performs an external bus self-confidence test. If this  
self-test passes, the processor deasserts the FAIL pin and branches to the user’s  
initialization routine; otherwise the FAIL pin remains asserted. Internal self-test and the  
use of the FAIL pin can be disabled with the STEST pin.  
H(Q)  
R(0)  
11  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Table 3. 80960CF Pin DescriptionÐProcessor Control Signals (Continued)  
Name  
STEST  
Type  
Description  
I
SELF TEST causes the processor’s internal self-test feature to be enabled or  
disabled at initialization. STEST is read on the rising edge of RESET. When asserted,  
the processor’s internal self-test and external bus confidence tests are performed  
during processor initialization. When deasserted, only the external bus confidence  
tests are performed during initialization.  
S(L)  
H(Z)  
R(Z)  
ONCE  
I
ON CIRCUIT EMULATION causes all outputs to be floated when asserted. ONCE is  
continuously sampled while RESET is low, and is latched on the rising edge of  
RESET. To place the processor in the ONCE state:  
A(L)  
H(Z)  
R(Z)  
(1) assert RESET and ONCE (order does not matter)  
(2) wait for at least 16 CLKIN periods in 2-x mode, or 10,000 CLKIN periods in 1-x  
mode, after V and CLKIN are within operating specifications  
CC  
(3) deassert RESET  
(4) wait at least 32 CLKIN periods  
(The processor is now latched in the ONCE state as long as RESET is high.)  
To exit the ONCE state, bring V and CLKIN to operating conditions, then assert  
CC  
RESET and bring ONCE high prior to deasserting RESET.  
CLKIN must operate within the specified operating conditions of the processor until  
step 4 above is completed. The CLKIN may then be changed to DC to achieve the  
lowest possible ONCE mode leakage current.  
ONCE can be used by emulator products or for board testers to effectively make an  
installed processor transparent in the board.  
CLKIN  
I
CLOCK INPUT is an input for the external clock needed to run the processor. The  
external clock is internally divided as prescribed by the CLKMODE pin to produce  
PCLK2:1.  
A(E)  
H(Z)  
R(Z)  
CLKMODE  
I
CLOCK MODE selects the division factor applied to the external clock input (CLKIN).  
When CLKMODE is high, CLKIN is divided by one to create PCLK2:1 and the  
processor’s internal clock. When CLKMODE is low, CLKIN is divided by two to create  
PCLK2:1 and the processor’s internal clock. CLKMODE should be tied high or low in  
a system, as the clock mode is not latched by the processor. If left unconnected, the  
processor internally pulls the CLKMODE pin low, enabling the 2-x clock mode.  
A(L)  
H(Z)  
R(Z)  
PCLK2  
PCLK1  
O
S
PROCESSOR OUTPUT CLOCKS provide a timing reference for all inputs and  
outputs of the processor. All inputs and output timings are specified in relation to  
PCLK2 and PCLK1. PCLK2 and PCLK1 are identical signals. Two output pins are  
provided to allow flexibility in the system’s allocation of capacitive loading on the  
clock. PCLK2:1 may also be connected at the processor to form a single clock signal.  
H(Q)  
R(Q)  
V
V
V
Ð
Ð
Ð
GROUND connections consist of 24 pins which must be connected externally to a  
board plane.  
SS  
V
SS  
POWER connections consist of 24 pins which must be connected externally to a V  
board plane.  
CC  
CC  
V
CCPLL  
Connecting a simple low pass filter to V  
is a separate V supply pin for the phase lock loop used in 1x clock mode.  
CC  
CCPLL  
may help reduce clock jitter (T ) in  
CP  
CCPLL  
should be connected to V  
noisy environments. Otherwise, V  
.
CC  
CCPLL  
N/C  
Ð
NO CONNECT pins must not be connected in a system.  
12  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Table 4. 80960CF Pin DescriptionÐDMA and Interrupt Unit Control Signals  
Name  
Type  
Description  
DREQ3  
DREQ2  
DREQ1  
DREQ0  
I
DMA REQUEST causes a DMA transfer to be requested. Each of the four signals  
request a transfer on a single channel. DREQ0 requests channel 0, DREQ1 requests  
channel 1, etc. When two or more channels are requested simultaneously, the  
channel with the highest priority is serviced first. Channel priority mode is  
programmable.  
A(L)  
H(Z)  
R(Z)  
DACK3  
DACK2  
DACK1  
DACK0  
O
S
DMA ACKNOWLEDGE indicates that a DMA transfer is being executed. Each of the  
four signals acknowledge a transfer for a single channel. DACK0 acknowledges  
channel 0, DACK1 acknowledges channel 1, etc. DACK3:0 are asserted when the  
requesting device of a DMA is accessed.  
H(1)  
R(1)  
EOP3/TC3  
EOP2/TC2  
I / O  
END OF PROCESS/TERMINAL COUNT can be programmed as either an input  
(EOP3:0) or as an output (TC3:0), but not both. Each pin is individually  
programmable. When programmed as an input, EOPx causes the termination of a  
current DMA transfer for the channel corresponding to the EOPx pin. EOP0  
corresponds to channel 0, EOP1 corresponds to channel 1, etc. When a channel is  
configured for sourceand destination chaining, the EOP pin for that channel causes  
termination of only the current buffer transferred and causes the next buffer to be  
transferred. EOP3:0 are asynchronous inputs.  
A(L)  
EOP1/TC1 H(Z/Q)  
EOP0/TC0  
R(Z)  
When programmed as an output, the channel’s TCx pin indicates that the channel  
byte count has reached 0 and a DMA has terminated. TCx is driven with the same  
timing as DACKx during the last DMA transfer for a buffer. If the last bus request is  
executed as multiple bus accesses, TCx remains asserted for the entire bus request.  
XINT7  
XINT6  
XINT5  
XINT4  
XINT3  
XINT2  
XINT1  
XINT0  
I
EXTERNAL INTERRUPT PINS cause interrupts to be requested. These pins can be  
configured in three modes.  
A(E/L)  
H(Z)  
R(Z)  
In Dedicated Mode, each pin is a dedicated external interrupt source. Dedicated  
inputs can be individually programmed to be level (low) or edge (falling) activated.  
In Expanded Mode, the 8 pins act together as an 8-bit vectored interrupt source. The  
interrupt pins in this mode are level activated. Since the interrupt pins are active low,  
the vector number requested is the one’s complement of the positive logic value  
place on the port. This eliminates glue logic to interface to combinational priority  
encoders which output negative logic.  
In Mixed Mode, XINT7:5 are dedicated sources and XINT4:0 act as the 5 most  
significant bits of an expanded mode vector. The least significant bits are set to 010  
internally.  
NMI  
I
NON-MASKABLE INTERRUPT causes a non-maskable interrupt event to occur.  
NMI is the highest priority interrupt recognized. NMI is an edge (falling) activated  
source.  
A(E)  
H(Z)  
R(Z)  
13  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
80960CF pinout as viewed from the top side of the  
component (i.e., pins facing down). Figure 4b shows  
the complete 80960CF pinout as viewed from the  
pin-side of the package (i.e., pins facing up). See  
Section 4.0, Electrical Specifications for specifica-  
tions and recommended connections.  
3.3. 80960CF Pinout  
3.3.1 80960CF PGA PINOUT  
Tables 5 and 6 list the 80960CF pin names with  
package location. Figure 4-a depicts the complete  
Table 5. PGA Pin Name with Package Location (Signal Order)  
Address Bus  
Data Bus  
Bus Control  
Processor Control  
Name ÀÀÀÀLocation  
RESET ÀÀÀÀÀÀÀA16  
I/O  
Name ÀÀLocation  
A31 ÀÀÀÀÀÀÀÀS15  
A30 ÀÀÀÀÀÀÀÀQ13  
A29 ÀÀÀÀÀÀÀÀR14  
A28 ÀÀÀÀÀÀÀÀQ14  
A27 ÀÀÀÀÀÀÀÀS16  
A26 ÀÀÀÀÀÀÀÀR15  
A25 ÀÀÀÀÀÀÀÀS17  
A24 ÀÀÀÀÀÀÀÀQ15  
A23 ÀÀÀÀÀÀÀÀR16  
A22 ÀÀÀÀÀÀÀÀR17  
A21 ÀÀÀÀÀÀÀÀQ16  
A20 ÀÀÀÀÀÀÀÀP15  
A19 ÀÀÀÀÀÀÀÀP16  
A18 ÀÀÀÀÀÀÀÀQ17  
A17 ÀÀÀÀÀÀÀÀP17  
A16 ÀÀÀÀÀÀÀÀN16  
A15 ÀÀÀÀÀÀÀÀN17  
A14ÀÀÀÀÀÀÀÀM17  
A13 ÀÀÀÀÀÀÀÀL16  
A12 ÀÀÀÀÀÀÀÀL17  
A11 ÀÀÀÀÀÀÀÀK17  
A10 ÀÀÀÀÀÀÀÀJ17  
A9 ÀÀÀÀÀÀÀÀÀH17  
A8 ÀÀÀÀÀÀÀÀÀG17  
A7 ÀÀÀÀÀÀÀÀÀG16  
A6 ÀÀÀÀÀÀÀÀÀF17  
A5 ÀÀÀÀÀÀÀÀÀE17  
A4 ÀÀÀÀÀÀÀÀÀE16  
Name ÀÀLocation  
D31 ÀÀÀÀÀÀÀÀR03  
D30ÀÀÀÀÀÀÀÀQ05  
D29 ÀÀÀÀÀÀÀÀS02  
D28ÀÀÀÀÀÀÀÀQ04  
D27 ÀÀÀÀÀÀÀÀR02  
D26ÀÀÀÀÀÀÀÀQ03  
D25 ÀÀÀÀÀÀÀÀS01  
D24 ÀÀÀÀÀÀÀÀR01  
D23ÀÀÀÀÀÀÀÀQ02  
D22 ÀÀÀÀÀÀÀÀP03  
D21ÀÀÀÀÀÀÀÀQ01  
D20 ÀÀÀÀÀÀÀÀP02  
D19 ÀÀÀÀÀÀÀÀP01  
D18 ÀÀÀÀÀÀÀÀN02  
D17 ÀÀÀÀÀÀÀÀN01  
D16ÀÀÀÀÀÀÀÀM01  
D15 ÀÀÀÀÀÀÀÀL01  
D14 ÀÀÀÀÀÀÀÀL02  
D13 ÀÀÀÀÀÀÀÀK01  
D12 ÀÀÀÀÀÀÀÀJ01  
D11 ÀÀÀÀÀÀÀÀH01  
D10 ÀÀÀÀÀÀÀÀH02  
D9 ÀÀÀÀÀÀÀÀÀG01  
D8 ÀÀÀÀÀÀÀÀÀF01  
D7 ÀÀÀÀÀÀÀÀÀE01  
D6 ÀÀÀÀÀÀÀÀÀF02  
D5 ÀÀÀÀÀÀÀÀÀD01  
D4 ÀÀÀÀÀÀÀÀÀE02  
Name ÀÀLocation  
BE3 ÀÀÀÀÀÀÀÀS05  
BE2 ÀÀÀÀÀÀÀÀS06  
BE1 ÀÀÀÀÀÀÀÀS07  
BE0ÀÀÀÀÀÀÀÀR09  
Name ÀÀLocation  
DREQ3 ÀÀÀÀÀA07  
DREQ2 ÀÀÀÀÀB06  
DREQ1 ÀÀÀÀÀA06  
DREQ0 ÀÀÀÀÀB05  
FAILÀÀÀÀÀÀÀÀÀÀA02  
STESTÀÀÀÀÀÀÀÀB02  
ONCE ÀÀÀÀÀÀÀÀC03  
W/R ÀÀÀÀÀÀÀS10  
ADS ÀÀÀÀÀÀÀR06  
DACK3 ÀÀÀÀÀA10  
DACK2 ÀÀÀÀÀA09  
DACK1 ÀÀÀÀÀA08  
DACK0 ÀÀÀÀÀB08  
CKLIN ÀÀÀÀÀÀÀÀC13  
CLKMODE ÀÀÀÀC14  
PCLK1ÀÀÀÀÀÀÀÀB14  
PCLK2ÀÀÀÀÀÀÀÀB13  
READY ÀÀÀÀÀS03  
BTERMÀÀÀÀÀR04  
EOP/TC0 ÀÀÀA11  
EOP/TC1 ÀÀÀA12  
EOP/TC2 ÀÀÀA13  
EOP/TC3 ÀÀÀA14  
WAITÀÀÀÀÀÀÀS12  
BLAST ÀÀÀÀÀS08  
V
SS  
Location  
DT/RÀÀÀÀÀÀÀS11  
DEN ÀÀÀÀÀÀÀS09  
C07, C08, C09,  
C10, C11, C12,  
F15, G03, G15,  
H03, H15, J03,  
J15, K03, K15,  
L03, L15, M03,  
M15, Q07, Q08,  
Q09, Q10, Q11  
XINT7 ÀÀÀÀÀÀC17  
XINT6 ÀÀÀÀÀÀC16  
XINT5 ÀÀÀÀÀÀB17  
XINT4 ÀÀÀÀÀÀC15  
XINT3 ÀÀÀÀÀÀB16  
XINT2 ÀÀÀÀÀÀA17  
XINT1 ÀÀÀÀÀÀA15  
XINT0 ÀÀÀÀÀÀB15  
LOCK ÀÀÀÀÀÀS14  
HOLD ÀÀÀÀÀÀR05  
HOLDA ÀÀÀÀÀS04  
BREQ ÀÀÀÀÀÀR13  
V
CC  
Location  
B07, B09,  
B11, B12, C06,  
E15, F03, F16,  
G02, H16, J02,  
J16, K02, K16, M02,  
M16, N03, N15,  
Q06, R07, R08,  
R10, R11  
D/C ÀÀÀÀÀÀÀÀS13  
DMA ÀÀÀÀÀÀÀR12  
SUP ÀÀÀÀÀÀÀQ12  
NMI ÀÀÀÀÀÀÀÀD15  
V
ÀÀÀÀÀÀÀB10  
CCPLL  
A3 ÀÀÀÀÀÀÀÀÀD17  
A2 ÀÀÀÀÀÀÀÀÀD16  
D3 ÀÀÀÀÀÀÀÀÀC01  
D2 ÀÀÀÀÀÀÀÀÀD02  
D1 ÀÀÀÀÀÀÀÀÀC02  
BOFF ÀÀÀÀÀÀB01  
No Connect  
Location  
A01, A03, A04, A05,  
B03, B04, C04, C05,  
D03  
D0 ÀÀÀÀÀÀÀÀÀE03  
14  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Table 6. PGA Pin Name with Package Location (Pin Order)  
Address Bus  
Data Bus  
Bus Control  
Location ÀÀName  
G01 ÀÀÀÀÀÀÀÀÀD9  
Processor Control  
Location ÀÀÀÀName  
M01 ÀÀÀÀÀÀÀÀÀD16  
I/O  
Location ÀÀName  
A01ÀÀÀÀÀÀÀÀÀNC  
A02 ÀÀÀÀÀÀÀFAIL  
A03ÀÀÀÀÀÀÀÀÀNC  
A04ÀÀÀÀÀÀÀÀÀNC  
A05ÀÀÀÀÀÀÀÀÀNC  
A06 ÀÀÀÀÀDREQ1  
A07 ÀÀÀÀÀDREQ3  
A08 ÀÀÀÀÀDACK1  
A09 ÀÀÀÀÀDACK2  
A10 ÀÀÀÀÀDACK3  
A11 ÀÀÀEOP/TC0  
A12 ÀÀÀEOP/TC1  
A13 ÀÀÀEOP/TC2  
A14 ÀÀÀEOP/TC3  
A15 ÀÀÀÀÀÀXINT1  
A16 ÀÀÀÀÀRESET  
A17 ÀÀÀÀÀÀXINT2  
Location ÀÀName  
C01 ÀÀÀÀÀÀÀÀÀD3  
C02 ÀÀÀÀÀÀÀÀÀD1  
C03 ÀÀÀÀÀÀONCE  
C04ÀÀÀÀÀÀÀÀÀNC  
C05ÀÀÀÀÀÀÀÀÀNC  
Location ÀÀName  
R01 ÀÀÀÀÀÀÀÀD24  
R02 ÀÀÀÀÀÀÀÀD27  
R03 ÀÀÀÀÀÀÀÀD31  
R04ÀÀÀÀÀBTERM  
R05 ÀÀÀÀÀÀHOLD  
R06 ÀÀÀÀÀÀÀADS  
G02ÀÀÀÀÀÀÀÀV  
M02 ÀÀÀÀÀÀÀÀÀV  
CC  
CC  
G03 ÀÀÀÀÀÀÀÀV  
G15 ÀÀÀÀÀÀÀÀV  
M03ÀÀÀÀÀÀÀÀÀÀV  
M15ÀÀÀÀÀÀÀÀÀÀV  
SS  
SS  
SS  
CC  
SS  
G16 ÀÀÀÀÀÀÀÀÀA7  
G17 ÀÀÀÀÀÀÀÀÀA8  
M16 ÀÀÀÀÀÀÀÀÀV  
C06 ÀÀÀÀÀÀÀÀV  
M17ÀÀÀÀÀÀÀÀÀÀA14  
CC  
C07 ÀÀÀÀÀÀÀÀV  
C08 ÀÀÀÀÀÀÀÀV  
C09 ÀÀÀÀÀÀÀÀV  
C10 ÀÀÀÀÀÀÀÀV  
C11 ÀÀÀÀÀÀÀÀV  
C12 ÀÀÀÀÀÀÀÀV  
R07 ÀÀÀÀÀÀÀÀV  
R08 ÀÀÀÀÀÀÀÀV  
SS  
SS  
SS  
SS  
SS  
SS  
CC  
CC  
H01 ÀÀÀÀÀÀÀÀD11  
H02 ÀÀÀÀÀÀÀÀD10  
N01ÀÀÀÀÀÀÀÀÀÀD17  
N02ÀÀÀÀÀÀÀÀÀÀD18  
R09ÀÀÀÀÀÀÀÀBE0  
H03 ÀÀÀÀÀÀÀÀV  
H15 ÀÀÀÀÀÀÀÀV  
N03ÀÀÀÀÀÀÀÀÀÀV  
N15ÀÀÀÀÀÀÀÀÀÀV  
R10 ÀÀÀÀÀÀÀÀV  
R11 ÀÀÀÀÀÀÀÀV  
SS  
SS  
CC  
CC  
CC  
CC  
CC  
H16 ÀÀÀÀÀÀÀÀV  
N16ÀÀÀÀÀÀÀÀÀÀA16  
N17ÀÀÀÀÀÀÀÀÀÀA15  
R12 ÀÀÀÀÀÀÀDMA  
R13 ÀÀÀÀÀÀBREQ  
R14 ÀÀÀÀÀÀÀÀA29  
R15 ÀÀÀÀÀÀÀÀA26  
R16 ÀÀÀÀÀÀÀÀA23  
R17 ÀÀÀÀÀÀÀÀA22  
C13ÀÀÀÀÀÀCLKIN  
C14 ÀÀCLKMODE  
C15 ÀÀÀÀÀÀXINT4  
C16 ÀÀÀÀÀÀXINT6  
C17 ÀÀÀÀÀÀXINT7  
H17 ÀÀÀÀÀÀÀÀÀA9  
J01 ÀÀÀÀÀÀÀÀD12  
P01 ÀÀÀÀÀÀÀÀÀÀD19  
P02 ÀÀÀÀÀÀÀÀÀÀD20  
P03 ÀÀÀÀÀÀÀÀÀÀD22  
P15 ÀÀÀÀÀÀÀÀÀÀA20  
P16 ÀÀÀÀÀÀÀÀÀÀA19  
P17 ÀÀÀÀÀÀÀÀÀÀA17  
J02 ÀÀÀÀÀÀÀÀV  
CC  
J03 ÀÀÀÀÀÀÀÀV  
SS  
SS  
CC  
J15 ÀÀÀÀÀÀÀÀV  
B01 ÀÀÀÀÀÀBOFF  
B02 ÀÀÀÀÀSTEST  
B03ÀÀÀÀÀÀÀÀÀNC  
B04ÀÀÀÀÀÀÀÀÀNC  
B05 ÀÀÀÀÀDREQ0  
B06 ÀÀÀÀÀDREQ2  
D01 ÀÀÀÀÀÀÀÀÀD5  
D02 ÀÀÀÀÀÀÀÀÀD2  
D03ÀÀÀÀÀÀÀÀÀNC  
D15 ÀÀÀÀÀÀÀÀNMI  
D16 ÀÀÀÀÀÀÀÀÀA2  
D17 ÀÀÀÀÀÀÀÀÀA3  
J16 ÀÀÀÀÀÀÀÀV  
S01 ÀÀÀÀÀÀÀÀD25  
S02 ÀÀÀÀÀÀÀÀD29  
S03 ÀÀÀÀÀREADY  
S04 ÀÀÀÀÀHOLDA  
S05 ÀÀÀÀÀÀÀÀBE3  
S06 ÀÀÀÀÀÀÀÀBE2  
S07 ÀÀÀÀÀÀÀÀBE1  
S08 ÀÀÀÀÀBLAST  
S09 ÀÀÀÀÀÀÀDEN  
S10 ÀÀÀÀÀÀÀW/R  
S11ÀÀÀÀÀÀÀDT/R  
S12ÀÀÀÀÀÀÀWAIT  
S13 ÀÀÀÀÀÀÀÀD/C  
S14 ÀÀÀÀÀÀLOCK  
S15 ÀÀÀÀÀÀÀÀA31  
S16 ÀÀÀÀÀÀÀÀA27  
S17 ÀÀÀÀÀÀÀÀA25  
J17 ÀÀÀÀÀÀÀÀA10  
K01 ÀÀÀÀÀÀÀÀD13  
Q01ÀÀÀÀÀÀÀÀÀÀD21  
Q02ÀÀÀÀÀÀÀÀÀÀD23  
Q03ÀÀÀÀÀÀÀÀÀÀD26  
Q04ÀÀÀÀÀÀÀÀÀÀD28  
Q05ÀÀÀÀÀÀÀÀÀÀD30  
K02 ÀÀÀÀÀÀÀÀV  
CC  
K03 ÀÀÀÀÀÀÀÀV  
SS  
SS  
CC  
B07 ÀÀÀÀÀÀÀÀV  
K15 ÀÀÀÀÀÀÀÀV  
CC  
B08 ÀÀÀÀÀDACK0  
E01 ÀÀÀÀÀÀÀÀÀD7  
E02 ÀÀÀÀÀÀÀÀÀD4  
E03 ÀÀÀÀÀÀÀÀÀD0  
K16 ÀÀÀÀÀÀÀÀV  
B09 ÀÀÀÀÀÀÀÀV  
K17 ÀÀÀÀÀÀÀÀA11  
Q06ÀÀÀÀÀÀÀÀÀÀV  
CC  
CC  
B10 ÀÀÀÀÀV  
Q07ÀÀÀÀÀÀÀÀÀÀV  
Q08ÀÀÀÀÀÀÀÀÀÀV  
Q09ÀÀÀÀÀÀÀÀÀÀV  
Q10ÀÀÀÀÀÀÀÀÀÀV  
Q11ÀÀÀÀÀÀÀÀÀÀV  
CCPLL  
SS  
SS  
SS  
SS  
SS  
B11 ÀÀÀÀÀÀÀÀV  
E15 ÀÀÀÀÀÀÀÀV  
L01 ÀÀÀÀÀÀÀÀD15  
L02 ÀÀÀÀÀÀÀÀD14  
CC  
CC  
CC  
B12 ÀÀÀÀÀÀÀÀV  
E16 ÀÀÀÀÀÀÀÀÀA4  
E17 ÀÀÀÀÀÀÀÀÀA5  
B13 ÀÀÀÀÀPCLK2  
B14 ÀÀÀÀÀPCLK1  
B15 ÀÀÀÀÀÀXINT0  
B16 ÀÀÀÀÀÀXINT3  
B17 ÀÀÀÀÀÀXINT5  
L03 ÀÀÀÀÀÀÀÀV  
L15 ÀÀÀÀÀÀÀÀV  
SS  
SS  
F01 ÀÀÀÀÀÀÀÀÀD8  
F02 ÀÀÀÀÀÀÀÀÀD6  
L16 ÀÀÀÀÀÀÀÀA13  
L17 ÀÀÀÀÀÀÀÀA12  
Q12 ÀÀÀÀÀÀÀÀÀSUP  
Q13ÀÀÀÀÀÀÀÀÀÀA30  
Q14ÀÀÀÀÀÀÀÀÀÀA28  
Q15ÀÀÀÀÀÀÀÀÀÀA24  
Q16ÀÀÀÀÀÀÀÀÀÀA21  
Q17ÀÀÀÀÀÀÀÀÀÀA18  
F03 ÀÀÀÀÀÀÀÀV  
CC  
F15 ÀÀÀÀÀÀÀÀV  
SS  
F16 ÀÀÀÀÀÀÀÀV  
CC  
F17 ÀÀÀÀÀÀÀÀÀA6  
15  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
271328–3  
Figure 4a. 80960CF PGA Pinout (View from Top Side)  
16  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
271328–4  
Figure 4b. 80960CF PGA Pinout (View from Bottom Side)  
17  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
3.4. Mechanical Data  
3.4.1 CERAMIC PGA PACKAGE  
271328–5  
Family: Ceramic Pin Grid Array Package  
Millimeters  
Max  
Inches  
Max  
Symbol  
Min  
3.56  
0.64  
23  
Notes  
Min  
Notes  
A
4.57  
0.140  
0.025  
0.110  
0.045  
0.017  
1.735  
1.595  
0.090  
0.100  
0.180  
0.045  
0.140  
0.055  
0.020  
1.765  
1.605  
0.110  
0.130  
A
A
A
1.14  
0.30  
SOLID LID  
SOLID LID  
SOLID LID  
SOLID LID  
1
2
3
1.14  
0.43  
44.07  
40.51  
2.29  
2.54  
1.40  
B
0.51  
D
44.83  
40.77  
2.79  
D
1
e
1
L
3.30  
N
168  
168  
S
1
1.52  
2.54  
0.060  
0.100  
ISSUE  
IWS REV X 7/15/88  
Figure 5. 168-Lead Ceramic PGA Package Dimensions  
18  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Table 7. Ceramic PGA Package Dimension Symbols  
Letter or  
Symbol  
Description of Dimensions  
A
Distance from seating plane to highest point of body  
Distance between seating plane and base plane (lid)  
Distance from base plane to highest point of body  
Distance from seating plane to bottom of body  
Diameter of terminal lead pin  
A
A
A
1
2
3
B
D
Largest overall package dimension of length  
D
A body length dimension, outer lead center to outer lead center  
Linear spacing between true lead position centerlines  
Distance from seating plane to end of lead  
1
1
e
L
S
1
Other body dimension, outer lead center to edge of body  
NOTES:  
1. Controlling dimension: millimeter.  
2. Dimension ‘‘e ’’ (‘‘e’’) is non-cumulative.  
1
3. Seating plane (standoff) is defined by P.C. board hole size: 0.04150.0430 inch.  
4. Dimensions ‘‘B’’, ‘‘B ’’ and ‘‘C’’ are nominal.  
1
5. Details of Pin 1 identifier are optional.  
19  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
3.5. Package Thermal Specifications  
Table 8 shows the maximum T allowable (without  
A
exceeding T ) at various airflows and operating fre-  
C
quencies (f  
).  
PCLK  
The 80960CF is specified for operation when T  
C
(the case temperature) is within the range of  
b
a
Note that T is greatly improved by attaching fins or  
A
a heat sink to the package. P (the maximum power  
40 C 110 C. T may be measured in any envi-  
C
§
§
ronment to determine whether the 80960CF is within  
specified operating range. The case temperature is  
measured at the center of the top surface, opposite  
the pins. Refer to Figure 7.  
consumption) is calculated by using the typical I  
as tabulated in Section 4.4, DC Specifications, and  
CC  
V
of 5V.  
CC  
T
A
(the ambient temperature) can be calculated  
from i (thermal resistance from case to ambient)  
CA  
with the following equation:  
e
b
P*i  
T
A
T
C
CA  
Table 8. Maximum T at Various Airflows In C (PGA Package Only)  
A
§
Airflow-ft/min (m/sec)  
f
PCLK  
(MHz)  
0
(0)  
200  
(1.01)  
400  
(2.03)  
600  
(3.04)  
800  
(4.06)  
1000  
(5.07)  
T
with  
Heat Sink*  
33  
25  
16  
38  
50  
63  
57  
65  
74  
74  
79  
84  
76  
81  
86  
81  
85  
89  
84  
87  
90  
A
T
without  
Heat Sink  
33  
25  
16  
18  
34  
51  
33  
46  
60  
47  
57  
68  
57  
65  
74  
66  
72  
80  
67  
74  
81  
A
*0.285 high unidirectional heat sink (Al alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).  
×
PGA Thermal ResistanceÐ C/Watt  
§
AirflowÐft./min (m/sec)  
Parameter  
0
200  
400  
600  
800  
1000  
(0) (1.01) (2.03) (3.07) (4.06) (5.07)  
i Junction-to-Case  
(Case Measured  
as shown in Figure 7)  
1.5  
17  
13  
1.5  
14  
9
1.5  
11  
1.5  
9
1.5  
7.1  
3.9  
1.5  
6.6  
3.4  
i Case-to-Ambient  
(No Heatsink)  
271328–6  
i Case-to-Ambient  
(with Unidirectional)  
Heatsink)*  
5.5  
5.0  
NOTES:  
1. This table applies to 80960CF PGA plugged into socket or soldered directly  
into board.  
e
a
§
2. i  
3. i  
i
i
e
e
e
i
4 C/W (approx.)  
.
JA  
JC  
CA  
J-CAP  
J-PIN  
J-PIN  
4 C/W (inner pins) (approx.)  
8 C/W (outer pins) (approx.)  
§
§
i
* 0.285 high unidirectional heat sink (Al alloy 6061, 50 mil fin width, 150 mil  
×
center-to-center fin spacing).  
Figure 6. 80960CF PGA Package Thermal Characteristics  
20  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
3.7 Suggested Sources for 80960CF  
Accessories  
The following are some suggested sources of ac-  
cessories for the 80960CF. They are neither an  
endorsement of any kind, nor a warranty of the  
performance of any of the listed products and/or  
companies.  
Sockets  
1. 3M Textool Test and Interconnection Products  
Department  
P.O. Box 2963  
Austin, TX 78769-2963  
2. Augat, Inc.  
Interconnection Products Group  
33 Perry Avenue  
P.O. Box 779  
271328–7  
Attleboro, MA 02703  
(508) 222-2202  
Figure 7. Measuring 80960CF PGA Case  
Temperature  
3. Concept Manufacturing Inc.  
(Decoupling Sockets)  
43024 Christy Street  
Fremont, CA 94538  
(415) 651-3804  
3.6 Stepping Register Information  
Upon Reset, Register G0 contains die stepping in-  
formation. The following figure shows how G0 is  
configured. The most significant byte contains an  
ASCII 0. The upper middle byte contains an ASCII C.  
The lower middle byte contains an ASCII F. The  
least significant byte contains the stepping number  
in ASCII. G0 retains this information until it is written  
over by the user program.  
Heat Sinks/Fins  
1. Thermalloy, Inc.  
2021 West Valley View Lane  
Dallas, TX 75381-0839  
(214) 243-4321  
Table 9 contains a cross reference of the number in  
the least significant byte of register G0 to the die  
stepping number.  
2. E G & G Division  
60 Audubon Road  
Wakefield, MA 01880  
(617) 245-5900  
ASCII  
00  
0
43  
C
46  
F
Stepping Number  
Stepping Number  
LSB  
DECIMAL  
MSB  
Figure 8. Register G0  
Table 9. Die Stepping Cross Reference  
G0 Least  
Die Stepping  
Significant Byte  
01  
02  
03  
04  
05  
A
B
C
D
E
21  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
4.0 ELECTRICAL SPECIFICATIONS  
4.1 Absolute Maximum Ratings  
NOTICE: This data sheet contains information on  
products in the sampling and initial production phases  
of development. It is valid for the devices indicated in  
the revision history. The specifications are subject to  
change without notice.  
Parameter  
Maximum Rating  
*WARNING: Stressing the device beyond the ‘‘Absolute  
Maximum Ratings’’ may cause permanent damage.  
These are stress ratings only. Operation beyond the  
‘‘Operating Conditions’’ is not recommended and ex-  
tended exposure beyond the ‘‘Operating Conditions’’  
may affect device reliability.  
b
b
b
a
65 C to 150 C  
Storage Temperature  
§
§
(2)  
a
40 C to 125 C  
Case Temperature Under Bias  
§
§
a
0.5V to 6.5V  
Supply Voltage wrt. V  
SS  
b
a
0.5V  
Voltage on Other pins wrt V  
SS  
0.5V to V  
CC  
4.2. Operating Conditions  
Operating Conditions (80960CF-33, -25, -16)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
V
Supply Voltage  
80960CF-30  
80960CF-25  
80960CF-16  
4.75  
4.50  
4.50  
5.25  
5.50  
5.50  
CC  
V
f
f
Input Clock Frequency (2-x Mode)  
Input Clock Frequency (1-x Mode)  
80960CF-30  
80960CF-25  
80960CF-16  
0
0
0
60.6  
50  
MHz  
MHz  
MHz  
CLK2x  
CLK1x  
32  
80960CF-30  
80960CF-25  
80960CF-16  
8
8
8
30.3  
25  
MHz  
MHz  
MHz  
(1)  
16  
b
a
110  
T
C
Case Temperature Under Bias  
80960CF-30, -25, -16  
PGA Package  
40  
C
§
NOTES:  
(1) When in the 1-x input clock mode, CLKIN is an input to an internal phase-locked loop and must maintain a minimum  
frequency of 8 MHz for proper processor operation. However, in the 1-x Mode, CLKIN may still be stopped when the  
processor either is in a reset condition or is reset. If CLKIN is stopped, the specified RESET low time must be provided once  
CLKIN restarts and has stabilized.  
(2) Case temperatures are ‘‘Instant On’’.  
Low inductance capacitors and interconnects are  
recommended for best high frequency electrical per-  
4.3 Recommended Connections  
formance. Inductance can be reduced by shortening  
board traces between the processor and decoupling  
capacitors as much as possible. Capacitors specifi-  
cally designed for PGA packages will offer the low-  
est possible inductance.  
Power and ground connections must be made to  
multiple V and V (GND) pins. Every 80960CF-  
based circuit board should include power (V ) and  
CC  
SS  
CC  
ground (V ) planes for power distribution. Every  
SS  
pin must be connected to the power plane, and  
V
CC  
every V  
pin must be connected to the ground  
SS  
For reliable operation, always connect unused in-  
puts to an appropriate signal level. In particular, any  
unused interrupt (XINT, NMI) or DMA (DREQ) input  
plane. Pins identified as ‘‘N.C.’’ must not be con-  
nected in the system.  
should be connected to V through a pull-up resis-  
CC  
Liberal decoupling capacitance should be placed  
near the 80960CF. The processor can cause tran-  
sient power surges when its numerous output buff-  
ers transition, particularly when connected to large  
capacitive loads.  
tor, as should BTERM if not used. Pull-up resistors  
should be in the range of 20 KX for each pin tied  
high. If READY or HOLD are not used, the unused  
input should be connected to ground. N.C. pins  
must always remain unconnected. Refer to the  
i960 CA Microprocessor Reference Manual for more  
information.  
22  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
4.4. DC Specifications  
DC Characteristics  
(80960CF-30, -25, -16 under the conditions described in Section 4.2, Operating Conditions.)  
Symbol  
Parameter  
Min  
Max  
0.8  
a
Units  
Notes  
b
V
IL  
Input Low Voltage for all pins except RESET  
Input High Voltage for all pins except RESET  
Output Low Voltage  
0.3  
V
V
V
V
IH  
2.0  
V
V
0.3  
0.3  
CC  
e
V
0.45  
I
5 mA  
OL  
OH  
OL  
e b  
e b  
V
Output High Voltage  
I
I
1mA  
200mA  
2.4  
b
V
V
OH  
OH  
V
0.5  
CC  
b
0.3  
3.5  
V
Input Low Voltage for RESET  
Input High Voltage for RESET  
1.5  
V
V
ILR  
IHR  
LI1  
a
V
CC  
I
Input Leakage Current for each pinexcept:  
BTERM, ONCE, DREQ3:0, STEST,  
EOP3:0/TC3:0, NMI, XINT7:0,  
s
s
V
CC  
g
READY, HOLD, BOFF, CLKMODE  
15  
mA  
0V  
V
IN  
(1)  
I
I
Input Leakage Current for:  
BTERM, ONCE, DREQ3:0, STEST,  
EOP3:0/TC3:0, NMI, XINT7:0, BOFF  
LI2  
LI3  
b
e
0.45V (2)  
0
0
325  
mA  
mA  
V
IN  
Input Leakage Current for:  
READY, HOLD, CLKMODE  
e
500  
V
2.4V (3)  
IN  
s
s
g
I
Output Leakage Current  
15  
mA 0.45V  
V
V
CC  
LO  
OUT  
I
I
I
Supply Current (80960CF-30)  
CC  
I
I
Max  
Typ  
1150  
960  
mA  
(4)  
(5)  
CC  
CC  
Supply Current (80960CF-25)  
CC  
CC  
I
I
Max  
Typ  
950  
775  
mA  
(4)  
(5)  
CC  
CC  
Supply Current (80960CF-16)  
I
I
Max  
Typ  
750  
575  
mA  
mA  
(4)  
(5)  
CC  
CC  
I
ONCE-mode Supply Current  
150  
ONCE  
C
Input Capacitance for:  
CLKIN, RESET, ONCE,  
IN  
READY, HOLD, DREQ3:0, BOFF  
XINT7:0, NMI, BTERM, CLKMODE  
e
0
12  
12  
12  
pF  
pF  
pF  
F
1 MHz  
C
e
C
Output Capacitance of each output pin  
I/O Pin Capacitance  
F
C
1 MHz, (6)  
OUT  
e
1 MHz  
C
F
I/O  
NOTES:  
(1) No Pull-up or pull-down.  
C
(2) These pins have internal pullup resistors.  
(3) These pins have internal pulldown resistors.  
(4) Measured at worst case frequency, V and temperature, with device operating and outputs loaded to the test conditions  
CC  
described in Section 4.5.1, AC Test Conditions.  
(5) I Typical is not tested.  
(6) Output Capacitance is the capacitive load of a floating output.  
CC  
(7) CLKMODE pin has a pulldown resistor only when ONCE pin is deasserted.  
23  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
4.5 AC Specifications  
AC Characteristics Ð 80960CF-30  
(80960CF-30 only, under the conditions described in Section 4.2, Operating Conditions and Section 4.5.1,  
AC Test Conditions.) See notes which follow this table.  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
(10)  
INPUT CLOCK  
T
CLKIN Frequency  
CLKIN Period  
0
60.6  
MHz  
(1)  
F
T
In 1-x Mode (f  
In 2-x Mode (f  
)
)
33  
16.5  
125  
%
ns  
ns  
(1,12)  
(1)  
C
CLK1x  
CLK2x  
g
T
T
CLKIN Period Stability  
CLKIN High Time  
In 1-x Mode (f  
)
0.1%  
D
(1,13)  
CS  
CLK1x  
In 1-x Mode (f  
In 2-x Mode (f  
)
)
6
6
62.5  
%
ns  
ns  
(1,12)  
(1)  
CH  
CLK1x  
CLK2x  
T
CLKIN Low Time  
CLKIN Rise Time  
In 1-x Mode (f  
In 2-x Mode (f  
)
)
6
6
62.5  
%
ns  
ns  
(1,12)  
(1)  
CL  
CLK1x  
CLK2x  
T
0
0
6
6
ns  
ns  
(1)  
(1)  
CR  
T
CLKIN Fall Time  
CF  
(9)  
OUTPUT CLOCKS  
b
2
T
CLKIN to PCLK2:1 Delay In 1-x Mode (f  
In 2-x Mode (f  
)
)
2
2
25  
ns  
ns  
(1,3,13,14)  
(1,3)  
CP  
CLK1x  
CLK2x  
T
PCLK2:1 Period  
In 1-x Mode (f  
In 2-x Mode (f  
)
)
T
2T  
ns  
ns  
(1,13)  
(1,3)  
CLK1x  
CLK2x  
C
C
b
b
T
PCLK2:1 High Time  
PCLK2:1 Low Time  
PCLK2:1 Rise Time  
(T/2)  
(T/2)  
2
2
T/2  
T/2  
4
ns  
ns  
ns  
ns  
(1,13)  
(1,13)  
(1,3)  
PH  
T
PL  
T
1
PR  
T
PCLK2:1 Fall Time  
1
4
(1,3)  
PF  
(10)  
SYNCHRONOUS OUTPUTS  
T
T
Output Valid Delay, Output Hold  
(6, 11)  
OV  
OH  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
, T  
A31:2  
BE3:0  
ADS  
3
3
6
3
4
5
3
4
4
4
3
14  
16  
18  
18  
16  
16  
16  
16  
16  
18  
16  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OV1 OH1  
, T  
OV2 OH2  
, T  
OV3 OH3  
, T  
W/R  
OV4 OH4  
, T  
D/C, SUP, DMA  
BLAST, WAIT  
DEN  
HOLDA, BREQ  
LOCK  
OV5 OH5  
, T  
OV6 OH6  
, T  
OV7 OH7  
, T  
OV8 OH8  
, T  
OV9 OH9  
, T  
DACK3:0  
D31:0  
DT/R  
FAIL  
EOP/TC3:0  
OV10 OH10  
, T  
OV11 OH11  
, T  
a
a
14  
18  
T/2  
3
T/2  
14  
OV12 OH12  
, T  
2
3
(6, 11)  
(6)  
OV13 OH13  
, T  
OV14 OH14  
T
Output Float for all outputs  
3
22  
ns  
OF  
(10)  
SYNCHRONOUS INPUTS  
T
Input Setup  
IS  
T
IS1  
T
IS2  
T
IS3  
T
IS4  
D31:0  
BOFF  
BTERM/READY  
HOLD  
3
17  
7
ns  
ns  
ns  
ns  
(1,11)  
(1,11)  
(1,11)  
(1,11)  
7
T
Input Hold  
IH  
T
IH1  
T
IH2  
T
IH3  
T
IH4  
D31:0  
BOFF  
BTERM/READY  
HOLD  
5
5
2
3
ns  
ns  
ns  
ns  
(1,11)  
(1,11)  
(1,11)  
(1,11)  
24  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
AC Characteristics Ð 80960CF-30  
(80960CF-30 only, under the conditions described in Section 4.2, Operating Conditions and Section 4.5.1,  
AC Test Conditions.) See notes which follow this table. (Continued)  
Symbol  
Parameter  
(9,7)  
Min  
Max  
Units  
Notes  
RELATIVE OUTPUT TIMINGS  
b
a
T
T
A31:2 Valid to ADS Rising  
T
4
T
4
ns  
AVSH1  
AVSH2  
BE3:0, W/R, SUP, D/C,  
DMA, DACK3:0 Valid to ADS Rising  
b
b
a
a
T
T
6
4
T
T
6
4
ns  
ns  
T
T
A31:2 Valid to DEN Falling  
AVEL1  
BE3:0, W/R, SUP, INST,  
DMA, DACK3:0 Valid to DEN Falling  
AVEL2  
b
a
T
6
T
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
g
T
WAIT Falling to Output Data Valid  
Output Data Valid to WAIT Rising  
WAIT Falling to WAIT Rising  
6
NLQV  
DVNH  
NLNH  
b
a
6
T
T
T
N*T  
6
N*T  
(4)  
(4)  
(5)  
(6)  
(7)  
g
N*T  
4
a
b
a
a
1) * T 6  
Output Data Hold after WAIT Rising  
DT/R Hold after DEN High  
(N  
1) * T  
6
(N  
NHQX  
b
%
T
T/2  
6
EHTV  
b
a
4
T
DT/R Valid to DEN Falling  
T/2  
4
T/2  
TVEL  
(7)  
RELATIVE INPUT TIMINGS  
T
IS5  
T
IH5  
T
IS6  
T
IH6  
T
IS7  
T
IH7  
T
IS8  
T
IH8  
RESET Input Setup (2x Clock Mode)  
RESET Input Hold (2x Clock Mode)  
DREQ3:0 Input Setup  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(14)  
(14)  
(8)  
5
12  
7
DREQ3:0 Input Hold  
(8)  
XINT7:0, NMI Input Setup  
7
(8)  
XINT7:0, NMI Input Hold  
3
(8)  
RESET Input Setup (1x Clock Mode)  
RESET Input Hold (1x Clock Mode)  
3
(15)  
(15)  
a
T/4  
1
NOTES:  
1. See Section 4.5.2, AC Timing Waveforms for waveforms and definitions.  
2. See Figure 22 for capacitive derating information for output delays and hold times.  
3. See Figure 23 for capacitive derating information for rise and fall times.  
4. Where N is the number of N  
, N  
RAD  
, N  
RDD  
, or N  
WAD  
wait states that are programmed in the Bus Controller Region  
WDD  
Table. When there are no wait states in an access, WAIT never goes active.  
e
5. N  
Number of wait states inserted with READY.  
6. Output Data and/or DT/R may be driven indefinitely following a cycle if there is no subsequent bus activity.  
7. See Notes 1, 2 and 3.  
8. Since asynchronous inputs are synchronized internally by the 80960CF they have no required setup or hold times in order  
to be recognized and for proper operation. However, to guarantee recognition of the input at a particular edge of PCLK2:1  
the setup times shown must be met. Asynchronous inputs must be active for at least two consecutive PCLK2:1 rising  
edges to be seen by the processor.  
9. These specifications are guaranteed by the processor.  
10. These specifications must be met by the system for proper operation of the processor.  
11. This timing is dependent upon the loading of PCLK2:1. Use the derating curves of Section 4.5.3 to adjust the timing for  
PCLK2:1 loading.  
12. In the 1-x input clock mode, the maximum input clock period is limited to 125 ns while the processor is operating. When  
the processor is in reset, the input clock may stop even in 1-x mode.  
13. When in the 1-x input clock mode, these specifications assume a stable input clock with a period variation of less than  
g
0.1% between adjacent cycles.  
14. In 2x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation.  
However, to guarantee the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup  
and hold times to the falling edge of the CLKIN. (See Figure 28a.)  
15. In 1x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation.  
However, to guarantee the device exits reset synchronized to a particular clock edge, the RESET pin must be deasserted  
while CLKIN is high and meet setup and hold times to the rising edge of the CLKIN. (See Figure 28b.)  
25  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
AC Characteristics Ð 80960CF-25  
(80960CF-25 only, under the conditions described in Section 4.2, Operating Conditions and Section 4.5.1,  
AC Test Conditions.)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
(10)  
INPUT CLOCK  
T
T
CLKIN Frequency  
CLKIN Period  
0
50  
MHz  
(1)  
F
In 1-x Mode (f  
In 2-x Mode (f  
)
)
40  
20  
125  
%
ns  
ns  
(1,12)  
(1)  
C
CLK1x  
CLK2x  
g
T
T
CLKIN Period Stability  
CLKIN High Time  
In 1-x Mode (f  
)
0.1%  
D
(1,13)  
CS  
CH  
CLK1x  
In 1-x Mode (f  
In 2-x Mode (f  
)
)
8
8
62.5  
%
ns  
ns  
(1,12)  
(1)  
CLK1x  
CLK2x  
T
CLKIN Low Time  
In 1-x Mode (f  
In 2-x Mode (f  
)
)
8
8
62.5  
%
ns  
ns  
(1,12)  
(1)  
CL  
CLK1x  
CLK2x  
T
T
CLKIN Rise Time  
CLKIN Fall Time  
0
0
6
6
ns  
ns  
(1)  
(1)  
CR  
CF  
(9)  
OUTPUT CLOCKS  
b
2
T
T
CLKIN to PCLK2:1 Delay In 1-x Mode (f  
In 2-x Mode (f  
)
)
2
2
25  
ns  
ns  
(1,3,13,14)  
(1,3)  
CP  
CLK1x  
CLK2x  
PCLK2:1 Period  
In 1-x Mode (f  
In 2-x Mode (f  
)
)
T
2T  
ns  
ns  
(1,13)  
(1,3)  
CLK1x  
CLK2x  
C
C
b
b
T
T
T
T
PCLK2:1 High Time  
PCLK2:1 Low Time  
PCLK2:1 Rise Time  
PCLK2:1 Fall Time  
(T/2)  
(T/2)  
3
3
T/2  
T/2  
4
ns  
ns  
ns  
ns  
(1,13)  
(1,13)  
(1,3)  
PH  
PL  
PR  
PF  
1
1
4
(1,3)  
(10)  
SYNCHRONOUS OUTPUTS  
T
T
Output Valid Delay, Output Hold  
(6, 11)  
OV  
OH  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
, T  
A31:2  
BE3:0  
ADS  
3
16  
18  
20  
20  
18  
18  
18  
18  
18  
20  
18  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
OV1 OH1  
, T  
3
6
3
4
5
3
4
4
4
3
OV2 OH2  
, T  
OV3 OH3  
, T  
W/R  
OV4 OH4  
, T  
D/C,SUP,DMA  
BLAST, WAIT  
DEN  
HOLDA, BREQ  
LOCK  
OV5 OH5  
, T  
OV6 OH6  
, T  
OV7 OH7  
, T  
OV8 OH8  
, T  
OV9 OH9  
, T  
DACK3:0  
D31:0  
DT/R  
OV10 OH10  
, T  
OV11 OH11  
, T  
a
a
16  
20  
T/2  
3
T/2  
16  
OV12 OH12  
, T  
FAIL  
EOP3:0/TC3:0  
2
3
OV13 OH13  
, T  
(6, 11)  
(6)  
OV14 OH14  
T
T
Output Float for all outputs  
3
22  
ns  
OF  
IS  
(10)  
SYNCHRONOUS INPUTS  
Input Setup  
T
IS1  
T
IS2  
T
IS3  
T
IS4  
D31:0  
BOFF  
BTERM/READY  
HOLD  
5
19  
9
ns  
ns  
ns  
ns  
(1,11)  
(1,11)  
(1,11)  
(1,11)  
9
T
Input Hold  
IH  
T
IH1  
T
IH2  
T
IH3  
T
IH4  
D31:0  
BOFF  
BTERM/READY  
HOLD  
5
7
2
5
ns  
ns  
ns  
ns  
(1,11)  
(1,11)  
(1,11)  
(1,11)  
26  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
AC Characteristics Ð 80960CF-25  
(80960CF-25 only, under the conditions described in Section 4.2, Operating Conditions and Section 4.5.1,  
AC Test Conditions.) (Continued)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
(9,7)  
RELATIVE OUTPUT TIMINGS  
b
a
T
T
A31:2 Valid to ADS Rising  
T
4
T
4
ns  
AVSH1  
AVSH2  
BE3:0, W/R, SUP, D/C,  
DMA, DACK3:0 Valid to ADS Rising  
b
b
a
a
T
T
6
4
T
T
6
4
ns  
ns  
T
T
A31:2 Valid to DEN Falling  
AVEL1  
BE3:0, W/R, SUP, INST,  
DMA, DACK3:0 Valid to DEN Falling  
AVEL2  
b
a
T
6
T
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
g
T
WAIT Falling to Output Data Valid  
Output Data Valid to WAIT Rising  
WAIT Falling to WAIT Rising  
Output Data Hold after WAIT Rising  
DT/R Hold after DEN High  
6
NLQV  
DVNH  
NLNH  
b
a
6
T
T
T
N*T  
6
N*T  
(4)  
(4)  
(5)  
(6)  
(7)  
g
N*T  
4
a
b
a
a
1) * T 6  
(N  
1) * T  
6
(N  
NHQX  
b
%
T
T/2  
6
EHTV  
b
a
4
T
DT/R Valid to DEN Falling  
T/2  
4
T/2  
TVEL  
(7)  
RELATIVE INPUT TIMINGS  
T
RESET Input Setup (2x Clock Mode  
8
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(14)  
(14)  
(8)  
IS5  
IH5  
IS6  
IH6  
IS7  
IH7  
IS8  
IH8  
T
T
T
T
T
T
T
RESET Input Hold (2x Clock Mode)  
DREQ3:0 Input Setup  
14  
9
DREQ3:0 Input Hold  
(8)  
XINT7:0, NMI Input Setup  
9
(8)  
XINT7:0, NMI Input Hold  
5
(8)  
RESET Input Setup (1x Clock Mode)  
RESET Input Hold (1x Clock Mode)  
3
(15)  
(15)  
a
T/4  
1
NOTES:  
(1) See Section 4.5.2, AC Timing Waveforms for waveforms and definitions.  
(2) See Figure 22 for capacitive derating information for output delays and hold times.  
(3) See Figure 23 for capacitive derating information for rise and fall times.  
(4) Where N is the number of N  
, N  
RAD  
, N  
RDD  
, or N  
WAD  
wait states that are programmed in the Bus Controller Region  
WDD  
Table. When there are no wait states in an access, WAIT never goes active.  
e
(5) N  
Number of wait states inserted with READY.  
(6) Output Data and/or DT/R may be driven indefinitely following a cycle if there is no subsequent bus activity.  
(7) See Notes 1, 2 and 3.  
(8) Since asynchronous inputs are synchronized internally by the 80960CF they have no required setup or hold times in  
order to be recognized and for proper operation. However, to guarantee recognition of the input at a particular edge of  
PCLK2:1 the setup times shown must be met. Asynchronous inputs must be active for at least two consecutive PCLK2:1  
rising edges to be seen by the processor.  
(9) These specifications are guaranteed by the processor.  
(10) These specifications must be met by the system for proper operation of the processor.  
(11) This timing is dependent upon the loading of PCLK2:1. Use the derating curves of Section 4.5.3 to adjust the timing for  
PCLK2:1 loading.  
(12) In the 1-x input clock mode, the maximum input clock period is limited to 125 ns while the processor is operating. When  
the processor is in reset, the input clock may stop even in 1-x mode.  
(13) When in the 1-x input clock mode, these specifications assume a stable input clock with a period variation of less than  
g
0.1% between adjacent cycles.  
(14) In 2x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation.  
However, to guarantee the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and  
hold times to the falling edge of the CLKIN. (See Figure 28a.)  
(15) In 1x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation.  
However, to guarantee the device exits reset synchronized to a particular clock edge, the RESET pin must be deasserted  
while CLKIN is high and meet setup and hold times to the rising edge of the CLKIN. (See Figure 28b.)  
27  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
AC Characteristics Ð 80960CF-16  
(80960CF-16 only, under the conditions described in Section 4.2, Operating Conditions and Section 4.5.1,  
AC Test Conditions.) (Continued)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
(10)  
INPUT CLOCK  
T
CLKIN Frequency  
CLKIN Period  
0
32  
MHz  
(1)  
F
T
C
In 1-x Mode (f  
In 2-x Mode (f  
)
)
62.5  
31.25  
125  
%
ns  
ns  
(1,12)  
(1)  
CLK1x  
CLK2x  
g
T
T
CLKIN Period Stability  
CLKIN High Time  
In 1-x Mode (f  
)
0.1%  
D
(1,13)  
CS  
CLK1x  
In 1-x Mode (f  
In 2-x Mode (f  
)
)
10  
10  
62.5  
%
ns  
ns  
(1,12)  
(1)  
CH  
CLK1x  
CLK2x  
T
CLKIN Low Time  
In 1-x Mode (f  
In 2-x Mode (f  
)
)
10  
10  
62.5  
%
ns  
ns  
(1,12)  
(1)  
CL  
CLK1x  
CLK2x  
T
CLKIN Rise Time  
CLKIN Fall Time  
0
0
6
6
ns  
ns  
(1)  
(1)  
CR  
T
CF  
(9)  
OUTPUT CLOCKS  
b
2
T
CLKIN to PCLK2:1 Delay In 1-x Mode (f  
In 2-x Mode (f  
)
)
2
2
25  
ns  
ns  
(1,3,13,14)  
(1,3)  
CP  
CLK1x  
CLK2x  
T
PCLK2:1 Period  
In 1-x Mode (f  
In 2-x Mode (f  
)
)
T
2T  
ns  
ns  
(1,13)  
(1,3)  
CLK1x  
CLK2x  
C
C
b
b
T
PCLK2:1 High Time  
PCLK2:1 Low Time  
PCLK2:1 Rise Time  
PCLK2:1 Fall Time  
(T/2)  
(T/2)  
4
4
T/2  
T/2  
4
ns  
ns  
ns  
ns  
(1,13)  
(1,13)  
(1,3)  
PH  
T
PL  
T
1
PR  
T
1
4
(1,3)  
PF  
(10)  
SYNCHRONOUS OUTPUTS  
T
T
Output Valid Delay, Output Hold  
(6, 11)  
OV  
OH  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
, T  
OV1 OH1  
, T  
A31:2  
BE3:0  
ADS  
3
18  
20  
22  
22  
20  
20  
20  
20  
20  
22  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
6
3
4
5
3
4
4
4
3
OV2 OH2  
, T  
OV3 OH3  
, T  
W/R  
OV4 OH4  
, T  
D/C, SUP, DMA  
BLAST, WAIT  
DEN  
OV5 OH5  
, T  
OV6 OH6  
, T  
OV7 OH7  
, T  
HOLDA, BREQ  
LOCK  
OV8 OH8  
, T  
OV9 OH9  
, T  
DACK3:0  
D31:0  
DT/R  
OV10 OH10  
, T  
OV11 OH11  
, T  
a
a
18  
22  
T/2  
3
T/2  
18  
OV12 OH12  
, T  
FAIL  
EOP3:0/TC3:0  
2
3
OV13 OH13  
, T  
(6, 11)  
(6)  
OV14 OH14  
T
Output Float for all outputs  
3
22  
ns  
OF  
(10)  
SYNCHRONOUS INPUTS  
T
Input Setup  
IS  
T
T
T
T
D31:0  
5
21  
9
ns  
ns  
ns  
ns  
(1,11)  
(1,11)  
(1,11)  
(1,11)  
IS1  
IS2  
IS3  
IS4  
BOFF  
BTERM/READY  
HOLD  
9
T
Input Hold  
IH  
T
T
T
T
D31:0  
BOFF  
BTERM/READY  
HOLD  
5
7
2
5
ns  
ns  
ns  
ns  
(1,11)  
(1,11)  
(1,11)  
(1,11)  
IH1  
IH2  
IH3  
IH4  
28  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
AC Characteristics Ð 80960CF-16  
(80960CF-16 only, under the conditions described in Section 4.2, Operating Conditions and Section 4.5.1,  
AC Test Conditions.) (Continued)  
Symbol  
Parameter  
Min  
Max  
Units  
Notes  
(9,7)  
RELATIVE OUTPUT TIMINGS  
b
a
T
T
A31:2 Valid to ADS Rising  
T
4
T
4
ns  
AVSH1  
AVSH2  
BE3:0, W/R, SUP, D/C,  
DMA, DACK3:0 Valid to ADS Rising  
b
b
a
a
T
T
6
6
T
T
6
6
ns  
ns  
T
T
A31:2 Valid to DEN Falling  
AVEL1  
AVEL2  
BE3:0, W/R, SUP, INST,  
DMA, DACK3:0 Valid to DEN Falling  
b
a
T
6
T
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
g
T
WAIT Falling to Output Data Valid  
Output Data Valid to WAIT Rising  
WAIT Falling to WAIT Rising  
Output Data Hold after WAIT Rising  
DT/R Hold after DEN High  
6
NLQV  
DVNH  
NLNH  
b
a
6
T
T
T
N*T  
6
N*T  
(4)  
(4)  
(5)  
(6)  
(7)  
g
N*T  
4
a
b
a
a
1) * T 6  
(N  
1) * T  
6
(N  
NHQX  
b
%
T
T/2  
6
EHTV  
b
a
4
T
DT/R Valid to DEN Falling  
T/2  
4
T/2  
TVEL  
(7)  
RELATIVE INPUT TIMINGS  
T
RESET Input Setup (2x Clock Mode)  
10  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(14)  
(14)  
(8)  
IS5  
IH5  
IS6  
IH6  
IS7  
IH7  
IS8  
IH8  
T
T
T
T
T
T
T
RESET Input Hold (2x Clock Mode)  
DREQ3:0 Input Setup  
16  
11  
9
DREQ3:0 Input Hold  
(8)  
XINT7:0, NMI Input Setup  
(8)  
XINT7:0, NMI Input Hold  
5
(8)  
RESET Input Setup (1x Clock Mode)  
RESET Input Hold (1x Clock Mode)  
3
(15)  
(15)  
a
T/4  
1
NOTES:  
(1) See Section 4.5.2, AC Timing Waveforms for waveforms and definitions.  
(2) See Figure 22 for capacitive derating information for output delays and hold times.  
(3) See Figure 23 for capacitive derating information for rise and fall times.  
(4) Where N is the number of N  
, N  
RAD  
, N  
RDD  
, or N  
WAD  
wait states that are programmed in the Bus Controller Region  
WDD  
Table. When there are no wait states in an access, WAIT never goes active.  
e
(5) N  
Number of wait state inserted with READY.  
(6) Output Data and/or DT/R may be driven indefinitely following a cycle if there is no subsequent bus activity.  
(7) See Notes 1, 2 and 3.  
(8) Since asynchronous inputs are synchronized internally by the 80960CF they have no required setup or hold times in  
order to be recognized and for proper operation. However, to guarantee recognition of the input at a particular edge of  
PCLK2:1 the setup times shown must be met. Asynchronous inputs must be active for at least two consecutive PCLK2:1  
rising edges to be seen by the processor.  
(9) These specifications are guaranteed by the processor.  
(10) These specifications must be met by the system for proper operation of the processor.  
(11) This timing is dependent upon the loading of PCLK2:1. Use the derating curves of Figure 22 to adjust the timing for  
PCLK2:1 loading.  
(12) In the 1-x input clock mode, the maximum input clock period is limited to 125 ns while the processor is operating. When  
the processor is in reset, the input clock may stop even in 1-x mode.  
(13) When in the 1-x input clock mode, these specifications assume a stable input clock with a period variation of less than  
g
0.1% between adjacent cycles.  
(14) In 2x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation.  
However, to guarantee the device exits reset synchronized to a particular clock edge, the RESET pin must meet setup and  
hold times to the falling edge of the CLKIN. (See Figure 28a.)  
(15) In 1x clock mode, RESET is an asynchronous input which has no required setup and hold time for proper operation.  
However, to guarantee the device exits reset synchronized to a particular clock edge, the RESET pin must be deasserted  
while CLKIN is high and meet setup and hold times to the rising edge of the CLKIN. (See Figure 28b.)  
29  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
4.5.1. AC TEST CONDITIONS  
The AC Specifications in Section 4.5 are tested with  
the 50 pf load shown in Figure 9. See Figure 16 to  
see how timings vary with load capacitance.  
Specifications are measured at the 1.5V crossing  
point, unless otherwise indicated. Input waveforms  
s
are assumed to have a rise-and-fall time of  
2 ns  
from 0.8V to 2.0V. See Section 4.5.2, AC Timing  
Waveforms for AC spec definitions, test points and  
illustrations.  
e
CL 50 pf for all signals  
271328–8  
Figure 9. AC Test Load  
4.5.2. AC TIMING WAVEFORMS  
271328–9  
Figure 10a. Input and Output Clocks Waveform  
27132810  
Figure 10b. CLKIN Waveform  
30  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
27132811  
Figure 11. Output Delay and Float Waveform  
27132812  
Figure 12a. Input Setup and Hold Waveform  
27132813  
27132814  
Figure 12b. NMI, XINT7:0 Input Setup and Hold Waveform  
31  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
27132815  
Figure 13. Hold Acknowledge Timings  
27132816  
Figure 14. Bus Back-Off (BOFF) Timings  
32  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
27132817  
Figure 15. Relative Timings Waveforms  
4.5.3 DERATING CURVES  
27132818  
NOTE:  
PCLK Load  
e
50 pF  
Figure 16. Output Delay or Hold vs Load Capacitance  
33  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
(a) All outputs except: LOCK, DMA, SUP, HOLDA, BREQ,  
DACK3:0, EOP3:0/TC3:0, FAIL  
(b) LOCK, DMA, SUP, HOLDA, BREQ, DACK3:0,  
EOP3:0/TC3:0, FAIL  
27132819  
Figure 17. Rise and Fall Time Derating at Highest Operating Temperature and Minimum V  
CC  
27132820  
I
ÐI under test conditions  
CC CC  
Figure 18. I vs Frequency and Temperature  
CC  
34  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
The following table lists the condition of each proc-  
essor output pin while HOLDA is asserted (low).  
5.0 RESET, BACKOFF AND HOLD  
ACKNOWLEDGE  
Table 11. Hold Acknowledge  
and Backoff Conditions  
The following table lists the condition of each proc-  
essor output pin while RESET is asserted (low).  
Pins  
A31:A2  
D31:D0  
BE3:0  
State During HOLDA  
Floating  
Table 10. Reset Conditions  
Pins  
State During Reset  
1
(HOLDA inactive)  
Floating  
A31:A2  
D31:D0  
BE3:0  
Floating  
Floating  
Floating  
W/R  
Floating  
Driven high (Inactive)  
Driven low (Read)  
Driven high (Inactive)  
Driven high (Inactive)  
Driven low (Active)  
Driven low (Receive)  
Driven high (Inactive)  
Driven high (Inactive)  
Driven low (Inactive)  
Floating  
ADS  
Floating  
W/R  
WAIT  
Floating  
ADS  
BLAST  
DT/R  
Floating  
WAIT  
Floating  
BLAST  
DT/R  
DEN  
Floating  
LOCK  
Floating  
DEN  
BREQ  
D/C  
Driven (high or low)  
Floating  
LOCK  
BREQ  
D/C  
DMA  
Floating  
SUP  
Floating  
DMA  
Floating  
FAIL  
Driven high (Inactive)  
Driven high (Inactive)  
Driven high (Inactive)  
Driven high (Inactive)  
Driven high (Inactive)  
Driven if output  
Driven if output  
Driven if output  
Driven if output  
SUP  
Floating  
DACK3  
DACK2  
DACK1  
DACK0  
EOP/TC3  
EOP/TC2  
EOP/TC1  
EOP/TC0  
FAIL  
Driven low (Active)  
Driven high (Inactive)  
Driven high (Inactive)  
Driven high (Inactive)  
Driven high (Inactive)  
Floating (set to input mode)  
Floating (set to input mode)  
Floating (set to input mode)  
Floating (set to input mode)  
DACK3  
DACK2  
DACK1  
DACK0  
EOP/TC3  
EOP/TC2  
EOP/TC1  
EOP/TC0  
NOTE:  
(1) With regard to bus output pin state only, the Hold Ac-  
knowledge state takes precedence over the reset state. Al-  
though asserting the RESET pin will internally reset the  
processor, the processor’s bus output pins will not enter  
the reset state if it has granted Hold Acknowledge to a pre-  
vious HOLD request (HOLDA is active). Furthermore, the  
processor will grant new HOLD requests and enter the  
Hold Acknowledge state even while in reset.  
For example, if HOLDA is not active and the processor is  
in the reset state, then HOLD is asserted, the processor’s  
bus pins will enter the Hold Acknowledge state and  
HOLDA will be granted. The processor will not be able to  
perform memory accesses until the HOLD request is re-  
moved, even if the RESET pin is brought high. This opera-  
tion is provided to simplify boot-up synchronization among  
multiple processors sharing the same bus.  
35  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
6.0 BUS WAVEFORMS  
Figure 19. Cold Reset Waveform  
36  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Figure 20. Warm Reset Waveform  
37  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Figure 21. Entering the ONCE State  
38  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
27132824  
NOTE:  
Case 1 and Case 2 show two possible polarities of PCLK2:1.  
Figure 22a. Clock Synchronization in the 2x Clock Mode  
27132825  
NOTE:  
In 1x clock mode, the RESET pin is actually sampled on the falling edge of 2XCLK. 2XCLK is an internal signal generat-  
ed by the PLL and is not available on an external pin. Therefore, RESET is specified relative to the rising edge of CLKIN.  
The RESET pin is sampled when PCLK is high.  
Figure 22b. Clock Synchronization in the 1x Clock Mode  
39  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Region Table Entry  
27132826  
Figure 23. Non-Burst, Non-Pipelined Requests without Wait States  
40  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Region Table Entry  
27132827  
Figure 24. Non-Burst, Non-Pipelined Read Request with Wait States  
41  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
27132828  
Figure 25. Non-Burst, Non-Pipelined Write Request with Wait States  
42  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Region Table Entry  
27132829  
Figure 26. Burst, Non-Pipelined Read Request without Wait States, 32-Bit Bus  
43  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Region Table Entry  
27132830  
Figure 27. Burst, Non-Pipelined Read Request with Wait States, 32-Bit Bus  
44  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Region Table Entry  
27132831  
Figure 28. Burst, Non-Pipelined Write Request without Wait States, 32-Bit Bus  
45  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Region Table Entry  
27132832  
Figure 29. Burst, Non-Pipelined Write Request with Wait States, 32-Bit Bus  
46  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Region Table Entry  
27132833  
Figure 30. Burst, Non-Pipelined Read Request with Wait States, 16-Bit Bus  
47  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
27132834  
Figure 31. Burst, Non-Pipelined Read Request with Wait States, 8-Bit Bus  
48  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Region Table Entry  
27132835  
Figure 32. Non-Burst, Pipelined Read Request without Wait States, 32-Bit Bus  
49  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Region Table Entry  
27132836  
Figure 33. Non-Burst, Pipelined Read Request with Wait States, 32-Bit Bus  
50  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Region Table Entry  
27132837  
Figure 34. Burst, Pipelined Read Request without Wait States, 32-Bit Bus  
51  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Region Table Entry  
27132838  
Figure 35. Burst, Pipelined Read Requests with Wait States, 32-Bit Bus  
52  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Region Table Entry  
27132839  
Figure 36. Burst, Pipelined Read Requests with Wait States, 16-Bit Bus  
53  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Region Table Entry  
27132840  
Figure 37. Burst, Pipelined Read Requests with Wait States, 8-Bit Bus  
54  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
27132841  
Figure 38. Using External READY  
55  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
27132842  
NOTE:  
READY adds memory access time to data transfers, whether or not the bus access is a burst access. BTERM interrupts  
a bus access, whether or not the bus access has more data transfers pending. Either the READY signal or the BTERM  
signal will terminate a bus access if the signal is asserted during the last (or only) data transfer of the bus access.  
Figure 39. Terminating a Burst with BTERM  
56  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
27132843  
Figure 40. BOFF Functional Timing  
27132844  
Figure 41. HOLD Functional Timing  
57  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
27132845  
NOTES:  
1. Case 1: DREQ must deassert before DACK deasserts. Applications are Fly-by and some packing and unpacking  
modes, in which loads are followed by loads, or stores are followed by stores.  
2. Case 2: DREQ must be deasserted by the second clock (rising edge) after DACK is driven high. Applications are non  
fly-by transfers and adjacent load-stores or store-loads.  
3. DACKx is asserted for the duration of a DMA bus request. The request may consist of multiple bus accesses (defined  
by ADS and BLAST. Refer to User’s Manual for ‘‘access’’, ‘‘request’’ definition.  
Figure 42. DREQ and DACK Functional Timing  
27132846  
NOTE:  
EOP has the same AC Timing Requirements as DREQ to prevent unwanted DMA requests.  
EOP is NOT edge triggered. EOP must be held for a minimum of 2 clock cycles then EOP must be deasserted  
within 15 clock cycles.  
Figure 43. EOP Functional Timing  
58  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
27132847  
NOTE:  
Terminal Count becomes active during the last bus request of a buffer transfer. If the last LOAD/STORE bus request is  
executed as multiple bus accesses, the TC will be active for the entire bus request. Refer to the User’s Manual for  
further information.  
Figure 44. Terminal Count Functional Timing  
27132848  
Figure 45. FAIL Functional Timing  
59  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
27132849  
Figure 46. A Summary of Aligned and Unaligned Transfers for Little Endian Regions  
60  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
27132850  
Figure 47. A Summary of Aligned and Unaligned Transfers for Little Endian Regions (Continued)  
61  
SPECIAL ENVIRONMENT 80960CF-30, -25, -16  
Figure 48. Idle Bus Operation  
62  

相关型号:

80960CF-30

SPECIAL ENVIRONMENT 80960CF-30, -25, -16 32-BIT HIGH-PERFORMANCE SUPERSCALAR PROCESSOR
INTEL

80960CF-33

80960CF-40, -33, -25, -16 32-BIT HIGH-PERFORMANCE SUPERSCALAR EMBEDDED MICROPROCESSOR
INTEL

80960CF-40

80960CF-40, -33, -25, -16 32-BIT HIGH-PERFORMANCE SUPERSCALAR EMBEDDED MICROPROCESSOR
INTEL

80960HA

80960HA/HD/HT 32-Bit High-Performance Superscalar Processor
INTEL

80960HD

80960HA/HD/HT 32-Bit High-Performance Superscalar Processor
INTEL

80960HT

80960HA/HD/HT 32-Bit High-Performance Superscalar Processor
INTEL

80960JA

EMBEDDED 32-BIT MICROPROCESSOR
INTEL

80960JA-25

EMBEDDED 32-BIT MICROPROCESSOR
INTEL

80960JA-33

EMBEDDED 32-BIT MICROPROCESSOR
INTEL

80960JC

80960JA/JF/JD/JS/JC/JT 3.3 V Embedded 32-Bit Microprocessor
INTEL

80960JD

EMBEDDED 32-BIT MICROPROCESSOR
INTEL

80960JD-33

EMBEDDED 32-BIT MICROPROCESSOR
INTEL