XC836T [INFINEON]

8-Bit Single-Chip Microcontroller; 8位单芯片微控制器
XC836T
型号: XC836T
厂家: Infineon    Infineon
描述:

8-Bit Single-Chip Microcontroller
8位单芯片微控制器

微控制器
文件: 总56页 (文件大小:1355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
XC835/836  
8-Bit Single-Chip Microcontroller  
Data Sheet  
V1.2 2011-03  
Microcontrollers  
Edition 2011-03  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2011 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
XC835/836  
8-Bit Single-Chip Microcontroller  
Data Sheet  
V1.2 2011-03  
Microcontrollers  
XC835/836  
XC835/836 Data Sheet  
Revision History: V1.2 2011-03  
Previous Versions: V 1.1  
Page  
Subjects (major changes since last revision)  
Page 3,  
Page 46,  
Page 49  
TSSOP-28-9 package for Automotive has been updated to TSSOP-28-12.  
We Listen to Your Comments  
Is there any information in this document that you feel is wrong, unclear or missing?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Data Sheet  
V1.2, 2011-03  
XC835/836  
Table of Contents  
Table of Contents  
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2
General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
JTAG ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Chip Identification Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
3
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Absolute Maximum Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Operating Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Supply Threshold Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
ADC Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Out of Range Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . 32  
Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Output Rise/Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Oscillator Timing and Wake-up Timing . . . . . . . . . . . . . . . . . . . . . . . . . 40  
On-Chip Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
SSC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
SSC Master Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
SSC Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
SPD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.1  
3.1.1  
3.1.2  
3.1.3  
3.2  
3.2.1  
3.2.2  
3.2.3  
3.2.3.1  
3.2.3.2  
3.2.4  
3.2.5  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.3.5.1  
3.3.5.2  
3.3.6  
4
Package and Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
4.1  
4.2  
4.3  
Data Sheet  
1
V1.2, 2011-03  
XC835/836  
Summary of Features  
1
Summary of Features  
The XC835/836 has the following features:  
• High-performance XC800 Core  
– compatible with standard 8051 processor  
– two clocks per machine cycle architecture (for memory access without wait state)  
– two data pointers  
• On-chip memory  
– 8 Kbytes of Boot ROM, Library ROM and User routines  
– 256 bytes of RAM  
– 256 bytes of XRAM  
– 4/8 Kbytes of Flash (includes memory protection strategy)  
• I/O port supply at 2.5 V - 5.5 V and core logic supply at 2.5 V (generated by  
embedded voltage regulator)  
8/4K Bytes  
On-Chip Debug Support  
XC800 Core  
IIC  
UART  
SSC  
Port 0  
Port 1  
Port 2  
Port 3  
8-bit Digital I/O  
6-bit Digital I/O  
Flash  
Boot ROM  
8K Bytes  
Capture/Compare Unit  
16-bit  
XRAM  
Compare Unit  
16-bit  
8-bit Digital/  
Analog Input  
256 Bytes  
ADC  
10-bit  
RAM  
3-bit Digital I/O  
LED and Touch Sense Controller  
256 Bytes  
8-channel  
Timer 0  
16-bit  
Timer 1  
16-bit  
Timer 2  
16-bit  
Real-Time Watchdog  
Clock Timer  
MDU  
CORDIC  
Figure 1  
XC835/836 Functional Units  
• Power-on reset generation  
• Brownout detection for IO supply and core logic supply  
• 48 MHz on-chip OSC for clock generation  
– Loss-of-Clock detection  
(more features on next page)  
Data Sheet  
1
V1.2, 2011-03  
XC835/836  
Summary of Features  
Features: (continued)  
• Power saving modes  
– idle mode  
– power-down mode with wake-up capability via real-time clock event  
– clock gating control to each peripheral  
• Programmable 16-bit Watchdog Timer (WDT) running on independent oscillator with  
programmable window feature for refresh operation and warning prior to overflow  
• Three general purpose I/O ports  
– 4 high current I/O  
– 2 high sink I/O  
– Up to 25 pins as digital I/O  
– Up to 8 pins as digital/analog input  
• Up to 8 channels, 10-bit A/D Converter  
– support up to 7 differential input channel  
– results filtering by data reduction or digital low-pass filter, for up to 13-bit results  
• Up to 8 channels, Out of range comparator  
• Three 16-bit timers  
– Timer 0 and Timer 1 (T0 and T1)  
– Timer 2 (T2)  
• Real-time clock with 32.768 kHz crystal pad  
• 16-bit Vector Computer for Field-Oriented Control (FOC)  
– Multiplication/Division Unit (MDU) for arithmetic calculation  
– CORDIC Unit for trigonometric calculation  
• Capture and Compare unit for PWM signal generation (CCU6)  
• A full-duplex or half-duplex serial interface (UART)  
• Synchronous serial channel (SSC)  
• Inter-IC (IIC) serial interface  
• LED and Touch-sense Controller (LEDTSCU)  
• Software libraries to support fixed-point control and EEPROM emulation  
• On-chip debug support via single pin DAP interface (SPD)  
• Packages:  
– PG-DSO-24  
– PG-TSSOP-28  
• Temperature range TA:  
– SAF (-40 to 85 °C)  
Data Sheet  
2
V1.2, 2011-03  
XC835/836  
Summary of Features  
XC835/836 Variant Devices  
The XC835/836 product family features devices with different configurations, program  
memory sizes, packages options and temperature profiles, to offer cost-effective  
solutions for different application requirements.  
The list of XC835/836 device configurations are summarized in Table 1. The type of  
packages available are DSO-24 for XC835 and TSSOP-28 for XC836.  
Table 1  
Device Configuration  
MDU and CORDIC Module  
Device Name  
XC835/836  
XC835/836M  
XC835/836T  
XC835/836MT  
LEDTSCU Module  
No  
No  
Yes  
Yes  
No  
Yes  
No  
Yes  
Table 2 shows the device sales type available, based on above device.  
Table 2  
Device Profile  
Sales Type  
Device Program Temp-  
Package  
Type  
Quality  
Profile  
Type  
Memory erature  
(Kbytes) Profile  
(°C)  
SAF-XC835MT-2FGI Flash  
8
8
8
8
4
8
8
4
8
4
-40 to 85 PG-DSO-24-1  
Industrial  
SAF-XC836-2FRI  
SAF-XC836T-2FRI  
SAF-XC836M-2FRI  
SAF-XC836M-1FRI  
Flash  
Flash  
Flash  
Flash  
-40 to 85 PG-TSSOP-28-1 Industrial  
-40 to 85 PG-TSSOP-28-1 Industrial  
-40 to 85 PG-TSSOP-28-1 Industrial  
-40 to 85 PG-TSSOP-28-1 Industrial  
-40 to 85 PG-TSSOP-28-1 Industrial  
-40 to 85 PG-TSSOP-28-12 Automotive  
-40 to 85 PG-TSSOP-28-12 Automotive  
-40 to 125 PG-TSSOP-28-12 Automotive  
-40 to 125 PG-TSSOP-28-12 Automotive  
SAF-XC836MT-2FRI Flash  
SAF-XC836MT-2FRA Flash  
SAF-XC836MT-1FRA Flash  
SAK-XC836MT-2FRA Flash  
SAK-XC836MT-1FRA Flash  
As this document refers to all the derivatives, some description may not apply to a  
specific product. For simplicity, all versions are referred to by the term XC835/836  
throughout this document.  
Data Sheet  
3
V1.2, 2011-03  
XC835/836  
Summary of Features  
Ordering Information  
The ordering code for Infineon Technologies microcontrollers provides an exact  
reference to the required product. This ordering code identifies:  
• The derivative itself, i.e. its function set, the temperature range, and the supply  
voltage  
• The package and the type of delivery  
For the available ordering codes for the XC835/836, please refer to your responsible  
sales representative or your local distributor.  
Data Sheet  
4
V1.2, 2011-03  
XC835/836  
General Device Information  
2
General Device Information  
Chapter 2 contains the block diagram, pin configurations, definitions and functions of the  
XC835/836.  
2.1  
Block Diagram  
The block diagram of the XC835/836 is shown in Figure 2.  
XC83x  
Internal Bus  
8-Kbyte  
Boot ROM1)  
XC800 Core  
P0.0 - P0.7  
P1.0 - P1.5  
256-byte RAM  
+
T0 & T1  
UART  
64-byte monitor  
RAM  
Vector Computer  
CORDIC  
MDU  
VDDP  
VSSP  
VSSC  
256-byte XRAM  
P2.0 – P2.7  
P3.0 - P3.2  
RTC  
IIC  
4/8-Kbyte  
Flash  
WDT  
SSC  
CCU6  
OCDS  
SCU  
ADC  
Clock Generator  
Timer 2  
48 MHz  
On-chip OSC  
75 KHz  
On-chip OSC  
EVR  
LED and Touch  
Sense Controller  
1) Includes 1-Kbyte monitor ROM  
Figure 2  
XC835/836 Block Diagram  
Data Sheet  
5
V1.2, 2011-03  
XC835/836  
General Device Information  
2.2  
Logic Symbol  
The logic symbol of the XC835/836 is shown in Figure 3.  
VDDP VDDC VSSP  
VDDP VDDC VSSP  
Port 0 8-Bit  
Port 1 6-Bit  
Port 0 8-Bit  
Port 1 6-Bit  
XC836  
XC835  
Port 2 8-Bit  
Port 3 3-Bit  
Port 2 4-Bit  
Port 3 3-Bit  
Figure 3  
XC835/836 Logic Symbol  
Data Sheet  
6
V1.2, 2011-03  
XC835/836  
General Device Information  
2.3  
Pin Configuration  
The pin configuration of the XC835 in Figure 4.  
P3.2/SPD_0/RXD_3/SDA_2/MTSR_5/  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P3.0/XTAL4/SCL_2/SCK_1/EXINT2_1/COL6  
MRST_5/EXINT0_6/T2EX_7/TXD_3  
P0.7/SCL_3/LINE7/TSIN7/TXD_5/COUT63_0/  
P3.1/XTAL3/RXD_4/RTCCLK/MTSR_4/  
MRST_4/EXINT0_5/COLA_0/EXF2_1  
2
COL3_1/COLA_3  
P2.3/CCPOS0_2/CTRAP_2/T2_2/EXINT3/AN3  
3
P0.3/CC60_1/SDA_1/CTRAP_0/LINE3/TSIN3  
P2.2/CCPOS2_1/T12HR_3/T13HR_3/SCK_3/  
T1_1/EXINT2_0/AN2  
4
P0.2/T1_0/CC62_1/SCL_1/CCPOS2_0/LINE2/TSIN2  
P0.1/T0_0/CC61_1/MTSR_3/MRST_2/T13HR_0/  
CCPOS1_0/LINE1/TSIN1  
P0.0/T2_0/T13HR_1/MTSR_2/MRST_3/T12HR_0/  
CCPOS0_0/LINE0/TSIN0/COUT61_1  
P2.1/CCPOS1_1/RXD_5/MTSR_6/T0_1/EXINT1_1/AN1  
5
P2.0/CCPOS0_1/T12HR_2/T13HR_2/T2EX_3/  
T2_1/EXINT0_3/AN0  
6
XC835  
P0.6/SPD_1/RXD_1/SDA_0/MTSR_1/MRST_0/EXINT0_1/  
T2EX_0/LINE6/TSIN6/TXD_0/COL2_1/COLA_2  
7
P1.5/CC62_0/COL5/COLA_1  
P0.5/RXD_0/MTSR_0/MRST_1/EXINT0_0/LINE5/TSIN5/  
COUT62_1/TXD_4/COL1_1/EXF2_3  
8
P1.4/EXINT5/COL4/COUT62_0/COUT63_2  
P0.4/T2EX_1/SCL_0/SCK_0/EXINT1_0/CTRAP_1/  
LINE4/TSIN 4/EXF2_0/COL0_1/COL3_2/COLA_4  
9
VDDC  
VSSP  
VDDP  
10  
11  
12  
P1.0/SPD_2/RXD_2/T2EX_2/EXINT0_2/COL0_0/  
COUT60_0/TXD_1  
P1.3/CC61_0/COL3_0/CC61_0/EXF2_2  
P1.2/EXINT4/COL2_0/COUT61_0/COUT63_1  
P1.1/CC60_0/COL1_0/TXD_2  
Figure 4  
XC835 Pin Configuration, PG-DSO-24 Package (top view)  
Data Sheet  
7
V1.2, 2011-03  
XC835/836  
General Device Information  
The pin configuration of the XC836 in Figure 5.  
P0.7/SCL_3/LINE7/TSIN7/TXD_5/COUT63_0/  
COL3_1/COLA_3  
P2.7/RXD_6/T2EX_6/MTSR_7/EXINT0_4/AN7  
P2.6/SCK_2/EXINT6/AN6  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
P3.2/SPD_0/RXD_3/SDA_2/MTSR_5/MRST_5/  
EXINT0_6/T2EX_7/TXD_3  
2
P2.5/T12HR_7/T13HR_7/AN5  
3
P3.0/XTAL4/SCL_2/SCK_1/EXINT2_1/COL6  
P3.1/XTAL3/RXD_4/RTCCLK/MTSR_4/  
MRST_4/EXINT0_5/COLA_0/EXF2_1  
P2.4/T12HR_5/T13HR_5/T2_3/AN4  
P2.3/CCPOS0_2/CTRAP_2/T2_2/EXINT3/AN3  
4
5
P0.3/CC60_1/SDA_1/CTRAP_0/LINE3/TSIN3  
P2.2/CCPOS2_1/T12HR_3/T13HR_3/SCK_3/  
T1_1/EXINT2_0/AN2  
6
P0.2/T1_0/CC62_1/SCL_1/CCPOS2_0/LINE2/TSIN2  
P2.1/CCPOS1_1/RXD_5/MTSR_6/T0_1/  
P0.1/T0_0/CC61_1/MTSR_3/MRST_2/T13HR_0/  
CCPOS1_0/LINE1/TSIN1  
7
XC836  
EXINT1_1/AN1  
P0.0/T2_0/T13HR_1/MTSR_2/MRST_3/T12HR_0/  
P2.0/CCPOS0_1/T12HR_2/T13HR_2/T2EX_3/  
T2_1/EXINT0_3/AN0  
8
CCPOS0_0/LINE0/TSIN0/COUT61_1  
P0.6/SPD_1/RXD_1/SDA_0/MTSR_1/MRST_0/EXINT0_1/  
9
P1.5/CC62_0/COL5/COLA_1  
T2EX_0/LINE6/TSIN6/TXD_0/COL2_1/COLA_2  
P0.5/RXD_0/MTSR_0/MRST_1/EXINT0_0/LINE5/  
TSIN5/COUT62_1/TXD_4/COL1_1/EXF2_3  
10  
11  
12  
13  
14  
P1.4/EXINT5/COL4/COUT62_0/COUT63_2  
P0.4/T2EX_1/SCL_0/SCK_0/EXINT1_0/CTRAP_1/  
VDDC  
VSSP  
LINE4/TSIN4/EXF2_0/COL0_1/COL3_2/COLA_4  
VDDP  
P1.0/SPD_2/RXD_2/T2EX_2/EXINT0_2/  
P1.3/CC61_0/COL3_0/CC61_0/EXF2_2  
COL0_0/COUT60_0/TXD_1  
P1.2/EXINT4/COL2_0/COUT61_0/COUT63_1  
P1.1/CC60_0/COL1_0/TXD_2  
Figure 5  
XC836 Pin Configuration, PG-TSSOP-28 Package (top view)  
Data Sheet  
8
V1.2, 2011-03  
XC835/836  
General Device Information  
2.4  
Pin Definitions and Functions  
The functions and default states of the XC835/836 external pins are provided in Table 3.  
Table 3  
Symbol Pin  
Pin Definitions and Functions for XC835/836  
Type Reset Function  
Number  
State  
TSSOP28/  
DS024  
P0  
I/O  
Port 0  
Port 0 is a bidirectional general purpose I/O port.  
It can be used as alternate functions for  
LEDTSCU, Timer 0, 1 and 2, SSC, CCU6, IIC,  
SPD and UART.  
P0.0  
21/19  
Hi-Z  
T2_0  
Timer 2 Input  
T13HR_1  
CCU6 Timer 13 Hardware Run  
Input  
MTSR_2  
SSC Master Transmit Output/  
Slave Receive Input  
MRST_3  
T12HR_0  
SSC Master Receive Input  
CCU6 Timer 12 Hardware Run  
Input  
CCPOS0_0 CCU6 Hall Input 0  
TSIN0  
LINE0  
Touch-sense Input 0  
LED Line 0  
COUT61_1 Output of Capture/Compare  
Channel 1  
Data Sheet  
9
V1.2, 2011-03  
XC835/836  
General Device Information  
Table 3  
Pin Definitions and Functions for XC835/836 (cont’d)  
Symbol Pin  
Type Reset Function  
State  
Number  
TSSOP28/  
DS024  
P0.1  
22/20  
Hi-Z  
T0_0  
Timer 0 Input  
CC61_1  
Input/Output of Capture/Compare  
channel 1  
MTSR_3  
MRST_2  
SSC Slave Receive Input  
SSC Master Receive Input/  
Slave Transmit Output  
T13HR_0  
CCU6 Timer 13 Hardware Run  
Input  
CCPOS1_0 CCU6 Hall Input 1  
TSIN1  
LINE1  
T1_0  
Touch-sense Input 1  
LED Line 1  
Timer 1 Input  
Input/Output of Capture/Compare  
channel 2  
IIC Clock Line  
P0.2  
P0.3  
23/21  
24/22  
Hi-Z  
Hi-Z  
CC62_1  
SCL_1  
CCPOS2_0 CCU6 Hall Input 2  
TSIN2  
LINE2  
Touch-sense Input 2  
LED Line 2  
Input/Output of Capture/Compare  
channel 0  
CC60_1  
SDA_1  
CTRAP_0  
TSIN3  
IIC Data Line  
CCU6 Trap Input  
Touch-sense Input 3  
LED Line 3  
LINE3  
Data Sheet  
10  
V1.2, 2011-03  
XC835/836  
General Device Information  
Table 3  
Pin Definitions and Functions for XC835/836 (cont’d)  
Symbol Pin  
Type Reset Function  
State  
Number  
TSSOP28/  
DS024  
P0.4  
11/9  
PD  
T2EX_1  
SCK_0  
SCL_0  
Timer 2 External Trigger Input  
SSC Clock Input/Output  
IIC Clock Line  
CTRAP_1  
EXINT1_0  
TSIN4  
CCU6 Trap Input  
External Interrupt Input 1  
Touch-sense Input 4  
LED Line 4  
LINE4  
EXF2_0  
COL0_1  
COL3_2  
COLA_4  
RXD_0  
Timer 2 Overflow Flag  
LED Column 0  
LED Column 3  
LED Column A  
UART Receive Input  
P0.5  
10/8  
Hi-Z  
MTSR_0  
SSC Master Transmit Output/  
Slave Receive Input  
MRST_1  
EXINT0_0  
TSIN5  
SSC Master Receive Input  
External Interrupt Input 0  
Touch-sense Input 5  
LED Line 5  
LINE5  
COUT62_1 Output of Capture/Compare  
Channel 2  
TXD_4  
COL1_1  
EXF2_3  
UART Transmit Output  
LED Column 1  
Timer 2 Overflow Flag  
Data Sheet  
11  
V1.2, 2011-03  
XC835/836  
General Device Information  
Table 3  
Pin Definitions and Functions for XC835/836 (cont’d)  
Symbol Pin  
Type Reset Function  
State  
Number  
TSSOP28/  
DS024  
P0.6  
9/7  
PU  
SPD_1  
RXD_1  
SDA_0  
SPD Input/Output  
UART Receive Input  
IIC Data Line  
MTSR_1  
MRST_0  
SSC Slave Receive Input  
SSC Master Receive Input/  
Slave Transmit Output  
EXINT0_1  
T2EX_0  
TSIN6  
External Interrupt Input 0  
Timer 2 External Trigger Input  
Touch-sense Input 6  
LED Line 6  
LINE6  
TXD_0  
COL2_1  
COLA_2  
SCL_3  
TSIN7  
UART Transmit Output  
LED Column 2  
LED Column A  
IIC Clock Line  
Touch-sense Input 7  
LED Line 7  
P0.7  
28/2  
Hi-Z  
LINE7  
TXD_5  
UART Transmit Output/  
2-wire UART BSL Transmit Output  
COUT63_0 Output of Capture/Compare  
Channel 3  
COL3_1  
COLA_3  
Port 1  
LED Column 3  
LED Column A  
P1  
I/O  
Port 1 is a bidirectional general purpose I/O port.  
It can be used as alternate functions for CCU6,  
LEDTSCU, SPD, UART and Timer 2  
Data Sheet  
12  
V1.2, 2011-03  
XC835/836  
General Device Information  
Table 3  
Pin Definitions and Functions for XC835/836 (cont’d)  
Symbol Pin  
Type Reset Function  
State  
Number  
TSSOP28/  
DS024  
P1.0  
16/14  
Hi-Z  
SPD_2  
SPD Input/Output  
RXD_2  
UART Receive Input  
Timer 2 External Trigger Input  
External Interrupt Input 0  
LED Column 0  
T2EX_2  
EXINT0_2  
COL0_0  
COUT60_0 Output of Capture/Compare  
Channel 0  
TXD_1  
UART Transmit Output  
P1.1  
P1.2  
15/13  
14/12  
Hi-Z  
Hi-Z  
CC60_0  
Input/Output of Capture/Compare  
channel 0  
LED Column 1  
UART Transmit Output  
External Interrupt Input 4  
LED Column 2  
COL1_0  
TXD_2  
EXINT4  
COL2_0  
COUT61_0 Output of Capture/Compare  
channel 1  
COUT63_1 Output of Capture/Compare  
channel 3  
P1.3  
P1.4  
13/11  
19/17  
Hi-Z  
Hi-Z  
CC61_0  
Input/Output of Capture/Compare  
channel 1  
LED Column 3  
Timer 2 Overflow Flag  
External Interrupt Input 5  
LED Column 4  
COL3_0  
EXF2_2  
EXINT5  
COL4  
COUT62_0 Output of Capture/Compare  
channel 2  
COUT63_2 Output of Capture/Compare  
channel 3  
Data Sheet  
13  
V1.2, 2011-03  
XC835/836  
General Device Information  
Table 3  
Pin Definitions and Functions for XC835/836 (cont’d)  
Symbol Pin  
Type Reset Function  
State  
Number  
TSSOP28/  
DS024  
P1.5  
20/18  
Hi-Z  
CC62_0  
Input/Output of Capture/Compare  
channel 2  
COL5  
COLA_1  
Port 2  
LED Column 5  
LED Column A  
P2  
I
Port 2 is a general purpose input-only port. It can  
be used as inputs for A/D Converter and out of  
range comparator, CCU6, Timer 2, SSC and  
UART.  
P2.0  
8/6  
Hi-Z  
CCPOS0_1 CCU6 Hall Input 0  
T12HR_2  
CCU6 Timer 12 Hardware Run  
Input  
T13HR_2  
CCU6 Timer 13 Hardware Run  
Input  
T2EX_3  
T2_1  
Timer 2 External Trigger Input  
Timer 2 Input  
EXINT0_3  
AN0  
External Interrupt Input 0  
Analog Input 0 /  
Out of range comparator channel 0  
P2.1  
7/5  
Hi-Z  
CCPOS1_1 CCU6 Hall Input 1  
RXD_5  
MTSR_6  
T0_1  
UART Receive Input  
SSC Slave Receive Input  
Timer 0 Input  
EXINT1_1  
AN1  
External Interrupt Input 1  
Analog Input 1 /  
Out of range comparator channel 1  
Data Sheet  
14  
V1.2, 2011-03  
XC835/836  
General Device Information  
Table 3  
Pin Definitions and Functions for XC835/836 (cont’d)  
Symbol Pin  
Type Reset Function  
State  
Number  
TSSOP28/  
DS024  
P2.2  
6/4  
Hi-Z  
CCPOS2_1 CCU6 Hall Input 2  
T12HR_3  
CCU6 Timer 12 Hardware Run  
Input  
T13HR_3  
CCU6 Timer 13 Hardware Run  
Input  
SCK_3  
T1_1  
SSC Clock Input/Output  
Timer 1 Input  
EXINT2_0  
AN2  
External Interrupt Input 2  
Analog Input 2 /  
Out of range comparator channel 2  
P2.3  
P2.4  
5/3  
4/-  
Hi-Z  
Hi-Z  
CCPOS0_2 CCU6 Hall Input 0  
CTRAP_2  
T2_2  
CCU6 Trap Input  
Timer 2 Input  
EXINT3  
AN3  
External Interrupt Input 3  
Analog Input 3 /  
Out of range comparator channel 3  
T12HR_5  
T13HR_5  
CCU6 Timer 12 Hardware Run  
Input  
CCU6 Timer 13 Hardware Run  
Input  
T2_3  
AN4  
Timer 2 Input  
Analog Input 4 /  
Out of range comparator channel 4  
P2.5  
3/-  
Hi-Z  
T12HR_7  
T13HR_7  
AN5  
CCU6 Timer 12 Hardware Run  
Input  
CCU6 Timer 13 Hardware Run  
Input  
Analog Input 5 /  
Out of range comparator channel 5  
Data Sheet  
15  
V1.2, 2011-03  
XC835/836  
General Device Information  
Table 3  
Pin Definitions and Functions for XC835/836 (cont’d)  
Symbol Pin  
Type Reset Function  
State  
Number  
TSSOP28/  
DS024  
P2.6  
P2.7  
2/-  
Hi-Z  
Hi-Z  
SCK_2  
EXINT6  
AN6  
SSC Clock Input/Output  
External Interrupt Input 6  
Analog Input 6 /  
Out of range comparator channel 6  
1/-  
RXD_6  
T2EX_6  
MTSR_7  
EXINT0_4  
AN7  
UART Receive Input  
Timer 2 External Trigger Input  
SSC Slave Receive Input  
External Interrupt Input 0  
Analog Input 7 /  
Out of range comparator channel 7  
P3  
I/O  
Port 3  
Port 3 is a bidirectional general purpose I/O port.  
It can be used as alternate functions for IIC,  
LEDTSCU, UART, Timer 2, SSC, SPD and  
32.768 kHz crystal pad.  
P3.0  
26/24  
PU  
SCL_2  
SCK_1  
EXINT2_1  
COL6  
IIC Clock Line  
SSC Clock Input/Output  
External Interrupt Input 2  
LED Column 6  
XTAL4  
32.768 kHz External Oscillator  
Output  
Data Sheet  
16  
V1.2, 2011-03  
XC835/836  
General Device Information  
Table 3  
Pin Definitions and Functions for XC835/836 (cont’d)  
Symbol Pin  
Type Reset Function  
State  
Number  
TSSOP28/  
DS024  
P3.1  
25/23  
PU  
RXD_4  
UART Receive Input  
RTCCLK  
MTSR_4  
RTC External Clock Input  
SSC Master Transmit Output/  
Slave Receive Input  
MRST_4  
EXINT0_5  
COLA_0  
XTAL3  
SSC Master Receive Input  
External Interrupt Input 0  
LED Column A  
32.768 kHz External oscillator  
Input  
EXF2_1  
SPD_0  
RXD_3  
Timer 2 Overflow Flag  
SPD Input/Output  
UART Receive Input/  
UART BSL Receive Input  
P3.2  
27/1  
PU  
SDA_2  
IIC Data Line  
MTSR_5  
MRST_5  
SSC Slave Receive Input  
SSC Master Receive Input/  
Slave Transmit Output  
EXINT0_6  
T2EX_7  
TXD_3  
External Interrupt Input 0  
Timer 2 External Trigger Input  
UART Transmit Output/  
1-wire UART BSL Transmit Output  
VDDP  
VDDC  
12/10  
18/16  
17/15  
I/O Port Supply (2.5 V - 5.5 V)  
Core Supply Monitor (2.5 V)  
I/O Port Ground/  
Core Supply Ground  
VSSP  
/
VSSC  
Data Sheet  
17  
V1.2, 2011-03  
XC835/836  
General Device Information  
2.5  
Memory Organization  
The XC835/836 CPU operates in the following five address spaces:  
• 8 Kbytes of Boot ROM, Library ROM and User routines  
• 256 bytes of internal RAM  
• 256 bytes of XRAM  
(XRAM can be read/written as program memory or external data memory)  
• A 128-byte Special Function Register area  
• 4/8 Kbytes of Flash  
Figure 6 illustrates the memory address spaces of the 4 Kbyte Flash devices. Figure 7  
illustrates the memory address spaces of the 8 Kbyte Flash devices.  
FFFFH  
FFFFH  
F100H  
F000H  
F100H  
F000H  
XRAM  
XRAM  
256 Bytes  
256 Bytes  
E000H  
Boot ROM  
8 KBytes  
C000H  
B000H  
Flash Bank 0  
4 KBytes 1)  
A000H  
Indirect  
Direct  
Address  
Address  
FFH  
80H  
Special Function  
Registers  
Internal RAM  
1000H  
0000H  
7FH  
40H  
Internal RAM  
Flash Bank 0  
4 KBytes  
In Debug Mode, this 64-byte address area  
is replaced by a 64-byte Monitor RAM.  
00H  
0000H  
Code Space  
External Data Space  
Internal Data Space  
1) Physically one 4-Kbyte Flash bank, mapped to both address range .  
Memory Map User Mode  
Figure 6  
Memory Map of XC835/836 with 4 Kbytes of Flash memory  
Data Sheet  
18  
V1.2, 2011-03  
XC835/836  
General Device Information  
FFFFH  
FF80H  
FF40H  
FFFFH  
User BSL Flash Sector  
64 Bytes2)  
F100H  
F000H  
F100H  
F000H  
XRAM  
XRAM  
256 Bytes  
256 Bytes  
E000H  
Boot ROM  
8 KBytes  
C000H  
B000H  
Flash Bank 1  
4 KBytes 1)  
A000H  
Indirect  
Direct  
Address  
Address  
FFH  
Special Function  
Internal RAM  
2000H  
1000H  
Registers  
Flash Bank 1  
4 KBytes 1)  
80H  
7FH  
40H  
Internal RAM  
Flash Bank 0  
4 KBytes  
In Debug Mode, this 64-byte address area  
is replaced by a 64-byte Monitor RAM.  
00H  
0000H  
0000H  
Code Space  
External Data Space  
Internal Data Space  
1) Physically one 4-Kbyte Flash bank, mapped to both address range . Flash Bank 1 is only available in 8-Kbyte Flash Variant.  
2) User BSL Flash sector is only available in 8-Kbyte Flash Variant .  
Memory Map User Mode  
Figure 7  
Memory Map of XC835/836 with 8 Kbytes of Flash memory  
Data Sheet  
19  
V1.2, 2011-03  
XC835/836  
General Device Information  
2.6  
JTAG ID  
JTAG ID register is a read-only register located inside the JTAG module, and is used to  
recognize the device(s) connected to the JTAG interface. Its content is shifted out when  
INSTRUCTION register contains the IDCODE command (opcode 04H), and the same is  
also true immediately after reset.  
The JTAG ID register contents for the XC835/836 Flash devices are given in Table 4.  
Table 4  
Device Type  
Flash  
JTAG ID Summary  
Device Name  
XC835*-2FG  
JTAG ID  
101B A083H  
XC836*-2FR  
XC836*-1FR  
101B B083H  
Note: The asterisk (*) above denotes all possible device configurations.  
Data Sheet  
20  
V1.2, 2011-03  
XC835/836  
General Device Information  
2.7  
Chip Identification Number  
The XC835/836 identity (ID) register is located at Page 1 of address B3H. The value of  
ID register is 59H. However, for easy identification of product variants, the Chip  
Identification Number, which is an unique number assigned to each product variant, is  
available. The differentiation is based on the product and variant type information.  
Two methods are provided to read a device’s Chip Identification number:  
• In-application subroutine, GET_CHIP_INFO  
• Boot-loader (BSL) mode A  
Table 5 lists the Chip Identification numbers of XC835/836 device variants.  
Table 5  
Chip Identification Number  
Product Variant  
XC835MT-2FG  
XC836-2FR  
Chip Identification Number  
59080001H  
59080060H  
XC836T-2FR  
XC836M-2FR  
XC836M-1FR  
XC836MT-2FR  
XC836MT-1FR  
59080040H  
59080020H  
59080120H  
59080000H  
59080100H  
Data Sheet  
21  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3
Electrical Parameters  
Chapter 3 provides the characteristics of the electrical parameters which are  
implementation-specific for the XC835/836.  
3.1  
General Parameters  
The general parameters are described here to aid the users in interpreting the  
parameters mainly in Section 3.2 and Section 3.3.  
3.1.1  
Parameter Interpretation  
The parameters listed in this section represent partly the characteristics of the  
XC835/836 and partly its requirements on the system. To aid interpreting the parameters  
easily when evaluating them for a design, they are indicated by the abbreviations in the  
“Symbol” column:  
CC  
– These parameters indicate Controller Characteristics, which are distinctive  
features of the XC835/836 and must be regarded for a system design.  
SR  
– These parameters indicate System Requirements, which must be provided by the  
microcontroller system in which the XC835/836 is designed in.  
Data Sheet  
22  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3.1.2  
Absolute Maximum Rating  
Maximum ratings are the extreme limits to which the XC835/836 can be subjected to  
without permanent damage.  
Table 6  
Absolute Maximum Rating Parameters  
Parameter  
Symbol  
Limit Values  
Unit Notes  
Min.  
-40  
-65  
-40  
-0.5  
Max.  
125  
150  
150  
6
Ambient temperature  
Storage temperature  
Junction temperature  
TA  
TST  
TJ  
°C  
°C  
°C  
V
under bias  
under bias  
Voltage on power supply pin with VDDP  
respect to VSS  
Maximum current per pin for  
P1[3:0]  
Input current on any pin during  
overload condition  
IM  
-115  
-10  
115  
10  
mA  
mA  
mA  
IIN  
Absolute sum of all input currents Σ|IIN|  
50  
during overload condition  
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
During absolute maximum rating overload conditions (VIN > VDDP or VIN < VSS) the  
voltage on VDDP pin with respect to ground (VSS) must not exceed the values  
defined by the absolute maximum ratings.  
Data Sheet  
23  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3.1.3  
Operating Condition  
The following operating conditions must not be exceeded in order to ensure correct  
operation of the XC835/836. All parameters mentioned in the following tables refer to  
these operating conditions, unless otherwise noted.  
Table 7  
Parameter  
Operating Condition Parameters  
Symbol Limit Values  
Unit Notes/  
Conditions  
Min.  
3.0  
2.5  
Max.  
5.5  
3.0  
Digital power supply voltage VDDP  
Digital core supply voltage2) VDDC  
V
V
V
1)  
2.3  
2.7  
CPU Clock Frequency  
fCCLK  
22.5  
7.5  
25.6  
8.5  
MHz typ. 24 MHz  
MHz typ. 8 MHz  
Ambient temperature  
TA  
-40  
85  
°C  
SAF-XC835/836...  
1) In this voltage range, limited operations are available in active mode. Operations in power save modes are  
fully supported.  
2) VDDC is supplied by the on-chip EVR. The limits are verified by design and production testing.  
Data Sheet  
24  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3.2  
DC Parameters  
The electrical characteristics of the DC Parameters are detailed in this section.  
3.2.1  
Input/Output Characteristics  
Table 8 provides the characteristics of the input/output pins of the XC835/836.  
Table 8  
Parameter  
Input/Output Characteristics (Operating Conditions apply)  
Symbol Limit Values Unit Test Conditions  
Min.  
Max.  
Outputlowvoltageon VOLP CC –  
1.0  
V
V
V
IOL = 25 mA (5 V)  
port pins  
IOL = 13 mA (3.3 V)  
(all except P1)  
0.4  
1.0  
IOL = 10 mA (5 V)  
IOL = 5 mA (3.3 V)  
Outputlowvoltageon VOLP1 CC –  
IOL = 50 mA (5 V)  
P1[3:0]  
IOL = 25 mA (3.3 V)  
0.32  
0.4  
1.0  
V
V
V
IOL = 20 mA (5 V)  
IOL = 10 mA (3.3 V )  
Outputlowvoltageon VOLP2 CC –  
IOL = 50 mA (5 V)  
P1[5:4]  
IOL = 25 mA (3.3 V)  
0.4  
V
V
V
V
V
V
V
V
IOL = 20 mA (5 V)  
IOL = 10 mA (3.3 V)  
Output high voltage VOHP CC VDDP - –  
I
OH = -15 mA (5 V)  
OH = -8 mA (3.3 V )  
on port pins  
1.0  
I
(all except P1)  
V
DDP - –  
I
I
OH = -5 mA (5 V)  
OH = -2.5 mA (3.3 V)  
0.4  
Output high voltage VOHP1 CC VDDP - –  
I
I
I
OH = -20 mA (5 V)  
OH = -25 mA (3.3 V)  
OH = -10 mA (3.3 V)  
on P1[3:0] 0.32  
V
DDP - –  
1.0  
V
DDP - –  
0.4  
Output high voltage VOHP2 CC VDDP - –  
I
I
OH = -30 mA (5 V)  
OH = -16 mA (3.3 V)  
on P1[5:4]  
1.0  
V
DDP - –  
I
OH = -10 mA (5 V)  
OH =- 5 mA (3.3 V)  
0.4  
I
Data Sheet  
25  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
Table 8  
Input/Output Characteristics (Operating Conditions apply) (cont’d)  
Parameter  
Symbol  
Limit Values Unit Test Conditions  
Min.  
SR –  
Max.  
0.3 ×  
VDDP  
Input low voltage on VILP  
V
V
V
V
V
CMOS Mode  
(5 & 3.3 V)  
CMOS Mode  
(5 V & 3.3 V)  
CMOS Mode (5 V)  
CMOS Mode (3.3 V)  
CMOS Mode (2.5 V)  
port pins  
Input high voltage on VIHP  
SR 0.7 ×  
port pins  
VDDP  
Input Hysteresis1)  
HYS CC 0.08 × –  
VDDP  
0.03 × –  
VDDP  
0.01 × –  
VDDP  
Pull-up current  
IPUP  
SR –  
-20  
-5  
20  
5
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
V
V
V
V
V
V
V
IH,min (5 V)  
-150  
-100  
IL,max (5 V)  
IH,min (3.3 V)  
IL,max (3.3 V)  
IL,max (5 V)  
IH,min (5 V)  
Pull-down current  
IPDP  
SR –  
150  
100  
IL,max (3.3 V)  
IH,min (3.3 V)  
Input leakage current IOZP  
on port pins2)  
(all except P1)  
CC -1  
1
µA 0 < VIN < VDDP  
,
TA 125 °C  
Input leakage current IOZP1 CC -3  
3
µA 0 < VIN < VDDP  
TA 125 °C  
,
,
on P1[3:0]2)  
Input leakage current IOZP2 CC -2  
2
µA 0 < VIN < VDDP  
on P1[5:4]2)  
TA 125 °C  
Overcurrent  
|IOCP1| SR 60  
115  
mA VDDP = 5 V  
threshold per pin for  
P1[3:0]3)  
4)  
Overload current on IOVP  
SR -5  
5
mA  
any pin  
4)  
Absolute sum of  
overload currents  
Σ|IOV| SR –  
25  
mA  
Data Sheet  
26  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
Table 8  
Input/Output Characteristics (Operating Conditions apply) (cont’d)  
Parameter  
Symbol  
Limit Values Unit Test Conditions  
Min.  
SR –  
Max.  
0.3  
5)  
Voltage on any pin  
during VDDP power off  
VPO  
V
Maximum current per IMP  
SR -15  
25  
mA  
pin (excluding P1,  
V
DDP and VSS)  
Maximum current per IMP1A SR -50  
50  
mA  
mA  
mA  
mA  
pin for P1[3:0]  
Maximum current per IMP1B SR -30  
50  
pin for P1[5:4]  
4)  
Maximum current  
into VDDP  
IMVDDP SR –  
130  
130  
4)  
Maximum current out IMVSS SR –  
of VSS  
1) Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta  
stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching  
due to external system noise.  
2) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin.  
3) Over current detection is available for 5V application only.  
4) Not subjected to production test, verified by design/characterization.  
5) Not subjected to production test, verified by design/characterization. However, for applications with strict low  
power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin  
when VDDP is powered off.  
Data Sheet  
27  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3.2.2  
Supply Threshold Characteristics  
Table 9 provides the characteristics of the supply threshold in the XC835/836.  
5.0V  
VDDPPW/VDDPBOPD  
VDDPBOA  
VDDPSRR  
VDDP  
VDDC  
2.5V  
VDDCPW  
VDDCBOA  
VDDCBOPD  
VDDCSRR  
VDDCRDR  
Figure 8  
Supply Threshold Parameters  
Supply Threshold Parameters (Operating Conditions apply)  
Table 9  
Parameters  
Symbol  
Limit Values  
Unit  
Min. Typ. Max.  
V
V
V
DDP prewarning voltage1)2)  
VDDPPW  
CC 3.0  
3.6 4.5  
V
DDP brownout voltage in active mode2)3)  
DDP brownout voltage in all power down  
VDDPBOA CC 2.65 2.75 2.87 V  
3.0 3.6 4.5  
VDDPBOPD  
V
mode2)3)  
V
V
V
V
V
DDP system reset release voltage2)4)  
DDC prewarning voltage2)5)  
VDDPSRR CC 2.7  
VDDCPW CC 2.3  
2.8 2.92 V  
2.4 2.48 V  
DDC brownout voltage in active mode2)  
VDDCBOA CC 2.25 2.3 2.42 V  
DDC brownout voltage in power down mode2) VDDCBOPD CC 1.35 1.5 1.95 V  
DDC system reset release voltage2)4)  
VDDCSRR CC 2.28 2.3 2.47 V  
VDDCRDR CC 1.1  
RAM data retention voltage  
V
1) Detection is enabled via SDCON register in active mode. It is automatically disabled in power down mode.  
Detection should be disabled for VDDP less than maximum of VDDPPW  
.
2) This parameter has a hysteresis of 50 mV.  
3) Detection is enabled via SDCON register. Detection must be disabled for application with V  
specified values.  
less than the  
DDP  
4) V  
and V  
must be met before the system reset is released.  
DDPSRR  
DDCSRR  
5) Detection is enabled via SDCON register in active mode. It is automatically disabled in power down mode.  
Data Sheet  
28  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3.2.3  
ADC Characteristics  
The values in Table 10 are given for an analog power supply of 5.0 V. The ADC can be  
used with an analog power supply down to 3 V. But in this case, analog parameters may  
show a reduced performance. In the reduced voltage mode (2.5 V < VDDP < 3 V), the  
ADC is not recommended to be used.  
Table 10  
ADC Characteristics (Operating Conditions apply; VDDP = 5 V;  
f
ADCI <= 12 MHz)  
Parameter  
Symbol  
Limit Values  
Min. Typ. Max.  
Unit  
Test  
Conditions /  
Remarks  
Analog reference  
voltage  
Analog reference  
ground  
Alternate analog  
reference ground  
VAREF  
VAGND  
VDDP  
VSSP  
V
V
V
Connect  
internally to VDDP  
Connect  
internally to VSSP  
Connect to AN0  
in differential  
mode, See  
Figure 9.  
4)  
VAGNDALT SR VSSP - –  
2.51)  
0.1  
Internal voltage  
reference  
VINTREF SR 1.19 1.23 1.28  
V
Analog input voltage VAIN  
SR VAGND  
VAREF  
V
range  
ADC clock  
fADCI  
tS  
8
16  
MHz  
internal analog  
clock  
Sample time  
CC (2 + INPCR0.STC) × µs  
tADCI  
Conversion time  
tC  
CC See Section 3.2.3.1 µs  
2)  
Set-uptimebetween tSETUP  
conversions using  
internal voltage  
SR –  
35  
µs  
reference  
Data Sheet  
29  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
Table 10  
ADC Characteristics (Operating Conditions apply; VDDP = 5 V;  
f
ADCI <= 12 MHz) (cont’d)  
Parameter  
Symbol  
Limit Values  
Min. Typ. Max.  
Unit  
Test  
Conditions /  
Remarks  
Total unadjusted  
error  
TUE3)  
CC –  
±1  
LSB8 8-bit conversion  
with internal  
reference4)  
+4/-2  
LSB10 10-bit  
conversion with  
internal  
reference4)5)  
+14/-2 LSB12 12-bit  
conversionusing  
the Low Pass  
Filter 4)  
Differential  
EADNL  
CC –  
CC –  
CC –  
CC –  
CC –  
+1.5/ -1 LSB  
10-bit  
Nonlinearity  
conversion4)  
Integral Nonlinearity EAINL  
±1.5  
LSB  
LSB  
LSB  
pF  
10-bit  
conversion4)  
Offset  
Gain  
EAOFF  
EAGAIN  
CAINSW  
+4  
-4  
2
3
10-bit  
conversion4)  
10-bit  
conversion4)  
4)6)  
Switched  
capacitance at an  
analog input  
4)6)  
4)  
Total capacitance at CAINT  
CC –  
CC –  
12  
2
pF  
an analog input  
Input resistance of RAIN  
1.5  
kΩ  
an analog input  
1) 1.2 V at VDDP = 3.0 V.  
2) Not subject to production test, verified at CPU clock (fSCLK, CCLK ) = 8 MHz, TA = + 25 °C and VDDP = 5 V.  
3) TUE is tested at VAREF = VDDP = 5.0 V and CPU clock (fSCLK, CCLK ) = 8 MHz.  
4) Not subject to production test, verified by design/characterization.  
5) If a reduced positive reference voltage is used, TUE will increase. If the positive reference is reduced by a  
factor of K, the TUE will increased by 1/K. Example:K = 0.8, 1/K = 1.25; 1.25 X TUE = 2.5 LSB10.  
6) The sampling capacity of the conversion C-Network is pre-charged to VAREF/2 before connecting the input to  
the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than VAREF/2.  
Data Sheet  
30  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
ADC kernel  
V1.2VREF  
va_altref  
va_altgnd  
V1.2VGND  
AIN CH0  
AIN CH1  
result  
handling  
AD  
converter  
conversion  
control  
AIN CH7  
request  
control  
Interrupt  
generation  
Figure 9  
Differential like measurement with internal 1.2V voltage reference,  
and CH0 gnd.  
Analog Input Circuitry  
REXT  
RAIN, On  
ANx  
CAINSW  
CAINT - CAINSW  
VAIN  
CEXT  
VSSP  
Figure 10  
ADC Input Circuits  
Data Sheet  
31  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3.2.3.1 ADC Conversion Timing  
Conversion time, tC = tADC × (1 + r × (3 + n + STC)), where  
• r = CTC + 3,  
• CTC = Conversion Time Control (GLOBCTR.CTC),  
• STC = Sample Time Control (INPCR0.STC),  
• n = 8 or 10 (for 8-bit and 10-bit conversion respectively),  
tADC = 1 / fADC  
3.2.3.2 Out of Range Comparator Characteristics  
Table 11 below shows the Out of Range Comparator characteristics.  
Table 11  
Out of Range Comparator Characteristics (Operating Conditions  
apply)  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min. Typ. Max.  
DC Switching  
Level  
DC Hysteresis  
Pulse Width  
VSenseDC SR 60  
125 270 mV Above VDDP  
1)  
VSenseHys CC 30  
tSensePW SR 300  
mV  
ns  
1)  
ANx > VDDP  
ANx >= VDDP + 350 mV1)  
Switching Delay tSenseSD CC –  
Pulse Switching tSensePSL SR –  
250  
60  
400 ns  
mV @ 300 nsec1)  
mV @ 800 usec1)  
Level  
SR –  
1) Not subject to production test, verified by design/characterization.  
Data Sheet  
32  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3.2.4  
Flash Memory Parameters  
The XC835/836 is delivered with all Flash sectors erased (read all zeros).  
The data retention time of the XC835/836’s Flash memory (i.e. the time after which  
stored data can still be retrieved) depends on the number of times the Flash memory has  
been erased and programmed.  
Note: Flash memory parameters are not subject to production test but verified by design  
and/or characterization.  
Table 12  
Flash Timing Parameters (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min. Typ. Max.  
Read access time  
(per byte)  
Programming time  
(per wordline)  
Erase time  
(one or more sectors)  
tACC  
tPR  
CC –  
CC –  
CC –  
125  
ns  
2.2  
ms  
ms  
tER  
120  
Flash wait states  
NWSFLASH CC  
0
1
CPU clock = 8 MHz  
CPU clock = 24 MHz  
Table 13  
Retention  
20 years  
5 years  
2 years  
2 years  
Flash Data Retention and Endurance (Operating Conditions apply)  
Endurance1)  
1,000 cycles  
10,000 cycles  
70,000 cycles  
100,000 cycles  
Size  
up to 8 Kbytes  
1 Kbyte  
512 bytes  
128 bytes  
Remarks  
1) One cycle refers to the programming of all wordlines in a sector and erasing of sector. The Flash endurance  
data specified in Table 13 is valid only if the following conditions are fulfilled:  
- the maximum number of erase cycles per Flash sector must not exceed 100,000 cycles.  
- the maximum number of erase cycles per Flash bank must not exceed 300,000 cycles.  
- the maximum number of program cycles per Flash bank must not exceed 2,500,000 cycles.  
Data Sheet  
33  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
Table 14  
Emulated Flash Data Retention and Endurance based on EEPROM  
Emulation ROM Library (Operating Conditions apply)  
Retention  
2 years  
2 years  
2 years  
2 years  
Endurance1)  
Emulation Size  
31 bytes  
Remarks  
1,600,000 cycles  
1,400,000 cycles  
1,200,000 cycles  
1,000,000 cycles  
62 bytes  
93 bytes  
124 bytes  
1) These values show the maximum endurance. Maximum endurance is the maximum possible unique data write  
if each data update is only 31 bytes. Minimum endurance cycle is the maximum possible unique data write if  
each data update is the same as the emulation size. The minimum endurance cycle can be calculated using  
the formulae [(max. endurance)*(31)/(emulation size)].  
Data Sheet  
34  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3.2.5  
Power Supply Current  
Table 15 provides the characteristics of the power supply current in the XC835/836.  
Table 15  
Power Consumption Parameters1) 2)(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Typ. Max.  
28  
Unit Test Condition  
Active Mode  
IDDPA  
23  
16  
mA  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
5 V / 3.3 V 3)  
5 V / 3.3 V 4)  
2.5 V5)  
20  
5
Idle Mode  
IDDPI  
IPDP1  
IPDP2  
IPDP3  
IPDP4  
18  
25  
5
5 V / 3.3 V 6)  
2.5 V 5)  
Power Down Mode 1  
Power Down Mode 2  
Power Down Mode 3  
Power Down Mode 4  
3
5
TA = 25° C7)  
TA = 85° C7)8)9)  
TA = 25° C7)8)  
TA = 85° C7)8)9)  
TA = 25° C7)8)  
TA = 85° C7)8)9)  
TA = 25° C7)  
TA = 85° C7)8)9)  
6
28  
8
5
31  
7
5
30  
7
30  
1) The typical IDDP values are measured at TA = + 25 °C and VDDP = 5 V and 3.3 V.  
2) The maximum IDDC values are measured under worst case conditions (TA = + 125 °C and VDDC = 5 V).  
3) IDDP (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz  
(CLKMODE=0).  
4) IDDP (active mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz  
(CLKMODE=1).  
5) This value is based on the maximum load capacity of EVR during VDDP = 2.5 V. Not subject to production test,  
verified by design/characterisation.  
6) IDDPI (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals  
enabled and running at 24 MHz (CLKMODE=0).  
7) IPDP1, IPDP2, IPDP3 and IPDP4 is measured at 5 V and 3.3 V with: wake-up port is programmed to be input with  
either internal pull devices enabled or driven externally to ensure no floating inputs.  
8) Not subject to production test, verified by design/characterisation.  
9) IPDP1, IPDP2, IPDP3 and IPDP4 has a maximum values of 120 uA at TA = + 125 °C.  
Data Sheet  
35  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
Table 16 shows the maximum active current within the device in the reduced voltage  
condition of 2.5 V < VDDP < 3.0 V. The active current consumption needs to be below the  
specified values as according to the VDDP voltage. If the conditions are not met, a  
brownout reset may be triggered.  
Table 16  
VDDP  
Active Current Consumption in Reduced Voltage Condition  
2.5 V  
2.6 V  
2.7 V  
2.8 V  
Maximum active current 7 mA  
13 mA  
20 mA  
25 mA  
Table 17 provides the active current consumption of some modules operating at 8 MHz  
active mode, 3 V power supply at 25° C. The typical values shown are used as a  
reference guide for device operating in reduced voltage conditions.  
Table 17  
Typical Active Current Consumption1) 2)  
Active Current  
Symbol  
Limit Values Unit Test Condition  
Typ.  
Consumption  
Baseload current3) ICPUDDC  
6900  
µA  
Modules including Core,  
memories, UART, T0, T1 and  
EVR. Disable ADC analog  
(GLOBCTR.ANON = 0).  
ADC4)  
IADCDDC  
3760  
µA  
Set PMCON1.ADC_DIS to 0  
and GLOBECTR. ANON to 1  
SSC5)  
ISSCDDC  
ICCU6DDC  
IT2DDC  
IMDUDDC  
ICORDICDDC 1880  
460  
3320  
200  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Set PMCON1.SSC_DIS to 0  
Set PMCON1.CCU_DIS to 0  
Set PMCON1.T2_DIS to 0  
Set PMCON1.MDU_DIS to 0  
Set PMCON1.CDC_DIS to 0  
Set PMCON1.LTS_DIS to 0  
Set PMCON1.IIC_DIS to 0  
CCU66)  
Timer 27)  
MDU8)  
1260  
CORDIC9)  
LEDTSCU10)  
IIC11)  
ILEDDDC  
IIICDDC  
850  
580  
1) Modules that are controllable by programming the register PMCON1.  
2) Not subject to production test, verified by design/characterisation.  
3) Baseload current is measured when the device is running in user mode with an endless loop in the flash  
memory. All modules in register PMCON1 are disabled.  
4) ADC active current is measured with: module enable, ADC analog clock at 8MHz, running in parallel  
conversion request in autoscan mode for 4 channels  
5) SSC active curremt is measured with: module enabled, running in loop back mode at a baud rate of 1 MBaud  
6) CCU6 active current is measured with: module enabled, all timers running in 8 MHz, 6 PWM outputs are  
generated.  
Data Sheet  
36  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
7) Timer 2 active current is measured with: module enabled, timer running in 8 MHz  
8) MDU active current is measured with: module enabled, division operation was performed.  
9) CORDIC active mode is measured with: module enabled, circular mode was selected for the calculation.  
10) LEDTSCU active curent is measured with: module enabled, counter running in 8 MHz.  
11) IIC active current is measured with: module enabled, performing a master transmit with the master clock  
running at 400 KHz.  
Data Sheet  
37  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3.3  
AC Parameters  
The electrical characteristics of the AC Parameters are detailed in this section.  
3.3.1  
Testing Waveforms  
The testing waveforms for rise/fall time, output delay and output high impedance are  
shown in Figure 11, Figure 12 and Figure 13.  
VDDP  
90%  
90%  
10%  
10%  
VSS  
tF  
tR  
Figure 11  
Rise/Fall Time Parameters  
VDDP  
VDDE / 2  
VDDE / 2  
Test Points  
VSS  
Figure 12  
Testing Waveform, Output Delay  
VLoad + 0.1 V  
VLoad - 0.1 V  
VOH - 0.1 V  
VOL - 0.1 V  
Timing  
Reference  
Points  
Figure 13  
Testing Waveform, Output High Impedance  
Data Sheet  
38  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3.3.2  
Output Rise/Fall Times  
Table 18 provides the characteristics of the output rise/fall times in the XC835/836.  
Table 18  
Parameter  
Output Rise/Fall Times Parameters (Operating Conditions apply)  
Symbol Limit Values Unit Test Conditions  
Min.  
Max.  
Rise/fall times on High  
Current Pad Type A1)2)  
tHCPR  
tHCPF  
,
15  
ns  
ns  
ns  
ns  
ns  
ns  
20 pF @ Fast edge  
(5 V) 3).  
150  
25  
20 pF @ Slow Edge  
(5 V)3).  
20 pF @ Fast edge  
(3.3 V)4).  
300  
10  
20 pF @ Slow edge  
(3.3 V)4).  
Rise/fall times on High  
Current Pad Type B1)2)  
tR, tF  
tR, tF  
20 pF3)4)  
(5 V & 3.3 V).  
Rise/fall times on  
10  
20 pF3)4)  
Standard Pad1)2)  
(5 V & 3.3 V).  
1) Rise/Fall time parameters are taken with 10% - 90% of supply.  
2) Not all parameters are 100% tested, but are verified by design/characterisation and test correlation.  
3) Additional rise/fall time valid for CL = 20 pF - CL = 100 pF @ 0.125 ns/pF at 5 V supply voltage.  
4) Additional rise/fall time valid for CL = 20 pF - CL = 100 pF.@ 0.225 ns/pF at 3.3 V supply voltage.  
V
DDC  
90%  
90%  
10%  
10%  
V
SS  
t
t
F
R
Figure 14  
Rise/Fall Times Parameters  
Data Sheet  
39  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3.3.3  
Oscillator Timing and Wake-up Timing  
Table 19 provides the characteristics of the power-on reset, PLL and wake-up timings in  
the XC835/836.  
Table 19  
Power-On Reset Wake-up Timing1) (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Min. Typ. Max.  
48 MHz Oscillator  
start-up time  
t48MOSCST CC –  
13  
800  
1
µs  
µs  
s
75 KHz Oscillator start- t75KOSCST CC –  
up time  
32 KHz external  
oscillator start-up  
time2)  
t32KOSCST CC –  
Flash initialization time tFINT  
CC –  
160  
µs  
1) Not subject to production test, verified by design/characterisation.  
2) The external circuitry has to be optimized by the user and checked for negative resistance as recommended  
and specified by the crystal supplier.  
Data Sheet  
40  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3.3.4  
On-Chip Oscillator Characteristics  
Table 20 provides the characteristics of the 48 MHz oscillator in the XC835/836.  
Table 20  
48 MHz Oscillator Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Min. Typ. Max.  
Nominal frequency fNOM CC -0.5 % 48  
Unit Test Conditions  
+0.5% MHz under nominal  
conditions1) after  
trimming  
Long term  
fLT CC -2.0  
-4.5  
3.0  
4.5  
1
%
%
%
with respect to fNOM, over  
lifetime and temperature  
(0 °C to 85 °C)  
with respect to fNOM, over  
lifetime and temperature  
(-40 °C to 125 °C)  
frequency deviation  
Short term  
fST CC -1  
with respect to fNOM,  
frequency deviation  
within one LIN message  
(< 10 ms … 100 ms)  
(over VDDC  
)
1) Nominal condition: VDDC = 2.5 V, TA = + 25°C.  
Data Sheet  
41  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
Table 21 provides the characteristics of the 75 kHz oscillator in the XC835/836.  
Table 21  
75 kHz Oscillator Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Test Conditions  
Min. Typ. Max.  
Nominal frequency  
fNOM CC -1% 75  
+1% KHz under nominal  
conditions1) after trimming  
Long term frequency fLT CC -4.5 –  
4.5  
1.5  
%
%
with respect to fNOM, over  
lifetime and temperature  
(-40 °C to 125 °C)  
deviation  
Short term frequency fST CC -1.5 –  
with respect to fNOM, over  
deviation  
VDDC  
1) Nominal condition: VDDC = 2.5 V, TA = + 25°C.  
Data Sheet  
42  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3.3.5  
SSC Timing  
3.3.5.1 SSC Master Mode Timing  
Table 22 provides the SSC master mode timing in the XC835/836.  
Table 22  
SSC Master Mode Timing1) (Operating Conditions apply; CL = 50 pF)  
Parameter  
Symbol  
Limit Values  
Unit  
Min.  
2 * TSSC  
0
Max.  
3
2)  
SCLK clock period  
MTSR delay from SCLK  
t0  
t1  
CC  
ns  
ns  
CC  
SR  
SR  
MRST set-up to SCLK  
MRST hold from SCLK  
t2  
t3  
32  
0
ns  
ns  
1) Not subject to production test, verified by design/characterisation.  
2) TSSCmin = TCPU = 1/fCPU. When fCPU = 24 MHz, t0 = 83.3 ns. TCPU is the CPU clock period.  
t0  
SCLK1)  
t1  
t1  
1)  
MTSR  
t2  
t3  
Data  
MRST1)  
valid  
t1  
1) This timing is based on the following setup: CON.PH = CON.PO = 0.  
SSC_Tmg1  
Figure 15  
SSC Master Mode Timing  
Data Sheet  
43  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3.3.5.2 SSC Slave Mode Timing  
Table 23 provides the SSC slave mode timing in the XC835/836.  
Table 23  
SSC Slave Mode Timing1) (Operating Conditions apply; CL = 50 pF)  
Parameter  
Symbol  
Limit Values  
Unit  
Min.  
4 * TSSC  
0
Max.  
29  
2)  
SCLK clock period  
MRST delay from SCLK  
t0  
t1  
SR  
ns  
ns  
CC  
SR  
SR  
MTSR set-up to SCLK  
MTSR hold from SCLK  
t2  
t3  
32  
0
ns  
ns  
1) Not subject to production test, verified by design/characterisation.  
2) TSSCmin = TCPU = 1/fCPU. When fCPU = 24 MHz, t0 = 166.7 ns. TCPU is the CPU clock period.  
t0  
SCLK1)  
t2  
t3  
Data Valid  
MTSR1)  
MRST1)  
t1  
1)  
This timing is based on the following setup : CON.PH = CON.PO = 0.  
Figure 16  
SSC Slave Mode Timing  
Data Sheet  
44  
V1.2, 2011-03  
XC835/836  
Electrical Parameters  
3.3.6  
SPD Timing  
The SPD interface will work with standard SPD tools having a sample/output clock fre-  
quency deviation of +/- 5% or less. For further details please refer to application note  
AP24004 in section SPD Timing Requirements.  
Note: These parameters are no subject to product test but verified by design and/or  
characterization.  
Note: Operating Conditions apply.  
Data Sheet  
45  
V1.2, 2011-03  
XC835/836  
Package and Quality Declaration  
4
Package and Quality Declaration  
Chapter 4 provides the information of the XC835/836 package and reliability section.  
4.1  
Package Parameters  
Table 24 provides the thermal characteristics of the packages used in XC835 and  
XC836 respectively.  
Table 24  
Parameter  
Thermal Characteristics of the Packages  
Symbol Limit Values  
Unit Package Types  
Min.  
Max.  
30.8  
27.0  
20.2  
30.5  
195.3  
41  
Thermalresistancejunction RTJC CC -  
K/W PG-DSO-24-1  
case1)  
-
-
K/W PG-TSSOP-28-1  
K/W PG-TSSOP-28-12  
K/W PG-DSO-24-1  
K/W PG-TSSOP-28-1  
K/W PG-TSSOP-28-12  
Thermalresistancejunction RTJL CC -  
lead1)  
-
-
1) The thermal resistances between the case and the ambient (RTCA) , the lead and the ambient (RTLA) are to be  
combined with the thermal resistances between the junction and the case (RTJC), the junction and the lead  
(RTJL) given above, in order to calculate the total thermal resistance between the junction and the ambient  
(RTJA). The thermal resistances between the case and the ambient (RTCA), the lead and the ambient (RTLA  
)
depend on the external system (PCB, case) characteristics, and are under user responsibility.  
The junction temperature can be calculated using the following equation: TJ=TA+RTJA × PD, where the RTJA is  
the total thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA  
can be obtained from the upper four partial thermal resistances, by  
a) simply adding only the two thermal resistances (junction lead and lead ambient), or  
b) by taking all four resistances into account, depending on the precision needed.  
Data Sheet  
46  
V1.2, 2011-03  
XC835/836  
Package and Quality Declaration  
4.2  
Package Outline  
Figure 17 and Figure 18 shows the package outlines of the XC835 (DSO-24-1) and  
XC836 (TSSOP-28-1 and TSSOP-28-12) devices respectively.  
Figure 17  
PG-DSO-24-1 Package Outline  
Data Sheet  
47  
V1.2, 2011-03  
XC835/836  
Package and Quality Declaration  
Figure 18  
PG-TSSOP-28-1 Package Outline  
Data Sheet  
48  
V1.2, 2011-03  
XC835/836  
Package and Quality Declaration  
Figure 19  
PG-TSSOP-28-12 Package Outline  
Data Sheet  
49  
V1.2, 2011-03  
XC835/836  
Package and Quality Declaration  
4.3  
Quality Declaration  
Table 25 shows the characteristics of the quality parameters in the XC835/836.  
Table 25  
Parameter  
Quality Parameters  
Symbol Limit Values  
Unit Notes  
Min.  
Max.  
1500  
15000  
1500  
Operation Lifetime when tOP1  
-
-
-
-
hours TJ = 150°C  
hours TJ = 110°C  
hours TJ = -40°C  
the device is used at the  
1)  
three stated TJ  
Operation Lifetime when tOP2  
131400 hours TJ = 27°C  
the device is used at the  
1)  
stated TJ  
ESD susceptibility  
according to Human Body  
Model (HBM)  
ESD susceptibility  
according to Charged  
Device Model (CDM) pins  
VHBM  
-
-
2000  
500  
V
V
Conforming to  
EIA/JESD22-  
A114-B2)  
VCDM  
Conforming to  
JESD22-C101-C2)  
1) This lifetime refers only to the time when device is powered-on.  
2) Not all parameters are 100% tested, but are verified by design/characterisation and test correlation.  
Data Sheet  
50  
V1.2, 2011-03  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

XC858CA

8-Bit Single-Chip Microcontroller
INFINEON

XC858CA16FFIACFXUMA1

Microcontroller, 8-Bit, FLASH, 26.7MHz, CMOS, PQFP64, GREEN, PLASTIC, LQFP-64
INFINEON

XC864

8-Bit Single-Chip Microcontroller
INFINEON

XC866

8-Bit Single-Chip Microcontroller
INFINEON

XC866-2FR

8-Bit Single-Chip Microcontroller
INFINEON

XC866-2RR

8-Bit Single-Chip Microcontroller
INFINEON

XC866-4FR

8-Bit Single-Chip Microcontroller
INFINEON

XC866-4RR

8-Bit Single-Chip Microcontroller
INFINEON

XC8661FRIABFXUMA1

Microcontroller, 8-Bit, FLASH, 80MHz, CMOS, PDSO38, GREEN, PLASTIC, TSSOP-38
INFINEON

XC8661FRIABKXUMA1

Microcontroller, 8-Bit, FLASH, 80MHz, CMOS, PDSO38, GREEN, PLASTIC, TSSOP-38
INFINEON

XC8662FRABEKXUMA1

Microcontroller, 8-Bit, FLASH, 80MHz, CMOS, PDSO38, GREEN, PLASTIC, TSSOP-38
INFINEON

XC8662FRIBCFFUMA1

Microcontroller, 8-Bit, FLASH, 80MHz, CMOS, PDSO38, GREEN, PLASTIC, TSSOP-38
INFINEON