TLS820D0EL V50 [INFINEON]

TLS820D0EL V50 是一款高性能的极低压差线性稳压器系列,采用 SSOP14-EP 封装,适用于 5V 电源。这些稳压器的输入电压范围为 3 V 至 40 V,静态电流极低(仅 40μA),非常适合汽车或永久连接电池的任何其他电源系统。最大输出电流为 200mA,且过温输出电压精度 为2%。新的回路概念结合了快速调节和非常好的稳定性,输出端只需要一个 1μF 的小型陶瓷电容即可。在低于 100 mA 的电流下,该设备的典型压差非常低,仅 70 mV。工作范围从仅 3 V 的输入电压开始(扩展工作范围)。因此,新型 LDO 也适用于需要在启动条件下运行的汽车系统。;
TLS820D0EL V50
型号: TLS820D0EL V50
厂家: Infineon    Infineon
描述:

TLS820D0EL V50 是一款高性能的极低压差线性稳压器系列,采用 SSOP14-EP 封装,适用于 5V 电源。这些稳压器的输入电压范围为 3 V 至 40 V,静态电流极低(仅 40μA),非常适合汽车或永久连接电池的任何其他电源系统。最大输出电流为 200mA,且过温输出电压精度 为2%。新的回路概念结合了快速调节和非常好的稳定性,输出端只需要一个 1μF 的小型陶瓷电容即可。在低于 100 mA 的电流下,该设备的典型压差非常低,仅 70 mV。工作范围从仅 3 V 的输入电压开始(扩展工作范围)。因此,新型 LDO 也适用于需要在启动条件下运行的汽车系统。

电池 稳压器
文件: 总31页 (文件大小:1263K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Dropout Linear Voltage Regulator  
TLS820D0  
TLS820D0ELV50  
TLS820D0ELV33  
Linear Voltage Regulator  
Data Sheet  
Rev. 1.0, 2016-02-08  
Automotive Power  
TLS820D0  
Table of Contents  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Assignment TLS820D0ELV50 and TLS820D0ELV33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Definitions and Functions TLS820D0ELV50 and TLS820D0ELV33 . . . . . . . . . . . . . . . . . . . . . . . 6  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.1  
4.2  
4.3  
5
Block Description and Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Voltage Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Typical Performance Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Typical Performance Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Typical Performance Characteristics Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Typical Performance Characteristics Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
6
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Selection of External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Input Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Output Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.1  
6.2  
6.2.1  
6.2.2  
6.3  
6.4  
6.5  
7
8
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Data Sheet  
2
Rev. 1.0, 2016-02-08  
Low Dropout Linear Voltage Regulator  
TLS820D0  
1
Overview  
Features  
Wide Input Voltage Range from 3.0 V to 40 V  
Fixed Output Voltage 5 V or 3.3 V  
Output Voltage Precision ±2 %  
Output Current Capability up to 200 mA  
Ultra Low Current Consumption typ. 40 µA  
Very Low Dropout Voltage typ. 70 mV @100 mA  
Stable with Ceramic Output Capacitor of 1 µF  
Figure 1  
PG-SSOP-14  
Delayed Reset at Power-On with 2 Programmable Delay Times 8.5 ms  
/ 16.5 ms  
Adjustable Reset Threshold down to 2.50 V  
Enable, Undervoltage Reset, Overtemperature Shutdown  
Output Current Limitation  
Wide Temperature Range  
Green Product (RoHS compliant)  
AEC Qualified  
Data Sheet  
3
Rev. 1.0, 2016-02-08  
TLS820D0  
Overview  
Functional Description  
The TLS820D0 is a high performance very low dropout linear voltage regulator for 5 V (TLS820D0V50) or 3.3 V  
(TLS820D0V33) supply in a PG-SSOP-14 package.  
With an input voltage range of 3 V to 40 V and very low quiescent of only 40 µA, these regulators are perfectly  
suitable for automotive or any other supply systems connected to the battery permanently. The TLS820D0  
provides an output voltage accuracy of 2 % and a maximum output current up to 200 mA.  
The new loop concept combines fast regulation and very good stability while requiring only one small ceramic  
capacitor of 1 µF at the output. At currents below 100 mA the device will have a very low typical dropout voltage  
of only 70 mV (for 5 V device) and 80 mV (for 3.3 V device). The operating range starts already at input voltages  
of only 3 V (extended operating range). This makes the TLS820D0 also suitable to supply automotive systems  
that need to operate during cranking condition.  
The device can be switched on and off by the Enable feature as described in Chapter 5.5.  
The output voltage is supervised by the Reset feature, including Undervoltage Reset, delayed Reset at Power-On  
and an adjustable lower Reset Threshold, more details can be found in Chapter 5.7.  
Internal protection features like output current limitation and overtemperature shutdown are implemented to  
protect the device against immediate damage due to failures like output short circuit to GND, over-current and  
over-temperatures.  
Choosing External Components  
An input capacitor CI is recommended to compensate line influences. The output capacitor CQ is necessary for  
the stability of the regulating circuit. TLS820D0 is designed to be also stable with low ESR ceramic capacitors.  
Type  
Package  
Marking  
TLS820D0ELV50  
TLS820D0ELV33  
PG-SSOP-14  
PG-SSOP-14  
820D0V50  
820D0V33  
Data Sheet  
4
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Diagram  
2
Block Diagram  
I
Q
Current  
Limitation  
RO  
Reset  
EN  
RADJ  
DT  
Enable  
Bandgap  
Reference  
Temperature  
Shutdown  
GND  
Figure 2  
Block Diagram TLS820D0ELV50 and TLS820D0ELV33  
Data Sheet  
5
Rev. 1.0, 2016-02-08  
TLS820D0  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment TLS820D0ELV50 and TLS820D0ELV33  
SSOP-14  
I
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Q
n.c.  
n.c.  
n.c.  
EN  
n.c.  
RO  
n.c.  
GND  
n.c.  
DT  
RADJ  
n.c.  
8
Figure 3  
Pin Configuration  
3.2  
Pin Definitions and Functions TLS820D0ELV50 and TLS820D0ELV33  
Pin  
Symbol  
Function  
1
I
Input  
It is recommended to place a small ceramic capacitor (e.g. 100 nF) to GND, close  
to the IC terminals, in order to compensate line influences. See also Chapter 6.2.1  
2, 4, 6, n.c.  
7
not connected  
Leave open or connect to GND  
3
EN  
Enable (integrated pull-down resistor)  
Enable the IC with high level input signal;  
Disable the IC with low level input signal;  
5
8
GND  
Ground  
RADJ  
Reset Threshold Adjustment  
Connect to GND to use standard value;  
Connect an external voltage divider to adjust reset threshold  
9
DT  
Delay Timing (integrated pull-down resistor)  
Connect to GND or Q to select Reset timing acc. to Table 8  
11  
RO  
Reset Output (integrated pull-up resistor to Q)  
Open collector output;  
Leave open if the reset function is not needed  
10, 12, n.c.  
13  
not connected  
Leave open or connect to GND  
14  
Q
Output Voltage  
Connect output capacitor CQ to GND close to the IC’s terminals, respecting the  
values specified for its capacitance and ESR in “Functional Range” on Page 8  
Pad  
Exposed Pad  
Connect to heatsink area;  
Connect to GND  
Data Sheet  
6
Rev. 1.0, 2016-02-08  
TLS820D0  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 1  
Absolute Maximum Ratings1)  
Tj = -40 °C to +150 °C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min. Typ. Max.  
Input I, Enable EN  
Voltage  
VI, VEN  
-0.3  
-0.3  
45  
7
V
V
V
P_4.1.1  
P_4.1.3  
P_4.1.6  
Output Q, Reset Output RO  
Voltage  
VQ, VRO  
Delay Timing DT, Reset Threshold Adjustment RADJ  
Voltage  
VDT, VRADJ -0.3  
7
Temperatures  
Junction Temperature  
Storage Temperature  
ESD Absorption  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.7  
P_4.1.8  
Tstg  
ESD Susceptibility to GND  
ESD Susceptibility to GND  
VESD  
VESD  
-2  
2
kV  
V
2) HBM  
3) CDM  
3) CDM  
P_4.1.9  
-500  
500  
750  
P_4.1.10  
P_4.1.11  
ESD Susceptibility Pin 1, 7, 8, 14 (corner VESD1,7,8,14 -750  
pins) to GND  
V
1) Not subject to production test, specified by design.  
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 k, 100 pF)  
3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101  
Note:  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not  
designed for continuous repetitive operation.  
Data Sheet  
7
Rev. 1.0, 2016-02-08  
TLS820D0  
General Product Characteristics  
4.2  
Functional Range  
Table 2  
Functional Range  
Tj = -40 °C to +150 °C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
V
Max.  
40  
1)  
Input Voltage Range  
VI  
Q,nom + Vdr  
V
P_4.2.1  
P_4.2.3  
P_4.2.5  
P_4.2.6  
2)  
Extended Input Voltage Range  
Enable Voltage Range  
VI,ext  
VEN  
CQ  
3.0  
0
40  
V
40  
V
3)4)  
Output Capacitor’s  
1
µF  
Requirements for Stability  
3)  
ESR  
ESR(CQ) –  
Tj -40  
100  
150  
P_4.2.7  
P_4.2.9  
Junction Temperature  
°C  
1) Output current is limited internaly and depends on the input voltage, see Electrical Characteristics for more details.  
2) When VI is between VI,ext,min and VQ,nom + Vdr, VQ = VI - Vdr. When VI is below VI,ext,min, VQ can drop down to 0 V.  
3) Not subject to production test, specified by design.  
4) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%  
Note:Within the functional or operating range, the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the Electrical Characteristics table.  
Data Sheet  
8
Rev. 1.0, 2016-02-08  
TLS820D0  
General Product Characteristics  
4.3  
Thermal Resistance  
Note:This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go  
to www.jedec.org.  
Table 3  
Thermal Resistance  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Number  
Min.  
Max.  
Package Version PG-SSOP-14  
Junction to Case  
1)  
RthJC  
RthJA  
RthJA  
9
K/W  
K/W  
K/W  
P_4.3.1  
P_4.3.2  
P_4.3.3  
Junction to Ambient  
43  
128  
1)2) 2s2p board  
1)3) 1s0p board,  
Junction to Ambient  
footprint only  
Junction to Ambient  
Junction to Ambient  
RthJA  
58  
50  
K/W  
K/W  
1)3) 1s0p board,  
300 mm2 heatsink  
area on PCB  
1)3) 1s0p board,  
600 mm2 heatsink  
area on PCB  
P_4.3.4  
P_4.3.5  
RthJA  
1) Not subject to production test, specified by design  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product  
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu).  
Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
3) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product  
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu).  
Data Sheet  
9
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
5
Block Description and Electrical Characteristics  
5.1  
Voltage Regulation  
The output voltage VQ is divided by a resistor network. This fractional voltage is compared to an internal voltage  
reference and the pass transistor is driven accordingly.  
The control loop stability depends on the output capacitor CQ, the load current, the chip temperature and the  
internal circuit design. To ensure stable operation, the output capacitor’s capacitance and its equivalent series  
resistor (ESR) requirements given in “Functional Range” on Page 8 have to be maintained. For details, also see  
the typical performance graph “Output Capacitor Series Resistor ESR(CQ) versus Output Current IQ” on  
Page 15. As the output capacitor also has to buffer load steps, it should be sized according to the application’s  
needs.  
An input capacitor CI is recommended to compensate line influences. In order to block influences like pulses and  
HF distortion at input side, an additional reverse polarity protection diode and a combination of several capacitors  
for filtering should be used. Connect the capacitors close to the component’s terminals.  
In order to prevent overshoots during start-up, a smooth ramp up function is implemented. This ensures almost  
no output voltage overshoots during start-up, mostly independent from load and output capacitance.  
Whenever the load current exceeds the specified limit, e.g. in case of a short circuit, the output current is limited  
and the output voltage decreases.  
The overtemperature shutdown circuit prevents the IC from immediate destruction under fault conditions (e.g.  
output continuously short-circuit) by switching off the power stage. After the chip has cooled down, the regulator  
restarts. This leads to an oscillatory behavior of the output voltage until the fault is removed. However, junction  
temperatures above 150 °C are outside the maximum ratings and therefore significantly reduce the IC’s lifetime.  
Regulated  
Output Voltage  
Supply  
IQ  
II  
I
Q
Current  
Limitation  
RO  
Reset  
EN  
RADJ  
DT  
C
Enable  
CI  
VI  
VQ  
Bandgap  
Reference  
LOAD  
ESR  
Temperature  
Shutdown  
CQ  
GND  
Figure 4  
Voltage Regulation  
V
VI  
Vdr  
VQ,nom  
VI,ext,min  
VQ  
t
Figure 5  
Output Voltage vs. Input Voltage  
Data Sheet  
10  
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
Table 4  
Electrical Characteristics Voltage Regulator 5 V version  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Output Voltage Precision  
Output Voltage Precision  
VQ  
VQ  
4.9  
5.0  
5.0  
7.5  
5.1  
5.1  
18  
V
V
0.05 mA < IQ < 200 mA  
5.44 V < VI < 28 V  
P_5.1.1  
P_5.1.2  
P_5.1.7  
4.9  
0.05 mA < IQ < 100 mA  
5.27 V < VI < 40 V  
Output Voltage Start-up  
slew rate  
dVQ/dt 3.0  
V/ms VI > 18 V/ms  
CQ = 1 µF  
0.5 V < VQ < 4.5 V  
350 550 mA 0 V < VQ < 4.8 V  
Output Current Limitation  
IQ,max  
201  
P_5.1.8  
Load Regulation  
steady-state  
VQ,load -15  
-1.5  
5
mV  
IQ = 0.05 mA to 200 mA  
VI = 6 V  
P_5.1.10  
Line Regulation  
steady-state  
VQ,line -20  
0
20  
mV  
VI = 8 V to 32 V  
IQ = 1 mA  
P_5.1.12  
P_5.1.14  
P_5.1.15  
P_5.1.18  
P_5.1.19  
P_5.1.20  
Dropout Voltage  
Vdr = VI - VQ  
Vdr  
140 340 mV 1) IQ = 200 mA  
Dropout Voltage  
Vdr = VI - VQ  
Vdr  
70  
59  
170 mV 1) IQ = 100 mA  
Power Supply Ripple Rejection  
PSRR  
Tj,sd  
Tj,sdh  
dB  
2) fripple = 100 Hz  
ripple = 0.5 Vpp  
V
Overtemperature Shutdown  
Threshold  
151  
200 °C  
2) Tj increasing  
Overtemperature Shutdown  
Threshold Hysteresis  
15  
K
2) Tj decreasing  
1) Measured when the output voltage VQ has dropped 100 mV from the nominal value obtained at VI = 13.5V  
2) Not subject to production test, specified by design  
Data Sheet  
11  
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
Table 5  
Electrical Characteristics Voltage Regulator 3.3 V version  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Output Voltage Precision  
Output Voltage Precision  
VQ  
VQ  
3.23 3.3  
3.37  
3.37  
18  
V
V
0.05 mA < IQ < 200 mA  
3.72 V < VI < 28 V  
P_5.1.21  
P_5.1.22  
P_5.1.27  
3.23 3.3  
0.05 mA < IQ < 100 mA  
3.55 V < VI < 40 V  
Output Voltage Start-up  
slew rate  
dVQ/dt 3.0  
7.5  
V/ms VI > 18 V/ms  
CQ = 1 µF  
0.33 V < VQ < 2.97 V  
350 550 mA 0 V < VQ < 3.1 V  
Output Current Limitation  
IQ,max  
201  
P_5.1.28  
P_5.1.30  
Load Regulation  
steady-state  
VQ,load -15  
-1.5  
5
mV  
IQ = 0.05 mA to 200 mA  
VI = 6 V  
Line Regulation  
steady-state  
VQ,line -15  
0
15  
mV  
VI = 8 V to 32 V  
IQ = 1 mA  
P_5.1.32  
P_5.1.34  
P_5.1.35  
P_5.1.38  
P_5.1.39  
P_5.1.40  
Dropout Voltage  
Vdr = VI - VQ  
Vdr  
160 350 mV 1) IQ = 200 mA  
Dropout Voltage  
Vdr = VI - VQ  
Vdr  
80  
63  
175 mV 1) IQ = 100 mA  
Power Supply Ripple Rejection  
PSRR  
Tj,sd  
Tj,sdh  
dB  
2) fripple = 100 Hz  
ripple = 0.5 Vpp  
V
Overtemperature Shutdown  
Threshold  
151  
200 °C  
2) Tj increasing  
Overtemperature Shutdown  
Threshold Hysteresis  
15  
K
2) Tj decreasing  
1) Measured when the output voltage VQ has dropped 100 mV from the nominal value obtained at VI = 13.5V  
2) Not subject to production test, specified by design  
Data Sheet  
12  
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
5.2  
Typical Performance Characteristics Voltage Regulator  
Typical Performance Characteristics  
Output Voltage VQ versus  
Output Voltage VQ versus  
Junction Temperature Tj (3.3 V version)  
Junction Temperature Tj (5 V version)  
3.5  
IQ = 100mA  
IQ = 100mA  
3.45  
3.4  
5.15  
5.1  
5.05  
5
3.35  
3.3  
3.25  
3.2  
4.95  
4.9  
3.15  
3.1  
4.85  
4.8  
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Dropout Voltage Vdr versus  
Dropout Voltage Vdr versus  
Junction Temperature Tj (3.3 V version)  
Junction Temperature Tj (5 V version)  
300  
300  
IQ = 100 mA  
IQ = 100 mA  
IQ = 200 mA  
IQ = 200 mA  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
VQ = 3.3 V  
VQ = 5 V  
0
0
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Data Sheet  
13  
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
Load Regulation VQ,load versus  
Output Current Change IQ  
Line Regulation VQ,line versus  
Input Voltage VI  
0
−0.5  
−1  
8
6
4
−1.5  
−2  
2
−2.5  
−3  
0
−2  
−3.5  
VI = 6 V  
−4  
IQ = 1 mA  
−4  
−4.5  
−5  
Tj = −40 °C  
Tj = 25 °C  
Tj = 150 °C  
Tj = −40 °C  
−6  
Tj = 25 °C  
Tj = 150 °C  
−8  
0
50  
100  
150  
200  
10  
15  
20  
25  
30  
IQ [mA]  
VI [V]  
Output Voltage VQ versus  
Output Voltage VQ versus  
Input Voltage VI (3.3 V version)  
Input Voltage VI (5 V version)  
4
6
Tj = −40 °C  
Tj = −40 °C  
Tj = 25 °C  
Tj = 25 °C  
3.5  
5
Tj = 150 °C  
Tj = 150 °C  
IQ = 100 mA  
3
IQ = 100 mA  
4
2.5  
2
3
2
1
0
1.5  
1
0.5  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VI [V]  
VI [V]  
Data Sheet  
14  
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
Power Supply Ripple Rejection PSRR versus  
ripple frequency f  
Output Capacitor Series Resistor ESR(CQ) versus  
Output Current IQ  
103  
80  
VQ = 3.3 V  
VQ = 5 V  
70  
Unstable Region  
102  
60  
50  
40  
30  
101  
Stable Region  
100  
20  
10  
0
IQ = 10 mA  
Q = 1 μF  
ripple = 0.5 VPP  
10−1  
C
V
Tj = 25 °C  
CQ = 1 μF  
Tj = 25 °C  
10−2  
10−2  
10−1  
100  
101  
102  
103  
0.05  
1
10  
200  
IQ [mA]  
f [kHz]  
Maximum Output Current IQ versus  
Input Voltage VI  
Dropout Voltage Vdr versus  
Output Current IQ  
800  
300  
VQ = 3.3 V  
Tj = −40 °C  
VQ = 5 V  
700  
600  
500  
400  
300  
200  
100  
0
Tj = 25 °C  
Tj = 150 °C  
VQ = 0 V  
250  
Tj = 25 °C  
200  
150  
100  
50  
0
0
10  
20  
30  
40  
0
50  
100  
150  
200  
VI [V]  
IQ [mA]  
Data Sheet  
15  
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
5.3  
Current Consumption  
Table 6  
Electrical Characteristics Current Consumption  
Tj = -40 °C to +150 °C, VI = 13.5 V (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Conditions of other pins: DT = GND  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Current Consumption  
Iq = II  
Iq,off  
Iq,off  
Iq  
1.3  
5
µA  
µA  
µA  
µA  
µA  
V
V
EN = 0 V; Tj < 105 °C  
EN = 0.4 V; Tj < 125 °C  
P_5.3.1  
P_5.3.3  
P_5.3.4  
P_5.3.7  
P_5.3.9  
Current Consumption  
Iq = II  
8
Current Consumption  
Iq = II - IQ  
40  
62  
62  
52  
77  
80  
IQ = 0.05 mA  
Tj = 25 °C  
Current Consumption  
Iq = II - IQ  
Iq  
IQ = 0.05 mA  
Tj < 125 °C  
1) IQ = 200 mA  
Tj < 125 °C  
Current Consumption  
Iq = II - IQ  
Iq  
1) Not subject to production test, specified by design  
Data Sheet  
16  
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
5.4  
Typical Performance Characteristics Current Consumption  
Typical Performance Characteristics  
Current Consumption Iq versus  
Output Current IQ  
Current Consumption Iq versus  
Input Voltage VI  
100  
200  
Tj = 25 °C  
Tj = −40 °C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
180  
Tj = 25 °C  
Tj = 150 °C  
160  
VEN = 5 V  
IQ = 50 uA  
140  
120  
100  
80  
60  
40  
20  
0
0
50  
100  
IQ [mA]  
150  
200  
5
10  
15  
20  
VI [V]  
25  
30  
35  
40  
Data Sheet  
17  
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
5.5  
Enable  
The TLS820D0 can be switched on and off by the Enable feature: Connect a HIGH level as specified below (e.g.  
the battery voltage) to pin EN to enable the device; connect a LOW level as specified below (e.g. GND) to shut it  
down. The enable has a built in hysteresis to avoid toggling between ON/OFF state, if signals with slow slopes are  
applied to the EN input.  
Table 7  
Electrical Characteristics Enable  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Number  
Min. Typ. Max.  
High Level Input Voltage  
Low Level Input Voltage  
Enable Threshold Hysteresis  
High Level Input Current  
High Level Input Current  
VEN,H  
VEN,L  
VEN,Hy  
IEN,H  
2
V
VQ settled  
VQ 0.1 V  
P_5.5.1  
P_5.5.2  
P_5.5.3  
P_5.5.4  
P_5.5.6  
P_5.5.7  
0.8  
V
100  
mV  
µA  
µA  
MΩ  
3.5  
22  
2.6  
V
V
EN = 3.3 V  
IEN,H  
EN 18 V  
Enable internal pull-down resistor REN  
0.95 1.5  
Data Sheet  
18  
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
5.6  
Typical Performance Characteristics Enable  
Typical Performance Characteristics  
Input Current IIN versus  
Input Voltage VIN (condition: VEN = 0 V)  
Enabled Input Current IEN versus  
Enabled Input Voltage VEN  
30  
50  
Tj = −40 °C  
Tj = −40 °C  
45  
Tj = 25 °C  
Tj = 25 °C  
25  
Tj = 150 °C  
Tj = 150 °C  
40  
35  
30  
25  
20  
15  
10  
5
VEN = 0V  
20  
15  
10  
5
0
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
VIN [V]  
VEN [V]  
Output Voltage VQ versus  
Output Voltage VQ versus  
time (EN switched ON, 5 V version)  
time (EN switched ON, 3.3 V version)  
6
6
5
4
3
2
5
4
3
2
IQ = 100 mA  
Tj = −40 °C  
IQ = 100 mA  
Tj = −40 °C  
Tj = 25 °C  
Tj = 150 °C  
VEN  
Tj = 25 °C  
Tj = 150 °C  
VEN  
1
0
1
0
0
500  
1000  
t [us]  
1500  
2000  
0
500  
1000  
t [us]  
1500  
2000  
Data Sheet  
19  
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
5.7  
Reset  
The TLS820D0’s output voltage is supervised by the Reset feature, including Undervoltage Reset, delayed Reset  
at Power-On and an adjustable Reset Threshold.  
The Undervoltage Reset function sets the pin RO to LOW, in case VQ is falling for any reason below the Reset  
Threshold VRT,low  
.
When the regulator is powered on, the pin RO is held at LOW for the duration of the Power-On Reset Delay Time  
trd.  
Supply  
I
Q
VDD  
RRO,int  
CQ  
Control  
RO  
Reset  
S
R
IRO  
Reference  
OR  
Q
OR  
Micro-  
Controller  
RADJ,1  
Timer  
RADJ  
IRADJ  
DT  
GND  
GND  
RADJ,2  
Figure 6  
Block Diagram Reset Circuit  
Reset Delay Time  
The pin DT is used to set the desired Reset Delay Time trd. Connect this pin either to GND or Q to select the timing  
according to Table 8.  
Table 8  
Reset DelayTime Selection  
DT connected to  
trd  
GND  
Q
16.5 ms  
8.5 ms  
Power-On Reset Delay Time  
The power-on reset delay time is defined by the parameter trd and allows a microcontroller and oscillator to start  
up. This delay time is the time period from exceeding the upper reset switching threshold VRT,high until the reset is  
released by switching the reset output “RO” from “LOW” to “HIGH”.  
Undervoltage Reset Delay Time  
Unlike the power-on reset delay time, the undervoltage reset delay time is defined by the parameter trd and  
considers an output undervoltage event where the output voltage VQ trigger the VRT,low threshold.  
Reset Blanking Time  
The reset blanking time trr,blank avoids that short undervoltage spikes trigger an unwanted reset “low” signal.  
Data Sheet  
20  
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
Reset Reaction Time  
In case the output voltage of the regulator drops below the output undervoltage lower reset threshold VRT,low, the  
reset output “RO” is set to low, after the delay of the internal reset reaction time trr,int. The reset blanking time trr,blank  
is part of the reset reaction time trr,int  
.
Reset Output “RO”  
The reset output “RO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic “RO”  
signal is desired, an external pull-up resistor can be connected to the output “Q”. Since the maximum “RO” sink  
current is limited, the minimum value of the optional external resistor “RRO,ext” is given in Table “Reset Output  
RO” on Page 23.  
Reset Output “RO” Low for VQ 1 V  
In case of an undervoltage reset condition reset output “RO” is held “low” for VQ 1 V, even if the input “I” is not  
supplied and the voltage VI drops below 1 V. This is achieved by supplying the reset circuit from the output  
capacitor.  
Reset Adjust Function  
The undervoltage reset switching threshold can be adjusted according to the application’s needs by connecting  
an external voltage divider (RADJ1, RADJ2) at pin “RADJ”. For selecting the default threshold connect pin “RADJ” to  
GND. The reset adjustment range for the TLS820D0ELV50 is given in Reset Threshold Adjustment Range. The  
reset adjustment range for the TLS820D0ELV33 is given in Reset Threshold Adjustment Range.  
When dimensioning the voltage divider, take into consideration that there will be an additional current constantly  
flowing through the resistors.  
With a voltage divider connected, the reset switching threshold VRT,new is calculated as follows  
(neglecting the Reset Adjust Pin Current IRADJ):  
VRT,lo,new = VRADJ,th × (RADJ,1 + RADJ,2) / RADJ,2  
(1)  
with  
V
RT,lo,new: Desired undervoltage reset switching threshold.  
R
V
ADJ,1, RADJ,2: Resistors of the external voltage divider, see Figure 6.  
RADJ,th: Reset adjust switching threshold given in Reset Adjustment Switching Threshold.  
Data Sheet  
21  
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
VI  
t
t < trr,blank  
VQ  
VRH  
VRT,high  
VRT,low  
1 V  
t
trd  
trr,int  
trd  
trr,int  
trd  
trr,int  
VRO  
trd  
1V  
VRO,low  
t
Thermal  
Shutdown  
Input  
Voltage Dip  
Under-  
voltage  
Spike at Over-  
output load  
Figure 7  
Typical Timing Diagram Reset  
Data Sheet  
22  
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
Table 9  
Electrical Characteristics Reset  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Output Undervoltage Reset 5V Version only  
Output Undervoltage Reset Upper VRT,high  
Switching Threshold  
4.6  
4.5  
60  
4.7  
4.6  
100  
4.8  
4.7  
V
V
VQ increasing  
P_5.7.1  
P_5.7.2  
Output Undervoltage Reset Lower VRT,low  
Switching Threshold - Default  
VQ decreasing  
RADJ = GND  
Output Undervoltage Reset  
Switching Hysteresis  
VRT,hy  
VRH  
mV RADJ connected to GND P_5.7.3  
Output Undervoltage Reset  
200 400  
mV RADJ = GND  
P_5.7.4  
Headroom VQ - VRT  
Output Undervoltage Reset 3V3 Version only  
Output Undervoltage Reset Upper VRT,high  
Switching Threshold  
3.08 3.15 3.22  
V
V
VQ increasing  
P_5.7.5  
P_5.7.6  
Output Undervoltage Reset Lower VRT,low  
Switching Threshold - Default  
3.0  
60  
3.05 3.13  
VQ decreasing  
RADJ = GND  
Output Undervoltage Reset  
Switching Hysteresis  
VRT,hy  
VRH  
100  
mV RADJ connected to GND P_5.7.7  
Output Undervoltage Reset  
100 250  
mV RADJ = GND  
P_5.7.8  
P_5.7.9  
Headroom VQ - VRT  
Reset Threshold Adjustment  
Reset Adjustment Switching  
Threshold  
VRADJ,th  
1.15 1.20 1.25  
V
Reset Threshold Adjustment Range VRT,range  
Reset Threshold Adjustment Range VRT,range  
Reset Output RO  
2.5  
2.5  
4.4  
2.9  
V
V
for VQ,nom = 5 V  
P_5.7.10  
P_5.7.11  
for VQ,nom = 3.3 V  
Reset Output Low Voltage  
VRO,low  
RRO,int  
RRO,ext  
0.2  
20  
0.4  
36  
V
1 V VQ VRT;  
P_5.7.12  
R
RO 5.1 kΩ  
Reset Output  
Internal Pull-Up Resistor  
13  
5.1  
kΩ  
kΩ  
internally connected to Q P_5.7.13  
Reset Output External  
Pull-up Resistor to VQ  
1 V VQ VRT  
RO 0.4 V  
;
P_5.7.14  
V
Reset Delay Timing  
Reset Delay Time  
trd,slow  
trd,fast  
trr,blank  
trr,blank  
trr,int  
13.2 16.5 19.8 ms  
DT connected to GND  
DT connected to Q  
1) for VQ,nom = 3.3 V  
2) for VQ,nom = 5 V  
for VQ,nom = 3.3 V  
for VQ,nom = 5 V  
P_5.7.20  
P_5.7.21  
P_5.7.22  
P_5.7.46  
P_5.7.23  
P_5.7.36  
Reset Delay Time  
6.8  
8.5  
6
10.2 ms  
Reset blanking time  
µs  
µs  
µs  
µs  
Reset blanking time  
7
Internal Reset Reaction Time  
Internal Reset Reaction Time  
Reset Delay Input DT  
7
20  
33  
trr,int  
10  
Delay Input DT  
VDT,H  
2.0  
V
P_5.7.29  
High Signal Valid  
Data Sheet  
23  
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
Table 9  
Electrical Characteristics Reset (cont’d)  
Tj = -40 °C to +150 °C, VI = 13.5 V, all voltages with respect to ground (unless otherwise specified)  
Typical values are given at Tj = 25 °C  
Parameter  
Symbol  
Values  
Unit Note / Test Condition  
Number  
Min. Typ. Max.  
Delay Input DT  
Low Signal Valid  
VDT,L  
0.80  
V
P_5.7.30  
P_5.7.35  
Delay Input DT  
dVDT/dt  
1
V/µs VDT,L < VDT < VDT,H  
Signal Slew Rate  
High Level Input Current  
IDT,H  
RDT  
3.5  
2.6  
µA  
V
DT = 3.3 V  
P_5.7.32  
P_5.7.33  
Delay Input DT  
0.9  
1.5  
MΩ  
internal pull-down resistor  
1) Not subject to production test, specified by design.  
2) Not subject to production test, specified by design.  
Data Sheet  
24  
Rev. 1.0, 2016-02-08  
TLS820D0  
Block Description and Electrical Characteristics  
5.8  
Typical Performance Characteristics Reset  
Typical Performance Characteristics  
Undervoltage Reset Threshold VRT versus  
Junction Temperature Tj (3.3 V version)  
Undervoltage Reset Threshold VRT versus  
Junction Temperature Tj (5 V version)  
3.5  
3.4  
3.3  
3.2  
3.1  
3
5
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
2.9  
2.8  
4.3  
IQ = 1 mA  
IQ = 1 mA  
VQ = 5 V  
RADJ set to GND  
VQ = 3.3 V  
2.7  
2.6  
2.5  
4.2  
4.1  
4
RADJ set to GND  
VRT, high  
VRT, high  
VRT, low  
VRT, low  
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Power On Reset Delay Time trd versus  
Junction Temperature Tj  
Internal Reset Reaction Time trr,int versus  
Junction Temperature Tj  
25  
20  
VQ = 3.3 V  
fast  
slow  
IQ = 1 mA  
18  
VQ = 5 V  
16  
14  
12  
10  
8
20  
15  
10  
5
6
4
2
0
0
50  
100  
150  
0
50  
100  
150  
Tj [°C]  
Tj [°C]  
Data Sheet  
25  
Rev. 1.0, 2016-02-08  
TLS820D0  
Application Information  
6
Application Information  
6.1  
Application Diagram  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Supply  
Regulated Output Voltage  
I
Q
Load  
e. g.  
Micro  
Controller  
XC22xx  
DI1  
Current  
Limitation  
RO  
Reset  
EN  
DI2  
CI2  
CI1  
CQ  
R1  
1µF  
100nF  
<45V  
47µF  
RADJ  
DT  
Enable  
Bandgap  
Reference  
Temperature  
Shutdown  
R2  
GND  
GND  
e.g. Ignition  
Figure 8  
Application Diagram  
Note:This is a very simplified example of an application circuit. The function must be verified in the real application.  
6.2  
Selection of External Components  
6.2.1  
Input Pin  
The typical input circuitry for a linear voltage regulator is shown in the application diagram above.  
A ceramic capacitor at the input, in the range of 100 nF to 470 nF, is recommended to filter out the high frequency  
disturbances imposed by the line e.g. ISO pulses 3a/b. This capacitor must be placed very close to the input pin  
of the linear voltage regulator on the PCB.  
An aluminum electrolytic capacitor in the range of 10 µF to 470 µF is recommended as an input buffer to smooth  
out high energy pulses, such as ISO pulse 2a. This capacitor should be placed close to the input pin of the linear  
voltage regulator on the PCB.  
An overvoltage suppressor diode can be used to further suppress any high voltage beyond the maximum rating  
of the linear voltage regulator and protect the device against any damage due to over-voltage.  
The external components at the input are not mandatory for the operation of the voltage regulator, but they are  
recommended in case of possible external disturbances.  
6.2.2  
Output Pin  
An output capacitor is mandatory for the stability of linear voltage regulators.  
The requirement to the output capacitor is given in “Functional Range” on Page 8. The graph “Output  
Capacitor Series Resistor ESR(CQ) versus Output Current IQ” on Page 15 shows the stable operation range  
of the device.  
Data Sheet  
26  
Rev. 1.0, 2016-02-08  
TLS820D0  
Application Information  
TLS820D0 is designed to be also stable with low ESR capacitors. According to the automotive requirements,  
ceramic capacitors with X5R or X7R dielectrics are recommended.  
The output capacitor should be placed as close as possible to the regulator’s output and GND pins and on the  
same side of the PCB as the regulator itself.  
In case of rapid transients of input voltage or load current, the capacitance should be dimensioned in accordance  
and verified in the real application that the output stability requirements are fulfilled.  
6.3  
Thermal Considerations  
Knowing the input voltage, the output voltage and the load profile of the application, the total power dissipation  
can be calculated:  
PD = (VI - VQ) × IQ + VI × Iq  
(2)  
with  
PD: continuous power dissipation  
VI : input voltage  
VQ: output voltage  
IQ: output current  
Iq: quiescent current  
The maximum acceptable thermal resistance RthJA can then be calculated:  
RthJA,max = ( Tj,max - Ta ) / PD  
(3)  
with  
T
j,max: maximum allowed junction temperature  
Ta: ambient temperature  
Based on the above calculation the proper PCB type and the necessary heat sink area can be determined with  
reference to the specification in “Thermal Resistance” on Page 9.  
Example  
Application conditions:  
VI = 13.5 V  
VQ = 5 V  
IQ = 150 mA  
Ta = 85 °C  
Calculation of RthJA,max  
:
PD = (VI VQ) × IQ + VI × Iq  
= (13.5 V – 5 V) × 150 mA  
= 1.275 W  
(VI × Iq can be neglected because of very low Iq)  
RthJA,max = (Tj,max Ta) / PD  
= (150 °C – 85 °C) / 1.275 W = 50.98 K/W  
Data Sheet  
27  
Rev. 1.0, 2016-02-08  
TLS820D0  
Application Information  
As a result, the PCB design must ensure a thermal resistance RthJA lower than 50.98 K/W. According to “Thermal  
Resistance” on Page 9, at least 600 mm2 heatsink area is needed on the FR4 1s0p PCB, or the FR4 2s2p board  
can be used to ensure a proper cooling for the TLS820D0 in PG-SSOP-14 package.  
6.4  
Reverse Polarity Protection  
TLS820D0 is not self protected against reverse polarity faults and must be protected by external components  
against negative supply voltage. An external reverse polarity diode is needed. The absolute maximum ratings of  
the device as specified in “Absolute Maximum Ratings” on Page 7 must be kept.  
6.5  
Further Application Information  
For further information you may contact http://www.infineon.com/  
Data Sheet  
28  
Rev. 1.0, 2016-02-08  
TLS820D0  
Package Outlines  
7
Package Outlines  
0.35 x 45°  
1)  
0.1 H D 2x  
±0.1  
3.9  
+0.06  
H
0.19  
0.08  
SEATING  
PLANE  
C
C
0.64±0.25  
0.2 C 14x  
0.65  
6 x 0.65 = 3.9  
D
±0.2  
6
2)  
±0.05  
0.25  
M
0.15  
C A-B D 14x  
Bottom View  
±0.2  
3
A
8
1
7
14  
1
7
14  
8
Exposed  
Diepad  
B
0.1 H A-B 2x  
Index  
Marking 4.9  
1)  
±0.1  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Lead width can be 0.61 max. in dambar area  
PG-SSOP-14  
Figure 9  
PG-SSOP-14  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
29  
Rev. 1.0, 2016-02-08  
TLS820D0  
Revision History  
8
Revision History  
Revision  
Date  
Changes  
Data Sheet - Initial version  
1.0  
2016-02-08  
Data Sheet  
30  
Rev. 1.0, 2016-02-08  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™,  
EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, LITIX™, MIPAQ™,  
ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,  
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SPOC™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,  
UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of  
Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay  
Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association  
Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc.  
MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA  
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave  
Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of  
Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.  
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas  
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.  
Last Trademarks Update 2011-11-11  
www.infineon.com  
Edition 2016-02-08  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Legal Disclaimer  
The information given in this document shall in  
no event be regarded as  
Warnings  
Due to technical requirements, components  
may contain dangerous substances. For  
information on the types in question, please  
contact the nearest Infineon Technologies  
Office. Infineon Technologies components may  
be used in life-support devices or systems only  
with the express written approval of Infineon  
Technologies, if a failure of such components  
can reasonably be expected to cause the failure  
of that life-support device or system or to affect  
the safety or effectiveness of that device or  
system. Life support devices or systems are  
intended to be implanted in the human body or  
to support and/or maintain and sustain and/or  
protect human life. If they fail, it is reasonable to  
assume that the health of the user or other  
persons may be endangered.  
a guarantee of  
conditions or characteristics. With respect to any  
examples or hints given herein, any typical  
values stated herein and/or any information  
regarding the application of the device, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation, warranties of non-  
infringement of intellectual property rights of  
any third party.  
© 2016 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Information  
For further information on technology, delivery  
terms and conditions and prices, please contact  
the nearest Infineon Technologies Office  
(www.infineon.com).  

相关型号:

TLS820D0ELV33

Low Dropout Linear Voltage Regulator
INFINEON

TLS820D0ELV50

Low Dropout Linear Voltage Regulator
INFINEON

TLS820F0

Low Dropout Linear Voltage Regulator
INFINEON

TLS820F0EL V33

TLS820F0 V33 是高性能极低压降线性稳压器,采用 PG-SSOP-14 封装,适用于 3.3 V 电源。
INFINEON

TLS820F0EL V50

TLS820F0 V50 是高性能极低压降线性稳压器,采用 PG-SSOP-14 封装,适用于 5 V 电源。
INFINEON

TLS820F0ELV33

Fixed Positive LDO Regulator, 3.3V, 0.35V Dropout, PDSO14, GREEN, PLASTIC, SSOP-14
INFINEON

TLS820F0ELV33_15

Material Content Data Sheet
INFINEON

TLS820F0ELV50

Material Content Data Sheet
INFINEON

TLS820F0ELV50_15

Material Content Data Sheet
INFINEON

TLS820F0_15

Low Dropout Linear Voltage Regulator
INFINEON

TLS820F3ELV50

The OPTIREG™ linear TLS820F3ELV50 is a high performance, low drop out, fixed output voltage regulator in a PG-SSOP-14 package. With an input voltage range of 3 V to 42 V and very low quiescent current of only 26 µA, this regulator is perfectly suitable for automotive systems or other supply systems connected to the battery permanently.
INFINEON

TLS826K050C1C

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 50V, 82uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY