TLS710B0EJV50XUMA1 [INFINEON]

Fixed Positive LDO Regulator, 5V, 0.5V Dropout, PDSO8, DSO-8;
TLS710B0EJV50XUMA1
型号: TLS710B0EJV50XUMA1
厂家: Infineon    Infineon
描述:

Fixed Positive LDO Regulator, 5V, 0.5V Dropout, PDSO8, DSO-8

光电二极管 输出元件 调节器
文件: 总22页 (文件大小:780K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Dropout Linear Voltage Regulator  
TLS710B0  
TLS710B0V50  
Linear Voltage Regulator  
Data Sheet  
Rev. 1.0, 2015-04-02  
Automotive Power  
TLS710B0  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
3.1  
3.2  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Assignment PG-DSO-8 EP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Definitions and Functions PG-DSO-8 EP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.1  
4.2  
4.3  
5
Block Description and Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Voltage Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Typical Performance Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Typical Performance Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Typical Performance Characteristics Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
6
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Selection of External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Input Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Output Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.1  
6.2  
6.2.1  
6.2.2  
6.3  
6.4  
6.5  
7
8
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Data Sheet  
2
Rev. 1.0 2015-04-02  
TLS710B0V50  
TLS710B0  
1
Overview  
Features  
Wide Input Voltage Range from 4.0 V to 40 V  
Output Voltage 5 V  
Output Voltage Precision ±2 %  
Output Current up to 100 mA  
Low Current Consumption of 36 µA  
Very Low Dropout Voltage of typ. 200 mV at 100 mA Output Current  
Stable with Small Output Capacitor of 1 µF  
Enable  
PG-DSO-8 EP  
Overtemperature Shutdown  
Output Current Limitation  
Wide Temperature Range from -40 °C up to 150 °C  
Green Product (RoHS compliant)  
AEC Qualified  
Description  
The TLS710B0 is a low dropout linear voltage regulator for load current up to 100 mA. An input voltage of up  
to 40 V is regulated to VQ,nom = 5 V with ±2 % precision.  
The TLS710B0, with a typical quiescent current of 36 µA, is the ideal solution for systems requiring very low  
operating current, such as those permanently connected to the battery.  
It features a very low dropout voltage of 200 mV, when the output current is less than 100 mA. In addition, the  
dropout region begins at input voltages of 4.0 V (extended operating range). This makes the TLS710B0 suitable  
to supply automotive systems with start-stop requirements.  
The device can be switched on and off by the Enable feature as described on Chapter “Enable” on Page 15.  
In addition, the TLS710B0’s new fast regulation concept requires only a single 1 µF output capacitor to  
maintain stable regulation.  
The device is designed for the harsh environment of automotive applications. Therefore standard features like  
output current limitation and overtemperature shutdown are implemented and protect the device against  
failures like output short circuit to GND, over-current and over-temperature. The TLS710B0 can be also used  
in all other applications requiring a stabilized 5 V supply voltage.  
Type  
Package  
Marking  
TLS710B0EJV50  
Data Sheet  
PG-DSO-8 EP  
710B0V50  
3
Rev. 1.0, 2015-04-02  
TLS710B0  
Block Diagram  
2
Block Diagram  
I
Q
Current  
Limitation  
EN  
Enable  
Bandgap  
Reference  
Temperature  
Shutdown  
GND  
Figure 1  
Block Diagram TLS710B0EJV50  
Data Sheet  
4
Rev. 1.0 2015-04-02  
TLS710B0  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment PG-DSO-8 EP  
1
2
8
7
I
Q
EN  
n.c.  
3
4
6
5
GND  
n.c.  
n.c.  
n.c.  
Figure 2  
Pin Configuration  
3.2  
Pin Definitions and Functions PG-DSO-8 EP  
Pin  
Symbol  
Function  
Input  
1
I
For compensating line influences, a capacitor to GND close to the IC terminals is  
recommended.  
2
EN  
Enable (integrated pull-down resistor)  
Enable the IC with high level input signal.  
Disable the IC with low level input signal.  
3
GND  
Ground  
4, 5, 6, 7 n.c.  
Not connected  
Leave open or connect to GND.  
8
Q
Output  
Block to GND with a capacitor close to the IC terminals, respecting the values  
given for its capacitance CQ and ESR in the table “Functional Range” on Page 7.  
Pad  
Exposed Pad  
Connect to heatsink area.  
Connect with GND on PCB.  
Data Sheet  
5
Rev. 1.0 2015-04-02  
TLS710B0  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 1  
Absolute Maximum Ratings1)  
Tj = -40 °C to +150 °C; all voltages with respect to ground (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
-0.3  
-0.3  
Max.  
45  
Input I, Enable EN  
Voltage  
VI, VEN  
V
V
P_4.1.1  
P_4.1.2  
Output Q  
Voltage  
VQ  
7
Temperature  
Junction Temperature  
Storage Temperature  
ESD Absorption  
ESD Susceptibility to GND  
ESD Susceptibility to GND  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.3  
P_4.1.4  
Tstg  
VESD  
VESD  
-2  
2
kV  
V
HBM2)  
CDM3)  
P_4.1.5  
P_4.1.6  
-750  
750  
1) Not subject to production test, specified by design.  
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 k, 100 pF)  
3) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Data Sheet  
6
Rev. 1.0 2015-04-02  
 
 
 
 
 
 
 
TLS710B0  
General Product Characteristics  
4.2  
Functional Range  
Table 2  
Functional Range  
Parameter  
Symbol  
Values  
Typ. Max.  
Unit Note or  
Test Condition  
Number  
Min.  
Input Voltage Range for Normal VI  
VQ,nom + Vdr  
40  
V
P_4.2.1  
Operation  
1)  
Extended Input Voltage Range  
Enable Voltage Range  
VI,ext  
4.0  
0
40  
40  
V
P_4.2.2  
P_4.2.3  
P_4.2.4  
VEN  
CQ  
V
2)  
3)  
Output Capacitor’s  
Requirements for Stability  
1
µF  
Output Capacitor’s ESR  
ESR(CQ)  
5
P_4.2.5  
P_4.2.6  
Junction Temperature  
Ti  
-40  
150  
°C  
1) When VI is between VI,ext.min and VQ,nom + Vdr, VQ = VI - Vdr. When VI is below VI,ext,min, VQ can drop down to 0 V.  
2) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%  
3) Relevant ESR value at f = 10 kHz  
Note: Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
Data Sheet  
7
Rev. 1.0 2015-04-02  
 
 
 
 
 
 
 
 
TLS710B0  
General Product Characteristics  
4.3  
Thermal Resistance  
Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go  
to www.jedec.org.  
Table 3  
Thermal Resistance  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Package Version PG-DSO-8 EP  
Junction to Case1)  
Junction to Ambient  
Junction to Ambient  
RthJC  
13  
K/W  
K/W  
K/W  
P_4.3.1  
P_4.3.2  
RthJA  
RthJA  
46  
2s2p board2)  
153  
1s0p board, footprint P_4.3.3  
only3)  
Junction to Ambient  
Junction to Ambient  
RthJA  
RthJA  
71  
59  
K/W  
K/W  
1s0p board, 300 mm2  
P_4.3.4  
heatsink area on PCB3)  
1s0p board, 600 mm2  
heatsink area on PCB3)  
P_4.3.5  
1) Not subject to production test, specified by design  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product  
(Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm  
Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
3) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product  
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu).  
Data Sheet  
8
Rev. 1.0 2015-04-02  
 
 
 
 
 
 
 
TLS710B0  
Block Description and Electrical Characteristics  
5
Block Description and Electrical Characteristics  
5.1  
Voltage Regulation  
The output voltage VQ is divided by a resistor network. This fractional voltage is compared to an internal  
voltage reference and drives the pass transistor accordingly.  
The control loop stability depends on the output capacitor CQ, the load current, the chip temperature and the  
internal circuit design. To ensure stable operation, the output capacitor’s capacitance and its equivalent  
series resistor ESR requirements given in Table 2 “Functional Range” on Page 7 must be maintained. For  
details see the typical performance graph “Output Capacitor Series Resistor ESR(CQ) versus Output  
Current IQ” on Page 12. Since the output capacitor is used to buffer load steps, it should be sized according  
to the application’s needs.  
An input capacitor CI is not required for stability, but is recommended to compensate line fluctuations. An  
additional reverse polarity protection diode and a combination of several capacitors for filtering should be  
used, in case the input is connected directly to the battery line. Connect the capacitors close to the regulator  
terminals.  
Whenever the load current exceeds the specified limit, e.g. in case of a short circuit, the output current is  
limited and the output voltage decreases.  
The overtemperature shutdown circuit prevents the IC from immediate destruction under fault conditions  
(e.g. output continuously short-circuited) by switching off the power stage. After the chip has cooled, the  
regulator restarts. This oscillatory thermal behaviour causes the junction temperature to exceed the  
maximum rating of 150°C and can significantly reduce the IC’s lifetime.  
Regulated  
Output Voltage  
Supply  
IQ  
II  
I
Q
Current  
Limitation  
EN  
Enable  
C
LOAD  
Bandgap  
Reference  
CI  
VI  
VQ  
ESR  
Temperature  
Shutdown  
CQ  
GND  
Figure 3  
Block Diagram Voltage Regulation  
Data Sheet  
9
Rev. 1.0 2015-04-02  
TLS710B0  
Block Description and Electrical Characteristics  
Table 4  
Electrical Characteristics Voltage Regulator  
VI = 13.5 V; Tj = -40 °C to +150 °C; all voltages with respect to ground (unless otherwise specified).  
Typical values are given at Tj = 25 °C, VI = 13.5 V.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Output Voltage Precision  
Output Voltage Precision  
Output Current Limitation  
VQ  
4.9  
5.0  
5.1  
V
0.05 mA < IQ < 100 mA P_5.1.1  
6 V < VI < 28 V  
VQ  
4.9  
5.0  
5.1  
V
0.05 mA < IQ < 50 mA  
6 V < VI < 40 V  
P_5.1.2  
IQ,max  
101 250 350 mA  
0 V < VQ < 4.8 V  
4 V < VI < 28 V  
P_5.1.7  
Load Regulation  
steady-state  
|VQ,load  
|
1
1
25  
25  
mV  
mV  
IQ = 0.05 mA to 100 mA P_5.1.9  
VI = 6 V  
Line Regulation  
steady-state  
Dropout Voltage1)  
Vdr = VI - VQ  
Power Supply Ripple Rejection2) PSRR  
|VQ,line  
|
VI = 8 V to 32 V  
IQ = 5 mA  
P_5.1.10  
P_5.1.11  
P_5.1.12  
P_5.1.13  
P_5.1.14  
Vdr  
200 500 mV  
IQ = 100 mA  
60  
dB  
fripple = 100 Hz  
V
ripple = 0.5 Vpp  
Overtemperature Shutdown  
Threshold  
Tj,sd  
151  
200 °C  
Tj increasing2)  
Overtemperature Shutdown  
Threshold Hysteresis  
Tj,sdh  
15  
K
Tj decreasing2)  
1) Measured when the output voltage VQ has dropped 100 mV from the nominal value obtained at VI = 13.5V  
2) Not subject to production test, specified by design  
Data Sheet  
10  
Rev. 1.0 2015-04-02  
 
 
 
 
 
 
 
 
 
TLS710B0  
Block Description and Electrical Characteristics  
5.2  
Typical Performance Characteristics Voltage Regulator  
Typical Performance Characteristics  
Output Voltage VQ versus  
Junction Temperature Tj  
Output Current IQ versus  
Input Voltage VI  
400  
350  
300  
250  
200  
150  
100  
50  
Tj = −40 °C  
Tj = 25 °C  
Tj = 150 °C  
5.15  
5.1  
5.05  
5
4.95  
4.9  
4.85  
V = 13.5 V  
I
I
= 50 mA  
Q
4.8  
0
0
10  
20  
30  
40  
0
50  
100  
150  
VI [V]  
T [°C]  
j
Dropout Voltage Vdr versus  
Junction Temperature Tj  
Dropout Voltage Vdr versus  
Output Current IQ  
600  
600  
IQ = 10 mA  
Tj = −40 °C  
IQ = 50 mA  
Tj = 25 °C  
IQ = 100 mA  
500  
400  
300  
200  
100  
0
500  
Tj = 150 °C  
400  
300  
200  
100  
0
0
50  
100  
150  
0
20  
40  
60  
80  
100  
Tj [°C]  
IQ [mA]  
Data Sheet  
11  
Rev. 1.0 2015-04-02  
TLS710B0  
Block Description and Electrical Characteristics  
Output Voltage VQ versus  
Input Voltage VI  
Power Supply Ripple Rejection PSRR versus  
Ripple Frequency fr  
6
5
4
3
2
1
100  
90  
80  
70  
60  
50  
40  
30  
I
C
= 10 mA  
Q
20  
10  
0
= 1 μF  
Q
V = 13.5 V  
V
T = 25 °C  
I
I
= 50 mA  
= 0.5 Vpp  
Q
ripple  
T = 25 °C  
j
j
0
10−2  
10−1  
100  
101  
102  
103  
0
1
2
3
4
5
6
V [V]  
f [kHz]  
I
Output Capacitor Series Resistor ESR(CQ) versus  
Output Current IQ  
102  
Unstable Region  
101  
100  
Stable Region  
10−1  
CQ = 1 μF  
VI = 5.5 ... 28 V  
10−2  
0
20  
40  
60  
80  
100  
IQ [mA]  
Data Sheet  
12  
Rev. 1.0 2015-04-02  
 
TLS710B0  
Block Description and Electrical Characteristics  
5.3  
Current Consumption  
Table 5  
Electrical Characteristics Current Consumption  
VI = 13.5 V; Tj = -40 °C to +150 °C (unless otherwise specified).  
Typical values are given at Tj = 25 °C, VI = 13.5 V.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Current Consumption  
Iq = II  
Iq,off  
Iq  
1.5  
5
µA  
VEN 0.4 V  
Tj < 105 °C  
P_5.3.1  
Current Consumption  
36  
80  
µA  
0.05 mA < IQ < 100 mA P_5.3.2  
Iq = II - IQ  
Data Sheet  
13  
Rev. 1.0 2015-04-02  
 
 
TLS710B0  
Block Description and Electrical Characteristics  
5.4  
Typical Performance Characteristics Current Consumption  
Typical Performance Characteristics  
Current Consumption Iq versus  
Output Current IQ  
Current Consumption Iq versus  
Input Voltage VI  
80  
80  
T = −40 °C  
T = −40 °C  
j
j
T = 25 °C  
T = 25 °C  
70  
60  
50  
40  
30  
20  
10  
0
j
70  
60  
50  
40  
30  
20  
10  
0
j
T = 150 °C  
T = 150 °C  
j
j
V = 13.5 V  
I
I
= 50 μA  
Q
0
20  
40  
60  
80  
100  
10  
15  
20  
25  
I
[mA]  
V [V]  
I
Q
Current Consumption Iq versus  
Junction Temperature Tj  
Current Consumption in OFF mode Iq,off versus  
Junction Temperature Tj  
4
80  
70  
60  
50  
40  
30  
20  
10  
0
VI = 13.5 V  
VEN 0.4 V  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
VI = 13.5 V  
IQ = 50 μA  
0
50  
Tj [°C]  
100  
0
50  
100  
150  
Tj [°C]  
Data Sheet  
14  
Rev. 1.0 2015-04-02  
TLS710B0  
Block Description and Electrical Characteristics  
5.5  
Enable  
The TLS710B0 can be switched on and off by the Enable feature. Connect a HIGH level as specified below (e.g.  
the battery voltage) to pin EN to enable the device; connect a LOW level as specified below (e.g. GND) to switch  
it off. The Enable function has a build-in hysteresis to avoid toggling between ON/OFF state, if signals with  
slow slopes are appiled to the input.  
Table 6  
Electrical Characteristics Enable  
VI = 13.5 V; Tj = -40 °C to +150 °C; all voltages with respect to ground (unless otherwise specified).  
Typical values are given at Tj = 25 °C, VI = 13.5 V.  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Enable Voltage High Level  
Enable Voltage Low Level  
Enable Threshold Hysteresis  
VEN,H  
VEN,L  
VEN,Hy  
IEN,H  
2
V
VQ settled  
P_5.5.1  
P_5.5.2  
P_5.5.3  
P_5.5.4  
0.8  
V
VQ 0.1 V  
75  
mV  
µA  
Enable Input Current  
Low Level  
5.5  
VEN = 5 V  
Enable Input Current  
High Level  
IEN,H  
REN  
22  
µA  
VEN < 18 V  
P_5.5.5  
P_5.5.6  
Enable internal pull-down  
resistor  
0.9  
1.5  
2.6  
MΩ  
Data Sheet  
15  
Rev. 1.0 2015-04-02  
 
 
 
 
 
 
TLS710B0  
Block Description and Electrical Characteristics  
5.6  
Typical Performance Characteristics Enable  
Typical Performance Characteristics  
Enabled Input Current IEN versus  
Enabled Input Voltage VEN  
40  
T = −40 °C  
j
T = 25 °C  
35  
30  
25  
20  
15  
10  
5
j
T = 150 °C  
j
0
0
10  
20  
[V]  
30  
40  
V
EN  
Data Sheet  
16  
Rev. 1.0 2015-04-02  
TLS710B0  
Application Information  
6
Application Information  
6.1  
Application Diagram  
Supply  
Regulated Output Voltage  
I
Q
Load  
e. g.  
Micro  
DI1  
Current  
Limitation  
Controller  
XC22xx  
CQ  
1µF  
(ESR <5)  
DI2  
<45V  
CI2  
CI1  
EN  
100nF  
10µF  
Enable  
Bandgap  
Reference  
GND  
Temperature  
Shutdown  
GND  
Figure 4  
Application Diagram  
6.2  
Selection of External Components  
6.2.1  
Input Pin  
The typical input circuitry for a linear voltage regulator is shown in the application diagram above.  
A ceramic capacitor at the input, in the range of 100 nF to 470 nF, is recommended to filter out the high  
frequency disturbances imposed by the line e.g. ISO pulses 3a/b. This capacitor must be placed very close to  
the input pin of the linear voltage regulator on the PCB.  
An aluminum electrolytic capacitor in the range of 10 µF to 470 µF is recommended as an input buffer to  
smooth out high energy pulses, such as ISO pulse 2a. This capacitor should be placed close to the input pin of  
the linear voltage regulator on the PCB.  
An overvoltage suppressor diode can be used to further suppress any high voltage beyond the maximum  
rating of the linear voltage regulator and protect the device against any damage due to over-voltage above  
45 V.  
The external components at the input are not mandatory for the operation of the voltage regulator, but they  
are recommended in order to protect the voltage regulator against external disturbances and damages.  
6.2.2  
Output Pin  
An output capacitor is mandatory for the stability of linear voltage regulators.  
The requirement to the output capacitor is given in “Functional Range” on Page 7. The graph “Output  
Capacitor Series Resistor ESR(CQ) versus Output Current IQ” on Page 12 shows the stable operation range  
of the device.  
TLS710B0 is designed to be stable with extremely low ESR capacitors. According to the automotive  
requirements, ceramic capacitors with X5R or X7R dielectrics are recommended.  
Data Sheet  
17  
Rev. 1.0 2015-04-02  
TLS710B0  
Application Information  
The output capacitor should be placed as close as possible to the regulator’s output and GND pins and on the  
same side of the PCB as the regulator itself.  
In case of rapid transients of input voltage or load current, the capacitance should be dimensioned in  
accordance and verified in the real application that the output stability requirements are fulfilled.  
6.3  
Thermal Considerations  
Knowing the input voltage, the output voltage and the load profile of the application, the total power  
dissipation can be calculated:  
PD = (VI - VQ) × IQ + VI × Iq  
(6.1)  
with  
PD: continuous power dissipation  
VI : input voltage  
VQ: output voltage  
IQ: output current  
Iq: quiescent current  
The maximum acceptable thermal resistance RthJA can then be calculated:  
RthJA,max = ( Tj,max - Ta ) / PD  
(6.2)  
with  
T
j,max: maximum allowed junction temperature  
Ta: ambient temperature  
Based on the above calculation the proper PCB type and the necessary heat sink area can be determined with  
reference to the specification in “Thermal Resistance” on Page 8.  
Example  
Application conditions:  
VI = 13.5 V  
VQ = 5 V  
IQ = 100 mA  
Ta = 85 °C  
Calculation of RthJA,max  
:
PD= (VI VQ) × IQ + VI × Iq  
= (13.5 V – 5 V) × 100 mA  
= 0.85 W  
(VI × Iq can be neglected because of very low Iq)  
RthJA,max= (Tj,max Ta) / PD  
= (150 °C – 85 °C) / 0.85 W = 76.47 K/W  
Data Sheet  
18  
Rev. 1.0 2015-04-02  
TLS710B0  
Application Information  
As a result, the PCB design must ensure a thermal resistance RthJA lower than 76.47 K/W. According to  
“Thermal Resistance” on Page 8, at least 300 mm2 heatsink area is needed on the FR4 1s0p PCB, or the FR4  
2s2p board can be used.  
6.4  
Reverse Polarity Protection  
TLS710B0 is not self protected against reverse polarity faults and must be protected by external components  
against negative supply voltage. An external reverse polarity diode is needed. The absolute maximum ratings  
of the device as specified in “Absolute Maximum Ratings” on Page 6 must be kept.  
6.5  
Further Application Information  
For further information you may contact http://www.infineon.com/  
Data Sheet  
19  
Rev. 1.0 2015-04-02  
TLS710B0  
Package Outlines  
7
Package Outlines  
0.35 x 45°  
1)  
±0.1  
3.9  
0.1 C D 2x  
+0.06  
0.19  
0.08  
Seating Plane  
C
C
0.64±0.25  
0.2  
1.27  
0.2  
2)  
M
±0.09  
0.41  
±0.2  
D 8x  
6
M
C A-B D 8x  
D
Bottom View  
±0.2  
3
A
1
4
8
5
1
4
8
5
B
0.1 C A-B 2x  
1)  
±0.1  
4.9  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width  
3) JEDEC reference MS-012 variation BA  
Figure 5  
PG-DSO-8 EP  
Data Sheet  
20  
Rev. 1.0 2015-04-02  
TLS710B0  
Revision History  
8
Revision History  
Revision  
Date  
Changes  
1.0  
2015-04-02  
Data Sheet - Initial Version  
Data Sheet  
21  
Rev. 1.0 2015-04-02  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™,  
EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, LITIX™, MIPAQ™,  
ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,  
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SPOC™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,  
UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of  
Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay  
Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association  
Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc.  
MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA  
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave  
Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of  
Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.  
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas  
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.  
Last Trademarks Update 2011-11-11  
www.infineon.com  
Edition 2015-04-02  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Legal Disclaimer  
The information given in this document shall in  
no event be regarded as  
Warnings  
Due to technical requirements, components  
may contain dangerous substances. For  
information on the types in question, please  
contact the nearest Infineon Technologies  
Office. Infineon Technologies components may  
be used in life-support devices or systems only  
with the express written approval of Infineon  
Technologies, if a failure of such components  
can reasonably be expected to cause the failure  
of that life-support device or system or to affect  
the safety or effectiveness of that device or  
system. Life support devices or systems are  
intended to be implanted in the human body or  
to support and/or maintain and sustain and/or  
protect human life. If they fail, it is reasonable to  
assume that the health of the user or other  
persons may be endangered.  
a guarantee of  
conditions or characteristics. With respect to any  
examples or hints given herein, any typical  
values stated herein and/or any information  
regarding the application of the device, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation, warranties of non-  
infringement of intellectual property rights of  
any third party.  
© 2014 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Information  
For further information on technology, delivery  
terms and conditions and prices, please contact  
the nearest Infineon Technologies Office  
(www.infineon.com).  
Document reference  
Doc_Number  

相关型号:

TLS710B0_15

Low Dropout Linear Voltage Regulator
INFINEON

TLS715B0

Low Dropout Linear Voltage Regulator
INFINEON

TLS715B0EJV50XUMA1

Fixed Positive LDO Regulator, 5V, 0.5V Dropout, PDSO8, DSO-8
INFINEON

TLS715B0_15

Low Dropout Linear Voltage Regulator
INFINEON

TLS805B1

Ultra Low Quiescent Current Linear Voltage Regulator
INFINEON

TLS805B1LD V50

TLS805B1 V50 是一个线性稳压器,具有较宽的输入电压范围,低电压差和超低静态电流的特点。稳压器的输入电压范围为 2.75 V 至 42 V,静态电流极低,仅  5.5 μA,,非常适合汽车或任何永久连接电池的其他电源系统。TLS805B1LD V50 是固定的 5V 输出版本,精度为 2%,且输出电流能力达 50mA。TLS805B1LD V50 中实施的新调节概念结合了快速调节和高度的稳定性,输出端只需要一个 1μF 的小型陶瓷电容即可。跟踪区域已经在 2.75V 的输入电压开始(扩展工作范围)。因此,TLS805B1LD 50V 也适用于需要在启动条件下运行的汽车系统。内部保护功能,例如,输出电流限制和超温关断,可保护设备免受因输出对地短路、过电流和过热等故障造成的直接损坏。通过“启用”功能,可以打开和关闭器件。在设备关闭时,电流消耗通常小于 1 μA。
INFINEON

TLS805B1LDV

Ultra Low Quiescent Current Linear Voltage Regulator
INFINEON

TLS805B1LDV50XUMA1

Fixed Positive LDO Regulator, 5V, 0.3V Dropout, PDSO10, TSON-10
INFINEON

TLS805B1SJV

Ultra Low Quiescent Current Linear Voltage Regulator
INFINEON

TLS805B1SJVXUMA1

Adjustable Positive LDO Regulator, 1.2V Min, 41.7V Max, 0.3V Dropout, PDSO8, GREEN, PLASTIC, SOP-8
INFINEON

TLS805B1SJV_15

Ultra Low Quiescent Current Linear Voltage Regulator
INFINEON

TLS806J050C1C

CAPACITOR, TANTALUM, NON SOLID, POLARIZED, 50V, 80uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY