TLE9560-3QX [INFINEON]

The TLE9560-3QX is a multifunctional system IC wit;
TLE9560-3QX
型号: TLE9560-3QX
厂家: Infineon    Infineon
描述:

The TLE9560-3QX is a multifunctional system IC wit

文件: 总280页 (文件大小:8151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLE9560-3QX  
DC Motor System IC  
1
Overview  
Features  
Low-drop voltage regulator 5 V, 250 mA for main supply  
Two half-bridge gate drivers for external N-channel MOSFETs  
Adaptive MOSFET gate control:  
Regulation of the MOSFET switching time  
Reduced switching losses in PWM mode  
High efficient constant gate charge  
Control of reverse battery protection MOSFET  
High-speed CAN transceiver supporting CAN FD communication up to 5 Mbit/s according to ISO11898-  
2:2016 including selective wake-up functionality via CAN partial networking and CAN FD tolerant mode  
LIN Transceivers LIN2.2/SAE J2602 with programmable TXD time-out feature and LIN flash mode  
Fail Outputs for fail-safe signalization  
Configurable wake-up sources  
Four high-side outputs 7 typ.  
One PWM input  
High-side and low-side PWM capable  
Active free-wheeling  
Up to 25 kHz PWM frequency  
32 bit serial peripheral interface (SPI) with cyclic redundancy check (CRC)  
Very low quiescent current consumption in Stop Mode and Sleep Mode  
Periodic cyclic sense and cyclic wake in Normal Mode, Stop Mode and Sleep Mode  
Reset and interrupt output  
Drain-source monitoring and open-load detection  
Configurable time-out and window watchdog  
Overtemperature and short circuit protection features  
Leadless power package with support of optical lead tip inspection  
Green Product (RoHS compliant)  
Datasheet  
www.infineon.com  
Rev. 1.0  
2021-03-19  
1
TLE9560-3QX  
DC Motor System IC  
Overview  
Potential applications  
Door module  
Power lift gate  
Power sliding doors  
Seat control module  
Seatbelt pretension  
Steering column lock  
Sunroof module  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Description  
The TLE9560-3QX is a multifunctional system IC with integrated power supply, communication interfaces,  
multiple half-bridges and support features in an exposed pad PG-VQFN-48 power package. The device is  
designed for various motor control automotive applications.  
To support these applications, the DC Motor System IC provides the main functions, such as a 5 V low-dropout  
voltage regulator one HS-CAN transceiver supporting CAN FD, CAN Partial Networking (incl. FD tolerant  
mode), one LIN transceiver, two half-bridges for DC motor control and one 32 bit serial peripheral interface  
(SPI).  
The device includes diagnostic and supervision features, such as drain-source monitoring and open-load  
detection, short circuit protection, configurable time-out and window watchdog, fail-safe output, as well as  
overtemperature protection.  
Type  
Package  
Marking  
TLE9560-3QX  
PG-VQFN-48  
TLE9560-3QX  
Datasheet  
2
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Hints for not functional pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1  
3.2  
3.3  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.1  
4.2  
4.3  
4.4  
5
5.1  
5.2  
5.3  
System Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Short State Machine Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Device Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Block Description of State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
State Machine Modes Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Init Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Restart Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Fail-Safe Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Software Development Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Transition Between States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Transition into Init Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Init Mode -> Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Normal Mode -> Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Normal Mode -> Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Stop Mode -> Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Sleep Mode -> Restart Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Restart Mode -> Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Fail-Safe Mode -> Restart Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Reaction on Detected Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Stay in Current State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Transition into Restart Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Transition into Fail-Safe Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Wake Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Cyclic Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Configuration and Operation of Cyclic Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Cyclic Sense in Low-power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Cyclic Wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Internal Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
VS Supply Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Partial Networking on CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
CAN Partial Networking - Selective Wake Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
5.4  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.4.6  
5.4.7  
5.5  
5.5.1  
5.5.2  
5.5.3  
5.5.4  
5.5.5  
5.5.6  
5.5.7  
5.5.8  
5.6  
5.6.1  
5.6.2  
5.6.3  
5.7  
5.7.1  
5.7.1.1  
5.7.1.2  
5.7.2  
5.7.3  
5.8  
5.9  
5.9.1  
Datasheet  
3
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
5.9.2  
Partial Networking Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
5.9.2.1  
5.9.2.2  
5.9.2.3  
5.9.2.4  
5.9.3  
5.9.3.1  
5.9.3.2  
5.9.3.3  
5.9.3.4  
5.9.3.5  
5.9.3.6  
5.9.3.7  
5.9.3.8  
5.9.3.9  
5.9.3.10  
5.9.3.11  
5.9.4  
5.9.4.1  
5.9.4.2  
5.9.4.3  
5.9.4.4  
5.9.4.5  
5.9.5  
5.9.6  
5.9.7  
5.9.8  
Activation of SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Wake-up Pattern (WUP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Wake-up Frame (WUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
CAN Protocol Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Diagnoses Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
PWRON/RESET-FLAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
BUSERR-Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
TXD Dominant Time-out flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
WUP Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
WUF Flag (WUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
SYSERR Flag (SYSERR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Configuration Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
CAN Bus Timeout-Flag (CANTO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
CAN Bus Silence-Flag (CANSIL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
SYNC-FLAG (SYNC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
SWK_SET FLAG (SWK_SET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Modes for Selective Wake (SWK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Normal Mode with SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Stop Mode with SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Sleep Mode with SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Restart Mode with SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Fail-Safe Mode with SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Wake-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Configuration for SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
CAN Flexible Data Rate (CAN FD) Tolerant Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Clock and Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Configuring the Clock Data Recovery for SWK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Setup of Clock and Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
5.9.8.1  
5.9.8.2  
5.9.9  
6
Voltage Regulator 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
6.1  
6.2  
6.3  
7
7.1  
7.2  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.3  
High-Side Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Under Voltage Switch Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Over Voltage Switch Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Over Current Detection and Switch Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Open Load Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
PWM, Timer and SYNC Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
8
8.1  
8.2  
High Speed CAN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Datasheet  
4
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.2.5  
8.2.6  
8.2.7  
8.2.8  
8.3  
CAN OFF Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
CAN Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
CAN Receive Only Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
CAN Wake Capable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
CAN Bus termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
TXD Time-out Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Bus Dominant Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Undervoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
9
9.1  
9.1.1  
9.2  
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
LIN Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
LIN OFF Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
LIN Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
LIN Receive Only Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
LIN Wake Capable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
TXD Time-out Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Bus Dominant Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Under-Voltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Slope Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Flash Programming via LIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
9.2.5  
9.2.6  
9.2.7  
9.2.8  
9.2.9  
9.3  
10  
10.1  
10.2  
10.2.1  
10.2.2  
10.2.3  
10.2.4  
10.2.5  
10.3  
High-Voltage Wake Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
High-Voltage Wake Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Wake Input Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Wake configuration for Cyclic Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Wake configuration for Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Fail Safe Output Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
11  
11.1  
11.2  
Interrupt Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Block and Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
12  
12.1  
12.2  
Gate Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
MOSFET control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Static activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Static activation of a high-side MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Static activation of a low-side MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Turn-off of the high-side and low-side MOSFETs of a half-bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
PWM operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Determination of the active and freewheeling MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Configurations in PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
PWM mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
PWM operation with adaptive gate control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
12.2.1  
12.2.2  
12.2.3  
12.3  
12.3.1  
12.3.2  
12.3.3  
12.3.4  
Datasheet  
5
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
12.3.4.1  
12.3.4.2  
12.3.4.3  
12.3.4.4  
12.3.4.5  
12.3.4.6  
12.3.5  
12.3.5.1  
12.3.5.2  
12.3.6  
12.3.7  
12.3.8  
12.4  
High-side PWM with adaptive gate control, motor operating as load . . . . . . . . . . . . . . . . . . . . . 114  
Low-side PWM with adaptive gate control, motor operating as load . . . . . . . . . . . . . . . . . . . . . 124  
High-side PWM with adaptive gate control, motor operating as generator . . . . . . . . . . . . . . . . 124  
Low-side PWM with adaptive gate control, motor operating as generator . . . . . . . . . . . . . . . . 126  
Status bits for regulation of turn-on and turn-off delay times . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Time modulation of pre-charge and pre-discharge times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
PWM operation without adaptive gate control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
AGC[1:0]=00B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
AGC[1:0]=01B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Gate driver current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
PWM operation at high and low duty cycles with active freewheeling . . . . . . . . . . . . . . . . . . . . . . 137  
Measurements of the switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Passive discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Slam mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Parking braking mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Frequency modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Electrical characteristics gate driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
12.5  
12.6  
12.7  
12.8  
12.9  
13  
13.1  
Supervision Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Reset Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Soft Reset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Watchdog Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Time-Out Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Window Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Watchdog Setting Check Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Watchdog during Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Watchdog Start in Stop Mode due to Bus Wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
VSINT Power On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
VSINT Under- and Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
VSINT Undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
VSINT Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
VS Under- and Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
VS Undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
VS Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
VSHS Under- Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
VSHS Undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
VSHS Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
VCC1 Over-/ Undervoltage and Undervoltage Prewarning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
VCC1 Undervoltage and Undervoltage Prewarning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
VCC1 Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
VCC1 Short Circuit Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
VCAN Undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Thermal Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Individual Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Temperature Prewarning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
13.1.1  
13.1.2  
13.2  
13.2.1  
13.2.2  
13.2.3  
13.2.4  
13.2.5  
13.3  
13.4  
13.4.1  
13.4.2  
13.5  
13.5.1  
13.5.2  
13.6  
13.6.1  
13.6.2  
13.7  
13.7.1  
13.7.2  
13.8  
13.9  
13.10  
13.10.1  
13.10.2  
13.10.3  
Datasheet  
6
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
13.11  
Bridge driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
13.11.1  
13.11.1.1  
13.11.1.2  
13.11.1.3  
13.11.1.4  
13.11.1.5  
13.11.2  
13.11.3  
13.12  
Bridge driver supervision with activated charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Drain-source voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Cross-current protection and drain-source overvoltage blank time . . . . . . . . . . . . . . . . . . . . . . 167  
OFF-state diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Charge pump undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Switching parameters of MOSFETs in PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Low-side drain-source voltage monitoring during braking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
VS or VSINT Overvoltage braking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
14  
14.1  
14.2  
14.3  
14.3.1  
14.4  
14.4.1  
14.5  
14.5.1  
14.5.2  
14.5.3  
14.5.4  
14.6  
14.6.1  
14.6.2  
14.6.3  
14.6.4  
14.7  
Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
SPI Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Failure Signalization in the SPI Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
SPI Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
SPI Bit Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Register Banking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
SPI control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Device Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Control registers bridge driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Selective Wake Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Selective Wake trim and configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
SPI status information registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244  
Device Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
Status registers bridge driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258  
Selective wake status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267  
Family and product information register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271  
15  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273  
Application Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273  
ESD Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
ESD according to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
ESD according to SAE J2962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
Thermal Behavior of Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277  
15.1  
15.2  
15.2.1  
15.2.2  
15.3  
15.4  
16  
17  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279  
Datasheet  
7
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Block Diagram  
2
Block Diagram  
VSINT  
VCC1  
VCC1  
VSHS  
VS  
VCC1  
CP  
VS  
MUX(VSINT,VS)  
SDI  
CP  
CPC1N  
CPC1P  
CPC2N  
CPC2P  
Charge pump  
Control Logic  
SDO  
SPI  
CLK  
CSN  
VCC1  
state machine  
watchdog  
Reset  
RSTN  
CP  
VS  
Interrupt  
INTN/TEST  
GH1  
SH1  
GH2  
SH2  
VSHS  
Gate  
Drivers  
Interrupt  
Generation  
HSS output  
HSS output  
HS1  
HS2  
GL1  
GL2  
HSS output  
HSS output  
HS3  
HS4  
Reset  
Generation  
SL  
MUX(VSINT,VS)  
Wake Logic  
Fail Safe  
Wake-up input  
WK1  
Wake-up input /  
Fail Out  
WK2/FO  
WK3  
MUX(VSINT,VS)  
Wake-up input  
Wake-up input  
PWM input  
PWM1/CRC  
WK4/SYNC  
VCAN  
TXDCAN  
RXDCAN  
CANL  
CANH  
CAN  
VSHS  
GND  
LIN  
(Transceiver GND, Pin 16)  
TXDLIN  
RXDLIN  
LIN  
(Analog/dig. GND, Pin 6)  
MUX(VSINT,VS): multiplexed VSINT & VS  
GND  
Figure 1  
Block Diagram  
Datasheet  
8
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
N.U. 37  
24 SH2  
23 GH2  
22 WK2/FO  
21 GL1  
N.U. 38  
WK1 39  
N.U. 40  
N.U. 41  
20 GL2  
TLE9560  
WK4/SYNC 42  
HS1 43  
19 SL  
18 WK3  
17 LIN  
16 GND  
15 CANL  
14 CANH  
13 VCAN  
PG-VQFN-48  
HS2 44  
HS3 45  
HS4 46  
VSHS 47  
VSINT 48  
Figure 2  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin  
1
Symbol  
Function  
VCC1  
Voltage Regulator. Output voltage 1  
2
RSTN  
Reset Output. Active LOW, internally passive pull-up with open-drain output  
3
INTN/TEST  
Interrupt Output. Active LOW output, push-pull structure  
TEST. Connect to GND (via pull-down) to activate Software Development Mode  
4
5
6
7
SDO  
SDI  
SPI Data Output to Microcontroller (=MISO). Push-pull structure  
SPI Data Input from Microcontroller (=MOSI). Internal pull-down  
Ground. Analog/digital ground  
GND  
CLK  
SPI Clock Input. Internal passive pull-down  
Datasheet  
9
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Pin Configuration  
Pin  
8
Symbol  
CSN  
Function  
SPI Chip Select Not input. Internal passive pull-up  
Receive LIN. Push-pull structure  
Transmit LIN. Internal passive pull-up  
Transmit CAN. Internal passive pull-up  
Receive CAN. Push-pull structure  
HS-CAN Supply Input. For internal HS-CAN cell needed for CAN Normal Mode  
CAN High Bus.  
9
RXDLIN  
TXDLIN  
TXDCAN  
RXDCAN  
VCAN  
CANH  
CANL  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
CAN Low Bus.  
Ground. Transceiver ground (CAN, LIN)  
LIN Bus.  
LIN  
WK3  
Wake-up input 3.  
SL  
Source Low Side.  
GL2  
Gate Low Side 2.  
GL1  
Gate Low Side 1.  
WK2/FO  
GH2  
Wake-up input 2 or Fail Safe Output.  
Gate High Side 2.  
SH2  
Source High Side 2.  
SH1  
Source High Side 1.  
GH1  
Gate High Side 1.  
PWM1/CRC  
PWM input 1. Internal passive pull-down  
CRC. Connect to GND (via pull-down) to activate CRC functionality  
28  
29  
30  
31  
32  
CPC2N  
CPC2P  
CPC1P  
CPC1N  
VS  
Negative connection to Charge Pump Capacitor 2.  
Positive connection to Charge Pump Capacitor 2.  
Positive connection to Charge Pump Capacitor 1.  
Negative connection to Charge Pump Capacitor 1.  
Supply voltage for Bridge Drivers and Charge pump. Connected to the  
battery voltage after reverse protection.  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
CP  
Charge Pump output voltage.  
Not used.  
N.U.  
N.U.  
N.U.  
N.U.  
N.U.  
WK1  
N.U.  
N.U.  
WK4/SYNC  
HS1  
Not used.  
Not used.  
Not used.  
Not used.  
Wake-up input 1.  
Not used.  
Not used.  
Wake-up input 4/Sync.  
High Side output 1.  
High Side output 2.  
HS2  
Datasheet  
10  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Pin Configuration  
Pin  
45  
Symbol  
HS3  
Function  
High Side output 3.  
High Side output 4.  
46  
HS4  
47  
VSHS  
Supply voltage for HSx and LIN. Connected to the battery voltage after reverse  
protection  
48  
VSINT  
Voltage regulator and main supply voltage. Connected to the battery voltage  
after reverse protection  
Cooling GND  
Tab  
Cooling Tab - Exposed Die Pad; For cooling purposes only, do not use as an  
electrical ground1)  
1) The exposed die pad at the bottom of the package allows better power dissipation of heat from the device via the  
PCB. The exposed die pad is not connected to any active part of the IC. However, it should be connected to GND for  
the best EMC performance.  
Note:  
The GND pin as well as the Cooling Tab must be connected to one common GND potential.  
3.3  
Hints for not functional pins  
It must be ensured that the correct configurations are also selected, i.e. in case functions are not used that  
they are disabled via SPI. Unused pins should be handled as follows:  
N.U.: not used; internally bonded for testing purpose; leave open.  
RSVD: must be connected to GND.  
Datasheet  
11  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 1  
Absolute Maximum Ratings1)  
Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Voltages  
Supply Voltage VS  
Supply Voltage VS  
Supply Voltage VSINT  
Supply Voltage VSINT  
Supply Voltage VSHS  
Supply Voltage VSHS  
Voltage Regulator 1  
VS, max  
-0.3  
28  
V
V
V
V
V
V
V
V
P_4.1.1  
P_4.1.2  
P_4.1.3  
P_4.1.4  
P_4.1.5  
P_4.1.6  
P_4.1.7  
VS, max  
-0.3  
40  
Load Dump  
VSINT, max  
VSINT, max  
VSHS, max  
VSHS, max  
VCC1, max  
VCP, max  
-0.3  
28  
-0.3  
40  
Load Dump  
-0.3  
28  
-0.3  
40  
Load Dump  
-0.3  
VS - 0.8  
5.5  
VS + 17  
Charge Pump Output Pin  
(CP)  
ICP > - 200 µA if CP P_4.1.8  
is disabled  
CPC1P, CPC2P  
CPC1N, CPC2N  
VCPCxP, max  
- 0.3  
VS + 17  
VS + 0.3  
40  
V
V
V
P_4.1.38  
P_4.1.39  
VCPCxN, max - 0.3  
Bridge Driver Gate High Side VGHx, max  
(GHx)  
-8.0  
-8.0  
-0.3  
P_4.1.11  
P_4.1.12  
P_4.1.13  
Bridge Driver Gate Low Side VGLx, max  
(GLx)  
24  
16  
V
V
Voltage difference between VGS  
GHx-SHx and between GLx-  
SLx  
Bridge Driver Source High  
(SHx)  
VSHx, max  
-8.0  
-8.0  
40  
6.0  
40  
V
V
P_4.1.14  
P_4.1.15  
Bridge Driver Source Low  
Side SL  
VSL, max  
Wake Input WKx  
High Side HSx  
VWKx, max  
VHSx, max  
-0.3  
-0.3  
V
V
P_4.1.19  
P_4.1.20  
VSHS, max  
+ 0.3  
LIN bus  
VLIN, max  
-27  
-27  
-0.3  
-0.3  
40  
40  
40  
V
V
V
V
P_4.1.21  
P_4.1.22  
P_4.1.25  
P_4.1.27  
CANH, CANL  
VBUS, max  
VPWM1, max  
PWM1/CRC Input Pin  
Logic Input Pins (CSN, CLK, VI, max  
VCC1  
SDI, TXDCAN, TXDLIN)  
+ 0.3  
Datasheet  
12  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
General Product Characteristics  
Table 1  
Absolute Maximum Ratings1) (cont’d)  
Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
Typ. Max.  
Logic Output Pins (SDO,  
RSTN, INTN, RXDCAN,  
RXDLIN)  
VO, max  
-0.3  
VCC1  
+ 0.3  
V
P_4.1.30  
VCAN Input Voltage  
Temperatures  
VVCAN, max  
-0.3  
5.5  
V
P_4.1.31  
Junction Temperature  
Storage Temperature  
ESD Susceptibility  
ESD Resistivity  
Tj  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.32  
P_4.1.33  
Tstg  
VESD,11  
VESD,12  
-2  
-8  
2
8
kV  
kV  
HBM2)  
HBM2)3)  
P_4.1.34  
P_4.1.35  
ESD Resistivity to GND,  
CANH, CANL, LIN  
ESD Resistivity to GND  
VESD,21  
VESD,22  
-500  
-750  
500  
750  
V
V
CDM4)  
CDM4)  
P_4.1.36  
P_4.1.37  
ESD Resistivity Pin 1,  
12,13,24,25,36,37,48 (corner  
pins) to GND  
1) Not subject to production test, specified by design.  
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 k, 100 pF).  
3) For ESD “GUN” Resistivity (according to IEC61000-4-2 “gun test” (150 pF, 330 )), is shown in Application Information  
and test report will be provided from IBEE.  
4) ESD susceptibility, Charged Device Model “CDM” EIA/JESD22-C101 or ESDA STM5.3.1.  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
4.2  
Functional Range  
Table 2  
Functional Range1)  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min.  
VPOR,f  
6.0  
Typ.  
Max.  
28  
2)  
Supply Voltage  
VSINT,func  
VS,func  
V
P_4.2.1  
P_4.2.2  
P_4.2.7  
P_4.2.3  
P_4.2.4  
P_4.2.6  
Bridge Supply Voltage  
High Side Supply Voltage  
LIN Bus Voltage  
28  
V
2)  
VSHS_HS,func 6.0  
28  
V
3)  
VSHS_LIN,func  
VCAN,func  
Tj  
6
18  
V
CAN Supply Voltage  
Junction Temperature  
4.75  
-40  
5.25  
150  
V
°C  
Datasheet  
13  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
General Product Characteristics  
1) Not subject to production test, specified by design.  
2) Including Power-On Reset, Over- and Undervoltage Protection.  
3) Parameter specification according to ISO 17987-4: rev 2016.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
Device Behavior Outside of Specified Functional Range  
28 V < VSINT,func < 40 V: Device will still be functional including the state machine; the specified electrical  
characteristics might not be ensured anymore. The VCC1 is working properly, however, a thermal shutdown  
might occur due to high power dissipation. HSx switches might be turned OFF depending on HSx_OV  
configurations. The specified SPI communication speed is ensured; the absolute maximum ratings are not  
violated, however the device is not intended for continuous operation of VSINT > 28 V and a thermal  
shutdown might occur due to high power dissipation. The device operation at high junction temperatures  
for long periods might reduce the operating life time.  
Note: 18 V < VSHS <28 V: The LIN transceiver is still functional. However, the communication might fail due  
to out-of-LIN-spec operation.  
Note: VSHS,UVD < VSHS < 6 V: The LIN transceiver is still functional. However, the communication might fail  
due to out-of-LIN-spec operation.  
Note: VCAN < 4.75 V: The undervoltage bit will be set in the SPI register and the transmitter will be disabled  
as long as the UV condition is present.  
Note: 5.25 V < VCAN < 5.5 V: CAN transceiver still functional. However, the communication might fail due to  
out-of-spec operation.  
V
POR,f < VSINT < 5.5 V (given the fact that the device was powered up correctly before with VSINT > 5.5 V):  
Device will still be functional; the specified electrical characteristics might not be ensured anymore:  
The voltage regulator will enter the low-drop operation mode.  
A reset could be triggered depending on the Vrthx settings.  
The LIN transmitter will be disabled if VSHS,UVD is reached. .  
HSx switch behavior will depend on the respective configuration:  
HS_UV_SD_DIS = ‘0’ (default): HSx will be turned OFF for VSHS < VSHS,UVD and will stay OFF.  
HS_UV_SD_DIS = ‘1’: HSx stays on as long as possible. An unwanted overcurrent shut down may occur.  
OC shut down bit set and the respective HSx switch will stay OFF.  
If WK2/FO is configured as Fail Safe Output, FO output will remain ON if they were enabled before  
VSINT > 5.5 V.  
The specified SPI communication speed is ensured.  
Note:  
VS,UV < VS < 6.0 V: the charge pump might be deactivated due to a charge pump undervoltage  
detection, resulting in a turn-off of the external MOSFETs.  
Datasheet  
14  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
General Product Characteristics  
4.3  
Thermal Resistance  
Table 3  
Thermal Resistance1)  
Symbol  
Parameter  
Values  
Typ.  
7.2  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Junction to Soldering Point Rth(JSP)  
Junction to Ambient Rth(JA)  
K/W Exposed Pad  
P_4.3.1  
P_4.3.2  
2)  
27  
K/W  
1) Not subject to production test, specified by design.  
2) Specified Rth(JA) value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board for a power  
dissipation of 1.5 W; the product (chip+package) was simulated on a 76.2 x 114.3 x 1.5 mm3 with 2 inner copper layers  
(2 x 70 µm Cu, 2 x 35 µm C); where applicable a thermal via array under the exposed pad contacted the first inner  
copper layer and 300 mm2 cooling areas on the top layer and bottom layers (70 µm).  
4.4  
Current Consumption  
Table 4  
Current Consumption  
Current consumption values are specified at Tj = 25°C, VSINT= VSHS = 13.5 V, all outputs open  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Normal Mode  
1)  
Normal Mode current  
consumption  
INormal  
4.5  
5.5  
mA  
V
= 5.5 V to 28 V; P_4.4.1  
SINT  
Tj = -40°C to +150°C;  
CAN=LIN=CP=off  
Stop Mode  
1)2)  
Stop Mode current  
consumption  
(low active peak threshold)  
IStop_1,25  
50  
65  
80  
µA  
CAN3)=LIN=off;  
P_4.4.2  
P_4.4.3  
WKx=HSx=CP=off:  
Cyclic Wak./Sen.=off  
Watchdog = off;  
no load on VCC1  
I_PEAK_TH = 0B  
;
Stop Mode current  
consumption  
(low active peak threshold)  
IStop_1,85  
55  
70  
µA  
µA  
1)2)4) Tj = 85°C;  
CAN3)=LIN=off;  
WKx=HSx=CP=off:  
Cyclic Wak./Sen.=off  
Watchdog = off;  
no load on VCC1  
I_PEAK_TH = 0B  
1)2) CAN3)=LIN=off;  
WKx=HSx=CP=off:  
Cyclic Wak./Sen.=off  
Watchdog = off;  
;
Stop Mode current  
consumption  
(high active peak threshold)  
IStop_2,25  
95  
P_4.4.4  
no load on VCC1  
;
I_PEAK_TH = 1B  
Datasheet  
15  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
General Product Characteristics  
Table 4  
Current Consumption (cont’d)  
Current consumption values are specified at Tj = 25°C, VSINT= VSHS = 13.5 V, all outputs open  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
75  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Stop Mode current  
consumption  
IStop_2,85  
105  
µA  
1)2)4) Tj = 85°C;  
P_4.4.5  
CAN3)=LIN=off;  
(high active peak threshold)  
Cyclic Wak./Sen.=off;  
Watchdog = off;  
no load on VCC1  
;
I_PEAK_TH = 1B  
Sleep Mode  
Sleep Mode current  
consumption  
ISleep,25  
18  
28  
30  
40  
µA  
µA  
1) CAN3)=LIN=off;  
WKx=HSx=CP=off:  
Cyclic Wak./Sen.= off  
P_4.4.6  
P_4.4.7  
Sleep Mode current  
consumption  
ISleep,85  
1)4) Tj = 85°C;  
CAN3)=LIN=off;  
WKx=HSx=CP=off:  
Cyclic Wak./Sen.=off  
Feature Incremental Current Consumption  
Current consumption for LIN ILIN,rec  
1.0  
1.5  
0.1  
1.2  
1.7  
0.2  
mA 4)5) Normal/Stop  
Mode;  
P_4.4.8  
P_4.4.9  
module, recessive state  
LIN Normal Mode;  
Tj = -40°C to +150°C;  
VTXDLIN = VCC1  
;
no RL on LIN  
mA 4)5) Normal/Stop  
Mode;  
Current consumption for LIN ILIN,dom  
module, dominant state  
LIN Normal Mode;  
Tj = -40°C to +150°C;  
V
TXDLIN = GND;  
no RL on LIN  
Current consumption for LIN ILIN,Rec_onlyN  
module, Receive Only Mode,  
Normal Mode  
mA 4)5) Normal Mode;  
LIN Receive Only  
Mode;  
P_4.4.10  
P_4.4.11  
V
TXDLIN = VCC1  
no RL on LIN  
5) Stop/Sleep Mode;  
LIN wake capable;  
Current consumption for LIN ILIN,wake,25  
wake capability  
0.2  
2
2
3
µA  
µA  
Current consumption for LIN ILIN,wake,85  
wake capability  
4)5) Stop/Sleep Mode; P_4.4.12  
Tj = 85°C;  
LIN wake capable;  
Datasheet  
16  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
General Product Characteristics  
Table 4  
Current Consumption (cont’d)  
Current consumption values are specified at Tj = 25°C, VSINT= VSHS = 13.5 V, all outputs open  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
2
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Current consumption for  
CAN module, recessive state  
ICAN,rec  
3.5  
mA 1)4) Normal/Stop  
Mode;  
P_4.4.13  
CAN Normal Mode;  
Tj = -40°C to +150°C;  
V
V
CC1 connectedtoVCAN  
TXDCAN = VCC1  
;
;
;
;
;
no RL on CAN  
mA 1)4) Normal/Stop  
Mode;  
Current consumption for  
CAN module, dominant  
state  
ICAN,dom  
3
5.0  
0.7  
1.5  
P_4.4.14  
P_4.4.15  
P_4.4.16  
P_4.4.17  
CAN Normal Mode;  
Tj = -40°C to +150°C;  
VCC1 connectedtoVCAN  
V
TXDCAN = GND;  
no RL on CAN  
Current consumption for  
CAN module, Receive Only  
Mode, Normal Mode  
ICAN,Rec_onlyN  
0.5  
1.4  
mA 1)4)6) Normal Mode;  
CAN Receive Only  
Mode;  
Tj = -40°C to +150°C;  
V
VTXDCAN = VCC1  
no RL on CAN  
CC1 connectedtoVCAN  
;
Current consumption for  
CAN module, Receive Only  
Mode, Stop Mode  
ICAN,Rec_only  
mA 1)4)6) Stop Mode;  
CAN Receive Only  
Mode;  
Tj = -40°C to +150°C;  
V
V
CC1 connectedtoVCAN  
TXDCAN = VCC1  
;
no RL on CAN  
1)3)7) Sleep Mode;  
CAN wake capable;  
Current consumption for  
CAN wake capability  
(tsilence expired)  
ICAN,wake,25  
4.5  
8
7
µA  
µA  
Current consumption for  
CAN wake capability  
(tsilence expired)  
ICAN,wake,85  
10  
1)3)4)7) Sleep Mode; Tj = P_4.4.18  
85°C;  
CAN wake capable;  
WK = off;  
Datasheet  
17  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
General Product Characteristics  
Table 4  
Current Consumption (cont’d)  
Current consumption values are specified at Tj = 25°C, VSINT= VSHS = 13.5 V, all outputs open  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
475  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Currentconsumption during ICAN,SWK,25  
CAN Partial Networking  
frame detect mode  
550  
µA  
1)4) Tj = 25°C;  
Stop Mode;  
WK,  
P_4.4.19  
( RX_WK_SEL= ‘0’)  
CAN SWK wake  
capable, SWK  
Receiver enabled,  
WUF detect;  
no RL on CAN;  
Currentconsumptionduring ICAN,SWK,85  
CAN Partial Networking  
frame detect mode  
500  
575  
µA  
1)4) Tj = 85°C;  
Stop Mode;  
WK,  
P_4.4.20  
( RX_WK_SEL= ‘0’)  
CAN SWK wake  
capable, SWK  
Receiver enabled,  
WUF detect;  
no RL on CAN;  
Current consumption for  
each WK input  
IWK,wake,25  
0.2  
0.5  
2
3
µA  
µA  
1)7)8)9) Sleep Mode; WK P_4.4.22  
wake capable;  
no activity on WK pin;  
1)4)7)8)9) Sleep Mode; Tj P_4.4.23  
= 85°C;  
Current consumption for  
each WK input  
IWK,wake,85  
WK wake capable;  
no activity on WK pin;  
4)7)10)12)11)  
Current consumption for  
first High-Side in Stop Mode  
IStop,HS,25  
250  
250  
375  
375  
µA  
µA  
Stop Mode; P_4.4.24  
HS with 100% duty  
cycle (no load);  
4)7)10)12)11) Stop Mode; P_4.4.25  
Tj = 85°C;  
Current consumption for  
first High-Side in Stop Mode  
IStop,HS,85  
HS with 100% duty  
cycle (no load);  
Current consumption for  
cyclic sense function  
IStop,CS25  
IStop,CS85  
20  
24  
26  
32  
µA  
µA  
7)10)12)13) Stop Mode;  
WD = off;  
4)7)10)12)13) Stop Mode; P_4.4.27  
P_4.4.26  
Current consumption for  
cyclic sense function  
Tj = 85°C;  
WD = off;  
Current consumption for  
watchdog active in Stop  
Mode  
IStop,WD25  
18  
19  
23  
25  
µA  
µA  
4)14) Stop Mode;  
Watchdog running;  
P_4.4.28  
P_4.4.29  
Current consumption for  
watchdog active in Stop  
Mode  
IStop,WD85  
4)14) Stop Mode;  
Tj = 85°C;  
Watchdog running;  
Datasheet  
18  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
General Product Characteristics  
Table 4  
Current Consumption (cont’d)  
Current consumption values are specified at Tj = 25°C, VSINT= VSHS = 13.5 V, all outputs open  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
350  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Current consumption for  
active Fail Output FO  
IStop,FO  
600  
µA  
µA  
µA  
4)14) all modes;  
Tj < 85°C;  
FO = on (no load);  
4)14) Stop Mode or  
Sleep Mode; Tj < 85°C;  
PARK_BRK_EN = 1B  
4)14) Stop Mode or  
Sleep Mode; Tj < 85°C;  
OV_BRK_EN = 1B  
P_4.4.30  
Current consumption in  
parking braking mode  
(LSx ON)  
Iparking  
10  
7
14  
10  
40  
P_4.4.32  
P_4.4.34  
P_4.4.35  
Current consumption Over IOV,LS_OFF  
voltage braking mode  
(LSx OFF)  
Current consumption in VS ICP,BD  
for Charge Pump and Bridge  
Driver  
30  
mA Normal Mode;  
Tj = -40°C to +150°C;  
CPEN = 1; All HB OFF  
1) Measured at VSINT  
.
2) If the load current on VCC1 will exceed the configured VCC1 active peak threshold, the current consumption will increase  
by typ. 2.9 mA to ensure optimum dynamic load behavior. See also Chapter 6.  
3) CAN not configured in Selective Wake Mode.  
4) Not subject to production test, specified by design.  
5) Additional current will be drawn from VSHS.  
6) Current consumption adder also applies for during WUF detection (frame detect mode) when CAN Partial Networking  
is activated.  
7) Current consumption adders of features defined for Stop Mode also apply for Sleep Mode and vice versa. Wake input  
signals are stable (i.e. not toggling), cyclic wake/sense & watchdog are OFF (unless otherwise specified).  
8) No pull-up or pull-down configuration selected.  
9) The specified WKx current consumption adder for wake capability applies regardless how many WK inputs are  
activated.  
10) Additional current will be drawn from VSHS and VSINT  
.
11) Typical adder of additional high-side switch activation 200 µA.  
12) HSx used for cyclic sense, Timerx with 20ms period, 0.1 ms on-time, no load.  
In general the current consumption adder for cyclic sense in Stop Mode can be calculated with below equation:  
I
Stop,CS_typ = 18 µA + (IStop,HS,25 x ton/TPer)  
where the 18 uA is the base current consumption of the digital cyclic sense/wake functionality.  
13) Also applies to cyclic wake but without adder from HS biasing contribution.  
14) Additional current will be drawn from VSINT  
.
Notes  
1. There is no additional current consumption contribution in Normal Mode due to PWM generators or Timers.  
2. The quiescent current consumption in Stop Mode and Sleep Mode will increase for VSINT < 9 V.  
Datasheet  
19  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
5
System Features  
This chapter describes the system features and behavior of the TLE9560-3QX:  
State machine  
Device configuration  
State machine modes and mode transitions  
Wake-up features such as cyclic sense and cyclic wake  
5.1  
Short State Machine Description  
The DC Motor System IC offers six operating modes:  
Init Mode: Power-up of the device and after a soft reset.  
Normal Mode: The main operating mode of the device.  
Stop Mode: The first-level power saving mode with the main voltage regulator VCC1 enabled.  
Sleep Mode: The second-level power saving mode with VCC1 disabled.  
Restart Mode: An intermediate mode after a wake event from Sleep Mode or Fail-Safe Mode or after a  
failure (e.g. WD failure, VCC1 under voltage reset) to bring the microcontroller into a defined state via a  
reset.  
Fail-Safe Mode: A safe-state mode after critical failures (e.g. Temperature shutdown) to bring the system  
into a safe state and to ensure a proper restart of the system.  
A special mode, called Software Development Mode, is available during software development or debugging  
of the system. All above mentioned operating modes can be accessed in this mode. However, the watchdog is  
still running, but no reset to the microcontroller is applied. Watchdog failures are indicated over INTN pin  
instead.  
However, the watchdog reset signaling can be reactivated again in Software Development Mode. The  
Watchdog will start always with the Long Open Windows (t_low).  
The DC Motor System IC is controlled via a 32-bit SPI interface (refer to Chapter 14 for detailed information).  
The configuration as well as the diagnosis is handled via the SPI.  
The device offers various supervision features to support functional safety requirements. Refer to Chapter 13  
for more information.  
Datasheet  
20  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
5.2  
Device Configuration  
Two features on the DC Motor System IC can be configured by hardware:  
The selection of the normal device operation or the Software Development Mode.  
Enabling/disabling the CRC on the SPI interface.  
The configurations are done monitoring the follow pins:  
INTN/TEST  
PWM1/CRC  
The hardware configuration can be done typically at device power-up, where the device is in Init Mode or (only  
in case of CRC setting) in Restart Mode.  
Software development Mode configuration detail  
After the RSTN is released, the INTN/TEST pin is internally pulled HIGH with a weak pull-up resistor. Therefore  
the default configuration is the device in normal operation.  
In order to configure the Software Development Mode, the following conditions have to be fulfilled:  
Init Mode from power-up  
VCC1>Vrtx  
POR=1  
RSTN = HIGH  
The Software Development Mode is configured using the following scheme:  
Only one external pull-down on INTN/TEST pin followed by an arbitrary SPI command, the device latches  
the Software Development Mode.  
External pull-up or no pull-down on INTN/TEST pin enable the device in normal operation.  
To enter Software Development Mode, a pull-down resistor to GND might be used.  
Soft. Dev.  
Mode OFF for tSDM_F to avoid supply glitches  
The INTN/TEST is externally pulled-down  
INTN/TEST  
Soft. Dev.  
Mode ON  
tSDM_F  
Intn_filt  
RSTN  
LATCHED (first SPI frame)  
Entry in Software Development Mode  
(not latched )  
Mode  
Successful latched Software Development Mode  
Normal Mode  
Init Mode  
Time/us  
Intn_filt: internal filtered INTN/TEST signal  
Figure 3  
Software Development Mode Selection Timing  
Intn_filt is a filtered signal from INTN/TEST, with the filter time tSMD_F (P_11.2.7). Intn_filt starts (at the rising  
edge if RSNT) wit the value 1.  
Datasheet  
21  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
Note:  
If during monitoring the INTN/TEST pin for Software Development Mode entry, the device changes  
the mode without SPI command, the device will not enter/stay in Software Development Mode.  
CRC configuration detail  
The CRC is configured using the following scheme:  
Pull-down on PWM1/CRC enable the CRC.  
No external components on PWM1/CRC disables the CRC.  
In order to configure the CRC, the follow conditions have to be full filled:  
Init Mode (from power-up) or Restart Mode  
VCC1>Vrtx  
POR=1  
RSTN = LOW  
The configuration selection is done during the reset delay time tRD1 with a continuous filter time of tCFG_F and  
the configuration (depending on the voltage level at PWM1/CRC) is latched at the rising edge of RSTN.  
VS_INT  
VPOR,r  
t
VCC1  
VRT1,r  
t
RSTN  
tCFG_F  
Continuous Filtering with  
t
tRD1  
Configuration selection monitoring period  
Figure 4  
CRC configuration Selection Timing Diagram at the device power-up.  
In case of mismatch between CRC setting between the device and µC (CRC_STAT), the device can accept two  
recovery SPI commands (static patterns).  
The pattern 67AA AA0EH (addr + rw_bit = 67 ; data = AAAA ; CRC = 0E ) enables the CRC.  
The pattern E7AA AAC3H (addr + rw_bit = E7 ; data = AAAA ; CRC = C3) disables the CRC.  
The patterns shall be send only in Normal Mode.  
For additional details about the CRC setting and configuration, refer also to Chapter 14.3.1.  
Datasheet  
22  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
5.3  
Block Description of State Machine  
The state machine describes the different states of operation, the device may get into. The following figure  
shows the state machine flow diagram.  
First battery connection  
Soft Reset  
* The Software Development Mode is a super set of  
state machine where the WD reset is not signaled,  
CAN and LIN behavior differ in Init Mode. Otherwise,  
there are no differences in behavior.  
Config.: settings can be changed in  
this device mode;  
Init Mode *  
(Long open window)  
(1) After Fail-Safe Mode entry, the device will stay for at  
least typ. 1s in this mode (with RSTN low) after a TSD2  
event and min. typ. 100ms after other Fail-Safe Events.  
Only then the device can leave the mode via a wake-up  
event. Wake events are stored during this time.  
Fixed: settings stay as defined in  
Normal Mode  
Cyc.  
BD(3) OFF  
CP(3) OFF  
VCC1  
ON  
CAN(2)  
OFF  
HSx  
OFF  
Wake  
OFF  
LIN(2)  
OFF  
WD  
fixed  
Cyc.  
Sense  
OFF  
(2) For Software Development Mode CAN and LIN are  
ON in Init Mode and stay ON when going from there to  
Normal Mode.  
Any SPI  
command  
(3) HB Passive off due to gate-source resistors.  
Normal Mode  
Cyc.  
VCC1  
HSx  
BD/CP  
Wake  
WD trigger  
ON  
config. config.  
config.  
Cyc.  
CAN  
LIN WD  
Sense  
config.  
config. config. config.  
ꢀꢁReset is released  
ꢀꢁWD starts with long open window  
Automatic  
SPI cmd  
SPI cmd  
SPI cmd  
Sleep Mode  
BD/CP(3)  
Stop Mode  
BD/CP(3)  
OFF  
Cyc.  
Cyc.  
Wake  
fixed  
Cyc.  
Sense  
fixed  
VCC1  
OFF  
CAN  
Wake cap./  
OFF  
HSx  
fixed  
VCC1  
HSx  
fixed  
Wake  
fixed  
OFF  
ON  
LIN  
Cyc.  
Sense  
fixed  
VCC1 over voltage  
(depend from VCC1_OV_MOD setting)  
LIN  
fixed  
WD  
OFF  
WD  
fixed  
CAN  
fixed  
Wake cap./  
OFF  
Wake up event  
LS short circuit during  
VS_OV event  
Restart Mode  
(RO pin is asserted)  
Sleep Mode entry without any  
wake source enabled  
Cyc.  
VCC1  
ON/  
HSx  
OFF  
BD/CP(3)  
Wake  
OFF  
After 4x consecutive VCC1  
After 4x consecutive  
Watchdog failure  
OFF  
under voltage events  
Watchdog Failure  
ramping  
(if VS_INT > VS_INT_UV)  
Cyc.  
Sense  
OFF  
VCC1 Under voltage  
LIN  
WD  
OFF  
CAN  
woken/OFF  
woken/OFF  
Fail-Safe Mode (1)  
VCC1 over voltage  
(depend from VCC1_OV_MOD setting)  
BD/CP(3)  
OFF  
Cyc.  
Wake  
OFF  
VCC1  
OFF  
HSx  
OFF  
TSD2 event  
CAN, LIN, WK, wake-up event  
OR  
Release of overtemperature TSD2  
after a time depending on TSD2_DEL  
Cyc.  
Sense  
OFF  
LIN  
WD  
OFF  
VCC1 Short to GND  
CAN  
Wake cap.  
Wake cap.  
Figure 5  
State Diagram showing the operating modes  
Description:  
ON /OFF:= Indicate if the module is enabled or disabled either via SPI or from the device itself  
config:= Settings can be changed in this mode  
fixed:= Settings stay as defined in Normal Mode or Init Mode  
active/inactive:= Indicate if the device activates/deactivates one specific feature  
Wake capable:= Transceiver that is capable to detect one wake-up events  
woken:= Transceiver that has detected one wake-up event  
Datasheet  
23  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
5.4  
State Machine Modes Description  
5.4.1  
Init Mode  
The device starts up in Init Mode after crossing the power-on reset VPOR,r threshold (see also Chapter 13.3) and  
the watchdog will start with a long open window (tLW) after RSTN is released (High level).  
In Init Mode, the device waits for the microcontroller to finish its startup and initialization sequence.  
Init Mode  
(Long open window)  
Cyc.  
VCC1  
ON  
HSx  
OFF  
BD OFF  
CP OFF  
Wake  
OFF  
Cyc.  
Sense  
OFF  
CAN  
OFF  
LIN  
OFF  
WD  
fixed  
Figure 6  
Table 5  
Init Mode  
Init Mode Settings  
Part/Function  
VCC1  
Value  
ON  
Description  
The VCC1 is ON  
Watchdog is fixed and set with a long open window (tLW  
All HSx are OFF  
)
WD  
fixed  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
HSx  
Bridge Drivers is OFF  
BD  
Charge Pump is OFF  
CP  
CAN transceiver is OFF1)  
LIN transceiver is OFF 2)  
Cycle Sense is OFF  
CAN  
LIN  
Cyc Sense  
Cyc Wake  
Cycle Wake is OFF  
1) Exception: The CAN transceiver is ON during Software Development Mode  
2) Exception: The LIN transceiver is ON during Software Development Mode  
5.4.2  
Normal Mode  
The Normal Mode is the standard operating mode for the device. The VCC1 is active and all features are  
configurable. Supervision and monitoring features are enabled.  
Datasheet  
24  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
Normal Mode  
Cyc.  
Wake  
config.  
VCC1  
ON  
HSx  
config.  
BD/CP  
config.  
Cyc.  
CAN  
config.  
LIN  
config.  
WD  
config.  
Sense  
config.  
Figure 7  
Normal Mode  
Table 6  
Part/Function  
VCC1  
Normal Mode Settings  
Value  
ON  
Description  
VCC1 is active  
Watchdog may be configured by SPI  
WD  
config  
config  
The High Side Switches may be configured and switched ON or OFF by  
SPI  
HSx  
The Bridge Drivers and Charge Pump may be configured and switched  
ON or OFF by SPI  
BD/CP  
config  
CAN may be configurable and switched ON or OFF by SPI  
LIN may be configurable and switched ON or OFF by SPI  
CAN  
config  
config  
config  
LIN  
Cyclic sense may be configured with the HSx, WKx inputs and Timer1 or  
Timer2 or SYNC (WK4)  
Cyc. Sense  
Cyclic wake can be configured with the Timer1 or Timer 2  
Cyc. Wake  
config  
5.4.3  
Stop Mode  
The Stop Mode is the first level technique to reduce the overall current consumption by setting the voltage  
regulator VCC1 into a low-power mode.  
Note:  
All settings have to be done before entering Stop Mode.  
In Stop Mode any kind of SPI WRITE commands are ignored and the SPI_FAIL bit is set, except for changing to  
Normal Mode, triggering a device Soft Reset, refreshing the watchdog as well as for reading and clearing the  
SPI status registers.  
Note:  
A wake-up event on CAN, LIN, WKx, Low-Side short circuit detection in parking braking mode or  
overvoltage brake detection, could generate an interrupt on pin INTN (based on INTN masking  
configuration; refer to Chapter 11) however, no change of the device mode will occur.  
Datasheet  
25  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
Stop Mode  
Cyc.  
Wake  
fixed  
VCC1  
ON  
HSx  
fixed  
BD/CP  
OFF  
Cyc.  
Sense  
fixed  
WD  
fixed  
CAN  
fixed  
LIN  
fixed  
Figure 8  
Table 7  
Stop Mode  
Stop Mode Settings  
Part/Function  
VCC1  
Value  
ON  
Description  
VCC1 is ON  
Watchdog is fixed as configured in Normal Mode  
HSx are fixed as configured in Normal Mode  
The Bridge Drivers and Charge Pump are OFF  
CAN fixed as configured in Normal Mode  
WD  
fixed  
fixed  
OFF  
HSx  
BD/CP  
CAN  
fixed  
fixed  
fixed  
fixed  
LIN fixed as configured in Normal Mode  
LIN  
Cyclic sense fixed as configured in Normal Mode  
Cyclic wake is fixed as configured in Normal Mode  
Cyc. Sense  
Cyc. Wake  
Note:  
In Stop Mode, it is possible to activate the Low-Side of Bridge Drivers (e.g. in case of parking braking  
mode or overvoltage brake detection). Refer to Chapter 13.11 for additional details.  
5.4.4  
Sleep Mode  
The Sleep Mode is the second level technique to reduce the overall current consumption to a minimum  
needed to react on wake-up events or for the device to perform autonomous actions (e.g. cyclic sense).  
Note:  
All settings have to be done before entering Sleep Mode.  
Sleep Mode  
Cyc.  
Wake  
fixed  
VCC1  
OFF  
HSx  
fixed  
BD/CP  
OFF  
Cyc.  
Sense  
fixed  
CAN  
LIN  
WD  
OFF  
Wake cap./ Wake cap./  
OFF  
OFF  
Figure 9  
Sleep Mode  
Datasheet  
26  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
Table 8  
Part/Function  
VCC1  
Sleep Mode Settings  
Value  
OFF  
Description  
VCC1 is OFF  
Watchdog is OFF  
WD  
OFF  
HSx are fixed as configured in Normal Mode  
The Bridge Drivers and Charge Pump are OFF  
CAN fixed as configured (Wake Capable or OFF)  
HSx  
fixed  
OFF  
BD/CP  
CAN  
Wake Cap/  
OFF  
LIN fixed as configured (Wake Capable or OFF)  
LIN  
Wake Cap/  
OFF  
Cyclic sense fixed as configured in Normal Mode  
Cyclic wake is fixed  
Cyc. Sense  
Cyc. Wake  
fixed  
fixed  
Note:  
In Sleep Mode, it is possible to activate the Low-Side’s of Bridge Drivers (e.g. in case of parking  
braking mode or overvoltage braking). Refer to Chapter 13.11 for additional details.  
5.4.5  
Restart Mode  
The Restart Mode is a transition state where the RSNT pin is asserted.  
Restart Mode  
(RO pin is asserted)  
Cyc.  
VCC1  
ON/  
HSx  
OFF  
BD/CP  
OFF  
Wake  
OFF  
ramping  
Cyc.  
Sense  
OFF  
CAN  
woken/  
OFF  
LIN  
woken/  
OFF  
WD  
OFF  
Figure 10 Restart Mode  
Table 9  
Restart Mode Settings  
Part/Function  
VCC1  
Value  
Description  
VCC1 is ON or ramping up  
ON/  
ramping  
WD will be disabled if it was activated before  
HSx will be disabled if it was activated before  
The Bridge Drivers and Charge Pump are OFF  
WD  
OFF  
OFF  
OFF  
HSx  
BD/CP  
CAN  
CAN may woken (in case of wake-up event on the Bus) or wake capable  
or OFF  
Woken/  
wake  
capable/  
OFF  
Datasheet  
27  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
Table 9  
Restart Mode Settings (cont’d)  
Part/Function  
LIN  
Value  
Description  
LIN may woken (in case of wake-up event on the Bus) or wake capable  
Woken/  
wake  
or OFF  
capable/  
OFF  
Cyclic sense will be disabled if it was activated before  
Cyclic wake will be disabled if it was activated before  
Cyc. Sense  
Cyc. Wake  
OFF  
OFF  
5.4.6  
Fail-Safe Mode  
The purpose of this mode is to bring the system in a safe status after a failure condition by turning OFF the  
VCC1 supply and powering off the microcontroller. After a wake event the system is then able to restart again.  
Fail-Safe Mode  
Cyc.  
VCC1  
OFF  
HSx  
OFF  
BD/CP  
OFF  
Wake  
OFF  
Cyc.  
Sense  
OFF  
WD  
OFF  
LIN  
CAN  
Wake cap.  
Wake cap.  
Figure 11 Fail-Safe Mode  
Table 10 Fail-Safe Mode Settings  
Part/Function  
VCC1  
Value  
OFF  
Description  
VCC1 is switched OFF  
WD is switched OFF  
HSx are switched OFF  
WD  
OFF  
HSx  
OFF  
The Bridge Drivers and Charge Pump are OFF  
CAN is forced to be Wake capable  
LIN is forced to be Wake capable  
Cyclic sense is switched OFF  
BD/CP  
CAN  
OFF  
Wake Cap  
Wake Cap  
OFF  
LIN  
Cyc. Sense  
Cyc. Wake  
Cyclic wake is switched OFF  
OFF  
Note  
In Fail-Safe Mode, the default wake sources CAN, LIN and WKx (if configured as wake inputs) are activated  
automatically and all wake event bits will be cleared.  
In case that WK2 is set as Fail Safe Output (FO), the WK2/FO is automatically activated.  
The Fail-Safe Mode will be maintained until a wake event on the default wake sources occurs. To avoid any  
fast toggling behavior a filter time of typ. 100ms (tFS,min) is implemented. Wake events during this time will  
be stored and will automatically lead to entering Restart Mode after the filter time.  
In case of an VCC1 overtemperature shutdown (TSD2) the Restart Mode will be reached automatically after  
Datasheet  
28  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
a filter time of typ. 1s (tTSD2) without the need of a wake event once the device temperature has fallen below  
the TSD2 threshold.  
The parking braking mode is automatically disabled in Fail-Safe Mode.  
5.4.7  
Software Development Mode  
The Software Development Mode is a dedicated device configuration especially useful for software  
development.  
Compared to the default device user mode operation, this mode is a super set of the state machine. The device  
will start also in Init Mode and it is possible to use all the modes and functions with following differences:  
Restart Mode or Fail-Safe Mode (depending on the configuration) is not reached due to watchdog failure  
but the other reasons to enter these modes are still valid.  
CAN, LIN default value in Init Mode and entering Normal Mode from Init Mode is ON instead of OFF.  
Table 11 Normal Mode Settings (Software Development Mode active)  
Part/Function  
Default  
State  
Description  
VCC1 is active  
VCC1  
WD  
ON  
ON  
WD is on, but will not trigger transition to Fail-Safe Mode or Restart  
Mode  
The High Side Switches may be configured and switched ON or OFF by  
SPI  
The Bridge Drivers and Charge Pump may be configured and switched  
ON or OFF by SPI  
HSx  
OFF  
OFF  
BD/CP  
CAN may be configurable and switched ON or OFF by SPI  
LIN may be configurable and switched ON or OFF by SPI  
Can be configured  
CAN  
ON  
LIN  
ON  
Cyc. Sense  
Cyc. Wake  
OFF  
OFF  
Can be configured  
Software Development Mode entry  
For timing and configuration details, refer to Chapter 5.2.  
Note  
After Init Mode, the pull-up is released as the INTN/TEST pin acts as output then to drive the INTN signal.  
If the device enters Fail-Safe Mode due to VCC1 short circuit to GND during the Init Mode, the Software  
Development Mode will not be entered and can only be reached at the next power-up of the device after  
the VCC1 short circuit is removed.  
The absolute maximum ratings of the pin INTN must be observed. To increase the robustness of this pin  
during debugging or programming a series resistor between INTN and the connector can be added.  
Watchdog in Software Development Mode  
The Watchdog is enabled in Software Development Mode as default state. One INTN event is generated due  
to wrong watchdog trigger.  
It is possible to deactivate the integrated Watchdog module using the WD_SDM_DISABLE bit. After disabling  
the Watchdog, no INTN events are generated and the WD_FAIL bit will also not be set anymore in case of a  
trigger failure. It is also possible only to mask / unmask the INTN event of the WD in Software Development  
Mode by using the bit WD_SDM. In case of unmasking, a WD trigger fail will only lead to WD_FAIL bit set.  
Datasheet  
29  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
5.5  
Transition Between States  
This chapter describes the transition between the modes triggered by power-up, SPI commands or wake-up  
events.  
5.5.1  
Transition into Init Mode  
The device goes into Init Mode in case of a power-up or after sending a soft-reset in Normal or Stop Mode.  
Prerequisites:  
Power OFF  
Device in Normal Mode or Stop Mode with follow conditions:  
VSINT > VPOR,r  
RSTN High  
Triggering Events:  
A Soft Reset command (MODE = ‘11’). All SPI registers will be changed to their respective Soft Reset values.  
Note  
In case of Soft Reset command, a hardware RSTN event can be generated depending on the configuration.  
An external Reset will be generated in case of SOFT_RESET_RO = 0B . In case of SOFT_RESET_RO = 1B, no  
RSTN hardware event is generated in case of Soft Reset.  
At power-up, the SPI bit VCC1_UV will not be set as long as VCC1 is below the VRT,x threshold and if VSINT  
is below the VSINT,UV threshold. The RSTN pin will be kept LOW as long as VCC1 is below the selected  
VRT1,r threshold. The reset delay counter will start after VRT1,r threshold is reached. After the first  
threshold crossing of VCC1 > VRT1,R and RSTN transition from low to high, all subsequent undervoltage  
events will lead to Restart Mode.  
Wake events are ignored during Init Mode and will be lost.  
The bit VSINT_UV will only be updated in Init Mode once RSTN resumes a high level.  
5.5.2  
Init Mode -> Normal Mode  
This transition moves the device in the mode where all configurations are accessable via SPI command.  
Prerequisites:  
VSINT > VPOR,r  
Init Mode  
RSTN High  
Triggering Events:  
Any valid SPI command (from SPI protocol point of view) will bring the device to Normal Mode (i.e. any  
register can be written, cleared and read) during the long open window where the watchdog has to be  
triggered (refer also Chapter 14.2). The CRC is not taken into account for this transition.  
For example:  
A SPI Sleep Mode command will still bring the device into Normal Mode. However, as this is an invalid  
state transition, the SPI bit SPI_FAIL is set.  
Any invalid SPI command (from content point of view) will still bring the device into Normal Mode. The  
SPI bit SPI_FAIL is set.  
Note  
It is recommended to use the first SPI command to trigger and to configure the watchdog.  
Datasheet  
30  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
5.5.3  
Normal Mode -> Stop Mode  
This transition is intended as first measure to reduce the current consumption. All the device features needed  
in Stop Mode shall be configured in Normal Mode.  
Prerequisites:  
VCC1>Vrtx  
Device in Normal Mode  
Triggering Events:  
State transition is only initiated by specific SPI command.  
Note  
An interrupt is triggered on the pin INTN when Stop Mode is entered and not all wake source signalization  
flags were cleared.  
If high-side switches are kept enabled during Stop Mode, then the device current consumption will  
increase.  
It is not possible to switch directly from Stop Mode to Sleep Mode. Doing so will also set the SPI_FAIL flag  
and will bring the device into Restart Mode.  
5.5.4  
Normal Mode -> Sleep Mode  
This transition is intended to reduce as much as possible the current consumption keeping active only wake-  
up sources. All wake-up sources configurations shall be done in Normal Mode.  
Prerequisites:  
VCC1>Vrtx  
Device in Normal Mode  
All wake source signalization flags were cleared (including the LSxDSOV_BRK bit)  
At least one wake-up source activated  
Triggering Events:  
State transition is only initiated by specific SPI command.  
Note  
If the HSx outputs are kept enabled during Sleep Mode, then the device current consumption will increase  
(see Chapter 4.4).  
The Cyclic Sense function will not work properly anymore in case of a failure event (e.g. overcurrent, over  
temperature, reset) because the configured HSx and Timers will be disabled.  
If VCC1_UV or VCC1_OV (with Config to go to Restart Mode) occurs at the border of the Sleep Mode entry:  
The device will go immeditaley into Restart Mode.  
If TSD2 or VCC1_OV (with Config to go to Fail-Safe Mode) occurs at the border of the Sleep Mode entry: The  
device will enter immediately Fail-Safe Mode.  
As soon as the Sleep Mode command is sent, the Reset will go low.  
It is not possible to switch all wake sources off in Sleep Mode. Doing so will set the SPI_FAIL flag and will  
bring the device into Restart Mode.  
Datasheet  
31  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
5.5.5  
Stop Mode -> Normal Mode  
This transition is intented to set the device in Normal Mode where all the device integrated features are  
availbale and configurable.  
Prerequisites:  
VCC1>Vrtx  
Device in Stop Mode  
Triggering Events:  
State transition is only initiated by SPI command.  
Note  
None  
5.5.6  
Sleep Mode -> Restart Mode  
This transition is the consequence of a detection of wake-up event by the device. This transition is used to  
ramp up VCC1 after a wake in a defined way.  
Prerequisites:  
Device in Sleep Mode  
At least one wake-up source active  
Triggering Events:  
A wake-up event on CAN, LIN, WKx, Cyclic Sense, Cyclic Wake.  
Bridge driver low-side short circuit detected during overvoltage braking or in parking braking mode.  
Note  
It is not possible to switch off all wake sources in Sleep Mode. Doing so will set the SPI_FAIL flag and will  
bring the device into Restart Mode.  
RSTN is pulled low during Restart Mode.  
The Restart Mode entry is signalled in the SPI register DEV_STAT.  
The wake-up events are flaged in WK_STAT register or DSOV register.  
5.5.7  
Restart Mode -> Normal Mode  
From Restart Mode, the device goes automatically to Normal Mode.  
Prerequisites:  
Device in Sleep Mode or Fail-Safe Mode  
Triggering Events:  
Automatic  
Reset is released  
Note  
The watchdog timer will start with a long open window starting from the moment of the rising edge of  
RSTN and the watchdog period setting in the register WD_CTRL will be changed to the respective default  
value.  
Datasheet  
32  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
5.5.8  
Fail-Safe Mode -> Restart Mode  
This transition is similar to device from Sleep Mode to Restart Mode and consequence of a detection of wake-  
up event by the device. This transition is used to ramp up VCC1 after a wake in a defined way.  
Prerequisites:  
Device in Fail-Safe Mode  
Triggering Events:  
A wake-up event on CAN, LIN, WKx, TSD2 (released over temperature TDS2 after tTSD2).  
Bridge Driver Low Side short circuit detected during VS/VSINT overvoltage braking mode or in parking  
braking mode.  
Note:  
After leaving Fail-Safe Mode, the FAILURE bit in DEV_STAT register is set and needs to be cleared in  
order to release the FO pin.  
5.6  
Reaction on Detected Faults  
The device can react at some critical events either signalling the specific failure or changing the device mode.  
The chapter describes actions taken from the device in case of critical events in particular related the device  
mode change.  
5.6.1  
Stay in Current State  
The following failures will not trigger any device mode changes, but will indicate the failures by an INTN event  
(depending from the Interrupt Masking) and in dedicated status registers:  
Failures on CAN  
Failures on LIN  
Failures in Bridge Driver and/or Charge Pump  
Failures on HSx  
5.6.2  
Transition into Restart Mode  
The Restart Mode can be entered in case of failure as shown in following figure.  
VCC1 over voltage  
(depend from VCC1_OV_MOD setting)  
Restart Mode  
(RO pin is asserted)  
Sleep Mode entry without any  
wake source enabled  
Cyc.  
Wake  
OFF  
VCC1  
ON/  
ramping  
HSx  
OFF  
BD/CP  
OFF  
Watchdog Failure  
Cyc.  
Sense  
OFF  
VCC1 Under voltage  
LIN  
WD  
OFF  
CAN  
woken/OFF  
woken/OFF  
Figure 12 Move into Restart Mode  
Datasheet  
33  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
Prerequisites  
In case of wake-up event from Sleep Mode or Fail Safe Mode  
In case of Normal Mode  
In case of Stop Mode  
Trigger Events  
VCC1 Undervoltage in case of Normal Mode or Stop Mode.  
Watchdog trigger failure in case of Normal Mode or Stop Mode.  
VCC1 Overvoltage (based on VCC1_OV_MOD) in case of Normal Mode or Stop Mode.  
Sleep Mode entry without any wake-up sources enabled in Normal Mode or Stop Mode.  
Note  
None  
Datasheet  
34  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
5.6.3  
Transition into Fail-Safe Mode  
The Fail-Safe Mode can be entered in case of critical event as shown in the following figure.  
After 4x consecutive VCC1  
After 4x consecutive  
under voltage events  
Watchdog failure  
(if VS_INT > VS_INT_UV)  
Fail-Safe Mode  
VCC1 over voltage  
(depend from VCC1_OV_MOD setting)  
Cyc.  
VCC1  
OFF  
HSx  
OFF  
BD/CP  
OFF  
Wake  
OFF  
TSD2 event  
Cyc.  
Sense  
OFF  
LIN  
WD  
OFF  
VCC1 Short to GND  
CAN  
Wake cap.  
Wake cap.  
Figure 13 Move into Fail-Safe Mode  
Prerequisites:  
Critical events on VCC1  
Watchdog trigger failures  
Trigger Events:  
Device thermal shutdown (TSD2) (see also Chapter 13.10.3).  
VCC1 is shorted to GND (see also Chapter 13.8).  
VCC1 over voltage (based on VCC1_OV_MOD).  
4 consecutive Watchdog trigger failure.  
4 consecutive VCC1 under voltage events.  
Note  
The FO/WK2 will be automatically activated if it was before configured as Fail Safe Output (FO).  
5.7  
Wake Features  
Following wake sources are implemented in the device:  
Static Sense: WKx inputs are permanently active as wake sources.  
Cyclic Sense: WKx inputs only active during on-time of cyclic sense period. Internal timers are activating  
HSx during on-time for sensing the WKx inputs.  
Cyclic Wake: wake controlled by internal timers, wake inputs are not used for cyclic wake.  
CAN wake: Wake-up via Bus pattern or frame (refer to Chapter 8.2.4 and Chapter 5.9).  
LIN wake: Wake-up via Bus messages (refer to Chapter 9.2.4).  
Note:  
Differences of 'cyclic sense' and 'cyclic wake':  
In both cases a timer is active. With 'cyclic sense' one of the high-side drivers is switched on  
periodically and supplies some external circuits connected to the WK inputs. For the design, this  
means that the WK input states are only sampled at the end of the selected HS on-phase which is set  
Datasheet  
35  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
by the corresponding SPI settings for GPIO HS and the timer. 'Cyclic wake' means that the timer is a  
wake source and thus generates periodic interrupts as long as it is enabled.  
5.7.1  
Cyclic Sense  
The cyclic sense feature is intended to reduce the quiescent current of the device and the application.  
In the cyclic sense configuration, one high-side driver is switched on periodically controlled by TIMER_CTRL  
or WK4/SYNC pin. One high-side driver supplies external circuitries e.g. switches and/or resistor arrays, which  
are connected to one wake input WKx (see Figure 14). Any edge change of the WKx input signal during the on-  
time of the cyclic sense period causes a wake event. Depending on the device mode, either the INTN is pulled  
low (Normal Mode and Stop Mode) or the device is woken enabling the VCC1 (after Sleep Mode).  
HSx  
HSx  
HS_CTRL  
10k  
10k  
WKx  
WKx  
Signal  
TIMER_CTRL  
Period / On-Time  
Switching  
Circuitry  
INTN  
STATE MACHINE  
to uC  
Figure 14 Cyclic Sense Working Principle  
5.7.1.1 Configuration and Operation of Cyclic Sense  
The correct sequence to configure the cyclic sense is shown in Figure 15. All the configurations have to be  
performed before the on-time is set in the TIMER_CTRL registers. The settings “OFF / LOW” and “OFF / HIGH”  
define the voltage level of the respective HS driver before the start of the cyclic sense. The intention of this  
selection is to avoid an unintentional wake due to a voltage level change at the start of the cyclic sense.  
Cyclic Sense will start as soon as the respective on-time has been selected independently from the assignment  
of the HS and filter configuration. The correct configuration sequence is as follows:  
Configure the initial level.  
Mapping of a Timer to the respective HSx outputs.  
Configuring the respective filter timing and WK pins.  
Configuring the timer period and on-time.  
Datasheet  
36  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
Cyclic Sense Configuration  
Assign TIMERx_ON to OFF/Low or  
Timer1, Timer2  
Timer1, Timer2  
OFF/High in TIMER_CTRL  
Assign Timer to selected HSx switch  
in HS_CTRL  
WKx  
Enable WKx as wake source with  
configured Timer in WK_CTRL  
Select WKx pull-up / pull-down  
configuration in WK_CTRL  
with above selected timer  
No pull-up/-down, pull-down or pull-  
up selected, automatic switching  
Select Timer Period and desired  
Period: 10, 20, 50, 100, 200ms, 1s, 2s  
On-Time: 0.1, 0.3, 1.0, 10, 20ms  
On-Time in TIMER_CTRL  
A new timer configuration will become  
active immediately, i.e. as soon as CSN  
goes high  
Cyclic Sense starts / ends by  
setting / clearing On-time  
Figure 15 Cyclic Sense: Configuration and Sequence  
Datasheet  
37  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
Cyclic Sense Configuration  
Assign WK4 as SYNC input on  
WK_CTRL  
Assign SYNC to selected HSx switch  
in HS_CTRL  
Enable WKx as wake source with  
configured SYNC in WK_CTRL  
Select WKx pull-up / pull-down  
configuration in WK_CTRL  
WKx except WK4  
with SYNC  
No pull-up/-down, pull-down or pull-  
up selected, automatic switching  
Cyclic Sense starts / ends by  
sensing SYNC rise/fall edge  
Figure 16 Cyclic Sense: Configuration and Sequence in case of SYNC usage  
Note  
All configurations of period and on-time can be selected. However, recommended on-times for cyclic  
sense are 0.1ms, 0.3ms and 1ms for quiescent current saving reasons. The SPI_FAIL will be set if the on-  
time is longer than the period.  
If the sequence is not ensured before entering Sleep Mode, then the cyclic sense function might not work  
properly, e.g. an interrupt could be missed or an unintentional interrupt could be triggered. However, if  
cyclic sense is the only wake source and it is not configured properly, then Restart Mode will be entered  
immediately because no valid wake source was set.  
During the HSx on phase in cyclic-sensing, the WKx level is sampled only once (one sample point). In case,  
a level change will appear during HSx on phase, but before the sampling, as the sampling will happen at  
the end of the on time, the level change will not be detected and has to wait for the next sensing-cycle.  
A wake event caused by cyclic-sensing will also set the corresponding bit WKx_WU.  
During Cyclic Sense, WK_LVL_STAT is updated only with the sampled voltage levels of the WKx pin in Normal  
Mode or Stop Mode.  
The functionality of the sampling and different scenarios are depicted in Figure 17 to Figure 19. The behavior  
in Stop Mode and Sleep Mode is identical except that in Normal Mode and Stop Mode INTN will be triggered to  
signal a change of WKx input level and in Sleep Mode, VCC1 will power-up instead. A wake event will be  
triggered regardless if the bit WKx_WU is already set.  
Datasheet  
38  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
HSx static ON  
Cyclic Sense  
Period  
HSx  
Filter time  
tFWK1  
Filter time  
tFWK1  
On Time  
t
1st sample taken  
as reference  
Wake detection possible  
on 2nd sample  
Figure 17 Cyclic Sense Timing  
HSx  
Filter time  
High  
Low  
Spike  
Switch  
open  
closed  
WKx  
High  
Low  
n-1  
n
n+1  
n+2  
WKn = WKn+1 = Low  
(but ignored because  
change during filter time)  
WKn = WKn+1  
WKn+2= High  
WKn+2 ≠WKn+1  
wake event  
Learning  
WKn= Low  
WKn = WKn-1  
no wake event  
Cycle  
WKn-1= Low  
INTN  
ꢂꢁno wake event  
High  
Low  
INTN &  
WK Bit Set  
Start of  
Cyclic Sense  
Figure 18 Cyclic Sense Example Timing for Stop Mode, HSx starts LOW, GND based WKx input  
Datasheet  
39  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
HSx  
Filter time  
High  
Low  
Spike  
Switch  
open  
closed  
WKx  
High  
Low  
n-1  
n
n+1  
n+2  
WKn = WKn+1 = Low (but  
ignored because change during  
filter time), WKn = WKn+1  
ꢂꢁno wake event  
WKn+2= High  
WKn+2 ≠WKn+1  
wake event  
Learning  
Cycle  
WKn-1= Low  
WKn= Low  
WKn = WKn-1  
no wake event  
VCC1  
High  
Transition to Normal  
via Restart Mode  
Sleep Mode  
Low  
WK Bit Set  
Start of  
Cyclic Sense  
Figure 19 Cyclic Sense Example Timing for Sleep Mode, HSx starts with ON, GND based WKx input  
The cyclic sense function will be disabled in case of following conditions:  
in case Fail-Safe Mode is entered, the HSx switch will be disabled and the WKx pin will be changed to static  
sensing. An unintended wake-up event could be triggered when the WKx input is changed to static sensing.  
In Normal Mode, Stop Mode, or Sleep Mode in case of an overcurrent, or overtemperature, or under- or  
overvoltage event, the respective HS switch will be disabled.  
5.7.1.2 Cyclic Sense in Low-power Mode  
If cyclic sense is intended for Stop Mode or Sleep Mode, it is necessary to activate cyclic sense in Normal Mode  
before going to the low-power mode. A wake event due to cyclic sense will set the bit WKx_WU. In Stop Mode  
a wake event will trigger an interrupt, in Sleep Mode the wake event will send the device via Restart Mode to  
Normal Mode.  
Before returning to Sleep Mode, the wake status registers WK_STAT and DSOV must be cleared. Trying to go  
to Sleep Mode with uncleared wake flags will lead to a direct wake-up from Sleep Mode by going via Restart  
Mode to Normal Mode and triggering of RSTN.  
5.7.2  
Cyclic Wake  
For the cyclic wake feature one timer is configured as internal wake-up source and will periodically trigger an  
interrupt on INTN in Normal Mode and Stop Mode. During Sleep Mode, the timer triggers and wakes up the  
device again. The device enters via Restart Mode the Normal Mode.  
The correct sequence to configure the cyclic wake is shown in Figure 20. The sequence is as follows:  
Datasheet  
40  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
Cyclic Wake Configuration  
Disable Timer1 and Timer2 as a wake  
To avoid unintentional interrupts  
source in TIMER_CTRL  
No interrupt will be generated,  
if the timer is not enabled as a wake source  
Select Timer1 or Timer2 as a wake  
source in TIMER_CTRL  
Periods: 10, 20, 50, 100, 200ms, 1s, 2s  
On-times: any  
(OFF/LOW & OFF/HIGH are not allowed)  
Select Timer Period and any  
On-Time in TIMER_CTRL  
Cyclic Wake starts / ends by  
setting / clearing On-time  
INTN is pulled low at every rising  
edge of On-time except first one  
Figure 20 Cyclic Wake: Configuration and Sequence  
Note:  
The on-time is only used to enable the cyclic wake function regardless of the value of the on time, i.e.  
the on time value has no meaning to the cyclic wake function as long as it is not ‘000’ or ‘110’ or ‘111’.  
As in cyclic sense, the cyclic wake function will start as soon as the on-time is configured. An interrupt is  
generated for every start of the on-time except for the very first time when the timer is started.  
5.7.3  
Internal Timers  
Two integrated timers can be used to control the below features:  
Cyclic Wake, i.e. to wake up the microcontroller periodically in Normal Mode, Stop Mode and Sleep Mode.  
Cyclic Sense, i.e. to perform cyclic sensing using the wake input WKx and the HSx by mapping the timer  
accordingly via the HS_CTRL register.  
Datasheet  
41  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
System Features  
5.8  
VS Supply Multiplexing  
VMAX SWITCH  
+
-
1
0
VSINT  
VS  
INTERNAL SUPPLY  
MUX  
Figure 21 VS Supply Multiplexing  
The internal supply voltage is multiplexed from VSINT and VS, choosing continuously the larger of both. In  
case of transient low VBAT, the buffered supply voltage takes over the internal supply, avoiding loss of power.  
Note:  
Only the internal digital logic of the device is supplied by the VMAX SWITCH. In case of a power loss  
of either VS or VSINT, the internal register values will not be lost.  
Datasheet  
42  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
5.9  
Partial Networking on CAN  
5.9.1  
CAN Partial Networking - Selective Wake Feature  
The CAN partial networking feature can be activated for Normal Mode, in Sleep Mode and in Stop Mode. For  
Sleep Mode the partial networking has to be activated before sending the device to Sleep Mode. For Stop  
Mode the Partial Networking has to be activated before going to Stop Mode.  
There are 2 detection mechanism available:  
WUP (Wake-Up Pattern) this is a CAN wake, that reacts on the CAN dominant time, with 2 dominant signals.  
WUF (Wake-Up frame) this is the wake-up on a CAN frame that matches the programmed message filter  
configured in the device via SPI.  
The default baudrate is set to 500 kBaud. Besides the commonly used baudrates of 125 kBaud and 250 kBaud,  
other baudrates up to 1 MBaud can be selected (see Chapter 14 for more details).  
Datasheet  
43  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
5.9.2  
Partial Networking Function  
The CAN partial networking modes are shown in the following figure.  
CAN  
OFF  
SPI  
SPI  
CAN WK Mode  
without PN  
CAN Receive Only  
Mode  
CAN  
Normal Mode  
SPI  
SPI  
SPI  
CAN PN  
Config Check  
CAN Wakable Mode  
Enable/ Disable  
max. 4  
CAN frames  
CAN Woken Up 1)  
CAN Wake  
WUP  
Sleep Mode: Device goes to Restart  
Mode, RxD is low, SPI bits are set  
CAN  
WUF  
CAN Wake  
WUP  
CAN  
WUP detection 1  
CAN  
WUF detection  
Stop Mode: Device stays in Stop Mode,  
Interrupt is triggered, RxD is low, SPI bits  
are set (only in case of CAN WK or SWK  
Mode, not in Receive Only with SWK or  
CAN Normal Mode with SWK)  
tsilence  
Normal Mode: Device stays in Normal  
Mode, Interrupt is triggered, SPI bits are  
set, RxD is low (only in case of CAN WK or  
SWK Mode, not in Receive Only with SWK  
or CAN Normal Mode with SWK)  
CAN frame error  
detection  
CAN Protocoll Error  
Counter  
valid  
not valid  
rearming  
Tsilent  
N>0  
1) CFG_VAL is cleared  
in Reastart Mode  
N-1  
N+  
Error counter  
overvlow  
N = 0  
N = 0  
N>32  
SYSERR  
CAN  
WUP detection 2  
SYSERR  
Figure 22 CAN Selective Wake State Diagram  
Datasheet  
44  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
5.9.2.1 Activation of SWK  
The following figure shows the principal of the SWK activation.  
Normal Mode  
SW not enabled  
CAN OFF  
Enabling CAN (not OFF) enables also  
the selective wake block. Block gets  
synchronous to the CAN bus.  
If one CAN Frame is received the bit  
SYNC = 1 is set  
SYNC = 1  
CAN_x  
Enable CAN  
Set SWK wake data. e.g.  
ID, ID_Mask, DATA  
Setting the data can also be done as  
first task  
Clear  
WK_STAT  
To avoid invalid configuration  
Set  
Bit set to confirm by the microcontroller  
that valid data are programmed.  
CFG_VAL = 1  
Clear  
SYSERR  
To activate Selective Wake  
In case SWK not enabled:  
CAN Normal with SW -> CAN Normal  
CAN Rx Only with SW -> CAN Rx Only  
CAN Wakable with SW -> CAN Wakable  
1
SYSERR  
0
SWK not enabled  
Handle wake  
event  
(incl. CAN  
mode toggling)  
Selective Wake is now enabled  
(INT is generated in case of WUF)  
Enable a CAN  
Mode with SWK  
via CAN_x Bits  
CAN Mode must be toggled before  
(re-)enabling wake capable mode  
SWK_SET = 1, WUP & WUF = 0,  
SYNC = 1  
Check SWK_STAT  
Check & Clear  
WK_STAT  
To ensure that no wake-up event  
has taken place in meantime  
MODE = 10  
Select low-power mode  
via MODE Bits  
MODE = 01  
Sleep Mode  
In case of WUF detection:  
CAN_WU = 1; WUF = 1;  
CFG_VAL = 0; SWK_SET = 0  
Stop Mode  
INT generation  
Wake-up: VCC1 Power-up  
change to Normal Mode  
stays in Stop Mode  
Notes:  
- Tsilence handling not shown in drawing  
- SYNC will only be set once CAN is „rearmed“ and  
at least one CAN frame was sent successfully  
Figure 23 Flow for activation of SWK  
Datasheet  
45  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
5.9.2.2 Wake-up Pattern (WUP)  
A WUP is signaled on the bus by two consecutive dominant bus levels for at least tWake1, each separated by a  
recessive bus level.  
Entering low-power mode,  
when selective wake-up  
function is disabled  
or not supported  
Bus recessive > tWAKE1  
Ini  
Wait  
Bias off  
Bias off  
Bus dominant > tWAKE1  
optional:  
tWAKE2 expired  
1
Bias off  
Bus recessive > tWAKE1  
optional:  
tWAKE2 expired  
2
Bias off  
Bus dominant > tWAKE1  
Silence expired AND  
t
Entering CAN Normal  
or CAN Recive Only  
Device in low-power mode  
3
Bias on  
Bus dominant > tWAKE1  
Bus recessive > tWAKE1  
tSilence expired AND  
device in low-power mode  
4
Bias on  
Figure 24 WUP detection following the definition in ISO11898-2:2016  
5.9.2.3 Wake-up Frame (WUF)  
The wake-up frame is defined in ISO11898-2:2016.  
Only CAN frames according ISO11989-1 are considered as potential wake-up frames.  
A bus wake-up shall be performed, if selective wake-up function is enabled and a "valid WUF" has been  
received. The transceiver may ignore up to four consecutive CAN data frames that start after switching on the  
bias.  
A received frame is a “valid WUF” in case all of the following conditions are met:  
The ID of the received frame is exactly matching a configured ID in the relevant bit positions. The relevant  
bit positions are given by an ID mask. The ID and the ID mask might have either 11 bits or 29 bits.  
The DLC of the received frame is exactly matching the configured DLC.  
Datasheet  
46  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
In case DLC is greater than 0, the data field of the received frame has at least one bit set in a bit position,  
where also in the configured data mask in the corresponding bit position the bit is set.  
No error exists according to ISO11898-2:2016 except errors which are signalled in the ACK field and EOF  
field.  
5.9.2.4 CAN Protocol Error Counter  
The counter is incremented, when a bit stuffing, CRC or form error according to ISO11898-2:2016 is detected.  
If a frame has been received that is valid up to the end of the CRC field and the counter is not zero, the counter  
is decremented.  
If the counter has reached a value of 31, the following actions is performed on the next increment of this  
counter:  
The selective wake function is disabled.  
The CAN transceiver is woken.  
SYSERR is set and the error counter value = 32 can be read.  
On each increment or decrement of the counter the decoder unit waits for at least 6 and most 10 recessive bits  
before considering a dominant bit as new start of frame.  
The error counter is enabled:  
Whenever the CAN is in CAN Normal Mode, CAN Receive Only Mode or in WUF detection state.  
The error counter is cleared under the following conditions:  
At the transition from WUF detection to WUP detection 1 (after tSILENCE expiration, while SWK is correctly  
enabled).  
When WUF detection state is entered (in this way the counter will start from 0 when SWK is enabled).  
At CAN rearming (when exiting the woken state).  
When the CAN mode bits are selected ‘000’, ‘100’ (CAN off) or 0’01’ (Wake capable without SWK function  
enabled).  
While CAN_FD_EN = ‘1’ and DIS_ERR_CNT = ‘1’  
(the counter is cleared and stays cleared when these two bits are set in the SPI registers).  
The Error Counter is frozen:  
After a wake-up being in woken state.  
The counter value can be read out of the bits ECNT.  
Datasheet  
47  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
5.9.3  
Diagnoses Flags  
5.9.3.1 PWRON/RESET-FLAG  
The power-on reset can be detected and read by the POR bit in the Status register.  
The VS power on resets all register in the device to reset value. SWK is not configured.  
5.9.3.2 BUSERR-Flag  
Bus Dominant Time-out detection is implemented and signaled by CAN_Fail_x in register BUS_STAT.  
5.9.3.3 TXD Dominant Time-out flag  
TXD Dominant timeout is shown in the SPI bit CAN_FAIL_x in register BUS_STAT.  
5.9.3.4 WUP Flag  
The WUP bit in the SWK_STAT register shows that a Wake-Up Pattern (WUP) has caused a wake of the CAN  
transceiver. It can also indicate an internal mode change from WUP detection 1 state to WUF detection after a  
valid WUP.  
In the following case the bit is set:  
SWK is activated: due to tSILENCE, the CAN changes into the state WUP detection 1. If a WUP is detected in  
this state, then the WUP bit is set.  
SWK is deactivated: the WUP bit is set if a WUP wakes up the CAN. In addition, the CAN_WU bit is set.  
In case WUP is detected during WUP detection 2 state (after a SYSERR) the bits WUP and CAN_WU are set.  
The WUP bit is cleared automatically by the device at the next rearming of the CAN transceiver.  
Note:  
It is possible that WUF and WUP bit are set at the same time if a WUF causes a wake out of SWK, by  
setting the interrupt or by restart out of Sleep Mode. The reason is because the CAN has been in WUP  
detection 1 state during the time of CAN SWK Mode (because of tSILENCE). See also Figure 22.  
5.9.3.5 WUF Flag (WUF)  
The WUF bit in the SWK_STAT register shows that a Wake-Up frame (WUF) has caused a wake of the CAN block.  
In Sleep Mode this wake causes a transition to Restart Mode, in Normal Mode and in Stop Mode it causes an  
interrupt. Also in case of this wake the bit CAN_WU in the register WK_STAT is set.  
The WUF bit is cleared automatically by the device at the next rearming of the CAN SWK function.  
5.9.3.6 SYSERR Flag (SYSERR)  
The bit SYSERR is set in case of an configuration error and in case of an error counter overflow. The bit is only  
updated (set to ‘1’) if a CAN mode with SWK is enabled via CAN_x. An interrupt is triggered on INTN every time  
SYSERR is set if the BUS_STAT is not masked.  
When programming selective wake via CAN_x, SYSERR = ‘0’ signals that the SWK function has been enabled.  
The bit can be cleared via SPI. The bit is ‘0’ after Power on Reset of the device.  
Datasheet  
48  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
5.9.3.7 Configuration Error  
A configuration error sets the SYSERR bit to ‘1’. A configuration check is performed when enabling SWK via the  
bits CAN_x. If the check is successful SWK is enabled, the bit SYSERR is set to ‘0’. In Normal Mode it is also  
possible to detect a Configuration Error while SWK is enabled. This will occur if the CFG_VAL bit is cleared, e.g.  
by changing the SWK registers (from address 011 0001 to address 011 1010). In Stop Mode and Sleep Mode this  
is not possible as the SWK registers can not be changed.  
Configuration Check:  
In Restart Mode, the CFG_VAL bit is cleared by the device. If the Restart Mode was not triggered by a WUF wake  
up from Sleep Mode and the CAN was with SWK enabled, than the SYSERR bit will be set.  
The SYSERR bit has to be cleared by the microcontroller.  
The SYSERR bit cannot be cleared when CAN_2 is ‘1’ and below conditions occur:  
Data valid bit not set by microcontroller, i.e. CFG_VAL is not set to ‘1’. The CFG_VAL bit is reset after SWK  
wake and needs to be set by the microcontroller before activation SWK again.  
CFG_VAL bit reset by the device when data are changed via SPI programming. (Only possible in Normal  
Mode)  
Note:  
The SWK configuration is still valid if only the SWK_CTRL register is modified.  
5.9.3.8 CAN Bus Timeout-Flag (CANTO)  
In CAN WUF detection and CAN WUP detection 2 state the bit CANTO is set to ‘1’ if the time tSILENCE expires.  
The bit can be cleared by the microcontroller. If the interrupt function for CANTO is enabled then an interrupt  
is generated in Stop Mode or Normal Mode when the CANTO set to ‘1’. The interrupt is enabled by setting the  
bit CANTO_ MASK to ‘1’. Each CANTO event will trigger a interrupt even if the CANTO bit is not cleared.  
There is no wake out of Sleep Mode because of CAN time-out.  
5.9.3.9 CAN Bus Silence-Flag (CANSIL)  
In CAN WUF detection and CAN WUP detection 2 state the bit CANSIL is set to ‘1’ if the time tSILENCE expires.  
The CANSIL bit is set back to ‘0’ with a WUP. With this bit the microcontroller can monitor if there is activity on  
the CAN bus while being in CAN SWK Mode. The bit can be read in Stop Mode and Normal Mode.  
5.9.3.10 SYNC-FLAG (SYNC)  
The bit SYNC shows that SWK is working and synchronous to the CAN bus. To get a SYNC bit set it is required  
to enable the CAN to CAN Normal Mode or in CAN Receive Only Mode or in WUF detection. However - for WUF  
detection, the CAN SWK Mode must be enabled.  
The bit is set to ‘1’ if a valid CAN frame has been received (no CRC error and no stuffing error). It is set back to  
‘0’ if a CAN protocol error is detected. When switching into CAN SWK Mode the SYNC bit indicates to the  
microcontroller that the frame detection is running and the next CAN frame can be detected as a WUF, CAN  
wake-up can now be handled by the device. It is possible to enter a low-power mode with SWK even if the bit  
is not set to ‘1’, as this is necessary in case of a silent bus.  
5.9.3.11 SWK_SET FLAG (SWK_SET)  
The SWK_SET bit is set to signalize the following states (see also Figure 22):  
When SWK was correctly enabled in WUF Detection state.  
When SWK was correctly enabled when in WUP Detection 1 state.  
After a SYSERR before a wake event in WUP Detection 2 state.  
Datasheet  
49  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
The bit is cleared under following conditions:  
After a wake-up (ECNT overflow, WUP in WUP detection 2, WUF in WUF detection).  
If CAN_2 is cleared.  
5.9.4  
Modes for Selective Wake (SWK)  
The device mode is selected via the MODE bits as described in Chapter 5.3.  
The mode of the CAN transceiver needs to be selected in Normal Mode. The CAN mode is programed the bits  
CAN_0, CAN_1 and CAN_2. In the low-power modes (Stop, Sleep) the CAN mode can not be changed via SPI.  
The detailed state machine diagram including the CAN selective wake feature is shown in .  
The application must now distinguish between the normal CAN operation an the selective wake function:  
CAN WK Mode: This is the normal CAN wake capable mode without the selective wake function.  
CAN SWK Mode: This is the CAN wake capable mode with the selective wake function enabled.  
Figure 25 shows the possible CAN transceiver modes.  
CAN OFF Mode  
CAN Normal Mode  
(no SWK)  
CAN Receive-Only  
Mode  
CAN WK Mode  
SPI CAN_x  
CAN Normal mode with SWK  
CAN Normal mode  
CAN RX Only Mode with SWK  
CAN RX Only Mode  
CAN Wakable Mode  
with SWK  
OK  
OK  
OK  
Config.  
Check  
CAN  
SWK  
Config.  
Check  
CAN  
SWK  
Config.  
Check  
CAN  
SWK  
Not OK  
Not OK  
Not OK  
CAN WK  
CAN WK  
CAN WK  
Figure 25 CAN SWK State Diagram  
5.9.4.1 Normal Mode with SWK  
In Normal Mode the CAN Transceiver can be switched into the following CAN modes:  
CAN OFF Mode  
CAN WK Mode (without SWK)  
CAN SWK Mode  
CAN Receive Only Mode (No SWK activated)  
CAN Receive Only Mode with SWK  
Datasheet  
50  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
CAN Normal Mode (No SWK activated)  
CAN Normal Mode with SWK  
In the CAN Normal Mode with SWK the CAN Transceiver works as in Normal Mode, so bus data is received  
through RXD, data is transmitted through TXD and sent to the bus. In addition the SWK block is active. It  
monitors the data on the CAN bus, updates the error counter and sets the CANSIL flag if there is no  
communication on the bus.  
It will generate an CAN Wake interrupt in case a WUF is detected (RXD is not pulled to low in this configuration).  
In CAN Receive Only Mode with SWK, CAN data can be received on RXD and SWK is active, no data can be sent  
to the bus.  
The bit SYSERR = ‘0’ indicates that the SWK function is enabled, and no frame error counter overflow is  
detected.  
Table 12 CAN modes selected via SPI in Normal Mode  
CAN mode  
CAN_2  
CAN_1  
CAN_0  
CAN OFF Mode  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
CAN WK Mode (no SWK)  
CAN Receive Only Mode (no SWK)  
CAN Normal Mode (no SWK)  
CAN OFF Mode  
CAN SWK Mode  
CAN Receive Only Mode with SWK  
CAN Normal Mode with SWK  
When reading back CAN_x the programmed mode is shown in Normal Mode. To read the real CAN mode the  
bits SYSERR, SWK_SET and CAN have to be evaluated. A change out of Normal Mode can change the CAN_0  
and CAN_1 bits.  
5.9.4.2 Stop Mode with SWK  
In Stop Mode the CAN transceiver can be operated with the following CAN modes:  
CAN OFF Mode  
CAN WK Mode (no SWK)  
CAN SWK Mode  
CAN Receive Only Mode (no SWK)  
CAN Receive Only Mode with SWK  
CAN Normal Mode (no SWK)  
CAN Normal Mode with SWK  
To enable CAN SWK Mode the CAN has to be switched to “CAN Normal Mode with SWK”, “CAN Receive Only  
Mode with SWK” or to “CAN SWK Mode” in Normal Mode before sending the device to Stop Mode. The bit  
SYSERR = ‘0’ indicates that the SWK function is enabled. The table shows the change of CAN mode when  
switching from Normal Mode to Stop Mode.  
Note:  
CAN Receive Only Mode in Stop Mode is implemented to also enable pretended networking (Partial  
networking done in the microcontroller).  
Datasheet  
51  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Table 13 CAN modes change when switching from Normal Mode to Stop Mode  
Programmed CAN mode in  
Normal Mode  
CAN_x SYSERR CAN mode in Stop Mode  
CAN_x  
bits  
bits  
000  
001  
bit  
CAN OFF Mode  
0
CAN OFF Mode  
000  
001  
010  
011  
100  
101  
101  
110  
110  
111  
111  
CAN WK Mode (no SWK)  
0
CAN WK Mode (no SWK)  
CAN Receive Only Mode (no SWK)  
CAN Normal Mode (no SWK)  
CAN OFF Mode  
CAN Receive Only Mode (no SWK) 010  
0
CAN Normal Mode (no SWK)  
CAN OFF Mode  
011  
100  
101  
101  
0
0
CAN SWK Mode  
0
CAN SWK Mode  
CAN SWK Mode  
1
CAN WK Mode (no SWK)  
CAN Receive Only Mode with SWK  
CAN Receive Only Mode (no SWK)  
CAN Normal Mode with SWK  
CAN Normal Mode (no SWK)  
CAN Receive Only Mode with SWK 110  
CAN Receive Only Mode with SWK 110  
0
1
CAN Normal Mode with SWK  
CAN Normal Mode with SWK  
111  
111  
0
1
Note:  
When SYSERR is set then WUF frames will not be detected, i.e. the selective wake function is not  
activated (no SWK), but the MSB of CAN mode is not changed in the register.  
5.9.4.3 Sleep Mode with SWK  
In Sleep Mode the CAN Transceiver can be switched into the following CAN modes:  
CAN OFF Mode  
CAN WK Mode (without SWK)  
CAN SWK Mode  
To enable “CAN SWK Mode” the CAN has to be switched to “CAN Normal Mode with SWK”, “CAN Receive Only  
Mode with SWK” or to “CAN SWK Mode” in Normal Mode before sending the device to Sleep Mode. The table  
shows the change of CAN mode when switching from Normal Mode to Sleep Mode.  
A wake from Sleep Mode with Selective Wake (Valid WUF) leads to Restart Mode. In Restart Mode the CFG_VAL  
bit will be cleared by the device, the SYSERR bit is not set. In the register CAN_x the programmed CAN SWK  
Mode (101) can be read.  
To enable the CAN SWK Mode again and to enter Sleep Mode the following sequence can be used; Program a  
CAN mode different from CAN SWK Mode (101, 110, 111), set the CFG_VAL, CLEAR SYSERR bit, Set CAN_x bits  
to CAN SWK Mode (101), switch the device to Sleep Mode.  
To enable the CAN WK Mode or CAN SWK Mode again after a wake on CAN a rearming is required for the CAN  
transceiver to be wake capable again. The rearming is done by programming the CAN into a different mode  
with the CAN_x bit and back into the CAN WK Mode or CAN SWK Mode. To avoid lock-up when switching the  
device into Sleep Mode with an already woken CAN transceiver, the device does an automatic rearming of the  
CAN transceiver when switching into Sleep Mode. So after switching into Sleep Mode the CAN transceiver is  
either in CAN SWK Mode or CAN WK Mode depending on CAN_x setting and SYSERR bit (If CAN is switched to  
off mode it is also off in Sleep Mode).  
Datasheet  
52  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Table 14 CAN modes change when switching to Sleep Mode  
Programmed CAN mode in Normal CAN_x SYSERR CAN mode in Sleep Mode  
CAN_x  
bits  
Mode  
bits  
000  
001  
010  
011  
100  
101  
101  
110  
110  
111  
111  
bit  
CAN OFF Mode  
0
CAN OFF Mode  
000  
001  
001  
001  
100  
101  
101  
101  
101  
101  
101  
CAN WK Mode (no SWK)  
CAN Receive Only Mode (no SWK)  
CAN Normal Mode (no SWK)  
CAN OFF Mode  
0
CAN WK Mode (no SWK)  
CAN WK Mode (no SWK)  
CAN WK Mode (no SWK)  
CAN OFF Mode  
0
0
0
CAN SWK Mode  
0
CAN SWK Mode  
CAN SWK Mode  
1
CAN WK Mode (no SWK)  
CAN SWK Mode  
CAN Receive Only Mode with SWK  
CAN Receive Only Mode with SWK  
CAN Normal Mode with SWK  
CAN Normal Mode with SWK  
0
1
CAN WK Mode (no SWK)  
CAN SWK Mode  
0
1
CAN WK Mode (no SWK)  
5.9.4.4 Restart Mode with SWK  
If Restart Mode is entered the transceiver can change the CAN mode. During Restart or after Restart the  
following modes are possible:  
CAN OFF Mode  
CAN WK Mode (either still wake cable or already woken up)  
CAN SWK Mode (WUF Wake from Sleep)  
Table 15 CAN modes change in case of Restart out of Normal Mode  
Programmed CAN mode in  
Normal Mode  
CAN_x SYSERR CAN mode in and after  
CAN_x  
bits  
SYSERR  
bit  
bits  
000  
001  
bit  
Restart Mode  
CAN OFF Mode  
0
CAN OFF Mode  
000  
001  
001  
001  
100  
101  
101  
101  
101  
101  
101  
0
0
0
0
0
1
1
1
1
1
1
CAN WK Mode (no SWK)  
0
CAN WK Mode (no SWK)  
CAN WK Mode (no SWK)  
CAN WK Mode (no SWK)  
CAN OFF Mode  
CAN Receive Only Mode (no SWK) 010  
0
CAN Normal Mode (no SWK)  
CAN OFF Mode  
011  
100  
101  
101  
0
0
CAN SWK Mode  
0
CAN WK Mode (no SWK)  
CAN WK Mode (no SWK)  
CAN WK Mode (no SWK)  
CAN WK Mode (no SWK)  
CAN WK Mode (no SWK)  
CAN WK Mode (no SWK)  
CAN SWK Mode  
1
CAN Receive Only Mode with SWK 110  
CAN Receive Only Mode with SWK 110  
0
1
CAN Normal Mode with SWK  
CAN Normal Mode with SWK  
111  
111  
0
1
The various reasons for entering Restart Mode and the respective status flag settings are shown in Table 16.  
Datasheet  
53  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Table 16 CAN modes change in case of Restart out of Sleep Mode  
CAN mode in Sleep CAN mode in  
CAN_ SYS  
CAN_ WUP WUF ECNT_ Reason for Restart  
Mode  
and after  
x
ERR WU x  
Restart Mode  
CAN OFF Mode  
CAN off  
000  
0
0
0
0
0
Wake on other wake  
source  
CAN WK Mode  
CAN WK Mode  
CAN woken up 001  
CAN WK Mode 001  
0
0
1
0
1
0
0
0
0
0
Wake (WUP) on CAN  
Wake on other wake  
source  
CAN SWK Mode  
CAN SWK Mode,  
CAN woken up 101  
CAN woken up 101  
0
1
1
1
0/11)  
0/12)  
1
0
x
Wake (WUF) on CAN  
100000 Wake due to error  
counter overflow  
CAN SWK selected,  
CAN WK active  
CAN woken up. 101  
CAN WK Mode 101  
1
1
1
0
1
0
0
0
Wake (WUP) on CAN,  
config check was not  
pass  
CAN SWK Mode  
0/1  
x
Wake on other wake  
source  
1) In case there is a WUF detection within tSILENCE then the WUP bit will not be set. Otherwise it will always be set together  
with the WUF bit.  
2) In some cases the WUP bit might stay cleared even after tSILENCE, e.g. when the error counter expires without detecting  
a wake-up pattern.  
5.9.4.5 Fail-Safe Mode with SWK  
When Fail-Safe Mode is entered the CAN transceiver is automatically set into CAN WK Mode (wake capable)  
without the selective wake function.  
5.9.5  
Wake-up  
A wake-up via CAN leads to a restart out of Sleep Mode and to an interrupt in Normal Mode, and in Stop Mode.  
After the wake event the bit CAN_WU is set, and the details about the wake can be read out of the bits WUP,  
WUF, SYSERR, and ECNT.  
5.9.6  
Configuration for SWK  
The CAN protocol handler settings can be configured in following registers:  
SWK_BTL1_CTRL defines the number of time quanta in a bit time. This number depends also on the  
internal clock settings performed in the register SWK_CDR_CTRL.  
SWK_BTL1_CTRL defines the sampling point position.  
The respective receiver during frame detection mode can be selected via the bit RX_WK_SEL.  
The clock and data recovery (see also Chapter 5.9.8) can be configured in the registers SWK_CDR_CTRL  
and SWK_CDR_LIMIT.  
The actual configuration for selective wake is done via the Selective Wake Control Registers SWK_IDx_CTRL,  
SWK_MASK_IDx_CTRL, SWK_DLC_CTRL, SWK_DATAx_CTRL.  
Datasheet  
54  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
The oscillator has the option to be trimmed by the microcontroller. To measure the oscillator, the SPI bit  
OSC_CAL needs to be set to 1 and a defined pulse needs to be given to the TXDCAN pin by the microcontroller  
(e.g. 1µs pulse, CAN needs to be switched off before). The device measures the length of the pulse by counting  
the time with the integrated oscillator. The counter value can be read out of the register  
SWK_OSC_CAL_H_STATE and SWK_OSC_CAL_L_STATE. To change the oscillator the trimming function needs  
to be enabled by setting the bits TRIM_EN_x = 11 (and OSC_CAL = 1). The oscillator can then be adjusted by  
writing into the register SWK_OSC_TRIM_CTRL. To finish the trimming, the bits TRIM_EN_x need to be set  
back to “00”.  
5.9.7  
CAN Flexible Data Rate (CAN FD) Tolerant Mode  
The CAN FD tolerant mode can be activated by setting the bit CAN_FD_EN = ‘1’ in the register  
SWK_CAN_FD_CTRL.  
With this mode the internal CAN frame decoding will be stopped for CAN FD frame formats:  
The high baudrate part of a CAN FD frame will be ignored.  
No Error Handling (Bit Stuffing, CRC checking, Form Errors) will be applied to remaining CAN frame fields  
(Data Field, CRC Field, …).  
No wake up is done on CAN FD frames.  
The internal CAN frame decoder will be ready for new CAN frame reception when the End of frame (EOF) of a  
CAN FD frame is detected.The identification for a CAN FD frame is based on the EDL Bit, which is sent in the  
Control Field of a CAN FD frame:  
EDL Bit = 1 identifies the current frame as an CAN FD frame and will stop further decoding on it.  
EDL Bit = 0 identifies the current frame as CAN 2.0 frame and processing of the frame will be continued.  
In this way it is possible to send mixed CAN frame formats without affecting the selective wake functionality  
by error counter increment and subsequent misleading wake up. In addition to the CAN_FD_EN bit also a filter  
setting must be provided for the CAN FD tolerant mode. This filter setting defines the minimum dominant time  
for a CAN FD dominant bit which will be considered as a dominant bit from the CAN FD frame decoder. This  
value must be aligned with the selected high baudrate of the data field in the CAN network.  
To support programming via CAN during CAN FD mode a dedicated SPI bit DIS_ERR_ CNT is available to avoid  
an overflow of the implemented error counter (see also Chapter 5.9.2.4).  
The behavior of the error counter depends on the setting of the bits DIS_ERR_ CNT and CAN_FD_EN and is  
show in below table:  
Table 17 Error Counter Behavior  
DIS_ERR_ CNT setting CAN_FD_EN setting  
Error Counter Behavior  
0
0
Error Counter counts up when a CAN FD frame or an  
incorrect/corrupted CAN frame is received; counts down  
when a CAN frame is received properly  
(as specified in ISO11898-2:2016)  
1
0
Error Counter counts up when a CAN FD frame or an  
incorrect/corrupted CAN frame is received; counts down  
when a CAN frame is received properly  
(as specified in ISO11898-2:2016)  
Datasheet  
55  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Table 17 Error Counter Behavior (cont’d)  
DIS_ERR_ CNT setting CAN_FD_EN setting  
Error Counter Behavior  
0
1
Error Counter counts up when an incorrect/corrupted CAN  
frame is received; counts down when correct, including  
CAN FD frame, is received  
1
1
Error Counter is and stays cleared to avoid an overflow  
during programming via CAN  
The DIS_ERR_ CNT bit is automatically cleared at tSILENCE expiration.  
Datasheet  
56  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
5.9.8  
Clock and Data Recovery  
In order to compensate possible deviations on the CAN oscillator frequency caused by assembly and lifetime  
effects, the device features an integrated clock and data recovery (CDR).  
It is recommended to always enable the CDR feature during SWK operation.  
5.9.8.1 Configuring the Clock Data Recovery for SWK  
The Clock and Data Recovery can be optionally enabled or disabled with the CDR_EN bit in the  
SWK_CDR_CTRL SPI register. In case the feature is enabled, the CAN bit stream will be measured and the  
internal clock used for the CAN frame decoding will be updated accordingly.  
Before the Clock and Data Recovery can be used it must be configured properly related to the used baud rate  
and filtering characteristics (see Chapter 5.9.8.2).  
It is strongly recommended not to enable/disable the Clock Recovery during a active CAN Communication.  
To ensure this, it is recommended to enable/disable it during CAN off (BUS_CTRL; CAN[2:0] = 000).  
CDR  
Aquisition  
80 Mhz Oscilator  
(analog)  
CAN  
Protocoll  
Handler  
Filter  
Sampling  
Point  
Calculation  
RX  
CAN Receiver  
(analog)  
Figure 26 Clock and Data Recovery Block Diagram  
Datasheet  
57  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
5.9.8.2 Setup of Clock and Data Recovery  
It is strongly recommended to enable the clock and data recovery feature only when the setup of the clock and  
data recovery is finished.  
The following sequence should be followed for enabling the clock and data recovery feature:  
Step 1: Switch CAN to off and CDR_EN to off  
Write SPI Register BUS_CTRL (CAN[2:0] = 000).  
Step 2: Configure CDR Input clock frequency  
Write SPI Register SWK_CDR_CTRL (SEL_OSC_CLK[1:0]).  
Step 3: Configure Bit timing Logic  
Write SPI Register SWK_BTL1_CTRL and adjust SWK_CDR_LIMIT according to Table 84.  
Step 4: Enable Clock and Data Recovery  
Choose filter settings for Clock and Data recovery. Write SPI Register SWK_CDR_CTRL with CDR_EN = 1.  
Additional hints for the CDR configuration and operation:  
Even if the CDR is disabled, when the baud rate is changed, the settings of SEL_OSC_CLK in the register  
SWK_CDR_CTRL and SWK_BTL1_CTRL have to be updated accordingly.  
The SWK_CDR_LIMIT registers has to be also updated when the baud rate or clock frequency is changed  
(the CDR is discarding all the acquisitions and looses all acquired information, if the limits are reached - the  
SWK_BTL1_CTRL value is reloaded as starting point for the next acquisitions).  
When updating the CDR registers, it is recommended to disable the CDR and to enable it again only after  
the new settings are updated.  
The SWK_BTL1_CTRL register represents the sampling point position. It is recommended to be used at  
default value: 11 0011 (~80%).  
Datasheet  
58  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
5.9.9  
Electrical Characteristics  
Table 18 Electrical Characteristics  
VSINT = 5.5 V to 28 V; Tj = -40°C to +150°C; 4.75 V < VCAN < 5.25 V; RL = 60 ; CAN Normal Mode; all voltages with  
respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
CAN Partial Network Timing  
Bus Bias reaction time  
tbias  
250  
µs  
µs  
1) Load RL = 60 , P_5.10.2  
CL = 100 pF,  
CGND = 100 pF  
Wake-up reaction time  
(WUP or WUF)  
tWU_WUP/WUF  
1
100  
1)2)3) Wake-up  
reaction time  
after a valid WUP  
or WUF;  
P_5.10.3  
1)4)  
Min. Bit Time  
tBit_min  
µs  
P_5.10.4  
Datasheet  
59  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Table 18 Electrical Characteristics (cont’d)  
VSINT = 5.5 V to 28 V; Tj = -40°C to +150°C; 4.75 V < VCAN < 5.25 V; RL = 60 ; CAN Normal Mode; all voltages with  
respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
CAN FD Tolerance5)  
SOF acceptance  
nBits_idle  
6
10  
bits  
%
6) Number of  
recessive bits  
before a new SOF  
shall be accepted  
6)7)8) of  
P_5.10.5  
Dominant signals which  
are ignored  
(up to 2MBit/s)  
tFD_Glitch_4  
0
-
5
P_5.10.6  
arbitration bit  
time;  
to be configured  
viaFD_FILTER;  
Dominant signals which  
are ignored  
(up to 5MBit/s)  
tFD_Glitch_10  
0
-
-
2.5  
-
%
%
6)8)9)ofarbitration P_5.10.7  
bit time;  
to be configured  
viaFD_FILTER;  
6)7)8)ofarbitration P_5.10.8  
bit time;  
to be configured  
viaFD_FILTER;  
Signals which are  
tFD_DOM_4  
17.5  
detected as a dominant  
data bit after the FDF bit  
and before EOF bit  
(up to 2MBit/s)  
Signals which are  
tFD_DOM_10  
8.75  
-
-
%
6)8)9)ofarbitration P_5.10.9  
bit time;  
to be configured  
viaFD_FILTER;  
detected as a dominant  
data bit after the FDF bit  
and before EOF bit  
(up to 5MBit/s)  
1) Not subject to production test, tolerance defined by internal oscillator tolerance.  
2) Wake-up is signalized via INTN pin activation in Stop Mode and via VCC1 ramping up with wake from Sleep Mode.  
3) For WUP: time starts with end of last dominant phase of WUP; for WUF: time starts with end of CRC delimiter of the  
WUF.  
4) The minimum bit time corresponds to a maximum bit rate of 1 Mbit/s. The lower end of the bit rate depends on the  
protocol IC or the permanent dominant detection circuitry preventing a permanently dominant clamped bus.  
5) Applies for an arbitration rate of up to 500 kbps until the FDF bit is detected.  
6) Not subject to production test; specified by design.  
7) A data phase bit rate less or equal to four times of the arbitration bit rate or 2 Mbit/s, whichever is lower.  
8) Parameter applies only for the Normal Mode CAN receiver (RX_WK_sel = 1).  
9) A data phase bit rate less or equal to four times of the arbitration bit rate or 5 Mbit/s, whichever is lower.  
Datasheet  
60  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Voltage Regulator 1  
6
Voltage Regulator 1  
6.1  
Block Description  
VCC1  
VSINT  
Vref  
1
Overtemperature  
Shutdown  
State  
Machine  
Bandgap  
Reference  
INH  
GND  
Figure 27 Module Block Diagram  
Functional Features  
5 V low-drop voltage regulator.  
Undervoltage monitoring with adjustable reset level and VCC1 undervoltage prewarning (refer to  
Chapter 13.7 and Chapter 13.8 for more information).  
Short circuit detection and switch off with undervoltage fail threshold, device enters Fail-Safe Mode.  
Effective capacitance must be 1 µF at nominal voltage output for stability. A 2.2 µF ceramic capacitor  
(MLCC) is recommended for best transient response.  
Output current capability up to IVCC1,lim.  
Datasheet  
61  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Voltage Regulator 1  
6.2  
Functional Description  
The Voltage Regulator 1 (=VCC1) is “ON” in Normal Mode and Stop Mode and is disabled in Sleep Mode and in  
Fail-Safe Mode. The regulator can provide an output current up to IVCC1,lim  
.
For low-quiescent current reasons, the output voltage tolerance is decreased in Stop Mode because only the  
less accurate low-power mode regulator will be active for small loads. If the load current on VCC1 exceeds the  
selected threshold (IVCC1,Ipeak1,r or IVCC1,Ipeak2,r) then the high-power mode regulator will be also activated to  
support an optimum dynamic load behavior. The current consumption will then increase (approx. 2.8 mA  
additional quiescent current). The device mode stays unchanged.  
If the load current on VCC1 falls below the selected threshold (IVCC1,Ipeak1,f or IVCC1,Ipeak2,f), then the low-quiescent  
current mode is resumed again by disabling the high-power mode regulator.  
Both regulators (low-power mode and high-power mode) are active in Normal Mode.  
Two different active peak thresholds can be selected via SPI:  
I_PEAK_TH = ‘0’(default): the lower VCC1 active peak threshold 1 is selected with lowest quiescent current  
consumption in Stop Mode.  
I_PEAK_TH = ‘1’: the higher VCC1 active peak threshold 2 is selected with an increased quiescent current  
consumption in Stop Mode.  
Datasheet  
62  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Voltage Regulator 1  
6.3  
Electrical Characteristics  
Table 19 Electrical Characteristics  
VSINT = 5.5 V to 28 V; Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Output Voltage including Line VCC1,out1  
and Load Regulation  
4.9  
5.0  
5.0  
5.1  
V
V
V
1)Normal Mode; 10 µA < P_6.3.1  
IVCC1 < 150 mA;  
Output Voltage including Line VCC1,out2  
and Load Regulation  
(Full Load Current Range)  
4.9  
5.1  
1)Normal Mode;  
P_6.3.2  
6 V < VSINT < 28 V;  
10 µA < IVCC1 < 250 mA  
2)Normal Mode; 20 mA P_6.3.3  
< IVCC1 < 80 mA;  
Output Voltage including Line VCC1,out3  
and Load Regulation  
4.95  
5.05  
(Higher Accuracy Rage)  
8 V < VSINT < 18 V;  
25°C < Tj < 150°C  
Output Voltage including Line VCC1,out4  
and Load Regulation  
4.9  
5.05 5.2  
V
Stop Mode;  
10 µA < IVCC1 < IVCC1,Ipeak  
P_6.3.4  
(low-power mode)  
Output Drop Voltage  
Output Drop Voltage  
VCC1,d1  
VCC1,d2  
200  
300  
400  
500  
mV  
mV  
mA  
IVCC1 = 50 mA,  
VSINT = 5 V  
P_6.3.9  
IVCC1 = 150 mA,  
VSINT = 5 V  
2)  
P_6.3.10  
P_6.3.17  
VCC1 Active Peak Threshold 1 IVCC1,Ipeak1,r  
(Transition threshold  
3.25 5.0  
I
rising;  
CC1  
VSINT = 13.5 V;  
between low-power and high-  
power mode regulator)  
I_PEAK_TH = ‘0’  
2)  
VCC1 Active Peak Threshold 1 IVCC1,Ipeak1,f 1.2  
(Transition threshold  
between high-power and low-  
power mode regulator)  
1.7  
mA  
mA  
mA  
mA  
I
falling;  
P_6.3.18  
P_6.3.19  
P_6.3.20  
CC1  
V
SINT = 13.5V;  
I_PEAK_TH = ‘0’  
2)  
VCC1 Active Peak Threshold 2 IVCC1,Ipeak2,r  
(Transition threshold  
between low-power and high-  
power mode regulator)  
6
5
20  
15  
500  
I
rising;  
CC1  
V
SINT = 13.5 V;  
I_PEAK_TH = ‘1’  
2)  
VCC1 Active Peak Threshold 2 IVCC1,Ipeak2,f  
(Transition threshold  
between high-power and low-  
power mode regulator)  
I
falling;  
CC1  
V
SINT = 13.5V;  
I_PEAK_TH = ‘1’  
Overcurrent Limitation  
IVCC1,lim  
260 360  
current following out of P_6.3.21  
pin, VCC1= 0V 2)  
Datasheet  
63  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Voltage Regulator 1  
Table 19 Electrical Characteristics (cont’d)  
VSINT = 5.5 V to 28 V; Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
2)  
MinimumOutputCapacitance CVCC1,min  
for stability  
13)  
µF  
P_6.3.22  
P_6.3.23  
2)  
Maximum Output  
Capacitance  
CVCC1,max  
47  
µF  
1) In Stop Mode, the specified output voltage tolerance applies when IVCC1 has exceeded the selected active peak  
threshold (IVCC1,Ipeak1,r or IVCC1,Ipeak2,r) but with increased current consumption.  
2) Not subject to production test, specified by design.  
3) Value is meant to be an effective value at rated output voltage level.  
Datasheet  
64  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High-Side Switch  
7
High-Side Switch  
7.1  
Block Description  
VSHS  
HSx  
HS Gate Control  
Overcurrent Detection  
Open Load (On)  
Figure 28 High-Side Module Block Diagram  
Features  
All HSx supplied by VSHS  
Under voltage switch off configurable via SPI.  
Dedicated over voltage switch off per each HSx in Normal Mode- configurable via SPI.  
Overvoltage switch off in Stop Mode and Sleep Mode- configurable via SPI.  
Overcurrent detection and switch off.  
Open load detection in ON-state.  
PWM capability with internal or external timers configurable via SPI.  
Switch recovery after removal of OV or UV condition configurable via SPI.  
7.2  
Functional Description  
The High-Side switches can be used for control of LEDs, as supply for the wake inputs and for other loads  
(except inductive load). The High-Side outputs can be controlled either directly via SPI by the integrated  
timers or by the integrated PWM generators or by external sync signal (using WK4/SYNC pin).  
The high-side outputs are supplied by VSHS pin. The topology supports improved cranking condition  
behavior.  
The configuration of the High-Sides (Permanent On, PWM, cyclic sense, etc.) drivers must be done in Normal  
Mode. The configuration is taken over in Stop Mode or Sleep Mode and cannot be modified. When entering  
Restart Mode or Fail-Safe Mode the HSx outputs are disabled.  
Datasheet  
65  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High-Side Switch  
7.2.1  
Under Voltage Switch Off  
All HS drivers in on-state are switched off in case of under voltage on VSHS. The feature can be disabled by  
setting the SPI bit HS_UV_SD_DIS .  
After release of under voltage condition, the HSx switch goes back to programmed state in which it was  
configured via SPI. This behavior is only valid if the bit HS_UV_REC is set. Otherwise the switches will stay off  
and the respective SPI control bits are cleared.  
The under voltage is signaled in the bit HS_UV, no other error bits are set.  
7.2.2  
Over Voltage Switch Off  
The HS drivers in on-state are switched off in case of over voltage on VSHS.. In Normal Mode the HSx can be  
kept in on-state above the VSHS overvoltage threshold if the HSx_OV_SDN_DIS bit is set.  
In Stop Mode or Sleep Modes all HS drivers can be kept in on-state if HS_OV_SDS_DIS bit is set.  
When the HSx are configured to switch off in case of over voltage condition, after release of over voltage  
condition, the HS switch goes back to programmed state in which it was configured via SPI. This behavior is  
only valid if the respective bit HSx_OV_REC is set. Otherwise the switch will stay off and the respective SPI  
control bits are cleared. This configuration is available for each HSx.  
The over voltage is signaled in the bit HS_OV, no other error bits are set.  
7.2.3  
Over Current Detection and Switch Off  
If the load current exceeds the over current shutdown threshold for a time longer then the over current  
shutdown filter time the output is switched off.  
The over current condition and the switch off is signaled with the respective HSx_OC_OT bit in the register  
HS_OL_OC_OT_STAT. The HSx configuration is then reset to 000 by the device. To activate the High-Side  
again the HSx configuration has to be set to ON (001) or be programmed to a timer function. It is  
recommended to clear the over current bit before activation the High-Side switch, as the bits are not cleared  
automatically by the device.  
7.2.4  
Open Load Detection  
Open load detection on the High-Side outputs is done during on state of the output. If the current in the  
activated output falls below the open load detection current threshold, the open load is detected and signaled  
via the respective bit HS1_OL, HS2_OL, HS3_OL, or HS4_OL in the register HS_OL_OC_OT_STAT. The High-  
Side output stays activated.. If the open load condition disappears the Open Load bit in the SPI can be cleared.  
The bits are not cleared automatically by the device.  
7.2.5  
PWM, Timer and SYNC Function  
Each integrated HSx can be configured in different ways, in particular:  
Static OFF  
Static ON  
Timer 1  
Timer 2  
Internal generator PWM1  
Internal generator PWM2  
Internal generator PWM3  
Internal generator PWM4  
Datasheet  
66  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High-Side Switch  
SYNC (via WK4)  
Note:  
PWMx mentioned in this chapter refer to the internal PWM generators, which are configured by the  
registers HS_CTRL and PWM_CTRL. They can be used to control the internal high-side switches HSx.  
Note:  
PWMx mentioned in this chapter do not refer to the PWMx pins. The PWMx pins are used for the PWM  
operation of the bridge drivers, to control the external MOSFETs.  
Static configuration (ON/OFF)  
This configuration set the HSx permanently ON or OFF. This configuration is available in Normal Mode, Stop  
Mode and Sleep Mode.  
The configuration shall be done via SPI.  
Timer configuration (TIMER1 or TIMER2)  
Two Timers are dedicated to control the ON phase of dedicated HS outputs.  
The Timers are mapped to the dedicated HS outputs. Period and the duty cycle can be independently  
configured with via SPI.  
PWM configuration (PWM1..PWM4)  
Several internal PWM generators are dedicated to generate a PWM signal on the HSx output, e.g. for brightness  
adjustment or compensation of supply voltage fluctuation. The PWM generators are mapped to the dedicated  
HS outputs, and the duty cycle can be independently configured with a 10-bit resolution via SPI (PWM_CTRL).  
Two different frequencies can be selected independently for every PWM generator in the register PWM_CTRL.  
In order to assign and configure the PWMx to specific HSX, the follow steps have to be followed:  
Configure duty cycle and frequency for respective PWM generator in PWM_CTRL.  
Assign PWM generator to respective HS switch(es) in HSx_CTRL.  
The PWM generation will start right after the HSx is assigned to the PWM generator (HS_CTRL) .  
Note:  
The min. on-time during PWM is limited by the actual on- and off-time of the respective HS switch,  
e.g. the PWM setting ‘00 0000 0001’ could not be realized.  
SYNC configuration (using WK4)  
Another possible configuration is to use the WK4 (set as SYNC pin) and mapped to one dedicated HSx output.  
The configuration of the WK4/SYNC bit is done using the WK_EN bits. If the WK_EN=10B (SYNC selected), all  
bits in WK4 bank are ignored and wake-up capability on WK4 is not available.  
Only after the WK4/SYNC configuration, the HSx can be configured for SYNC usage (HSx = 1000B).  
Datasheet  
67  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High-Side Switch  
7.3  
Electrical Characteristics  
Table 20  
Electrical Characteristics  
VSINT = 5.5 V to 28 V; Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Output HS1, HS2, HS3, HS4  
Static Drain-Source ON  
Resistance HSx  
RON,HS25  
RON,HS150  
Ileak,HS  
7
Ids = 60 mA,  
Tj < 25°C  
P_7.3.1  
P_7.3.2  
P_7.3.3  
Static Drain-Source ON  
Resistance HSx  
11.5  
16  
2
Ids = 60 mA,  
Tj < 150°C  
1)0 V < VHSx  
Leakage Current HSx / per  
channel  
µA  
< VS_HS  
;
Tj < 85°C  
Output Slew Rate (rising)  
Output Slew Rate (falling)  
Switch-on time HSx  
SRraise,HS  
SRfall,HS  
tON,HS  
0.8  
-2.5  
3
2.5  
-0.8  
30  
V/µs 1)20 to 80%  
VSHS = 6 to 18 V  
RL = 220 Ω  
P_7.3.4  
P_7.3.5  
P_7.3.6  
V/µs 1)80 to 20%  
VSHS = 6 to 18 V  
RL = 220 Ω  
µs  
µs  
CSN = HIGH to  
0.8 × VSHS;  
RL = 220 ;  
VSHS = 6 to 18 V  
Switch-off time HSx  
tOFF,HS  
3
30  
CSN = HIGH to  
0.2 × VSHS;  
P_7.3.7  
RL = 220 ;  
VSHS = 6 to 18 V  
Short Circuit Shutdown  
Current  
ISD,HS  
150  
12  
245  
16  
300  
22  
2
mA  
µs  
VSHS = 6 to 20 V  
P_7.3.8  
P_7.3.9  
P_7.3.10  
P_7.3.11  
P_7.3.12  
2)  
Short Circuit Shutdown  
Filter Time  
tSD,HS  
Open Load Detection  
Current  
IOL,HS  
0.4  
mA  
mA  
µs  
hysteresis  
included  
1)  
Open Load Detection  
hysteresis  
IOL,HS,hys  
0.45  
220  
2)  
Open Load Detection Filter tOL,HS  
160  
270  
Time  
1) Not subject to production test, specified by design.  
2) Not subject to production test, tolerance defined by internal oscillator tolerance.  
Datasheet  
68  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High Speed CAN Transceiver  
8
High Speed CAN Transceiver  
8.1  
Block Description  
VCAN  
VCC1  
SPI Mode  
Control  
RTD  
Driver  
CANH  
CANL  
Output  
Stage  
TXDCAN  
Temp.-  
Protection  
+
timeout  
To SPI diagnostic  
VCAN  
VCC1  
RXDCAN  
MUX  
Receiver  
Vs  
Wake  
Receiver  
Figure 29 Functional Block Diagram  
8.2  
Functional Description  
The Controller Area Network (CAN) transceiver part of the device provides High-Speed (HS) differential mode  
data transmission (up to 2 Mbaud/s) and reception in automotive and industrial applications. It works as an  
interface between the CAN protocol controller and the physical bus lines compatible to ISO11898-2:2016 and  
SAE J2284.  
The CAN FD transceiver offers low-power modes to reduce current consumption. This supports networks with  
partially powered down nodes. To support software diagnostic functions, a CAN Receive Only Mode is  
implemented.  
It is designed to provide excellent passive behavior when the transceiver is switched off (mixed networks,  
clamp 15/30 applications).  
A wake-up from the CAN Wake Capable Mode is possible via a message on the bus. Thus, the microcontroller  
can be powered down or idled and is woken up by the CAN bus activities.  
The CAN transceiver is designed to withstand the severe conditions of automotive applications and to support  
12 V applications.  
Datasheet  
69  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High Speed CAN Transceiver  
The transceiver can also be configured to Wake Capable in order to save current and to ensure a safe transition  
from Normal Mode to Sleep Mode (to avoid loosing messages).  
Figure 30 shows the possible transceiver mode transition when changing the device mode.  
Device Mode  
CAN Transceiver Mode  
Stop Mode  
Receive Only Wake Capable Normal Mode  
OFF  
OFF  
Normal Mode  
Sleep Mode  
Receive Only Wake Capable Normal Mode  
Wake Capable  
OFF  
OFF  
Woken1  
Restart Mode  
Fail-Safe Mode  
Wake Capable  
1after a wake event on CAN Bus  
Behavior after Restart Mode - not coming from Sleep Mode due to a wake up of the respective transceiver:  
If the transceivers had been configured to Normal Mode, or Receive Only Mode, then the mode will be changed to Wake  
Capable. If it was Wake Capable, then it will remain Wake Capable. If it had been OFF before Restart Mode, then it will  
remain OFF.  
Behavior in Software Development Mode:  
CAN default value in INIT MODE and entering Normal Mode from Init Mode is ON instead of OFF.  
Figure 30 CAN Mode Control Diagram  
CAN FD Support  
CAN FD stands for ‘CAN with Flexible Data Rate’. It is based on the well established CAN protocol as specified  
in ISO11898-2:2016. CAN FD still uses the CAN bus arbitration method. The benefit is that the bit rate can be  
increased by switching to a shorter bit time at the end of the arbitration process and then to return to the  
longer bit time at the CRC delimiter, before the receivers transmit their acknowledge bits. See also Figure 31.  
In addition, the effective data rate is increased by allowing longer data fields. CAN FD allows the transmission  
of up to 64 data bytes compared to the 8 data bytes from the standard CAN.  
Standard CAN  
message  
Data phase  
(Byte 0 – Byte 7)  
CAN Header  
CAN Footer  
Example:  
- 11bit identifier + 8Byte data  
CAN FD with  
reduced bit time  
Data phase  
(Byte 0 – Byte 7)  
CAN Header  
CAN Footer  
- Arbitration Phase  
- Data Phase  
500kbps  
2Mbps  
à average bit rate  
1.14Mbps  
Figure 31 Bit Rate Increase with CAN FD vs. Standard CAN  
Datasheet  
70  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High Speed CAN Transceiver  
Not only the physical layer must support CAN FD but also the CAN controller. In case the CAN controller is not  
able to support CAN FD then the respective CAN node must at least tolerate CAN FD communication. This CAN  
FD tolerant mode is realized in the physical layer.  
8.2.1  
CAN OFF Mode  
The CAN OFF Mode is the default mode after power-up of the device. It is available in all device modes and is  
intended to completely stop CAN activities or when CAN communication is not needed. In CAN OFF Mode, a  
wake-up event on the bus will be ignored.  
8.2.2  
CAN Normal Mode  
The CAN Transceiver is enabled via SPI in Normal Mode. CAN Normal Mode is designed for normal data  
transmission/reception within the HS-CAN network. The mode is available in Normal Mode and in Stop Mode.  
The bus biasing is set to VCAN/2.  
Transmission  
The signal from the microcontroller is applied to the TXDCAN input of the device. The bus driver switches the  
CANH/L output stages to transfer this input signal to the CAN bus lines.  
Enabling sequence  
The CAN transceiver requires an enabling time tCAN,EN before a message can be sent on the bus. This means  
that the TXDCAN signal can only be pulled low after the enabling time. If this is not ensured, then the TXDCAN  
needs to be set back to high (=recessive) until the enabling time is completed. Only the next dominant bit will  
be transmitted on the bus. Figure 32 shows different scenarios and explanations for CAN enabling.  
V
TXDCAN  
t
CAN  
Mode  
t CAN,EN  
tCAN,EN  
t CAN,EN  
CAN  
NORMAL  
CAN  
OFF  
t
t
V
CANDIFF  
Dominant  
Recessive  
recessive  
TXDCAN  
level required  
recessive TXDCAN  
level required bevor  
start of transmission  
Correct sequence ,  
Bus is enabled after tCAN,  
tCAN, EN not ensured , no  
transmission on bus  
tCAN, EN not ensured ,  
no transmission on bus  
EN  
Figure 32 CAN Transceiver Enabling Sequence  
Reduced Electromagnetic Emission  
To reduce electromagnetic emissions (EME), the bus driver controls CANH/L slopes symmetrically.  
Reception  
Analog CAN bus signals are converted into digital signals at RXDCAN via the differential input receiver.  
8.2.3  
CAN Receive Only Mode  
In CAN Receive Only Mode (RX only), the driver stage is de-activated but reception is still operational. This  
mode is accessible by an SPI command in Normal Mode and in Stop Mode.  
Datasheet  
71  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High Speed CAN Transceiver  
Note:  
The transceiver is still properly working in CAN Receive Only Mode even if VCAN is not available  
because of an independent receiver supply.  
8.2.4  
CAN Wake Capable Mode  
This mode can be used in Stop Mode, Sleep Mode, Restart Mode and Normal Mode by programming via SPI  
and it is used to monitor bus activities. It is automatically accessed in Fail-Safe Mode. A wake-up signal on the  
bus results in a change of behavior of the device, as described in Table 21. As a signalization to the  
microcontroller, the RXDCAN pin is set low and will stay low until the CAN transceiver is changed to any other  
mode. After a wake-up event, the transceiver can be switched to CAN Normal Mode via SPI for bus  
communication.  
As shown in Figure 33, a wake-up pattern (WUP) is signaled on the bus by two consecutive dominant bus  
levels for at least tWake1 (wake-up time) and less than tWake2, each separated by a recessive bus level of greater  
than tWake1 and shorter than tWake2  
.
Entering CAN wake  
capable  
Bus recessive > tWAKE1  
Ini  
Wait  
Bias off  
Bias off  
Bus dominant > tWAKE1  
optional:  
tWAKE2 expired  
1
Bias off  
Bus recessive > tWAKE1  
optional:  
tWAKE2 expired  
2
Bias off  
Bus dominant > tWAKE1  
Entering CAN Normal  
or CAN Recive Only  
3
Bias on  
Figure 33 CAN Wake-up Pattern Detection according to the Definition in ISO11898-2:2016  
Rearming the Transceiver for Wake Capability  
After a BUS wake-up event, the transceiver is woken. However, the CAN transceiver mode bits will still show  
wake capable (=‘01’) so that the RXDCAN signal will be pulled low. There are two possibilities how the CAN  
transceiver’s wake capable mode is enabled again after a wake-up event:  
The CAN transceiver mode must be toggled, i.e. switched from CAN Wake Capable Mode to CAN Normal  
Mode, CAN Receive Only Mode or CAN OFF Mode, before switching to CAN Wake Capable Mode again.  
Rearming is done automatically when the device is changed to Stop Mode, Sleep Mode or Fail-Safe Mode  
to ensure wake-up capability.  
Datasheet  
72  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High Speed CAN Transceiver  
Wake-Up in Stop Mode and Normal Mode  
In Stop Mode, if a wake-up is detected, it is always signaled by the INTN output and in the WK_STAT SPI  
register. It is also signaled by RXDCAN pulled to low. The same applies for the Normal Mode. The  
microcontroller should set the device from Stop Mode to Normal Mode, there is no automatic transition to  
Normal Mode.  
For functional safety reasons, the watchdog will be automatically enabled in Stop Mode after a bus wake-up  
event in case it was disabled before (if bit WD_EN_ WK_BUS was configured to high before).  
Wake-Up in Sleep Mode  
Wake-up is possible via a CAN message. The wake-up automatically transfers the device into the Restart Mode  
and from there to Normal Mode the corresponding RXDCAN pin is set to low. The microcontroller is able to  
detect the low signal on RXDCAN and to read the wake source out of the WK_STAT register via SPI. No interrupt  
is generated when coming out of Sleep Mode. The microcontroller can now for example switch the CAN  
transceiver into CAN Normal Mode via SPI to start communication.  
Table 21 Action due to CAN Bus Wake-Up  
Mode  
Mode after Wake  
Normal Mode  
Stop Mode  
VCC1  
INTN  
Low  
Low  
RXDCAN  
Low  
Normal Mode  
Stop Mode  
Sleep Mode  
Restart Mode  
Fail-Safe Mode  
On  
On  
Low  
Restart Mode  
Restart Mode  
Restart Mode  
Ramping Up  
On  
High  
High  
High  
Low  
Low  
Ramping Up  
Low  
8.2.5  
CAN Bus termination  
In accordance with the CAN configuration, four types of bus terminations are allow:  
CAN Normal Mode: VCAN/2 termination.  
CAN Receive Only Mode: VCAN/2 termination in case that VCAN is nominal supply.  
when VCAN UV is detected, the termination is 2.5 V.  
CAN Wake Capable Mode: GND termination: after wake-up, the termination is 2.5 V.  
CAN OFF Mode: no termination necessary (bus floating).  
When entering CAN Wake Capable Mode the termination is only connected to GND after the t_silence time has  
expired.  
8.2.6  
TXD Time-out Feature  
If the TXDCAN signal is dominant for a time t > tTXDCAN_TO, in CAN Normal Mode, the TXDCAN time-out function  
deactivates the transmission of the signal at the bus setting the TXDCAN pin to recessive. This is implemented  
to prevent the bus from being blocked permanently due to an error. The transmitter is disabled and thus  
switched to recessive state. The CAN SPI control bits (CAN on BUS_CTRL) remain unchanged and the failure  
is stored in the SPI flag CAN_FAIL. The CAN transmitter stage is activated again after the dominant time-out  
condition is removed and the transceiver is automatically switched back to CAN Normal Mode.  
8.2.7  
Bus Dominant Clamping  
If the CAN bus is dominant for a time t > tBUS_CAN_TO, when CAN is configured as CAN Normal Mode or CAN  
Receive Only Mode, a bus dominant clamping is detected and the SPI bit CAN_FAIL is set. The transceiver  
configuration stays unchanged. In order to avoid that a bus dominant clamping is detected due to a TXD time-  
out the bus dominant clamping filter time tBUS_CAN_TO > tTXDCAN_TO  
.
Datasheet  
73  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High Speed CAN Transceiver  
8.2.8  
Undervoltage Detection  
The voltage at the CAN supply pin is monitored in CAN Normal Mode and CAN Receive Only Mode. In case of  
VCAN undervoltage a signalization via SPI bit VCAN_UV is triggered and the TLE9560-3QX disables the  
transmitter stage. If the CAN supply reaches a higher level than the undervoltage detection threshold (VCAN >  
VCAN_UV), the transceiver is automatically switched back to CAN Normal Mode.  
The undervoltage detection is enabled if the mode bit CAN_1 = ‘1’, i.e. in CAN Normal or CAN Receive Only  
Mode. .  
8.3  
Electrical Characteristics  
Table 22 Electrical Characteristics  
Tj = -40°C to +150°C; VSINT = 5.5 V to 28 V; VCAN = 4.75 V to 5.25 V; RL = 60 ; CAN Normal Mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
CAN Bus Receiver  
Differential Receiver  
Threshold Voltage,  
recessive to dominant edge  
Vdiff,rd_N  
0.80  
0.60  
0.90  
V
V
V
Vdiff = VCANH - VCANL;  
-12 V VCM(CAN)  
12 V;  
P_8.3.1  
CAN Normal Mode  
Differential Receiver  
Threshold Voltage,  
dominant to recessive edge  
Vdiff,dr_N  
0.50  
Vdiff = VCANH -VCANL  
-12 V VCM(CAN)  
12 V;  
;
P_8.3.2  
CAN Normal Mode  
Dominant state differential Vdiff_D_range 0.9  
8.0  
Vdiff = VCANH - VCANL  
;
P_8.3.60  
input voltage range  
-12 V VCM(CAN) ≤  
+12 V;  
CAN Normal Mode  
4)  
Common Mode Range  
CMR  
-12  
12  
V
V
P_8.3.3  
Recessive state differential Vdiff_R_range -3.0  
0.5  
Vdiff = VCANH - VCANL  
;
P_8.3.61  
input voltage range  
-12 V VCM(CAN) ≤  
+12 V;  
CAN Normal Mode  
4)  
Maximum Differential Bus  
Voltage  
Vdiff,max  
Ri  
-5  
10  
50  
V
P_8.3.4  
CANH, CANL Input  
Resistance  
20  
40  
kΩ  
CAN Normal / Wake P_8.3.5  
Capable Mode;  
Recessive state  
-2V VCANH/L +7V  
Differential Input Resistance Rdiff  
40  
-3  
80  
100  
3
kΩ  
CAN Normal / Wake P_8.3.6  
Capable Mode;  
Recessive state  
-2V VCANH/L +7V  
Input Resistance Deviation DRi  
between CANH and CANL  
%
4)Recessive state  
CANH = VCANL = 5V  
P_8.3.7  
V
Datasheet  
74  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High Speed CAN Transceiver  
Table 22 Electrical Characteristics (cont’d)  
Tj = -40°C to +150°C; VSINT = 5.5 V to 28 V; VCAN = 4.75 V to 5.25 V; RL = 60 ; CAN Normal Mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
20  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Input Capacitance CANH,  
CANL versus GND  
Cin  
40  
pF  
pF  
V
V
= 5 V  
P_8.3.8  
P_8.3.9  
P_8.3.10  
TXDCAN  
1)  
Differential Input  
Capacitance  
Cdiff  
10  
20  
V
= 5 V  
TXDCAN  
Wake-up Receiver  
Threshold Voltage,  
Vdiff, rd_W  
0.8  
1.15  
-12 V VCM(CAN)  
12 V;  
recessive to dominant edge  
CAN Wake Capable  
Mode  
Wake-up Receiver Dominant Vdiff,D_range_ 1.15  
8.0  
0.4  
V
V
V
-12 V VCM(CAN) ≤  
+12 V;  
CAN Wake Capable  
Mode  
P_8.3.62  
P_8.3.11  
P_8.3.63  
state differential input  
W
voltage range  
Wake-up Receiver  
Vdiff, dr_W  
0.4  
0.7  
-12 V VCM(CAN)  
12 V;  
CAN Wake Capable  
Mode  
Threshold Voltage,  
dominant to recessive edge  
Wake-up Receiver Recessive Vdiff,R_range_W -3.0  
state differential input  
-12 V VCM(CAN) ≤  
+12 V;  
voltage range  
CAN Wake Capable  
Mode  
CAN Bus Transmitter  
CANH/CANL Recessive  
Output Voltage  
(CAN Normal Mode)  
VCANL/H_NM 2.0  
3.0  
0.1  
V
V
CAN Normal Mode  
P_8.3.12  
P_8.3.13  
VTXDCAN = Vcc1  
;
no load  
CANH/CANL Recessive  
Output Voltage  
VCANL/H_LP  
-0.1  
CAN Wake Capable  
Mode;  
(CAN Wake Capable Mode)  
V
TXDCAN = Vcc1  
no load  
CAN Normal Mode;  
;
CANH, CANL Recessive  
Output Voltage Difference  
Vdiff = VCANH - VCANL  
Vdiff_r_N  
-500  
-200  
50  
mV  
mV  
P_8.3.14  
P_8.3.15  
VTXDCAN = Vcc1  
no load  
;
(CAN Normal Mode)  
CANH, CANL Recessive  
Output Voltage Difference  
Vdiff = VCANH - VCANL  
Vdiff_r_W  
200  
CAN Wake Capable  
Mode;  
VTXDCAN = Vcc1  
;
(CAN Wake Capable Mode)  
no load  
CANL Dominant Output  
Voltage  
VCANL  
0.5  
2.25  
V
4)CAN Normal Mode; P_8.3.16  
TXDCAN = 0 V;  
V
VCAN = 5 V;  
50 Ω ≤ RL 65 Ω  
Datasheet  
75  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High Speed CAN Transceiver  
Table 22 Electrical Characteristics (cont’d)  
Tj = -40°C to +150°C; VSINT = 5.5 V to 28 V; VCAN = 4.75 V to 5.25 V; RL = 60 ; CAN Normal Mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
CANH Dominant Output  
Voltage  
VCANH  
2.75  
4.5  
V
V
V
4)CAN Normal Mode; P_8.3.17  
VTXDCAN = 0 V;  
VCAN = 5 V;  
50 Ω ≤ RL 65 Ω  
4)CAN Normal Mode; P_8.3.18  
VTXDCAN = 0 V;  
CANH, CANL Dominant  
Output Voltage Difference  
Vdiff = VCANH - VCANL  
Vdiff_d_N  
1.5  
1.5  
2.0  
2.5  
5.0  
VCAN = 5 V;  
50 Ω ≤ RL 65 Ω  
4)CAN Normal Mode; P_8.3.19  
CANH, CANL Dominant  
Output Voltage Difference  
(resistance during  
arbitration)  
Vdiff_d_N  
VTXDCAN = 0 V;  
VCAN = 5 V; RL = 2240 Ω  
Vdiff = VCANH - VCANL  
CANH, CANL output voltage Vdiff_slope_rd  
difference slope, recessive  
to dominant  
70  
70  
5.5  
V/us 4)30% to 70% of  
measured  
P_8.3.54  
P_8.3.55  
differential bus  
voltage,  
CL = 100 pF, RL = 60 Ω  
CANH, CANL output voltage Vdiff_slope_dr  
difference slope, dominant  
to recessive  
V/us 4)70% to 30% of  
measured  
differential bus  
voltage,  
CL = 100 pF, RL = 60 Ω  
Driver Symmetry  
SYM = VCANH + VCANL  
VSYM  
4.5  
V
2)CAN Normal Mode; P_8.3.21  
TXDCAN = 0 V / 5 V;  
VCAN = 5 V;  
SPLIT = 4.7 nF;  
V
V
C
50 Ω ≤ RL 60 ;  
CANH Short Circuit Current ICANHsc  
CANL Short Circuit Current ICANLsc  
-115  
50  
-80  
80  
5
-50  
115  
7.5  
mA  
mA  
µA  
CAN Normal Mode;  
P_8.3.22  
P_8.3.23  
P_8.3.24  
V
CANHshort = -3 V  
CAN Normal Mode;  
CANLshort = 18 V;  
V
Leakage Current  
ICANH,lk  
ICANL,lk  
VS = VCAN = 0 V;  
0 V VCANH,L 5 V;  
3)  
R
= 0 / 47kΩ  
test  
Receiver Output RXDCAN  
High level Output Voltage  
VRXDCAN,H  
VRXDCAN,L  
0.8 ×  
VCC1  
V
V
CAN Normal Mode;  
RXDCAN = -2 mA  
CAN Normal Mode;  
IRXDCAN = 2 mA  
P_8.3.26  
P_8.3.27  
I
Low Level Output Voltage  
0.2 ×  
Vcc1  
Datasheet  
76  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High Speed CAN Transceiver  
Table 22 Electrical Characteristics (cont’d)  
Tj = -40°C to +150°C; VSINT = 5.5 V to 28 V; VCAN = 4.75 V to 5.25 V; RL = 60 ; CAN Normal Mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Transmission Input TXDCAN  
High Level Input Voltage  
Threshold  
VTXDCAN,H  
VTXDCAN,L  
VTXDCAN,hys  
0.7 ×  
Vcc1  
V
V
V
CAN Normal Mode;  
recessive state  
P_8.3.28  
P_8.3.29  
P_8.3.30  
Low Level Input Voltage  
Threshold  
0.3 ×  
Vcc1  
CAN Normal Mode;  
dominant state  
4)  
TXDCAN Input Hysteresis  
0.12 ×  
Vcc1  
TXDCAN Pull-up Resistance RTXDCAN  
TXDCAN input capacitance CTXDCAN  
20  
50  
6
80  
10  
18  
kΩ  
pF  
µs  
-
P_8.3.31  
P_8.3.64  
4)  
CAN Transceiver Enabling  
Time  
tCAN,EN  
8
12  
6) CSN = high to first P_8.3.32  
valid transmitted  
TXDCAN dominant  
Dynamic CAN-Transceiver Characteristics  
Min. Dominant Time for Bus tWake1  
Wake-up  
0.5  
1.8  
µs  
-12 V VCM(CAN)  
12 V;  
P_8.3.33  
CAN Wake Capable  
Mode  
Wake-up Time-out,  
Recessive Bus  
tWake2  
tLOOP,f  
0.8  
10  
ms  
ns  
6)CAN Wake Capable P_8.3.34  
Mode  
2)CAN Normal Mode; P_8.3.35  
CL = 100 pF;  
Loop delay  
(recessive to dominant)  
150  
255  
RL = 60 ;  
VCAN = 5 V;  
CRXDCAN = 15 pF  
Loop delay  
(dominant to recessive)  
tLOOP,r  
150  
255  
ns  
2)CAN Normal Mode; P_8.3.36  
CL = 100 pF;  
RL = 60 ;  
VCAN = 5 V;  
CRXDCAN = 15 pF  
Propagation Delay  
TXDCAN low to bus  
dominant  
td(L),T  
50  
50  
140  
140  
ns  
ns  
CAN Normal Mode;  
CL = 100 pF;  
RL = 60 ;  
P_8.3.37  
P_8.3.38  
VCAN = 5 V  
Propagation Delay  
TXDCAN high to bus  
recessive  
td(H),T  
CAN Normal Mode;  
CL = 100 pF;  
RL = 60 ;  
VCAN = 5 V  
Datasheet  
77  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High Speed CAN Transceiver  
Table 22 Electrical Characteristics (cont’d)  
Tj = -40°C to +150°C; VSINT = 5.5 V to 28 V; VCAN = 4.75 V to 5.25 V; RL = 60 ; CAN Normal Mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
100  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Propagation Delay  
bus dominant to RXDCAN  
low  
td(L),R  
ns  
ns  
ns  
CAN Normal Mode;  
CL = 100 pF;  
RL = 60 ;  
P_8.3.39  
VCAN = 5 V;  
CRXDCAN = 15 pF  
Propagation Delay  
bus recessive to RXDCAN  
high  
td(H),R  
100  
CAN Normal Mode;  
CL = 100 pF;  
RL = 60 ;  
P_8.3.40  
P_8.3.42  
VCAN = 5 V;  
CRXDCAN = 15 pF  
ReceivedRecessivebitwidth tbit(RXD)  
400  
550  
CAN Normal Mode;  
CL = 100 pF;  
RL = 60 ;  
VCAN = 5 V;  
CRXDCAN = 15 pF;  
tbit(TXD) = 500 ns;  
Parameter definition  
in according to  
Figure 35.  
Transmitted Recessive bit  
width  
tbit(BUS)  
435  
530  
ns  
CAN Normal Mode;  
CL = 100 pF;  
P_8.3.43  
RL = 60 ;  
VCAN = 5 V;  
CRXDCAN = 15 pF;  
tbit(TXD) = 500 ns;  
Parameter definition  
in according to  
Figure 35.  
Receiver timing symmetry5) tRec  
-65  
40  
ns  
CAN Normal Mode;  
CL = 100 pF;  
RL = 60 ;  
P_8.3.44  
VCAN = 5 V;  
CRXDCAN = 15 pF;  
tbit(TXD) = 500 ns;  
Parameter definition  
in according to  
Figure 35.  
Datasheet  
78  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High Speed CAN Transceiver  
Table 22 Electrical Characteristics (cont’d)  
Tj = -40°C to +150°C; VSINT = 5.5 V to 28 V; VCAN = 4.75 V to 5.25 V; RL = 60 ; CAN Normal Mode; all voltages with  
respect to ground, positive current flowing into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
ReceivedRecessive bit width tbit(RXD)  
120  
220  
ns  
ns  
ns  
CAN Normal Mode;  
CL = 100 pF;  
RL = 60 ;  
P_8.3.45  
VCAN = 5 V;  
CRXDCAN = 15 pF;  
tbit(TXD) = 200 ns;  
Parameter definition  
in according to  
Figure 35.  
Transmitted Recessive bit  
width  
tbit(BUS)  
155  
-45  
1.6  
210  
CAN Normal Mode;  
CL = 100 pF;  
RL = 60 ;  
P_8.3.46  
VCAN = 5 V;  
CRXDCAN = 15 pF;  
tbit(TXD) = 200 ns;  
Parameter definition  
in according to  
Figure 35.  
Receivertimingsymmetryt tRec  
Rec = t_bit(RXD) - t_bit(Bus)  
15  
CAN Normal Mode;  
CL = 100 pF;  
P_8.3.47  
RL = 60 ;  
V
CAN = 5 V;  
CRXDCAN = 15 pF;  
bit(TXD) = 200 ns;  
t
Parameter definition  
in according to  
Figure 35.  
TXDCAN Permanent  
Dominant Time-out  
tTXDCAN_TO  
2.0  
2.5  
2.4  
3.0  
ms  
ms  
6)CAN Normal Mode P_8.3.48  
BUS Permanent Dominant tBUS_CAN_TO 2.0  
6)CAN Normal Mode P_8.3.49  
Time-out  
6)  
Timeout for bus inactivity  
Bus Bias reaction time  
tSILENCE  
tBias  
0.6  
1.2  
s
P_8.3.50  
6)  
250  
µs  
P_8.3.51  
1) Not subject to production test, specified by design, S2P - Method; f = 10 MHz  
2) VSYM shall be observed during dominant and recessive state and also during the transition dominant to recessive and  
vice versa while TXD is simulated by a square signal (50% duty cycle) with a frequency of up to 1 MHz (2MBit/s).  
3) Rtests between (Vs /VCAN) and 0V (GND).  
4) Not subject to production test, specified by design.  
5) tRec = tbit(RXD) - tbit(BUS)  
.
6) Not subject to production test, tolerance defined by internal oscillator tolerance.  
Datasheet  
79  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High Speed CAN Transceiver  
V
TXDCAN  
Vcc1  
GND  
t
t
VDIFF  
td(L),T  
td(H),T  
V diff, rd_N  
Vdiff, dr_N  
t d(L),R  
t d(H),R  
tLOOP,f  
tLOOP,r  
VRXDCAN  
V
cc1  
0.8 x Vcc1  
0.2 x Vcc1  
GND  
Figure 34 Timing Diagrams for Dynamic Characteristics  
70%  
TXDCAN  
30%  
tLoop_f  
5x tBit(TXD)  
tBit(TXD)  
Vdiff=CANH-CANL  
900mV  
tBit(Bus)  
500mV  
70%  
RXDCAN  
30%  
tLoop_r  
tBit(RXD)  
Figure 35 From ISO11898-2:2016: tloop, tbit(TXD), tbit(Bus), tbit(RXD) definitions  
Datasheet  
80  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
LIN Transceiver  
9
LIN Transceiver  
9.1  
Block Description  
VS  
SPI Mode Control  
VCC1  
Driver  
TxD Input  
Temp.-  
Protection  
Current  
RTxD  
RBUS  
Output  
Stage  
TXDLIN  
Timeout  
Limit  
LIN  
To SPI Diagnostic  
Receiver  
VCC1  
Filter  
VSHS  
RXDLIN  
Wake  
Receiver  
Figure 36 Block Diagram  
9.1.1  
LIN Specifications  
The LIN network is standardized by international regulations.  
The device is compliant to:  
ISO17987-4: rev. 2016  
SAE-J2602-2  
Datasheet  
81  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
LIN Transceiver  
9.2  
Functional Description  
The LIN Bus is a single wire, bi-directional bus, used for in-vehicle networks. The LIN transceivers implemented  
inside the TLE9560-3QX are the interface between the microcontroller and the physical LIN Bus. The digital  
output data from the microcontroller are driven to the LIN bus via the TXDLIN pin on the TLE9560-3QX. The  
transmit data stream on the TXDLIN is converted to a LIN bus signal with optimized slew rate to minimize the  
EME level of the LIN network. The RXDLIN sends back the information from the LIN bus to the microcontroller.  
The receiver has an integrated filter network to suppress noise on the LIN Bus and to increase the EMI (Electro  
Magnetic Immunity) level of the transceiver.  
Two logical states are possible on the LIN Bus according to the LIN specification.  
Every LIN network consists of a master node and one or more slave nodes. To configure the TLE9560-3QX for  
master node applications, a resistor in the range of 1 kand a reverse diode must be connected between the  
LIN bus and the power supply VSHS.  
The different transceiver modes can be controlled via the SPI LIN bits.  
Figure 37 shows the possible transceiver mode transitions when changing the devicemode.  
Device Mode  
LIN Transceiver Mode  
Stop Mode  
Receive Only Wake Capable Normal Mode  
OFF  
OFF  
Normal Mode  
Sleep Mode  
Receive Only Wake Capable Normal Mode  
Wake Capable  
OFF  
OFF  
Woken1  
Restart Mode  
Fail-Safe Mode  
Wake Capable  
1after a wake event on LIN Bus  
Behavior after Restart Mode - not coming from Sleep Mode due to a wake up of the respective transceiver:  
If the transceivers had been configured to Normal Mode, or Receive Only Mode, then the mode will be changed to Wake  
Capable. If it was Wake Capable, then it will remain Wake Capable. If it had been OFF before Restart Mode, then it will  
remain OFF.  
Behavior in Software Development Mode:  
LIN default value in INIT MODE and entering Normal Mode from Init Mode is ON instead of OFF.  
Figure 37 LIN Mode Control Diagram  
9.2.1  
LIN OFF Mode  
The LIN OFF Mode is the default mode after power-up of the device. It is available in all device modes and is  
intended to completely stop LIN activities or when LIN communication is not needed. In LIN OFF Mode, a  
wake-up event on the bus will be ignored.  
9.2.2  
LIN Normal Mode  
The LIN Transceiver is enabled via SPI in Normal Mode. LIN Normal Mode is designed for normal data  
transmission/reception within the LIN network. The mode is available in Normal Mode and in Stop Mode.  
Datasheet  
82  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
LIN Transceiver  
Transmission  
The signal from the microcontroller is applied to the TXDLIN input of the device. The bus driver switches the  
LIN output stage to transfer this input signal to the LIN bus line.  
Enabling Sequence  
The LIN transceiver requires an enabling time tLIN,EN before a message can be sent on the bus. This means that  
the TXDLIN signal can only be pulled LOW after the enabling time. If this is not ensured, then the TXDLIN needs  
to be set back to high (=recessive) until the enabling time is completed.  
Only the next dominant bit will be transmitted on the bus.  
Figure 38 shows different scenarios and explanations for LIN enabling.  
VTXDLIN  
t
LIN  
Mode  
t LIN ,EN  
t LIN,EN  
t LIN,EN  
LIN  
NORMAL  
LIN OFF  
t
t
V
LIN_ BUS  
Recessive  
Dominant  
recessive TXD level  
required before start of  
transmission  
Correct sequence ,  
Bus is enabled after tLIN,  
tLIN, EN not ensured , no  
transmission on bus  
tLIN, not ensured ,  
no transmission on bus  
recessive TXD  
level required  
EN  
EN  
Figure 38 LIN Transceiver Enabling Sequence  
Reduced Electromagnetic Emission  
To reduce electromagnetic emissions (EME), the bus driver controls LIN slopes symmetrically. The  
configuration of the different slopes is described in Chapter 9.2.8.  
Reception  
Analog LIN bus signals are converted into digital signals at RXDLIN via the differential input receiver.  
9.2.3  
LIN Receive Only Mode  
In LIN Receive Only Mode (RXD only), the driver stage is de-activated but reception is still possible. This mode  
is accessible by an SPI command and is available in Normal Mode and Stop Mode.  
9.2.4  
LIN Wake Capable Mode  
This mode can be used in Stop Mode, Sleep Mode, Restart Mode and Normal Mode by programming via SPI  
and it is used to monitor bus activities. It is automatically accessed in Fail-Safe Mode. A wake up is detected,  
if a recessive to dominant transition on the LIN bus is followed by a dominant level of longer than tWK,Bus  
followed by a dominant to recessive transition. The dominant to recessive transition will cause a wake up of  
the LIN transceiver.  
Datasheet  
83  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
LIN Transceiver  
A wake-up results in different behavior of the device, as described in below Table 23. As a signalization to the  
microcontroller, the RXDLIN pin is set LOW and will stay LOW until the LIN transceiver is changed to any other  
mode. After a wake-up event the transceiver can be switched to LIN Normal Mode for communication.  
Table 23  
Action due to a LIN BUS Wake-up  
Mode after Wake  
Normal Mode  
Mode  
VCC1  
INTN  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
RXDLIN  
LOW  
Normal Mode  
Stop Mode  
Sleep Mode  
Restart Mode  
ON  
Stop Mode  
ON  
LOW  
Restart Mode  
Ramping Up  
ON  
LOW  
Restart Mode  
LOW  
Fail-Safe Mode  
Restart Mode  
Ramping up  
LOW  
Rearming the transceiver for wake capability  
After a BUS wake-up event, the transceiver is woken. However, the LIN transceiver mode bits will still show  
wake capable (=‘01’) so that the RXDLIN signal will be pulled low.  
There are two possibilities how the LIN transceiver’s wake capable mode is enabled again after a wake event:  
The LIN transceiver mode must be toggled, i.e. switched to LIN Normal Mode, LIN Receive Only Mode or LIN  
OFF Mode, before switching to LIN Wake Capable Mode again.  
Rearming is done automatically when the device is changed to Stop Mode, Sleep Mode or Fail-Safe Mode  
to ensure wake-up capability.  
Wake-Up in Stop Mode and Normal Mode  
In Stop Mode, if a wake-up is detected, it is signaled by the INTN output and in the WK_STAT SPI register. It is  
also signaled by RXDLIN put to LOW. The same applies for the Normal Mode. The microcontroller should set  
the device to Normal Mode, there is no automatic transition to Normal Mode.  
For functional safety reasons, the watchdog will be automatically enabled in Stop Mode after a Bus wake  
event in case it was disabled before (if bit WD_EN_ WK_BUS was configured to HIGH before).  
Wake-Up in Sleep Mode  
One wake-up event on the LIN Bus from Sleep or Fail-Safe Mode automatically transfers the device into the  
Restart Mode and from there to Normal Mode. The corresponding RXD pin in set to LOW. The microcontroller  
is able to detect the low signal on RXD and to read the wake source out of the WK_STAT register via SPI. No  
interrupt is generated when coming out of Sleep or Fail-Safe Mode. The microcontroller can now switch the  
LIN transceiver into LIN Normal Mode via SPI to start communication.  
9.2.5  
TXD Time-out Feature  
If the TXDLIN signal is dominant for the time t >tTxD_LIN _TO, the TXD time-out function deactivates the LIN  
transmitter output stage temporarily. The transceiver remains in recessive state. The TXD time-out function  
prevents the LIN bus from being blocked by a permanent LOW signal on the TXDLIN pin, caused by a failure.  
The failure is stored in the SPI flag LIN_FAIL. The LIN transmitter stage is activated again after the dominant  
time-out condition is removed. The transceiver configuration stays unchanged.  
Datasheet  
84  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
LIN Transceiver  
Recovery of the  
microcontroller error  
TxD Time-Out due to  
microcontroller error  
Release after TxD  
Time-out  
Normal Communication  
ttimeout  
ttorec  
Normal Communication  
TXDLIN  
t
LIN  
t
Figure 39 TXD Time-Out Function  
9.2.6  
Bus Dominant Clamping  
If the LIN bus signal is dominant for a time t > tBUS_LIN_TO in LIN Normal Mode and LIN Receive Only Mode, then  
a bus dominant clamping is detected and the SPI bit LIN_FAIL is set. The transceiver configuration stays  
unchanged.  
9.2.7  
Under-Voltage Detection  
In case the supply voltage is dropping below the VSHS undervoltage detection threshold (VSHS < VSHS,UVD), the  
TLE9560-3QX disables the output and receiver stages. If the power supply reaches a higher level than the  
undervoltage detection threshold (VSHS> VSHS,UVD), the TLE9560-3QX continues with normal operation. The  
transceiver configuration stays unchanged.  
9.2.8  
Slope Selection  
The LIN transceiver offers a LIN Low-Slope Mode for 10.4 kBaud communication and a LIN Normal-Slope Mode  
for 20 kBaud communication. The only difference is the behavior of the transmitter. In LIN Low-Slope Mode,  
the transmitter uses a lower slew rate to further reduce the EME compared to Normal-Slope Mode. This  
complies with SAE J2602 requirements.By default, the device works in LIN Normal-Slope Mode. The selection  
of LIN Low-Slope Mode is done by an SPI bit LIN_LSM and will become effective as soon as CSN goes ‘HIGH’.  
Only the LIN Slope is changed. The selection is accessible in Normal Mode only.  
9.2.9  
Flash Programming via LIN  
The device allows LIN flash programming, e.g. of another LIN Slave with a communication of up to 115 kBaud.  
This feature is enabled by de-activating the slope control mechanism via a SPI command (bit LIN_FLASH) and  
will become effective as soon as CSN goes ‘HIGH’. The SPI bit can be set in Normal Mode.  
Note:  
It is recommended to perform flash programming only at nominal supply voltage VSHS = 13.5 V to  
ensure stable data communication.  
Datasheet  
85  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
LIN Transceiver  
9.3  
Electrical Characteristics  
Table 24  
Electrical Characteristics  
VSHS = 5.5 V to 18 V, Tj = -40°C to +150°C, RL = 500 , all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Receiver Output (RXD pin)  
HIGH Level Output Voltage  
VRXD,H  
VRXD,L  
0.8 ×  
VCC1  
V
V
IRXD = -2 mA;  
Bus = VSHS  
IRXD = 2 mA;  
Bus = 0 V  
P_9.3.1  
P_9.3.2  
V
LOW Level Output Voltage  
0.2 ×  
VCC1  
V
Transmission Input (TXD pin)  
HIGH Level Input Voltage  
VTXD,H  
0.7 ×  
VCC1  
V
V
V
Recessive State  
P_9.3.3  
P_9.3.4  
P_9.3.5  
P_9.3.6  
1)  
TXD Input Hysteresis  
VTXD,hys  
VTXD,L  
RTXD  
0.12 × –  
VCC1  
LOW Level Input Voltage  
0.3 ×  
VCC1  
Dominant State  
TXD Pull-up Resistance  
20  
40  
80  
kVTXD = 0 V  
LIN Bus Receiver (LIN Pin)  
Receiver Threshold Voltage, VBus,rd  
0.4 × 0.45 × –  
V
P_9.3.7  
Recessive to Dominant Edge  
VSHS  
VSHS  
Receiver Dominant State  
VBus,dom  
0.4 ×  
V
LIN 2.2 Param. 17  
P_9.3.8  
VSHS  
Receiver Threshold Voltage, VBus,dr  
0.55 × 0.60 × V  
P_9.3.9  
Dominant to Recessive Edge  
VSHS  
VSHS  
Receiver Recessive State  
Receiver Center Voltage  
Receiver Hysteresis  
VBus,rec  
VBus,c  
0.6 ×  
VSHS  
V
LIN 2.2 Param 18  
P_9.3.10  
P_9.3.11  
P_9.3.12  
P_9.3.13  
P_9.3.14  
0.475 0.5 × 0.525  
× VSHS VSHS × VSHS  
0.07 × 0.1 × 0.175  
VSHS VSHS × VSHS  
0.40 × 0.5 × 0.6 ×  
V
LIN 2.2 Param 19  
6 V < VSHS < 18 V  
VBus,hys  
V
Vbus,hys = Vbus,dr - Vbus,rd  
LIN 2.2 Param 20  
Wake-up Threshold Voltage VBus,wk  
V
VSHS  
VSHS  
VSHS  
2)  
Dominant Time for Bus  
Wake-up  
tWK,Bus  
30  
150  
µs  
Datasheet  
86  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
LIN Transceiver  
Table 24  
Electrical Characteristics (cont’d)  
VSHS = 5.5 V to 18 V, Tj = -40°C to +150°C, RL = 500 , all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
LIN Bus Transmitter (LIN Pin)  
1)  
Bus Serial Diode Voltage  
Drop  
Vserdiode 0.4  
0.7  
1.0  
V
V
V
= VCC1;  
P_9.3.15  
TXD  
LIN 2.2 Param 21  
Bus Recessive Output  
VBUS,ro  
0.8 ×  
VSHS  
VTXD = HIGH Level  
P_9.3.16  
P_9.3.20  
P_9.3.21  
Voltage  
VSHS  
Bus Short Circuit Current  
IBUS,sc  
40  
100  
150  
mA VBUS = 18 V;  
LIN 2.2 Param 12  
Leakage Current  
Loss of Ground  
IBUS,lk1  
-1000 -450 20  
µA VSHS = 12 V = GND;  
0 V < VBUS < 18 V;  
LIN 2.2 Param 15  
Leakage Current  
Loss of Battery  
IBUS,lk2  
IBUS,lk3  
IBUS,lk4  
20  
µA VSHS = 0 V;  
P_9.3.22  
P_9.3.23  
P_9.3.24  
P_9.3.25  
V
BUS = 18 V;  
LIN 2.2 Param 16  
mA VSHS = 18 V;  
Leakage Current  
Driver Off  
-1  
VBUS = 0 V;  
LIN 2.2 Param 13  
Leakage Current  
Driver Off  
20  
47  
µA VSHS = 8 V;  
BUS = 18 V;  
V
LIN 2.2 Param 14  
Bus Pull-up Resistance  
LIN Input Capacitance  
RBUS  
CBUS  
20  
30  
kNormal Mode  
LIN 2.2 Param 26  
1)  
20  
1
25  
6
pF  
P_9.3.26  
P_9.3.27  
Receiver propagation delay td(L),R  
bus dominant to RXD LOW  
µs VCC = 5 V;  
C
RXD = 20 pF;  
LIN 2.2 Param 31  
µs VCC = 5 V;  
Receiver propagation delay td(H),R  
1
6
P_9.3.28  
bus recessive to RXD HIGH  
CRXD = 20 pF;  
LIN 2.2 Param 31  
Receiver delay symmetry  
tsym,R  
-2  
8
2
µs tsym,R = td(L),R - td(H),R;  
LIN 2.2 Param 32  
µs 2)CSN = HIGH to first valid P_9.3.30  
P_9.3.29  
LIN Transceiver Enabling  
Time  
tLIN,EN  
tBUS_LIN  
13  
20  
20  
10  
18  
transmitted TXD dominant  
1)2)  
Bus Dominant Time Out  
ms  
ms  
µs  
P_9.3.31  
P_9.3.32  
P_9.3.33  
_TO  
1)2)  
TXD Dominant Time Out  
tTxD_LIN  
V
= 0 V  
TXD  
_TO  
1)2)  
TXD Dominant Time Out  
Recovery Time  
ttorec  
Datasheet  
87  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
LIN Transceiver  
Table 24  
Electrical Characteristics (cont’d)  
VSHS = 5.5 V to 18 V, Tj = -40°C to +150°C, RL = 500 , all voltages with respect to ground, positive current flowing  
into pin (unless otherwise specified)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Number  
Min. Typ. Max.  
Duty Cycle D1  
D1  
0.396  
3) THRec(max) = 0.744 × VSHS; P_9.3.34  
THDom(max) = 0.581 × VSHS  
SHS = 7.0 … 18 V;  
(For worst case at 20 kbit/s)  
LIN 2.2 Normal Slope  
;
V
tbit = 50 µs;  
D1 = tbus_rec(min)/2 tbit  
LIN 2.2 Param 27  
;
Duty Cycle D2  
(for worst case at 20 kbit/s)  
LIN 2.2 Normal Slope  
D2  
D3  
D4  
0.581  
3)THRec(min.) = 0.422 × VSHS; P_9.3.35  
THDom(min.) = 0.284 × VSHS  
;
VSHS = 7.6 … 18 V;  
t
bit = 50 µs;  
D2 = tbus_rec(max)/2 tbit  
;
LIN 2.2 Param 28  
3)THRec(max) = 0.778 × VSHS P_9.3.36  
Duty Cycle D3  
(for worst case at 10.4 kbit/s)  
SAE J2602 Low Slope  
0.417  
THDom(max) = 0.616 × VSHS  
SHS = 7.0 … 18 V;  
bit = 96 µs;  
;
V
t
D3 = tbus_rec(min)/2 tbit  
;
LIN 2.2 Param 29  
3)THRec(min.) = 0.389 × VSHS; P_9.3.37  
Duty Cycle D4  
0.590  
(for worst case at 10.4 kbit/s)  
SAE J2602 Low Slope  
THDom(min.) = 0.251 × VSHS  
;
V
SHS = 7.6 … 18 V;  
tbit = 96 µs;  
D4 = tbus_rec(max)/2 tbit  
LIN 2.2 Param 30  
;
1) Not subject to production test, specified by design.  
2) Not subject to production test, tolerance defined by internal oscillator tolerance.  
3) Bus load conditions concerning LIN Specification 2.2 CLIN, RLIN = 1 nF, 1 k/ 6.8 nF, 660 / 10 nF, 500 .  
Datasheet  
88  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
LIN Transceiver  
VSHS  
TxD  
RxD  
100 nF  
RLIN  
CRxD  
WK  
LIN  
GND  
CLIN  
Figure 40 Simplified Test Circuit for Dynamic Characteristics  
Datasheet  
89  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
LIN Transceiver  
tBit  
tBit  
tBit  
TxD  
(input to  
transmitting node )  
tBus _dom (max )  
tBus_rec (min)  
Thresholds of  
receiving node 1  
THRec (max)  
THDom (max)  
VSUP  
(Transceiver supply  
of transmitting  
node )  
Thresholds of  
receiving node 2  
THRec(min)  
THDom(min)  
tBus _dom (min)  
tBus_rec(max )  
RxD  
(output of receiving  
node 1)  
td(L),R (1)  
td(H),R(1)  
RxD  
(output of receiving  
node 2)  
t(L),R(2)  
td(H),r(2)  
Duty Cycle1 = tBUS_rec(min) / (2 x t  
)
BIT  
Duty Cycle2 = tBUS_rec(max ) / (2 x tBIT  
)
Figure 41 Timing Diagram for Dynamic Characteristics  
Datasheet  
90  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High-Voltage Wake Input  
10  
High-Voltage Wake Input  
10.1  
Block Description  
Internal Supply  
IPU_WK  
WKx  
+
-
tWK  
IPD_WK  
VRef  
Logic  
Figure 42 Wake Input Block Diagram  
Features  
High-Voltage inputs with a 3 V (typ.) threshold voltage.  
Wake-up capability for power saving modes.  
Edge sensitive wake feature low to high and high to low.  
Pull-up and Pull-down current sources, configurable via SPI.  
Selectable configuration for static sense or cyclic sense.  
In Normal Mode and Stop Mode the level of the WKx pin can be read via SPI unless WK4 is configured as  
SYNC or WK2 is configured as FO.  
Synchronization with HSx via WK4 (for cyclic sense).  
Fail Safe Output configurability (only WK2).  
Datasheet  
91  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High-Voltage Wake Input  
10.2  
High-Voltage Wake Function  
10.2.1  
Functional Description  
The wake inputs pin are edge-sensitive inputs with a switching threshold of typically 3 V. Both transitions, high  
to low and low to high, result in a signalization by the device. The signalization occurs either in triggering the  
interrupt in Normal Mode and Stop Mode or by a wake up of the device in Sleep Mode and Fail-Safe Mode.  
Two different wake detection modes can be selected via SPI:  
Static sense: WK inputs are always active.  
Cyclic sense: WK inputs are only active for a certain time period (see Chapter 5.7.1).  
A filter time tFWKx is implemented to avoid an unintentional wake-up due to transients or EMC disturbances  
in static sense configuration.  
The filter time (tFWKx) is triggered by a level change crossing the switching threshold and a wake signal is  
recognized if the input level will not cross again the threshold during the selected filter time.  
Figure 43 shows a typical wake-up timing and filtering of transient pulses.  
VWKx  
VWKTh,f  
VWKth,f  
t
t
VINTN  
tFWK  
tFWK  
tINTN  
No Wake Event  
Wake Event  
Figure 43 Wake-up Filter Timing for Static Sense  
The wake-up capability for the WKx pin can be enabled or disabled via SPI command.  
A wake event via the WKx pin can always be read in the register WK_STAT.  
The actual voltage level of the WKx pin (low or high) can always be read in Normal Mode, Stop Mode and Init  
Mode in the register WK_LVL_STAT. During Cyclic Sense, the register shows the sampled levels of the  
respective WKx pin.  
10.2.2  
Wake Input Configuration  
To ensure a defined and stable voltage levels at the internal comparator input it is possible to configure  
integrated current sources via the SPI register WK_CTRL.  
Datasheet  
92  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High-Voltage Wake Input  
Table 25 Pull-Up / Pull-Down Resistor  
WKx_PUPD_ WKx_PUPD_ Current Sources Note  
1
0
0
0
no current  
source  
WK input is floating if left open (default setting)  
0
1
1
1
0
1
pull-down  
pull-up  
WK input internally pulled to GND  
WK input internally pulled to internal 5V supply  
Automatic  
switching  
If a high level is detected at the WK input the pull-up source is  
activated, if low level is detected the pull down is activated.  
Note:  
If a WK input is not used, the respective WK input must be tied to GND on board to avoid unintended  
floating state of the pin.  
One additional configuration is related the filter time of each Wake-up module. The bits WK_FILT permit to set  
the filter time in static sensing or in cyclic sensing.  
Note:  
When the device mode is changed to normal (from INIT), in case of static sense, if the WK pin is set,  
the WK_STAT register is set in this time (also the interrupt pin).  
10.2.3  
Wake configuration for Cyclic Sense  
The wake-up inputs can also be used for cyclical sensing signals during low-power modes. For this function  
the WKx input performs a cyclic sensing of the voltage level during the on-time of specific HSx.  
A transition of the voltage level will trigger a wake-up event.  
See also Chapter 5.7.1 for more details.  
10.2.4  
Wake configuration for Synchronization  
The WK4 pin can be configured as SYNC input for driving the HSx.  
Prerequisite to configure the WK4 as SYNC input is that the WK4 has to be OFF.  
The configuration of the WK4/SYNC bit is done using the WK_EN bits. if the WK_EN=10B (SYNC selected), all  
bits in WK4 bank are ignored and wake-up capability on WK4 is not available.  
Note:  
If WKx is the only wake source available and is configured with cyclic sense with  
SYNC (WKx_FILT = 100), trying to go to Sleep Mode is not possible (restart mode is entered) -  
because SYNC is driven by the microcontroller which is not supplied in Sleep Mode.  
10.2.5  
Fail Safe Output Configuration  
The WK2 is by default configured as Fail Safe Output. It is possible to configure the WK2/FO pin as wake-up  
source using the WK2_FO bit.  
As soon as the bit WK2_FO is written (first SPI write access of bank 2 on WK_CTRL), the configuration can be  
changed only after a software reset or a new power-up sequence.  
In case that the WK2_FO is locked, any attempt to configured again it will set the SPI_FAIL.  
The Fail Output consists of a failure logic block and one LOW-side switch. In case of a failure, the FO output is  
activated and the SPI bit FAILURE, in the register DEV_STAT, is set.  
The Failure Output is activated due to the following failure conditions:  
Datasheet  
93  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High-Voltage Wake Input  
After four consecutive Watchdog Trigger failures.  
Thermal Shutdown TSD2.  
VCC1 short to GND.  
VCC1 overvoltage in case VCC1_OV_MOD=11B.  
after four consecutive VCC1 undervoltage detection.  
In order to deactivate the Fail Output, the failure conditions (e.g. TSD2) must not be present anymore and the  
bit FAILURE needs to be cleared via SPI command.  
In case of Watchdog fail, the deactivation of the Fail Output is only allowed after a successful WD trigger, i.e.  
the FAILURE bit must be cleared.  
Note:  
The internally stored default value used for the wake-enabled configuration is ‘low’. A level change  
will be signalized in the corresponding bits in WK_STAT in case the externally connected signal  
proceeds a rising or falling edge transition if the WK-enable is configured to high.  
Datasheet  
94  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
High-Voltage Wake Input  
10.3  
Electrical Characteristics  
Table 26 Electrical Characteristics  
V
SINT = 5.5 V to 28 V; Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
WK1, WK2 ,WK3, Input Pin Characteristics  
Max.  
Wake-up/monitoring VWKx_th,f 2.5  
threshold voltage  
falling  
3
3.5  
V
V
V
without external  
serial resistor RS  
P_10.3.1  
P_10.3.2  
P_10.3.3  
Wake-up/monitoring VWKx_th,r  
threshold voltage  
rising  
3
3.5  
0.6  
4
without external  
serial resistor RS  
Threshold hysteresis  
VWKx_th,hys 0.4  
0.85  
without external  
serial resistor RS  
WK pin Pull-up Current IPU_WKx  
-20  
3
-10  
10  
-3  
µA  
µA  
VWKx = 4 V  
P_10.3.4  
P_10.3.5  
WK pin Pull-down  
Current  
IPD_WKx  
20  
VWKx = 2.5 V  
Input leakage current ILK,lx  
-2  
2
-
µA  
0 V < VWKx < 40 V;  
Pull-up / Pull-down  
disabled  
P_10.3.6  
WK4 as SYNC input pin  
LOW input voltage  
threshold  
WK4SYNC_ 0.3 ×  
-
V
P_10.3.11  
P_10.3.12  
P_10.3.13  
VCC1  
th,L  
HIGH input voltage  
threshold  
WK4SYNC_  
-
-
0.7 ×  
VCC1  
V
th,H  
Pull-down resistance RSYNC  
20  
40  
80  
kΩ  
VSYNC = 1 V  
on WK/SYNC  
WK2/FO as Fail Safe Output  
FO low-side output  
voltage (active)  
VFO,L1  
0.6  
1
2
V
WK2 configured as  
Fail-Safe Output;  
P_10.3.14  
P_10.3.15  
IFO = 4.0 mA  
FO input leakage  
IFO,LK  
µA  
V_FO = 28 V  
current (all inactive)  
Timing  
1)  
1)  
Wake-up filter time 1 tFWK1  
12  
50  
16  
64  
22  
80  
µs  
µs  
P_10.3.16  
P_10.3.17  
Wake-up filter time 2 tFWK2  
1) Not subject to production test, tolerance defined by internal oscillator tolerance.  
Datasheet  
95  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Interrupt Function  
11  
Interrupt Function  
11.1  
Block and Functional Description  
Vcc1  
Time  
out  
INTN  
Interrupt logic  
INTERRUPT BLOCK.VSD  
Figure 44 Interrupt Block Diagram  
The interrupt is used to signalize special events in real time to the microcontroller. The interrupt block is  
designed as a push/pull output stage as shown in Figure 44. An interrupt is triggered and the INTN pin is pulled  
low (active low) for tINTN in Normal Mode and Stop Mode and it is released again once tINTN is expired. The  
minimum high-time of INTN between two consecutive interrupts is tINTND. An interrupt does not cause a device  
mode change.  
Two different interrupt generation methods are implemented:  
Interrupt Mask: One dedicated register (INT_MASK) is intended to enable or disable set of interrupt  
sources. The interrupt sources follow the SPI Status Information Field.  
In details:  
SUPPLY_STAT: “OR” of all bits on SUP_STAT register except POR, VCC1_UV, VCC1_SC, VCC1_OV  
TEMP_STAT: “OR” of all bits on THERM_STAT register except TSD2  
BUS_STAT: “OR” of all bits on BUS_STAT register  
HS_STAT: “OR” of all bits on HS_OL_OC_OT_STAT register  
BD_STAT: “OR” of all bits on DSOV register  
SPI_CRC_FAIL: or between SPI_FAIL and CRC_FAIL bits on DEV_STAT register.  
Wake-up events: all wake-up events stored in the wake status SPI register WK_STAT only in case the  
corresponding input was configured as wake-up source.  
The wake-up sources are:  
via CAN (wake-up pattern or wake-up frame)  
via LIN  
via WK pin  
via TIMERx (cyclic wake)  
via LSx_DSOV_BRK if any of the brake-feature is enabled  
The methods are both available at the same time.  
Note:  
The errors which will cause Restart or Fail-Safe Mode (VCC1_UV, VCC1_SC, VCC1_OV, TSD2) are the  
exceptions of an INTN generation. Also the bit POR will not generate interrupts. If the above  
Datasheet  
96  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Interrupt Function  
mentioned bits are not cleared after the device is back in Normal Mode or Stop Mode, the INTN is  
periodically generated (Register based cyclic interrupt generation).  
Note:  
Note:  
Periodical interrupts are only generated by CRC fail and SPI fail from DEV_STAT register.  
During Restart Mode the SPI is blocked and the microcontroller is in reset. Therefore the INTN will not  
be in Restart Mode, which is the same behavior in Fail-Safe Mode or Sleep Mode.  
In addition to this behavior, INTN will be triggered when Stop Mode is entered and not all wake source bits  
were cleared in the WK_STAT register and also the LSx_DSOV_BRK bits in the DSOV register..  
The SPI status registers are updated at every falling edge of the INTN pulse. All interrupt events are stored in  
the respective register until the register is cleared via SPI command. A second SPI read after reading out the  
respective status register is optional but recommended to verify that the interrupt event is not present  
anymore. The interrupt behavior is shown in Figure 45.  
The INTN pin is also used during Init Mode to select the Software Development Mode entry. See Chapter 5.2  
for further information.  
In case of pending INTN event (SPI Status registers are not cleared after INTN event), additional periodical  
INTN events are generated as shown in Figure 46.  
The periodical INTN events generation can be disabled via SPI command using INTN_CYC_EN bit.  
WKx  
CAN  
INTN  
tINTD  
tINTN  
Update of  
WK_STAT register  
Update of  
WK_STAT register  
optional  
no WK  
SPI  
Read & Clear  
WK_STAT  
contents  
WKx  
no WK  
CAN  
SPI  
Read & Clear  
No SPI Read & Clear  
Command sent  
WK + CAN  
no WK  
Figure 45 Interrupt Signalization Behavior  
Note:  
For two or more interrupt events at the same time, when INTN pin is low the same time, it will not  
start multiple toggling.  
Datasheet  
97  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Interrupt Function  
WKx  
INTN  
tINTN  
tINTN  
tINTN_PULSE  
tINTN_PULSE  
Update of  
WK_STAT register  
SPI  
Read & Clear  
No SPI Read & Clear  
Command sent  
No SPI Read & Clear  
Command sent  
WK_STAT  
contents  
WKx  
WKx  
Figure 46 Interrupt Signalization Behavior in case of pending INTN events  
Datasheet  
98  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Interrupt Function  
11.2  
Electrical Characteristics  
Table 27 Electrical Characteristics  
VSINT = 5.5 V to 28 V; Tj = -40°C to +150°C; Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Interrupt Output; Pin INTN  
1)  
INTN High Output Voltage VINTN,H 0.8 ×  
V
V
I
= -2 mA;  
P_11.2.1  
P_11.2.2  
INTN  
VCC1  
INTN = off  
1)  
INTN Low Output Voltage VINTN,L  
0.2 ×  
I
= 2mA;  
INTN  
VCC1  
INTN = on  
2)  
INTN Pulse Width  
tINTN  
80  
80  
100  
100  
120  
120  
µs  
µs  
P_11.2.3  
P_11.2.4  
INTN Pulse Minimum  
Delay Time  
tINTND  
2) between  
consecutive pulses  
Pulse in case of pending tINTN_PUL  
4
5
6
ms  
2) between  
P_11.2.5  
INTN  
consecutive pulses  
SE  
SDM Select; Pin INTN  
Config Pull-up Resistance RSDM  
30  
50  
60  
64  
100  
80  
kΩ  
VINTN = 5 V  
2)  
P_11.2.6  
P_11.2.7  
Config Select Filter Time tSDM_F  
µs  
1) Output Voltage Value also determines device configuration during Init Mode.  
2) Not subject to production test, tolerance defined by internal oscillator tolerance.  
Datasheet  
99  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
12  
Gate Drivers  
The TLE9560-3QX integrates four floating gate drivers capable of controlling a wide range of N-channel  
MOSFETs. They are configured as two high-sides and two low-sides, building two half-bridges.  
VCP  
VS  
GHx  
Highside  
Gate-Driver  
VDSMONTH  
Current-Steering  
DACs  
SHx  
High-Speed  
Comparators  
VCP  
GLx  
Lowside  
Gate-Driver  
VDSMONTH  
Current-Steering  
DACs  
SL  
Figure 47 Half-bridge gate driver - Block diagram  
This section describes the MOSFET control in static activation and during PWM operation.  
Note:  
PWMx mentioned in this chapter refer to the PWMx pins and signal used by the bridge driver to  
control the external MOSFETs.  
Note:  
In this chapter PWMx do not refer to the internal PWM generators used to control the internal high-  
side switches HSx.  
12.1  
MOSFET control  
Depending on the configuration bits HBxMODE[1:0] (refer to HBMODE), CPEN, each high-side and low-side  
MOSFETs can be:  
Datasheet  
100  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Kept off with the passive discharge.  
Kept off actively.  
Activated (statically, no PWM, HBx_PWM_EN = 0).  
Activated in PWM mode (HBx_PWM_EN = 1).  
Refer to Table 28 for details.  
Table 28  
CPEN  
Half-bridge mode selection  
HBxMODE[1:0]1) Configuration of HSx/LSx1)  
CPEN = 0  
CPEN = 1  
CPEN = 1  
CPEN = 1  
Don’t care  
00B  
All MOSFETs are kept off by the passive discharge  
HBx MOSFETs are kept off by the passive discharge  
LSx MOSFET is ON, HSx MOSFET is actively kept OFF  
HSx MOSFET is ON, LSx MOSFET is actively kept OFF  
LSx and HSx MOSFETs are actively kept OFF with IHOLD  
01B  
10B  
CPEN = 1  
11B  
1)  
12.2  
Static activation  
In this section, we consider the static activation of the high-side and low-side MOSFET of the half-bridge x:  
HBx_PWM_EN= 0 (in ST_ICHG) and CPEN = 1.  
The low-side or high-side MOSFET of HBx is statically activated (no PWM) by setting HBxMODE[1:0] to  
respectively (0,1) or (1,0).  
The configured active cross-current protection and the Drain-Source overvoltage blank times for the Half-  
Bridge x are noted tHBxCCP ACTIVE and tHBxBLANK ACTIVE  
.
The charge and discharge currents applied to the static controlled Half-Bridge x are noted ICHGSTx  
(ST_ICHG).  
IHARDOFF is the maximum current that the gate drivers can sink (100 mA typ.). This current is used to keep a  
MOSFET off, when the opposite MOSFET of the same half-bridge is being turned on. This feature reduces the  
risk of parasitic cross-current conduction.  
ICHGSTx is the current sourced, respectively sunk, by the gate driver to turn-on the high-side x or low-side x.  
ICHGSTx is configured in the control register ST_ICHG.  
Table 29  
Static charge and discharge currents  
ICHGSTx[3:0]  
Nom. charge current  
[mA]  
Nom. discharge current  
[mA]  
Max. deviation to typ. values  
0000B  
0001B  
0010B  
0011B  
0100B  
0101B  
0.5 (ICHG0  
1.4 (ICHG4  
3.1 (ICHG8  
)
)
)
0.5 (IDCHG0  
1.4 (IDCHG4  
3.1 (IDCHG8  
)
)
)
+/- 60 %  
+/- 60 %  
+/- 55%  
+/- 40 %  
+/- 40 %  
+/- 40 %  
5.7 (ICHG12  
9.2 (ICHG16  
)
)
5.7 (IDCHG12  
9.2 (IDCHG16  
)
)
13.7 (ICHG20  
)
13.5 (IDCHG20)  
Datasheet  
101  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Table 29  
Static charge and discharge currents (cont’d)  
ICHGSTx[3:0]  
Nom. charge current  
[mA]  
Nom. discharge current  
[mA]  
Max. deviation to typ. values  
0110B  
0111B  
1000B  
1001B  
1010B  
1011B  
1100B  
1101B  
1110B  
1111B  
19.2(ICHG24  
)
18.8(IDCHG24  
)
+/- 40 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
25.8 (ICHG28  
32.8 (ICHG32  
40.1 (ICHG36  
47.8 (ICHG40  
55.9 (ICHG44  
64.3 (ICHG48  
73.2 (ICHG52  
82.7 (ICHG56  
92.7 (ICHG60  
)
)
)
)
)
)
)
)
)
25.2 (IDCHG28  
32.2 (IDCHG32  
39.4 (IDCHG36  
47.0 (IDCHG40  
55.0 (IDCHG44  
63.2 (IDCHG48  
72.4 (IDCHG52  
)
)
)
)
)
)
82.1 (ICHG56  
92.2 (ICHG60  
)
)
IHOLD is the hold current used to keep the gate of the external MOSFETs in the desired state. This parameter  
is configurable with the IHOLD control bit in GENCTRL.  
If the control bit IHOLD = 0:  
A MOSFET is kept ON with the current ICHG19  
.
A MOSFET is kept OFF with the current IDCHG19  
.
If the control bit IHOLD = 1:  
A MOSFET is kept ON with the current ICHG25  
.
A MOSFET is kept OFF with the current ICHG25  
.
12.2.1  
Static activation of a high-side MOSFET  
Turn-on with cross-current protection  
If LSx is ON (HBxMODE[1:0] = 01B), before the activation of HSx (HBxMODE[1:0] = 10B) then the high-side  
MOSFET is turned on after a cross-current protection time (refer to Figure 48):  
After the CSN rising edge and for the duration tHBxCCP ACTIVE :  
The high-side MOSFET is kept OFF with the current -ICHGSTx.  
The gate of the low-side MOSFET is discharged with the current -ICHGSTx.  
At the end of tHBxCCP ACTIVE and for the duration tHBxBLANK ACTIVE + tFVDS  
:
The gate of the high-side MOSFET is charged with the current ICHGSTx.  
Low-side MOSFET is kept OFF with the current -IHARDOFF (hard off phase).  
At the end of tFVDS  
:
The drive current of the high-side MOSFET is reduced to IHOLD.  
The drive current of the low-side MOSFET is set to -IHOLD.  
Datasheet  
102  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
SPI Frame accepted  
Turn on HSx  
CSN  
Previous State  
HSx OFF  
LSx ON  
à
à
à
New State  
HSx ON  
LSx OFF  
t
VS  
tHBxCCP  
Active  
tHBxBLANK  
Active  
IGHx  
tFVDS  
ICHGSTx  
HSx  
GHx  
0
t
IGHx  
HSx internal  
drive signal  
SHx  
ICHGSTx  
LSx  
GLx  
SL  
IHOLD  
-IHOLD  
IGLx  
t
-ICHGSTx  
IGLx  
t
-ICHGSTx  
LSx internal  
drive signal  
IHOLD  
-IHOLD  
t
-ICHGSTx  
Hard off  
-IHARDOFF  
Figure 48 Turn-on of a high-side MOSFET with cross-current protection  
Note:  
The CSN rising edge must be synchronized with the device logic. Therefore SPI commands are  
executed with a delay of up to 3 µs after the CSN rising edge.  
Datasheet  
103  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Turn-on without cross-current protection  
If LSx is OFF (HBxMODE[1:0] = 11B), before the activation of HSx (HBxMODE[1:0] = 10B), then the high-side  
MOSFET is turned on without cross-current protection (refer to Figure 49):  
right after the CSN rising edge and for a duration tHBxBLANK ACTIVE + tFVDS:  
The gate of the high-side MOSFET is charged with the current ICHGSTx.  
The low-side MOSFET is kept OFF with the current -IHARDOFF.  
At the end of tFVDS  
:
The drive current of the high-side MOSFET is reduced to IHOLD.  
The drive current of the low-side MOSFET is set to -IHOLD.  
SPI Frame accepted  
Turn on HSx  
CSN  
Previous State  
HSx OFF  
LSx OFF  
à
à
à
New State  
HSx ON  
LSx OFF  
t
tHBxBLANK  
Active  
IGHx  
tFVDS  
ICHGSTx  
0
t
HSx internal  
drive signal  
ICHGSTx  
VS  
IHOLD  
-IHOLD  
t
HSx  
GHx  
IGHx  
IGLx  
0
SHx  
t
LSx  
GLx  
SL  
IGLx  
LSx internal  
drive signal  
IHOLD  
-IHOLD  
t
Hard off  
-IHARDOFF  
Figure 49 Turn-on of a high-side MOSFET without cross-current protection  
Note:  
The CSN rising edge must be synchronized with the device logic. Therefore SPI commands are  
executed with a delay of up to 3 µs after the CSN rising edge.  
Datasheet  
104  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
12.2.2  
Static activation of a low-side MOSFET  
The description of the static activation of a low-side x differs from the description of Chapter 12.2.1 only by  
exchanging high-side x and low-side x.  
12.2.3  
Turn-off of the high-side and low-side MOSFETs of a half-bridge  
When the TLE9560-3QX receives a SPI command to turn-off both the high-side and low-side MOSFETs of the  
half-bridge x (HBxMODE[1:0] = (0,0) or (1,1)):  
The gate of HSx and LSx are discharged with the current -ICHGSTx for the duration tHBxCCP ACTIVE (Figure 50).  
At the end of tHBxCCP ACTIVE, the drive current of HSx and LSx are reduced to -IHOLD.  
SPI Frame accepted  
Turn off HSx and LSx  
VS  
CSN  
HSx  
t
GHx  
IGHx  
IGHx  
SHx  
0
LSx  
t
GLx  
-ICHGSTx  
IGLx  
SL  
HSx internal  
drive signal  
tHBxCCP  
Active  
IHOLD  
-IHOLD  
t
t
-ICHGSTx  
IGLx  
LSx internal  
drive signal  
t
-IHOLD  
-ICHGSTx  
Figure 50 Turn-off of the high-side and low-side MOSFETs of a half-bridge  
Note:  
The CSN rising edge must be synchronized with the device logic. Therefore SPI commands are  
executed with a delay of up to 3 µs after the CSN rising edge.  
Datasheet  
105  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
12.3  
PWM operation  
The pins PWMx provide the PWM signal for each PWM channel.  
Each half-bridge is activated in PWM mode by setting the corresponding HBx_PWM_EN bit (HBMODE).  
12.3.1  
Determination of the active and freewheeling MOSFET  
If EN_GEN_CHECK = 1, right before each MOSFET activation, the device detects which MOSFET of the half-  
bridge is the active MOSFET and which MOSFET is the free-wheeling (FW) MOSFET (Figure 51):  
If VSHx > VSHH : The high-side MOSFET is the FW MOSFET and the low-side MOSFET is the active MOSFET.  
If VSHx < VSHL: Then the low-side MOSFET is the FW MOSFET and the high-side MOSFET is the active  
MOSFET.  
If VSHL< VSHx < VSHH: No clear distinction between the active FW MOSFET and the active MOSFET. The next  
MOSFET to be turned on is turned on as if it was the active MOSFET.  
No distinction between active MOSFET and FW MOSFET is possible (and the PWM MOSFET is considered as  
the active MOSFET), if:  
the ON-time of the external PWM signal is shorter than tHBxCCP FW  
the OFF-time of the external PWM signal is shorter than tHBxCCP Active  
Note:  
The PWM signal is applied to the MOSFET selected by HBxMODE[1:0], independently from the free-  
wheeling and the active MOSFET.  
HS and LS off  
Freewheeling through  
high-side MOSFET body diode  
VSHx > VSHH  
HS and LS are off  
Freewheeling through  
low-side MOSFET body diode  
VSHx < VSHL  
HS = FW MOSFET  
LS = FW MOSFET  
LS = Active MOSFET  
HS = Active MOSFET  
VCP  
VCP  
VS  
VS  
GHx  
GHx  
Highside  
Highside  
Gate-Driver  
Gate-Driver  
SHx  
SHx  
VSHH  
VSHH  
High-Speed  
Comparators  
High-Speed  
Comparators  
VSHL  
VSHL  
VCP  
VCP  
GLx  
GLx  
Lowside  
Lowside  
Gate-Driver  
Gate-Driver  
SL  
SL  
Figure 51 Detection of the active and FW MOSFET (EN_GEN_CHECK = 1)- Principle  
Datasheet  
106  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Figure 52 and Figure 53 show examples of free-wheeling and active MOSFET when the motor operates as  
load.  
VS  
PWM  
HS1  
Active  
MOSFET  
Time  
HS2 OFF  
VOUT1  
VOUT2  
PWM  
Time  
Time  
AFW  
AFW  
AFW  
OUT1  
OUT2  
M
LS1: FW  
MOSFET  
LS2 ON  
AFW: Active Free-wheeling  
LS1 ON  
Current Flow PWM = High  
Current Flow PWM = Low  
Figure 52 Active freewheeling on HB1: AFW1 = 1, HB1_PWM_EN = 1. PWM applied to HS1  
(HB1MODE[1:0] = 10B). The motor operates as load: HS1 is the active MOSFET, LS1 is the FW  
MOSFET.  
VS  
PWM  
Time  
HS2  
FW MOSFET  
VOUT2  
AFW  
AFW AFW  
HS1 ON  
LS1 OFF  
Time  
Time  
VOUT1  
M
OUT1  
OUT2  
LS2  
Active MOSFET  
PWM  
AFW: Active Free-wheeling  
HS2 ON  
Current Flow PWM = High  
Current Flow PWM = Low  
Figure 53 Active freewheeling on HB2: AFW2 = 1, HB1_PWM_EN = 1. PWM applied to LS2  
(HB2MODE[1:0] = 01B). The motor operates as load: LS2 is the active MOSFET, HS2 is the FW  
MOSFET.  
Datasheet  
107  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Figure 54 and Figure 55 show examples of free-wheeling and active MOSFETs when the motor operates as  
generator.  
VS  
PWM  
HS1: FW  
MOSFET  
Time  
HS2 OFF  
VOUT1  
VOUT2  
PWM  
AFW  
AFW  
AFW  
Time  
Time  
OUT1  
OUT2  
M
LS1: Active  
MOSFET  
LS2 ON  
AFW: Active Free-wheeling  
HS1 ON  
Current Flow PWM = High  
Current Flow PWM = Low  
Figure 54 Active freewheeling on HB1: AFW1 = 1, HB1_PWM_EN = 1. PWM applied to HS1  
(HB1MODE[1:0] = 10B), EN_GEN_CHECK = 1.The motor operates as generator: LS1 is the  
active MOSFET, HS1 is the FW MOSFET.  
VS  
PWM  
Time  
HS2  
Active MOSFET  
VOUT2  
HS1 ON  
LS1 OFF  
AFW  
AFW AFW  
Time  
Time  
VOUT1  
M
OUT1  
OUT2  
LS2  
FW MOSFET  
PWM  
Current Flow PWM = High  
Current Flow PWM = Low  
AFW: Active Free-wheeling  
LS2 ON  
Figure 55 Active freewheeling on HB2: AFW2 = 1, HB1_PWM_EN = 1. PWM applied to LS2  
(HB2MODE[1:0] = 01B), EN_GEN_CHECK = 1. The motor operates as generator: HS2 is the  
active MOSFET, LS2 is the FW MOSFET.  
Datasheet  
108  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
12.3.2  
Configurations in PWM mode  
The following sections describe the different control schemes in PWM mode.  
Active gate control (AGC)  
The control scheme during the pre-charge and pre-discharge phases are configured by the control bits  
AGC[1:0]:  
Adaptive gate control (AGC[1:0] = (1,0) or (1,1), GENCTRL): in this mode a pre-charge current and a pre-  
discharge current are applied to the gate of the active MOSFET. These currents are used to regulate the  
turn-on and turn-off delays to the respective target values. Refer to Chapter 12.3.4.  
No adaptive gate control (AGC[1;0] = (0,0)): in this mode, the pre-charge and pre-discharge phases (of the  
active MOSFET) are deactivated. Refer to Chapter 12.3.5.  
No adaptive gate control (AGC[1;0] = (0,1)). In this mode:  
During the pre-charge phase, the gate of the active MOSFET is charged with the configured current  
IPCHGINIT (HB_PCHG_INIT).  
During the pre-discharge phase, the gate of the active MOSFET is discharged with the configured  
current IPDCHGINIT (HB_PCHG_INIT).  
Note:  
It is recommended to configure tPCHGx < tHBxBLANK Active and tPDCHGx < tHBxCCP Active (Refer  
to TPRECHG and CCP_BLK) independently from the AGC settings.  
Active free-wheeling (AFW)  
The active free-wheeling is activated for HBx if the AFWx and HBx_PWM_EN (HBMODE) are set to 1 to reduce  
the power dissipation of the free-wheeling MOSFET. If an active MOSFET is OFF, the opposite MOSFET of the  
same half-bridge is actively turned on. See examples of high-side and low-side PWM operation in Figure 52  
and Figure 53.  
If AFWx = 1, a cross-current protection time is applied to HBx (set by CCP_BLK) during the PWM operation.  
If AFWx = 0, no cross current protection is applied to HBx during the PWM operation.  
AFWx can be changed either when HBx is in high impedance or when one of the HBx MOSFETs is on:  
In motor mode :  
If AFWx is changed from 1 to 0: then the new value of AFWx is read and latched at the end to tCCP FW  
which follows the PWM rising edge.  
If AFWx is changed from 0 to 1: then the new value of AFWx is read and latched at the PWM rising edge.  
In generator mode (EN_GEN_CHECK = 1): If AFWx is changed from 0 to 1 or from 1 to 0, then the new value  
of AFWx is read and latched at the end to tCCP active which follows a PWM rising edge.  
Datasheet  
109  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Post-charge  
A post-charge is initiated if POCHGDIS is set to 0 (GENCTRL) to reach the minimum MOSFET Rdson.  
POCHGDIS = 0: The post-charge phase is initiated at the end of the turn-on of the active MOSFET. The  
charge current is increased by one current step at every bridge driver clock cycle (BDFREQ) to ICHGMAXx.  
POCHGDIS = 1: The post-charge phase is disabled. The charge current is kept to ICHGx.  
Synchronized  
PWMz  
t
IGS  
PWM MOSFET  
Precharge  
Post-charge  
tPCHGx  
Predischarge  
ICHGMAXx  
IPRECHGx  
tPDCHGx  
ICHGx  
0
t
tHBxCPP  
- IDCHGx  
tBLANK for PWM MOSFET  
Cross-current  
protection  
Symmetrization  
- IPREDCHGx  
tHBxCPP  
delay  
tHBxCPP for symmetry  
PWM_Control_Scheme_Overview_AFW.emf  
Figure 56 PWM overview - AGC = 10B or 11B, POCHGDIS=0, AFWx = 1  
Synchronized  
PWMz  
t
IGS  
PWM MOSFET  
Precharge  
Post-charge  
tPCHGx  
Predischarge  
ICHGMAXx  
IPRECHGx  
tPDCHGx  
ICHGx  
0
t
- IDCHGx  
tBLANK for PWM MOSFET  
- IPREDCHGx  
tHBxCPP  
PWM_Control_Scheme_Overview_AFW.emf  
Figure 57 PWM overview - AGC = 10B or 11B, POCHGDIS=0, AFWx = 0  
Synchronized  
PWMz  
t
IGS  
PWM MOSFET  
Precharge  
tPCHGx  
Predischarge  
tPDCHGx  
IPRECHGx  
ICHGx  
0
t
- IDCHGx  
tBLANK for PWM MOSFET  
- IPREDCHGx  
tHBxCPP  
Figure 58 PWM overview - AGC = 10B or 11B, POCHGDIS=1, AFWx = 0  
12.3.3  
PWM mapping  
The PWM input can be mapped to different half-bridges by setting the configuration bits PWM1MAP in  
GENCTRL.  
Datasheet  
110  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
SLAM = 0  
PWM1MAP = 0  
PWM Mapping  
PWM1MAP = 1  
PWM Mapping  
PWM1/CRC  
HB1  
HB2  
HB1  
HB2  
PWM1/CRC  
Figure 59 PWM input mapping TLE9560-3QX  
Datasheet  
111  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
12.3.4  
PWM operation with adaptive gate control  
This section describes the MOSFETs control during high-side or low-side PWM operation when the adaptive  
gate control is enabled (AGC[1:0] = (1,0) or (1,1), GENCTRL).  
Assumption: A high-side or low-side MOSFET is mapped to the PWM input PWMz.  
The TLE9560-3QX adapts the pre-charge current, respectively the pre-discharge current, in order to match the  
effective turn-on delay (tDON) and turn-off delay (tDOFF) to the configured values.  
The configured turn-on and turn-off delays of the respective PWM MOSFETs are set by the registers  
TDON_HB_CTRL and TDOFF_HB_CTRL.  
The effective turn-on and turn-off delays of the respective PWM MOSFETs are read out from the status registers  
EFF_TDON_OFFx.  
Table 30  
Abbreviation  
Suffix x  
Abbreviations for adaptive turn-on and turn-off phases in PWM configuration  
Definition  
Related to the half-bridge x.  
Suffix z  
Related to the PWM input z.  
VGS_HSx  
IGS_HSx  
Gate-Source voltage of high-side MOSFET x.  
Gate current of high-side MOSFET x.  
IGS_HSx is positive when the current flows out of GHx.  
VGS_LSx  
IGS_LSx  
Gate-Source voltage of low-side MOSFET x.  
Gate current of low-side MOSFET x.  
IGS_LSx is positive when the current flows out of GLx.  
tPWM_SYNCH  
Synchronization delay between external and internal PWM signal.  
tHBxCCP ACTIVE Active cross-current protection time of HBx. See control register CCP_BLK.  
tHBxBLANK ACTIVE Active Drain-source overvoltage blank time of HBx. See control register and CCP_BLK.  
tHBxCCP FW  
Freewheeling cross-current protection time of HBx. See control register CCP_BLK.  
tHBxBLANK FW  
Freewheeling drain-source overvoltage blank time of HBx. See control register and  
CCP_BLK.  
PWMz  
External PWM signal applied to the input pin PWMz.  
ICHGMAXx  
Maximum drive current of the half-bridge x during the pre-charge and pre-discharge  
phases. See control register HB_ICHG_MAX.  
IPRECHGx and IPREDCHGx are limited to ICHGMAXx.  
IPRECHGx  
Pre-charge current sourced by the gate driver to the active MOSFET of the half-bridge  
x during tPCHGx (TPRECHG).  
Internal and self-adaptive parameter (if AGC[1:0] = (1,0) or (1,1), GENCTRL).  
IPRECHGx is clamped between ICHG0 (0.5 mA typ.) and ICHGMAXx.  
IPCHGINITx  
IPREDCHGx  
Initial value of IPRECHGx. Refer to HB_PCHG_INIT.  
Pre-discharge-current sunk by the gate driver mapped to the half-bridge x during  
tPDCHGx.  
Internal and self-adaptive parameter (if AGC[1:0] = (1,0) or (1,1), GENCTRL).  
IPREDCHGx is clamped between IDCHG0 (0.5 mA typ.) and ICHGMAXx.  
IPDCHGINITx  
Initial value of IPREDCHGx. Refer to HB_PCHG_INIT.  
Datasheet  
112  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Table 30  
Abbreviation  
ICHGx  
Abbreviations for adaptive turn-on and turn-off phases in PWM configuration (cont’d)  
Definition  
Current sourced by the gate driver to the active MOSFET of the half-bridge x during the  
charge phase. See control register HB_ICHG.  
IDCHGx  
Current sunk by the gate driver to turn-off the active MOSFET of the half-bridge x  
during the discharge phase. See control register HB_ICHG.  
ICHGFWx  
tPCHGx  
tPDCHGx  
Current sourced or sunk by the gate driver to turn on / turn off the freewheeling  
MOSFET of the half-bridge x. See control register HB_ICHG.  
Duration of the pre-charge phase of half-bridge x.  
tPCHGx is configurable by SPI. See control register TPRECHG.  
Duration of the pre-discharge phase of half-bridge x.  
tPDCHGx is configurable by SPI. See control register TPRECHG.  
tDONx  
tDOFFx  
IHOLD  
Turn-on delay of the active MOSFET of HBx.  
Turn-off delay of the active MOSFET of HBx.  
Hold current sourced or sunk by the gate driver to keep the MOSFET in the desired  
state. See IHOLD control bit in GENCTRL.  
IHARDOFF  
TFVDS  
IHARDOFF is the maximum current that the gate drivers can sink. It corresponds to the  
discharge current when IDCHGx[5:0] = 63D (100 mA typ.).  
Drain-Source overvoltage filter time. See LS_VDS.  
Datasheet  
113  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
12.3.4.1 High-side PWM with adaptive gate control, motor operating as load  
The following section describes the MOSFET control when the PWM signal is applied to the high-side MOSFET  
of one half-bridge while the motor operates as a load.  
Assumption: the PWM input z is mapped to the high-side MOSFET of the half-bridge x.  
Current Flow PWMz = High  
VS  
Current Flow PWMz = Low  
HSx: Active  
MOSFET  
IDS_HSx  
HSx  
IGS_HSx  
HSy OFF  
PWMz  
VGS_HSx  
SHx  
SHy  
M
LSx: FW  
MOSFET  
LSx  
IGS_LSx  
LSy ON  
VGS_LSx  
Figure 60 PWM input z is mapped to high-side x, the motor operating as load  
12.3.4.1.1  
High-side PWM with adaptive gate control and active free-wheeling  
This section describes the MOSFETs control scheme applied to HBx with active free-wheeling (AFWx = 1).  
Datasheet  
114  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
External  
PWMz  
Synchronized  
intern. PWMz  
t
t
tPWM_SYNCH  
Charge  
phase  
Postcharge Phase  
IGS_HSx  
tPCHGx  
ICHGMAXx  
IPRECHGx  
ICHGx  
0
t
tHBxBLANK Active  
tHBxCCP FW  
HSx internal  
drive signal  
tFVDS  
ICHGMAXx  
IPRECHGx  
IHOLD  
IHOLD  
ICHGx  
ICHGx  
t
0
-
IHOLD  
VGS_HSx  
t
t
tRISEx  
VSHx  
VS  
VSHH  
VSHH  
tDONx  
VSHL  
VSHL  
IDS_HSDx  
IMOTOR  
t
t
IGS_LSx  
-
ICHGFWx  
LSx internal  
drive signal  
IHOLD  
tFVDS  
t
-
IHOLD  
-
IHOLD  
-
ICHGFWx  
Hard off  
-
IHARDOFF  
Figure 61 Adaptive turn-on with high-side PWM, AGC[1:0] = (1,0) or (1,1), AFWx=1, POCHGDIS=0,  
motor operating as load  
Adaptive turn-on during high-side PWM  
The turn-on of the high-side MOSFET is done in four phases (Refer to Figure 61):  
Datasheet  
115  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
1. Cross-current protection phase: The cross-current protection tHBxCCP FW starts at the rising edge of  
PWMz. During tHBxCCP FW, the low-side MOSFET x is turned off with the discharge current  
- ICHGFWx, while the high-side MOSFET x is kept off.  
2. Pre-charge: 1)Once tHBxCCP FW has elapsed, the gate of the high-side MOSFET x is pre-charged with the  
current IPRECHGx for a duration tPCHGx. IPRECHGx2) is an internal parameter, which is self-adaptive (see  
next phase).  
3. Charge: After tPCHGx, the charge current is decreased from IPRECHGx down to ICHGx. The effective  
tDONx3) is measured and compared to the configured tDONx for the automatic adaptation of IPRECHGx  
(see Adaptive control of pre-charge current). The charge phase ends up when VSHx reaches VSHH (typically  
VS - 2.25 V)  
4. Post-charge: After the charge phase, the control signal for the charge current of HSx is increased by one  
current step at every bridge driver clock cycle (BDFREQ) to ICHGMAXx until the end of tFVDS.  
Adaptive control of pre-charge current  
Refer to Chapter 12.3.6 for information on the pre-discharge currents.  
The pre-charge current IPRECHGx is a self-adaptive parameter if AGC[1:0] = (1,0) or (1,1) (see GENCTRL). It is  
applied during tPCHGx (see TPRECHG). The TLE9560-3QX adapts the IPRECHGx to match the effective tDONx  
to the configured value.  
IPRECHGx is clamped between ICHG0 (0.5 mA typ.) and ICHGMAXx (HB_ICHG_MAX).  
IPRECHGx is initialized to Min(IPCHGINITx,ICHGMAXx) when the TLE9560-3QX receives an SPI command  
setting HBx_PWM_EN to 1 (see HBMODE). IPCHGINITx is set by the register HB_PCHG_INIT.  
The following adaptive schemes can be selected.  
AGCFILT = 0: No filter is applied:  
If the effective tDONx is longer than the configured tDONx, then IPRECHGx is increased during the next pre-  
charge phase.  
If the effective tDONx is shorter than the configured tDONx, then IPRECHGx is decreased during the next  
pre-charge phase.  
The pre-charge current is increased or decreased by one, respectively by two current steps  
(Chapter 12.3.6) if the control bit IPCHGADT in the control register GENCTRL is set to 0 respectively 1.  
AGCFILT = 1: A filter is applied:  
If the effective tDONx of the last two PWM cycles are longer than the configured tDONx, then IPRECHGx is  
increased during the next pre-charge phase.  
If the effective tDONx of the last two PWM cycles are shorter than the configured tDONx, then IPRECHGx  
is decreased during the next pre-charge phase.  
The pre-charge current is increased or decreased by one, respectively by two current steps  
(Chapter 12.3.6) if the control bit IPCHGADT in the control register GENCTRL is set to 0 respectively 1.  
If none of the two cases are applicable, then IPRECHGx is unchanged during the next pre-charge phase.  
1) For a correct operation, it is recommended to configure tPCHGx < tHBxBLANK Active.  
2) IPRECHGx is clamped between ICHGMAXx and ICHG0  
3) The effective tDON can be read out. Refer to EFF_TDON_OFF1, EFF_TDON_OFF2.  
.
Datasheet  
116  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
External  
PWMz  
t
t
tPWM_SYNCH  
Synchronized  
intern. PWMz  
IGS_HSx  
Discharge phase  
tPDCHGx  
t
0
- IDCHGx  
- IPREDCHGx  
tHBxCCP FW for  
symmetrisation  
tHBxCCP Active for cross current  
protection  
HSx internal  
drive signal  
IHOLD  
0
t
-
IHOLD  
- IDCHGx  
- IHOLD  
- IDCHGx  
- IPREDCHGx  
Hard off  
-
IHARDOFF  
VGS_HSx  
tFVDS  
t
t
tFALLx  
VSHx  
tDOFFx  
VS  
VSHH  
VSHH  
VSHL  
VSHL  
IDS_HSDx  
IMOTOR  
t
t
IGS_LSx  
ICHGFWx  
tHBxBLANK FW  
LSx internal  
drive signal  
tFVDS  
ICHGFWx  
IHOLD  
IHOLD  
t
-
IHOLD  
Figure 62 Adaptive turn-off with high-side PWM, AGC[1:0] = (1,0) or (1,1), AFWx=1, motor operating as  
load  
Adaptive turn-off during high-side PWM  
The turn-off of the high-side MOSFET is done in four phases (Refer to Figure 62):  
1. Turn-off delay time for symmetrization of the PWM signal: The turn-off of HSx is delayed by tHBxCCP FW  
after the falling edge of PWMz, in order to compensate the distortion caused by the cross-current  
protection time at turn-on.  
Datasheet  
117  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
2. Pre-discharge: 1)once tHBxCCP FW for symmetrization has elapsed, the gate of the high-side MOSFET x is  
pre-discharged with the current - IPREDCHGx for a duration tDPCHGx. IPREDCHGx is a device internal  
parameter, which is self-adaptive (See next phase).  
3. Discharge: After tPREDCHGx, the pre-discharge current is decreased in absolute value from IPREDCHGx2)  
down to IDCHGx. The effective tDOFF3) is measured and compared to the configured tDOFFx for the  
automatic adaptation of IPREDCHGx (see Adaptive control of pre-discharge current). The discharge  
phase ends up at expiration of tHBxCCP active for cross-current protection.  
4. Cross-current protection phase: The cross-current protection is concurrent to the pre-discharge and  
discharge of the high-side MOSFET. The cross-current protection phase starts when the turn-off delay for  
symmetrization ends up. It has the duration tHBxCCP active . During tHBxCCP active, the low-side  
MOSFETx is kept OFF. When tHBxCCP active has elapsed, the gate of the low-side MOSFET x is charged with  
the current ICHGFWx until the end of tFVDS, provided that VSHx < VSHL  
.
Adaptive control of pre-discharge current  
Refer to Chapter 12.3.6 for information on the pre-discharge currents.  
The pre-discharge current IPREDCHGx is a self-adaptive parameter if AGC[1:0] = (1,0) or (1,1) (see GENCTRL).  
The TLE9560-3QX adapts the IPREDCHGx to match the measured tDOFFx to the configured value.  
IPREDCHGx is clamped between IDCHG0 (0.5 mA typ.) and ICHGMAXx (see HB_ICHG_MAX).  
IPREDCHGx is initialized to Min(IPDCHGINITx, ICHGMAXx) when the TLE9560-3QX receives a SPI command  
setting HBx_PWM_EN to 1 (see HBMODE). IPDCHGINITx is set by the register HB_PCHG_INIT.  
The pre-discharge current is increased or decreased by one, respectively by two current steps  
(Chapter 12.3.6) if the control bit IPCHGADT in the control register GENCTRL is set to 0 respectively 1.  
The following adaptive schemes can be selected:  
AGCFILT = 0: No filter is applied.  
If the effective tDOFFx is longer than the configured tDOFFx, then IPREDCHGx is increased during the next  
pre-discharge phase.  
If the effective tDOFFx is shorter than the configured tDOFFx, then IPREDCHGx is decreased during the next  
pre-discharge phase.  
The pre-charge current is increased or decreased by one, respectively by two current steps  
(Chapter 12.3.6) if the control bit IPCHGADT in the control register GENCTRLis set to 0 respectively 1.  
AGCFILT = 1:  
If the effective tDOFFx of the last two PWM cycles are longer than the configured tDOFFx, then IPREDCHGx  
is increased during the next pre-discharge phase.  
If the effective tDOFFx of the last two PWM cycles are shorter than the configured tDOFFx, then  
IPREDCHGx is decreased during the next pre-discharge phase.  
If none of the two cases are applicable, then IPRECHGx is unchanged during the next pre-discharge phase.  
1) For a correct operation, it is required to configure tPDCHGx < tHBxCCPActive.  
2) IPREDCHGx is clamped between ICHGMAXx and IDCHG0  
.
3) The effective tDOFF can be read out.  
Datasheet  
118  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
The pre-discharge current is increased or decreased by one, respectively by two current steps if the control  
bit IPCHGADT is set to 0 respectively 1.  
12.3.4.1.2  
High-side PWM with adaptive gate control and passive free-wheeling  
This section describes the MOSFETs control scheme with passive free-wheeling (AFWx = 0, HBMODE).  
In contrast to the active free-wheeling, if AFWx =0, only the PWM MOSFET can be turned on, while the  
complementary MOSFET is always kept off.  
Turn-on of the PWM MOSFET, AFWx = 0  
If AFWx = 0, the cross-current protection time at the rising edge of the synchronized PWM signal is omitted in  
contrast to the active free-wheeling. The pre-charge, the charge and the post-charge phases are identical to  
the control scheme with active free-wheeling. Refer to Figure 63.  
Turn-off of the PWM MOSFET, AFWx = 0  
If AFWx = 0, the cross-current protection time at the falling edge of the synchronized PWM signal is omitted in  
contrast to the active free-wheeling. The pre-discharge, the discharge and the post-charge phases are  
identical to the control scheme with active free-wheeling. Refer to Figure 64.  
Datasheet  
119  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
External  
PWMz  
Synchronized  
intern. PWMz  
t
t
tPWM_SYNCH  
Charge  
phase  
Postcharge Phase  
IGS_HSx  
tPCHGx  
ICHGMAXx  
IPRECHGx  
ICHGx  
0
t
tHBxBLANK  
HSx internal  
drive signal  
tFVDS  
ICHGMAXx  
IPRECHGx  
IHOLD  
IHOLD  
ICHGx  
ICHGx  
t
0
-
IHOLD  
VGS_HSx  
t
t
tRISEx  
VSHx  
VS  
VSHH  
VSHH  
VSHL  
tDONx  
VSHL  
IDS_HSDx  
IMOTOR  
t
t
IGS_LSx  
-
ICHGMAX  
LSx internal  
drive signal  
tFVDS  
t
-
IHOLD  
-
IHOLD  
Hard off  
-
IHARDOFF  
Figure 63 Adaptive turn-on with high-side PWM, AGC[1:0] = (1,0) or (1,1), AFWx=0, POCHGDIS=0,  
motor operating as load  
Datasheet  
120  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
External  
PWMz  
t
t
tPWM_SYNCH  
Synchronized  
intern. PWMz  
IGS_HSx  
Discharge phase  
tPDCHGx  
t
0
- IDCHGx  
- IPREDCHGx  
tHBxCCP Active  
HSx internal  
drive signal  
IHOLD  
0
t
-
IHOLD  
- IDCHGx  
- IHOLD  
- IDCHGx  
- IPREDCHGx  
VGS_HSx  
t
t
tFALLx  
VSHx  
tDOFFx  
VS  
VSHH  
VSHH  
VSHL  
VSHL  
IDS_HSDx  
IMOTOR  
t
t
IGS_LSx  
0
LSx internal  
drive signal  
t
-
IHOLD  
Figure 64 Adaptive turn-off with high-side PWM, AGC[1:0] = (1,0) or (1,1), AFWx=0, motor operating as  
load  
Datasheet  
121  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
External  
PWMz  
t
t
tPWM_SYNCH  
Synchronized  
intern. PWMz  
IGS_LSx  
Discharge phase  
tPDCHGx  
t
0
- IDCHGx  
- IPREDCHGx  
tHBxCCP Active for cross current  
protection  
LSx internal  
drive signal  
IHOLD  
0
t
-
IHOLD  
- IDCHGx  
- IHOLD  
- IDCHGx  
- IPREDCHGx  
VGS_LSx  
t
t
VSHx  
tDOFFx tFALLx  
VS  
VSHH  
VSHH  
VSHL  
VSHL  
Detection of the active MOSFET  
IDS_LSDx  
IMOTOR  
(EN_GEN_CHECK= 1). VSH > VSHH: LS  
MOSFET is the active MOSFET  
t
IGS_HSx  
t
HSx internal  
drive signal  
t
-
IHOLD  
HS AGC11 ON NoAFW Generator
 
emf  
Figure 65 PWM rising edge in generator mode with high-side PWM, adaptive gate control on, AGC[1:0]  
= (1,0) or (1,1), AFWx=0, POCHGDIS=0. EN_GEN_CHECK = 1. The PWM MOSFET is the FW  
MOSFET  
Datasheet  
122  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Detection of the active MOSFET  
(EN_GEN_CHECK= 1). VSH > VSHH: LS  
MOSFET is the active MOSFET  
External  
PWMz  
Synchronized  
intern. PWMz  
t
t
tPWM_SYNCH  
Charge  
phase  
Postcharge Phase  
IGS_LSx  
tPCHGx  
ICHGMAXx  
IPRECHGx  
ICHGx  
0
t
tHBxBLANK Active  
LSx internal  
drive signal  
tFVDS  
ICHGMAXx  
IPRECHGx  
IHOLD  
IHOLD  
ICHGx  
ICHGx  
t
0
-
IHOLD  
VGS_LSx  
t
t
tRISEx  
VSHH  
VSHx  
VS  
VSHH  
tDONx  
VSHL  
VSHL  
IDS_LSDx  
IMOTOR  
t
t
IGS_HSx  
HSx internal  
drive signal  
tFVDS  
t
-
IHOLD  
-
IHOLD  
Hard off  
-
IHARDOFF  
t
r
S
c
g
Figure 66 PWM falling edge in generator mode with high-side PWM, adaptive gate control on,  
AGC[1:0] = (1,0) or (1,1), AFWx=0, POCHGDIS=0. EN_GEN_CHECK = 1. The PWM MOSFET is the  
FW MOSFET  
Datasheet  
123  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
12.3.4.2 Low-side PWM with adaptive gate control, motor operating as load  
The following section describes the MOSFET control when the PWM signal is applied to the low-side MOSFET  
of one half-bridge.  
Assumption: the PWM channel z is applied to the low-side MOSFET of the half-bridge x (Figure 67).  
Current Flow PWM = High  
VS  
Current Flow PWM = Low  
HSx: FW MOSFET  
IGS_HSx  
HSy ON  
VGS_HSx  
SHy  
SHx  
M
LSx: Active MOSFET  
IDS_LSx  
LSx  
IGS_LSx  
LSy OFF  
PWMz  
VGS_LSx  
Figure 67 PWM Channel z is mapped to low-side x, motor operating as load  
The description of the control of the PWM half-bridge differs from the description of Chapter 12.3.4.1 only by  
exchanging high-side x and low-side x and thresholds VSHH and VSHL  
.
12.3.4.3 High-side PWM with adaptive gate control, motor operating as generator  
Current Flow PWMz = High  
Current Flow PWMz = Low  
VS  
HSx: FW  
MOSFET  
IDS_HSx  
HSx  
PWMz  
IGS_HSx  
HSy OFF  
VGS_HSx  
SHx  
SHy  
M
LSx: Active  
MOSFET  
LSx  
IGS_LSx  
LSy ON  
VGS_LSx  
Figure 68 PWM input z is mapped to high-side x, the motor operating as generator  
Datasheet  
124  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
External  
PWMz  
t
t
tPWM_SYNCH  
Synchronized  
intern. PWMz  
IGS_LSx  
Discharge phase  
tPDCHGx  
t
0
- IDCHGx  
- IPREDCHGx  
tHBxCCP FW for  
symmetrisation  
tHBxCCP Active for cross current  
protection  
LSx internal  
drive signal  
IHOLD  
0
t
-
IHOLD  
- IDCHGx  
- IHOLD  
- IDCHGx  
- IPREDCHGx  
Hard off  
-
IHARDOFF  
tFVDS  
VGS_LSx  
t
VSHx  
tDOFFx tFALLx  
VS  
VSHH  
VSHH  
VSHL  
VSHL  
t
t
IDS_LSDx  
- IMOTOR  
IGS_HSx  
ICHGFWx  
t
tHBxBLANK FW  
HSx internal  
drive signal  
tFVDS  
ICHGFWx  
IHOLD  
IHOLD  
t
-
IHOLD  
Figure 69 Adaptive turn-on with high-side PWM, AGC[1:0] = (1,0) or (1,1), AFWx=1, motor operating as  
generator  
Datasheet  
125  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
12.3.4.4 Low-side PWM with adaptive gate control, motor operating as generator  
Current Flow PWM = High  
VS  
Current Flow PWM = Low  
HSx: Active MOSFET  
IGS_HSx  
HSy ON  
VGS_HSx  
SHy  
SHx  
M
LSx: FW MOSFET  
IDS_LSx  
LSx  
IGS_LSx  
LSy OFF  
PWMz  
VGS_LSx  
Figure 70 PWM input z is mapped to low-side x, the motor operating as generator  
Datasheet  
126  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
External  
PWMz  
Synchronized  
intern. PWMz  
t
t
tPWM_SYNCH  
Charge  
phase  
Postcharge Phase  
IGS_LSx  
tPCHGx  
ICHGMAXx  
IPRECHGx  
ICHGx  
0
t
tHBxBLANK Active  
tHBxCCP FW  
LSx internal  
drive signal  
tFVDS  
ICHGMAXx  
IPRECHGx  
IHOLD  
IHOLD  
ICHGx  
ICHGx  
t
0
-
IHOLD  
VGS_LSx  
VSHx  
t
t
tRISEx  
VSHH  
VS  
VSHH  
tDONx  
VSHL  
VSHL  
IDS_LSDx  
t
t
- IMOTOR  
IGS_HSx  
-
ICHGFWx  
HSx internal  
drive signal  
tFVDS  
IHOLD  
t
-
IHOLD  
-
IHOLD  
-
ICHGFWx  
Hard off  
-
IHARDOFF  
Figure 71 Adaptive turn-off with high-side PWM, AGC[1:0] = (1,0) or (1,1), AFWx=1, motor operating as  
generator and EN_GEN_CHECK = 1  
Datasheet  
127  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
12.3.4.5 Status bits for regulation of turn-on and turn-off delay times  
The control bits TDREGx (TDREG) indicate if tDONx and tDOFFx of the half-bridge x, using the adaptive control  
scheme (AGC = 10B or 11B), are in regulation.  
The half-bridge x is considered in regulation if one of the following conditions is met:  
Condition 1: The effective turn-on and turn-off delays are equal to the configured delays for at least eight  
cumulative PWM cycle (HBx tDON counter 8 and HBx tDOFF counter 8). For each PWM cycle  
if tDONxEFF1) = TDONx2): HBx tDON counter is incremented  
if tDONxEFF1) TDONx2): HBx tDON counter is decremented  
if tDOFFxEFF1) = TDOFFx3): HBx tDOFF counter is incremented  
if tDOFFxEFF 1) TDOFFx3): HBx tDOFF counter is decremented  
Condition 2: The error between the effective delays ((tDONxEFF-TDONx) and(tDOFFxEFF-TDOFFx ))  
changes its sign three times consecutively  
12.3.4.6 Time modulation of pre-charge and pre-discharge times  
If DEEP_ADAP =0:  
one single precharge current is applied during tPCHGx to regulate TDON  
one single precharge current is applied during tPDCHGx to regulate TDOFF  
If DEEP_ADAP = 1 (“deep adaptation” or “time modulation”) it is possible to:  
to divide the precharge phase in two parts, during which two different precharge currents can be applied  
to divide the predischarge phase in two parts, during which two different precharge currents can be  
applied  
Figure 72 describes the principle of the time modulation applied to the precharge phase. The same principle  
is also applied for the regulation of the pre-discharge phase.  
1) Refer to EFF_TDON_OFF1, EFF_TDON_OFF2  
2) Refer to TDON_HB_CTRL  
3) Refer to TDOFF_HB_CTRL  
Datasheet  
128  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
TDON adaptation  
with two current  
steps (IPCHGADT =  
1)  
Current i+2  
No  
3 consecutive sign changes of (TDON  
EFF- TDON TARGET) or No error for 3  
consecutive PWM cycles  
Current i  
Yes  
tPCHG  
tPCHG  
TDON adaptation  
with one current step  
i+1  
i
3 consecutive sign changes  
of (TDON EFF- TDON  
TARGET)  
No  
tPCHG  
tPCHG  
Yes  
i+1  
i
Precharge phase splitted in 2  
sub-phases  
50% 50%  
tPCHG  
Yes  
TDON EFF = TDON  
TARGET  
No  
Precharge splitted:  
75%-25% if TDON EFF > TDON TARGET  
25%-75% if TDON EFF < TDON TARGET  
i+1  
i
i+1  
i
or  
25%  
75%  
75%  
tPCHG  
25%  
tPCHG  
Yes  
TDON EFF = TDON  
TARGET  
No  
Precharge splitted:  
E.g 87.5%-12.5%  
1) Precharge further split either:  
- until TDON EFF = TDON TARGET  
Etc... 1)  
- Or until no further split of tPCHG is possible. Refer to 2).  
No 2)  
TDON EFF = TDON TARGET  
2) Exit time modulation:  
- tPCHG cannot be further divided due to the limitation of the resolution  
- and the regulation of TDON is still not possible  
à One single current is applied during tPCHG  
Figure 72  
Principle of the time modulation of the precharge phase, DEEP_ADAP = 1, AGC = 10B or 11B  
Datasheet  
129  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
12.3.5  
PWM operation without adaptive gate control  
The adaptive gate control is disabled if AGC[1:0] is set to (0,0) or (0,1). The effective turn-on and turn -off delays  
of the PWM MOSFETs are not regulated. Two modes can be selected.  
The target turn-on and turn-off delay times of PWM MOSFETs (configured in TRISE_FALL1, TRISE_FALL2) are  
no longer regulated. Nevertheless the status registers EFF_TDON_OFF1, EFF_TDON_OFF2 still report the  
effective turn-on and turn-off times of the PWM MOSFET.  
12.3.5.1 AGC[1:0]=00B  
When AGC[1:0] = (0,0) (see GENCTRL), the control of the gate drivers in PWM mode differs from the description  
of Chapter 12.3.4, PWM operation with adaptive gate control, only by the suppression of the pre-charge  
and pre-discharge phases.  
12.3.5.2 AGC[1:0]=01B  
When AGC = (0,1) (see GENCTRL), then:  
During the pre-charge phase (tDCHGx) the gate of the PWM MOSFET mapped to the PWM input z is charged  
with the current IPCHGINITx (HB_PCHG_INIT).  
During the pre-discharge phase (tPDCHGx), the gate of the PWM MOSFET mapped to the PWM input z is  
discharged with the current -IPDCHGINITx (HB_PCHG_INIT).  
Datasheet  
130  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
12.3.6  
Gate driver current  
Each gate driver is able to source and sink currents from 0.5 mA to 100 mA, with 64 steps according to  
Figure 73 and Figure 74.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
5
10 15 20 25 30 35 40 45 50 55 60  
ICHGx[5:0]dec  
Figure 73 Configurable charge currents in PWM operation  
Datasheet  
131  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Table 31  
Charge currents in PWM operation, initial precharge current and freewheeling MOSFETs  
charge current  
ICHGx[5:0], PCHGINIT[5:0]  
Parameter Nom. charge current  
Max. deviation to nominal  
values [%]  
name  
[mA]  
000000B  
000001B  
000010B  
000011B  
000100B  
000101B  
000110B  
000111B  
001000B  
001001B  
001010B  
001011B  
001100B  
001101B  
001110B  
001111B  
010000B  
010001B  
010010B  
010011B  
010100B  
010101B  
010110B  
010111B  
011000B  
011001B  
011010B  
011011B  
011100B  
011101B  
011110B  
011111B  
100000B  
100001B  
100010B  
100011B  
ICHG0  
0.5  
+/- 60%  
+/- 60%  
+/- 60%  
+/- 60%  
+/- 60%  
+/- 60%  
+/- 60%  
+/- 60%  
+/- 55%  
+/- 55%  
+/- 55%  
+/- 55%  
+/- 55%  
+/- 55%  
+/- 40%  
+/- 40%  
+/- 40 %  
+/- 40 %  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
ICHG1  
0.65  
0.85  
1.1  
ICHG2  
ICHG3  
ICHG4  
1.35  
1.7  
ICHG5  
ICHG6  
2.1  
ICHG7  
2.5  
ICHG8  
3.1  
ICHG9  
3.7  
ICHG10  
ICHG11  
ICHG12  
ICHG13  
ICHG14  
ICHG15  
ICHG16  
ICHG17  
ICHG18  
ICHG19  
ICHG20  
ICHG21  
ICHG22  
ICHG23  
ICHG24  
ICHG25  
ICHG26  
ICHG27  
ICHG28  
ICHG29  
ICHG30  
ICHG31  
ICHG32  
ICHG33  
ICHG34  
ICHG35  
4.3  
5.0  
5.7  
6.5  
7.3  
8.2  
9.2  
10.2  
11.3  
12.5  
13.7  
15  
16.3  
17.7  
19.2  
20.8  
22.4  
24.1  
25.8  
27.5  
29.2  
31  
32.8  
34.6  
36.4  
38.2  
Datasheet  
132  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Table 31  
Charge currents in PWM operation, initial precharge current and freewheeling MOSFETs  
charge current (cont’d)  
ICHGx[5:0], PCHGINIT[5:0]  
Parameter Nom. charge current  
Max. deviation to nominal  
values [%]  
name  
ICHG36  
ICHG37  
ICHG38  
ICHG39  
ICHG40  
ICHG41  
ICHG42  
ICHG43  
ICHG44  
ICHG45  
ICHG46  
ICHG47  
ICHG48  
ICHG49  
ICHG50  
ICHG51  
ICHG52  
ICHG53  
ICHG54  
ICHG55  
ICHG56  
ICHG57  
ICHG58  
ICHG59  
ICHG60  
ICHG61  
ICHG62  
ICHG63  
[mA]  
40.1  
42  
100100B  
100101B  
100110B  
100111B  
101000B  
101001B  
101010B  
101011B  
101100B  
101101B  
101110B  
101111B  
110000B  
110001B  
110010B  
110011B  
110100B  
110101B  
110110B  
110111B  
111000B  
111001B  
111010B  
111011B  
111100B  
111101B  
111110B  
111111B  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
43.9  
45.8  
47.8  
49.8  
51.8  
53.8  
55.9  
58  
60.1  
62.2  
64.3  
66.4  
68.6  
70.9  
73.2  
75.5  
77.9  
80.3  
82.7  
85.1  
87.5  
89.9  
92.4  
94.9  
97.4  
100  
Datasheet  
133  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
5
10 15 20 25 30 35 40 45 50 55 60  
IDCHGx[5:0]dec  
Figure 74 Configurable discharge currents in PWM operation  
Datasheet  
134  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Table 32  
Discharge currents in PWM operation, initial predischarge current and freewheeling  
MOSFETs discharge current  
IDCHGx[5:0],  
PDCHGINIT[5:0]  
Parameter Nom. discharge current  
Max. deviation to nominal  
values [%]  
name  
[mA]  
000000B  
000001B  
000010B  
000011B  
000100B  
000101B  
000110B  
000111B  
001000B  
001001B  
001010B  
001011B  
001100B  
001101B  
001110B  
001111B  
010000B  
010001B  
010010B  
010011B  
010100B  
010101B  
010110B  
010111B  
011000B  
011001B  
011010B  
011011B  
011100B  
011101B  
011110B  
011111B  
100000B  
100001B  
100010B  
100011B  
IDCHG0  
0.5  
+/- 60%  
+/- 60%  
+/- 60%  
+/- 60%  
+/- 60%  
+/- 60%  
+/- 60%  
+/- 60%  
+/- 55%  
+/- 55%  
+/- 55%  
+/- 55%  
+/- 55%  
+/- 55%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 40%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
+/- 30%  
IDCHG1  
0.65  
0.85  
1.1  
IDCHG2  
IDCHG3  
IDCHG4  
1.35  
1.7  
IDCHG5  
IDCHG6  
2.1  
IDCHG7  
2.5  
IDCHG8  
3.1  
IDCHG9  
3.7  
IDCHG10  
IDCHG11  
IDCHG12  
IDCHG13  
IDCHG14  
IDCHG15  
IDCHG16  
IDCHG17  
IDCHG18  
IDCHG19  
IDCHG20  
IDCHG21  
IDCHG22  
IDCHG23  
IDCHG24  
IDCHG25  
IDCHG26  
IDCHG27  
IDCHG28  
IDCHG29  
IDCHG30  
IDCHG31  
IDCHG32  
IDCHG33  
IDCHG34  
IDCHG35  
4.3  
5.0  
5.7  
6.5  
7.3  
8.2  
9.2  
10.2  
11.2  
12.3  
13.5  
14.8  
16.1  
17.4  
18.8  
20.3  
21.9  
23.5  
25.2  
26.9  
28.6  
30.4  
32.2  
34  
35.8  
37.6  
Datasheet  
135  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Table 32  
Discharge currents in PWM operation, initial predischarge current and freewheeling  
MOSFETs discharge current (cont’d)  
IDCHGx[5:0],  
PDCHGINIT[5:0]  
Parameter Nom. discharge current  
Max. deviation to nominal  
values [%]  
name  
IDCHG36  
IDCHG37  
IDCHG38  
IDCHG39  
IDCHG40  
IDCHG41  
IDCHG42  
IDCHG43  
IDCHG44  
IDCHG45  
IDCHG46  
IDCHG47  
IDCHG48  
IDCHG49  
IDCHG50  
IDCHG51  
IDCHG52  
IDCHG53  
IDCHG54  
IDCHG55  
IDCHG56  
IDCHG57  
IDCHG58  
IDCHG59  
IDCHG60  
IDCHG61  
IDCHG62  
IDCHG63  
[mA]  
39.4  
41.3  
43.2  
45.1  
47  
100100B  
100101B  
100110B  
100111B  
101000B  
101001B  
101010B  
101011B  
101100B  
101101B  
101110B  
101111B  
110000B  
110001B  
110010B  
110011B  
110100B  
110101B  
110110B  
110111B  
111000B  
111001B  
111010B  
111011B  
111100B  
111101B  
111110B  
111111B  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
+/- 30 %  
49  
51  
53  
55  
57  
59  
61.1  
63.2  
65.4  
67.7  
70  
72.4  
74.8  
77.2  
79.6  
82.1  
84.6  
87.1  
89.6  
92.2  
94.8  
97.4  
100  
Datasheet  
136  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
12.3.7  
PWM operation at high and low duty cycles with active freewheeling  
This section describes the internal PWM signal of the active and FW MOSFET when the motor operates as load  
or generator with active freewheeling (AFWx = 1). In particular, at low and high duty cycles, the active free-  
wheeling is disabled.  
Notes  
1. It is recommended to clear EN_GEN_CHECK (EN_GEN_CHECK to 0)at very high and very low duty cycles:  
t
ON < tHBxCCP FW or tOFF < tHBxCCP active. Under these conditions, a generator mode cannot be correctly detected.  
The control scheme of the active MOSFET and of the freewheeling MOSFET can therefore be inverted.  
2. The device cannot measure the switching times tDON, tDOFF, tRISE and tFALL at very high and very low duty cycles:  
tON < tHBxCCP FW or tOFF < tHBxCCP active.  
General case, motor operating as load, tON > tHBxCCP FW and tOFF > tHBxCCP FW + tHBxCCP active  
Figure 75 shows the internal control signals of the PWM MOSFETs and the freewheeling MOSFET while the  
motor operates as load:  
tON is longer than the FW cross-current protection time (tHBxCCP FW).  
tOFF is longer than the active cross-current protection time (tHBxCCP FW + tHBxCCP Active).  
tHBxCCP3  
active  
tHBxCCP2  
FW (sym)  
tHBxCCP1  
FW  
External PWMx signal  
tON  
time  
time  
Control signal for  
Active MOSFET  
Control signal for  
free-wheeling MOSFET  
time  
Figure 75 Internal signals for PWM operation - General case tON > tHBxCCP FW, tOFF > tHBxCCP FW +  
tHBxCCP active, motor operating as load  
General case, motor operating as generator, tOFF > tHBxCCP FW and tON > tHBxCCP FW + tHBxCCP  
active  
Figure 76 shows the internal control signals of the PWM MOSFETs and the freewheeling MOSFET while the  
motor operates as generator:  
tOFF is longer than the FW cross-current protection time (tHBxCCP FW).  
tON is longer than the active cross-current protection time (tHBxCCP FW + tHBxCCP Active).  
Datasheet  
137  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
External PWMx  
tOFF  
signal  
time  
tHBxCCP3  
active  
tHBxCCP2  
FW (sym)  
tHBxCCP1  
FW  
Inverted ext.  
PWMx signal  
time  
time  
Control signal for  
Active MOSFET  
Control signal for  
free-wheeling MOSFET  
time  
Figure 76 Internal signals for PWM operation - General case: tOFF > tHBxCCP FW, tON > tHBxCCP FW  
+ tHBxCCP FW, Motor operating as generator  
Datasheet  
138  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
High duty cycle: tOFF < tHBxCCP active  
No distinction between active MOSFET and FW MOSFET is possible, when the OFF-time of the external PWM  
signal is shorter than the configured active cross-current protection time. Therefore the PWM MOSFET  
(selected by HBxMODE[1:0]) is controlled as the active MOSFET. In other words, it is assumed that the motor  
operates as load. The control signal of the PWM MOSFET is shifted by one FW cross-current protection time  
compared to the external PWM signal. The MOSFET opposite to the PWM MOSFET stays OFF (passive FW).  
Refer to Figure 77.  
Note:  
No active FW is applied if tOFF < tHBxCCP FW + tHBxCCP active  
tHBxCCP2  
FW (sym)  
tHBxCCP1  
FW  
External PWMx signal  
time  
time  
tOFF  
Control signal for  
PWM MOSFET  
Control signal for  
MOSFET opposite  
to PWM MOSFET  
time  
Figure 77 Internal signals for PWM operation at high duty cycle, tOFF < tHBxCCP Active + tHBxCCP FW  
Low duty cycle: tON < tHBxCCP FW  
No distinction between active MOSFET and FW MOSFET is possible, when the ON-time of the external PWM  
signal is shorter than the configured FW cross-current protection time. Therefore the PWM MOSFET (selected  
by HBxMODE[1:0]) is controlled as the active MOSFET. In other words, it is assumed that the motor operates  
as load. The control signal of the PWM MOSFET is shifted by one cross-current protection time compared to  
the external PWM signal.  
Refer to Figure 78.  
Datasheet  
139  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
tHBxCCP  
FW2 (sym)  
tHBxCCP  
Active 3  
tHBxCCP  
FW 1  
External PWMx signal  
time  
time  
tON  
Control signal for  
PWM MOSFET  
Control signal for  
MOSFET opposite  
to PWM MOSFET  
time  
Figure 78 Internal signals for PWM operation at low duty cycle, tON < tHBxCCP FW  
12.3.8  
Measurements of the switching times  
The effective switching times in PWM operation:  
of the PWM MOSFET if EN_GEN_CHECK = 0  
of the active MOSFET if EN_GEN_CHECK = 1  
are reported in the registers:  
EFF_TDON_OFF1,EFF_TDON_OFF2.  
If the end of the rise time for a given MOSFET is not detected before tHBxBLANK Active elapses, then the  
corresponding status register reports an effective rise time equal to zero.  
If the end of the fall time for a given MOSFET is not detected before tHBxCCP Active active elapses, then the  
corresponding status register reports an effective fall time equal to zero.  
The device cannot measure the switching times tDON, tDOFF, tRISE and tFALL at very high and very low duty cycles:  
tON < tHBxCCP FW and tOFF < tHBxCCP active. In this case, the corresponding registers report effective tDON, tDOFF, tRISE  
and tFALL equal to zero.  
12.4  
Passive discharge  
Resistors (RGGND) between the gate of GHx and GND, and between GLx and GND, ensure that the external  
MOSFETs are turned off in the following conditions:  
VCC1 undervoltage  
HBxMODE = 00B in Normal Mode  
CPEN = 0 in Normal Mode  
VS overvoltage or VSINT overvoltage  
Charge pump undervoltage and charge pump blank time (tCPUVBLANK  
Charge pump overtemperature (CP_OT)  
VDS overvoltage after active discharge in Normal Mode  
)
Datasheet  
140  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
In Init Mode, Stop Mode, Fail Safe Mode, Restart Mode and Sleep Mode (exceptions for low-sides in parking  
braking and VS / VSINT overvoltage braking , refer to Chapter 12.6 and Chapter 13.11.3)  
12.5  
Slam mode  
The slam mode is applicable in Normal Mode.  
If the SLAM bit is set in BRAKE register:  
1. If HBxMODE = 01b or 10b , then the corresponding MOSFETs are actively turned off with their static  
discharge current during their respective tHBxCCP Active.  
2. Then charge pump is deactivated independently from CPEN  
3. Then PWM1/CRC input pin is mapped to LS1, LS2, independently from PMW1MAP, HBxMODE and  
HBx_PWM_EN  
a) If PWM1/CRC is High, then the low-side MOSFETs are turned on within tON_BRAKE  
b) If PWM1/CRC is Low, then the low-side MOSFETs are turned off within tOFF_BRAKE  
.
There is also the possibility to disable selectively the LSx in SLAM mode.  
12.6  
Parking braking mode  
If PARK_BRK_EN bit is set, while the device goes in Sleep Mode or in Stop Mode:  
1. If HBxMODE = 01b or 10b , then the corresponding MOSFETs are actively turned off with their static  
discharge current during their respective tHBxCCP Active.  
2. Then charge pump is deactivated independently from CPEN bit.  
3. Then the passive discharge (RGGND) of the low-sides is deactivated, the passive discharge of the high-sides  
are activated  
4. If PWM1/CRC is High, then the low-side MOSFETs are turned on within tON_BRAKE  
.
Refer to Chapter 13.11.2 for the protection of the of low-side MOSFETs against short circuits when the parking  
braking mode is activated.  
Datasheet  
141  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
12.7  
Charge pump  
A dual-stage charge pump supplies the gate drivers for the high-side and low-side MOSFETs. It requires three  
external capacitors connected between CPC1N and CPC1P, CPC2N and CPC2P, VS and CP.  
The buffer capacitor between VS and CP must have a capacitance equal or higher than 470 nF.  
CCP ≥ 470 nF  
CCP1  
CCP2  
VS  
CP  
Single/dual stage  
charge pump  
Precharge  
Logic  
Figure 79 Charge pump - Block diagram  
Logic or normal level MOSFETs  
The regulation of the charge pump outputs voltage can be configured depending on the type of MOSFET.  
FET_LVL = 0: Logic level MOSFETs are selected:  
VCP - VS = VCP3 (11 V typ. at VS > 8 V).  
The high-side gate-source voltage GHx - SHx is VGH4 (VS > 8 V).  
The low-side gate-source voltage GLx - SL is VGH3 (VS > 8 V).  
FET_LVL = 1: Normal level MOSFETs are selected:  
VCP - VS = VCP1(15 V typ. at VS > 8 V).  
The high-side and low-side gate-source voltage GHx - SHx or GLx - SL is VGH1 (VS > 8 V).  
CPSTGA = 0 (default, see GENCTRL), the device operates with the dual-stage charge pump.  
If CPSTGA = 1, the device switches to single-stage or dual-stage charge pump automatically:  
If VS > VCPSO DS: the TLE9560-3QX switches from a dual-stage to a single-stage charge pump.  
If VS < VCPSO SD: the TLE9560-3QX switches from single-stage to dual-stage charge pump.  
The operation with the single-stage charge pump reduces the current consumption from the VS pin.  
Datasheet  
142  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
12.8  
Frequency modulation  
A modulation of the charge pump frequency can be activated to reduce the peak emission.  
The modulation frequency is set by the control bit FMODE in GENCTRL:  
FMODE = 0: No modulation.  
FMODE = 1: Modulation frequency = 15.6 kHz (default).  
Datasheet  
143  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
12.9  
Electrical characteristics gate driver  
The electrical characteristics related to the gate driver are valid for VCP > VS + 8.5 V  
Table 33  
Electrical characteristics: gate drivers  
VSINT = 5.5 V to 28 V, Tj = -40°C to +150°C,  
VCP > VS + 8.5 V, VS = 6 to 19V, all voltages with respect to ground, positive current flowing into pin except for IGLx  
and IGHx (unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Comparators  
SHx High Threshold  
SHx Low Threshold  
SHx comparator delay  
MOSFET Driver Output  
VSHH  
VSHL  
tSHx  
VS - 2.6  
1.9  
VS - 1.9  
2.6  
V
P_12.11.1  
P_12.11.2  
P_12.11.3  
V
Referred to GND  
1)  
12  
30  
ns  
High Level Output Voltage VGH1  
GHx vs. SHx and GLx vs. SL  
10  
7
11.5  
12.5  
12.5  
V
V
2) VS 8 V ,  
CLoad = 10 nF,  
ICP = -12 mA,  
FET_LVL = 1  
P_12.11.4  
High Level Output Voltage VGH2  
VS = 6 V,  
P_12.11.5  
GHx vs. SHx and GLx vs. SL  
C
Load = 10 nF,  
ICP = -6 mA,  
FET_LVL = 1  
High Level Output Voltage VGH3  
GLx vs. SL  
10  
12.5  
12.5  
V
V
3) VS 6 V ,  
CLoad = 10 nF,  
FET_LVL = 0  
P_12.11.6  
P_12.11.7  
High Level Output Voltage VGH4  
8.5  
10  
2) VS 8 V ,  
GHx vs. SHx  
C
Load = 10 nF,  
ICP = -12 mA,  
FET_LVL = 0  
High Level Output Voltage VGH5  
7
12.5  
V
VS = 6 V,  
P_12.11.8  
GHx vs. SHx  
CLOAD= 10 nF,  
ICP = -6 mA,  
FET_LVL =0  
1)  
Charge current  
Charge current  
Charge current  
Charge current  
ICHG0  
ICHG8  
ICHG16  
ICHG32  
-60% 0.5  
-55% 3.1  
-40% 9.2  
-30% 32.8  
+60% mA  
+55% mA  
+40% mA  
+30% mA  
ICHG = 0D  
P_12.11.10  
P_12.11.11  
P_12.11.12  
P_12.11.13  
CLoad = 2.2 nF  
4)  
4)  
4)  
4)  
VS 8V, VGSVGS(ON)  
1)  
ICHG = 8D  
CLoad = 2.2 nF  
VS 8V, VGSVGS(ON)  
1)  
ICHG = 16D  
CLoad = 2.2 nF  
VS 8V, VGSVGS(ON)  
1)  
ICHG = 32D  
CLoad = 10 nF  
VS 8V, VGSVGS(ON)  
Datasheet  
144  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Table 33  
Electrical characteristics: gate drivers (cont’d)  
VSINT = 5.5 V to 28 V, Tj = -40°C to +150°C,  
VCP > VS + 8.5 V, VS = 6 to 19V, all voltages with respect to ground, positive current flowing into pin except for IGLx  
and IGHx (unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Charge current  
ICHG48  
-30% 64.3  
-30% 100  
-60 % -0.5  
-55 % -3.1  
-40% -9.2  
-30% -32.2  
-30% -63.2  
-30% -100  
+30% mA  
ICHG = 48D  
P_12.11.14  
CLoad = 10 nF  
VS 8V, VGSVGS(ON)  
4)  
4)  
1)  
Charge current  
ICHG63  
+30% mA  
+60% mA  
+55% mA  
+40% mA  
+30% mA  
+30% mA  
+30% mA  
ICHG = 63 D  
P_12.11.15  
P_12.11.16  
P_12.11.17  
P_12.11.18  
P_12.11.19  
P_12.11.20  
P_12.11.21  
CLoad = 10 nF  
VS 8V, VGSVGS(ON)  
1)  
Discharge current  
Discharge current  
Discharge current  
Discharge current  
Discharge current  
Discharge current  
IDCH0  
IDCHG = 0D  
CLoad = 2.2 nF  
VS 8V,VGSVGS(OFF1)  
1)  
IDCH8  
IDCHG =8D  
CLoad = 2.2 nF  
VS 8V,VGSVGS(OFF1)  
1)  
IDCHG16  
IDCHG32  
IDCHG48  
IDCHG63  
IDCHG =16 D  
CLoad = 2.2 nF  
VS 8V,VGSVGS(OFF1)  
1)  
IDCHG =32 D  
CLoad = 10 nF  
VS 8V,VGSVGS(OFF2)  
1)  
IDCHG = 48D  
CLoad = 10 nF  
VS 8V,VGSVGS(OFF2)  
1)  
IDCHG = 63D  
CLoad = 10 nF  
VS 8V,VGSVGS(OFF2)  
1)5)  
Charge current  
temperature drift  
ICHG0,TDrift  
ICHG8,TDrift  
-37% -12% 15%  
ICHG = 0D  
P_12.11.107  
P_12.11.108  
P_12.11.109  
P_12.11.110  
P_12.11.111  
P_12.11.112  
P_12.11.113  
1)5)  
Charge current  
temperature drift  
-17% 1%  
20%  
18%  
9%  
ICHG = 8D  
1)5)  
Charge current  
temperature drift  
ICHG16,TDrift -12% 3%  
ICHG32,TDrift -11% -1%  
ICHG48,TDrift -7.5% 0.5%  
ICHG63,TDrift -5.5% 1.5%  
ICHG = 16D  
1)5)  
Charge current  
temperature drift  
ICHG = 32D  
1)5)  
Charge current  
temperature drift  
8%  
ICHG = 48D  
1)5)  
Charge current  
temperature drift  
8.5%  
ICHG = 63D  
1)6)  
Discharge current  
temperature drift  
IDCHG0,TDrift -29% -4.5% 20%  
IDCHG = 0D  
Datasheet  
145  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Table 33  
Electrical characteristics: gate drivers (cont’d)  
VSINT = 5.5 V to 28 V, Tj = -40°C to +150°C,  
VCP > VS + 8.5 V, VS = 6 to 19V, all voltages with respect to ground, positive current flowing into pin except for IGLx  
and IGHx (unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)6)  
Discharge current  
temperature drift  
IDCHG8,TDrift -8%  
IDCHG16,TDrift -4%  
IDCHG32,TDrift -4%  
IDCHG48,TDrift -4%  
8.5%  
26%  
IDCHG = 8D  
P_12.11.114  
P_12.11.115  
P_12.11.116  
P_12.11.117  
P_12.11.118  
1)6)  
1)6)  
1)6)  
1)6)  
Discharge current  
temperature drift  
9.5%  
4.5%  
3.5%  
23%  
13%  
10%  
9.5%  
IDCHG = 16D  
IDCHG = 32D  
IDCHG = 48D  
IDCHG = 63D  
Discharge current  
temperature drift  
Discharge current  
temperature drift  
Discharge current  
temperature drift  
IDCHG63,TDrift -3.5% 3.5%  
1)7)  
Charge current VS drift  
Charge current VS drift  
Charge current VS drift  
Charge current VS drift  
Charge current VS drift  
Charge current VS drift  
ICHG0,VsDrift  
ICHG8,VsDrift  
3%  
4.5%  
6%  
6%  
ICHG = 0D  
P_12.11.143  
P_12.11.144  
P_12.11.145  
P_12.11.146  
P_12.11.147  
P_12.11.148  
P_12.11.149  
P_12.11.150  
P_12.11.151  
P_12.11.152  
P_12.11.153  
P_12.11.154  
P_12.11.22  
1)7)  
4.5%  
7.5%  
7.5%  
5.8%  
4.5%  
2.8%  
ICHG = 8D  
1)7)  
ICHG16,VsDrift 4%  
ICHG32,VsDrift 2%  
5.8%  
3.8  
ICHG = 16D  
ICHG = 32D  
ICHG = 48D  
ICHG = 63D  
IDCHG = 0D  
IDCHG = 8D  
1)7)  
1)7)  
1)7)  
1)8)  
1)8)  
ICHG48,VsDrift -0.5% 2%  
ICHG63,VsDrift -2.3% 0.3  
Discharge current VS drift IDCHG0,VsDrift -3%  
Discharge current VS drift IDCHG8,VsDrift -3%  
-1.5% 0%  
-0.5% 2%  
1)8)  
1)8)  
1)8)  
1)8)  
Discharge current VS drift IDCHG16,VsDrift -3.3% -0.3% 2.3%  
IDCHG = 16D  
IDCHG = 32D  
IDCHG = 48D  
Discharge current VS drift IDCHG32,VsDrift -2%  
0%  
2%  
Discharge current VS drift IDCHG48,VsDrift -1.5% 0%  
Discharge current VS drift IDCHG63,VsDrift -1.5% 0.2%  
1.5%  
1.5%  
30  
IDCHG = 63D  
1)  
Passive discharge  
resistance between  
GHx/GLx and GND  
RGGND  
10  
20  
kΩ  
1)9)  
Resistor between SHx and RSHGND  
GND  
10  
20  
22  
30  
35  
kΩ  
P_12.11.23  
P_12.11.24  
Low RDSON mode  
RONCCP  
1) VS = 13.5 V  
V
CP = VS + 14 V  
ICHG = IDCHG = 63D  
Gate Drivers Dynamic Parameters  
Gate Driver turn-on delay tDGDRV_ON1  
400  
ns  
10) From PWM11)  
P_12.11.25  
Time  
rising edge to 20%  
of ICHGx  
x = 0 to 63,  
Load = 10 nF,  
BDFREQ = 0  
,
C
Datasheet  
146  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Table 33  
Electrical characteristics: gate drivers (cont’d)  
VSINT = 5.5 V to 28 V, Tj = -40°C to +150°C,  
VCP > VS + 8.5 V, VS = 6 to 19V, all voltages with respect to ground, positive current flowing into pin except for IGLx  
and IGHx (unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Gate Driver turn-on delay tDGDRV_ON2  
300  
ns  
10) From PWM11)  
P_12.11.93  
Time  
rising edge to 20%  
of ICHGx  
x = 0 to 63,  
Load = 10 nF,  
,
C
BDFREQ = 1  
Gate Driver current turn-on tGDRV_RISE(ON)  
rise time  
30  
50  
ns  
ns  
10) From 20% of  
ICHGx to ICHGx ,  
x = 0 to 63,  
P_12.11.26  
P_12.11.27  
C
Load = 10 nF  
Gate Driver turn-off delay tDGDRV_OFF1  
400  
10) From PWM11)  
Time  
rising edge to 20%  
of IDCHGx  
x = 0 to 63,  
Load = 10 nF,  
,
C
BDFREQ = 0  
Gate Driver turn-off delay tDGDRV_OFF2  
Time  
300  
50  
ns  
ns  
10) From PWM11)  
rising edge to 20%  
P_12.11.94  
P_12.11.28  
of IDCHGx  
x = 0 to 63,  
Load = 10 nF,  
,
C
BDFREQ = 1  
10) From 20% of  
Gate Driver current turn-off tGDRV_RISE(OFF  
30  
rise time  
I
DCHGx to IDCHGx  
x = 0 to 63,  
Load = 10 nF  
,
)
C
External MOSFET gate-to- VGS(ON)1  
source voltage - ON  
7
V
1) VS 8 V,  
FET_LVL=1  
1) VS 8 V,  
FET_LVL=0  
1) IDCHGx 36D (P_12.11.30  
40 mA typ.)  
1)IDCHGx > 36D (> P_12.11.101  
40 mA typ.)  
1) BDFREQ = 0  
P_12.11.29  
External MOSFET gate-to- VGS(ON)2  
source voltage - ON  
5.5  
V
P_12.11.100  
External MOSFET gate-to- VGS(OFF)1  
source voltage - OFF  
1.5  
3.8  
200  
100  
V
External MOSFET gate-to- VGS(OFF)2  
source voltage - OFF  
V
PWM synchronization  
delay  
tPWM_SYNCH0 80  
tPWM_SYNCH1 40  
ns  
ns  
P_12.11.33  
PWM synchronization  
delay  
1) BDFREQ= 1  
P_12.11.82  
Bridge driver frequency  
Bridge driver frequency  
tBDFREQ0  
tBDFREQ1  
16.8  
33.7  
18.75 20.7  
37.5 42.3  
MHz 1) BDFREQ= 0  
MHz 1) BDFREQ= 1  
P_12.11.83  
P_12.11.84  
Datasheet  
147  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Table 33  
Electrical characteristics: gate drivers (cont’d)  
VSINT = 5.5 V to 28 V, Tj = -40°C to +150°C,  
VCP > VS + 8.5 V, VS = 6 to 19V, all voltages with respect to ground, positive current flowing into pin except for IGLx  
and IGHx (unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
107  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Pre-charge time  
Pre-charge time  
Pre-charge time  
Pre-charge time  
Pre-charge time  
Pre-charge time  
Pre-charge time  
Pre-charge time  
Pre-discharge time  
Pre-discharge time  
Pre-discharge time  
Pre-discharge time  
Pre-discharge time  
Pre-discharge time  
Pre-discharge time  
Pre-discharge time  
tPCHG000  
tPCHG001  
tPCHG010  
tPCHG011  
tPCHG100  
tPCHG101  
tPCHG110  
tPCHG111  
tPDCHG000  
tPDCHG001  
tPDCHG010  
tPDCHG011  
tPDCHG100  
tPDCHG101  
tPDCHG110  
tPDCHG111  
80  
140  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1) TPCHG = 000,  
P_12.11.34  
P_12.11.35  
P_12.11.36  
P_12.11.37  
P_12.11.85  
P_12.11.86  
P_12.11.87  
P_12.11.88  
P_12.11.38  
P_12.11.39  
P_12.11.40  
P_12.11.41  
P_12.11.89  
P_12.11.90  
P_12.11.91  
P_12.11.92  
BDFREQ= 0 or 1  
1) TPCHG = 001,  
BDFREQ= 0 or 1  
1) TPCHG = 010,  
BDFREQ= 0 or 1  
1) TPCHG = 011,  
BDFREQ= 0 or 1  
1) TPCHG = 100,  
BDFREQ= 0 or 1  
1) TPCHG = 101,  
BDFREQ= 0 or 1  
1) TPCHG = 110,  
BDFREQ= 0 or 1  
1) TPCHG = 111,  
BDFREQ= 0 or 1  
1) TPDCHG = 000,  
BDFREQ= 0 or 1  
1) TPDCHG = 001,  
BDFREQ= 0 or 1  
1) TPDCHG = 010,  
BDFREQ= 0 or 1  
1) TPDCHG = 011,  
BDFREQ= 0 or 1  
1) TPDCHG = 100,  
BDFREQ= 0 or 1  
1) TPDCHG = 101,  
BDFREQ= 0 or 1  
1) TPDCHG = 110,  
BDFREQ= 0 or 1  
1) TPDCHG = 111,  
130  
170  
210  
250  
420  
600  
840  
80  
160  
214  
267  
320  
533  
747  
1067  
107  
160  
214  
267  
320  
533  
747  
1067  
190  
260  
330  
390  
630  
900  
1260  
140  
190  
260  
330  
390  
630  
900  
1260  
130  
170  
210  
250  
420  
600  
840  
BDFREQ= 0 or 1  
Low-side gate driver, CP off - Slam mode, parking braking and VS overvoltage braking  
LS turn-on time, CP off  
tON_BRAKE  
4.5  
9
µs  
CLOAD = 10 nF  
P_12.11.42  
VGLx-VSL = 5 V,  
VS > 8 V or VSINT > 8 V  
Datasheet  
148  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Table 33  
Electrical characteristics: gate drivers (cont’d)  
VSINT = 5.5 V to 28 V, Tj = -40°C to +150°C,  
VCP > VS + 8.5 V, VS = 6 to 19V, all voltages with respect to ground, positive current flowing into pin except for IGLx  
and IGHx (unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
0.7  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
LS turn-off time, CP off  
tOFF_BRAKE  
2
µs  
CLOAD = 10 nF  
P_12.11.43  
VGLx-VSL = 1.5 V,  
VS > 8 V or VSINT > 8 V  
High output voltage  
GLx - SL  
VGLx_BRAKE  
5
10  
V
VS > 8 V or VSINT > 8 V P_12.11.48  
Charge pump  
1)  
Charge Pump Frequency  
fCP  
250  
kHz  
V
P_12.11.49  
Output Voltage VCP vs. VS VCPmin1  
8.5  
VS = 6 V, ICP = - 6 mA, P_12.11.50  
FET_LVL =1  
Output Voltage VCP vs. VS VCPmin2  
7.5  
12  
V
V
VS = 6 V, ICP = - 6 mA, P_12.11.51  
FET_LVL =0  
Regulated CP output  
voltage, VCP vs. VS  
VCP1  
15  
17  
8 V < VS < 23 V  
I
CPSTGA = 0,  
FET_LVL =1  
P_12.11.52  
P_12.11.53  
P_12.11.54  
P_12.11.55  
CP = - 12 mA13)  
,
Regulated CP output  
voltage, VCP vs. VS  
VCP2  
12  
7.5  
7.5  
5
15  
11  
11  
17  
13  
13  
60  
60  
120  
V
18 V < VS < 23 V  
ICP = - 12 mA13)  
CPSTGA = 1,  
FET_LVL =1  
,
Regulated CP output  
voltage, VCP vs. VS  
VCP3  
V
8 V < VS < 23 V  
I
CP = - 12 mA13)  
,
CPSTGA = 0,  
FET_LVL =0  
Regulated CP output  
voltage, VCP vs. VS  
VCP4  
V
13 V < VS < 23 V  
I
CP = - 12 mA13)  
,
CPSTGA = 0,  
FET_LVL =0  
1)12)13)18 V<VS< 23 V P_12.11.56  
(25%), ICP = 0 ,  
CPSTGA = 1,  
FET_LVL =1  
Turn-on time  
Rise time  
tON_VCP1  
tRISE_VCP1  
tON_VCP2  
µs  
µs  
µs  
5
30  
60  
1)12)13)18 V < VS < 23 P_12.11.57  
V (25%-75%)  
ICP = 0 , CPSTGA = 1,  
FET_LVL =1  
1)12)13) 13 V < VS <23 P_12.11.58  
V (25%), ICP = 0,  
Turn-on time  
20  
CPSTGA = 1,  
FET_LVL =0  
Datasheet  
149  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
Table 33  
Electrical characteristics: gate drivers (cont’d)  
VSINT = 5.5 V to 28 V, Tj = -40°C to +150°C,  
VCP > VS + 8.5 V, VS = 6 to 19V, all voltages with respect to ground, positive current flowing into pin except for IGLx  
and IGHx (unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
30  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Rise time  
tRISE_VCP2  
5
60  
µs  
1)12)13)13 V < VS < 23 P_12.11.59  
V (25%-75%)  
ICP = 0 , CPSTGA = 1,  
FET_LVL =0  
Automatic switch over dual VCPSO DS  
to single stage charge  
pump  
16  
17  
18  
V
V
V
V
CPSTGA = 1,  
FET_LVL =1,  
VS rising  
P_12.11.60  
P_12.11.61  
P_12.11.62  
P_12.11.64  
Automatic switch over dual VCPSO DS  
to single stage charge  
pump  
11.5  
15.5  
11  
12.25 13  
CPSTGA = 1,  
FET_LVL = 0,  
VS rising  
Automatic switch over  
single to dual stage charge  
pump  
VCPSO SD  
16.5  
17.5  
CPSTGA = 1,  
FET_LVL =1,  
VS falling  
Automatic switch over  
single to dual stage charge  
pump  
VCPSO SD  
11.75 12.5  
CPSTGA = 1,  
FET_LVL = 0,  
VS falling  
Charge pump switch over VCPSO HY  
hysteresis  
0.5  
V
1) CPSTGA = 1  
VCPSO DS - VCPSO SD  
13) 8 V < VS < 28 V  
CPSTGA = 0  
P_12.11.65  
P_12.11.68  
Charge pump minimum  
output current  
ICPOC1  
-12  
mA  
FET_LVL =1  
Charge pump minimum  
output current  
ICPOC2  
-12  
mA  
13) 8 V < VS < 28 V  
CPSTGA = 0  
FET_LVL =0  
P_12.11.69  
Digital PWMx Inputs  
High Level Input Voltage  
Threshold  
VPWMH  
0.7 ×  
Vcc1  
V
P_12.11.95  
P_12.11.96  
P_12.11.97  
P_12.11.98  
Low Level Input Voltage  
Threshold  
VPWML  
0.3 ×  
Vcc1  
V
1)  
PWMx Input Hysteresis  
VPWM,hys  
RPD_PWM  
0.12 ×  
Vcc1  
V
PWMx Pull-down  
Resistance  
20  
40  
80  
kΩ  
CRC Select; Pin PWM1/CRC  
14)  
1)  
Config Pull-up Resistance RCFG  
100  
10  
kΩ  
P_12.11.99  
Config Select Filter Time tCFG_F  
5
14  
µs  
P_12.11.105  
1) Not subject to production test, specified by design.  
2) Independent from CPSTGA.  
3) ICP = -12 mA for VS 8 V, ICP = 6 mA for VS = 6 V.  
Datasheet  
150  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Gate Drivers  
4) VGS(ON) = VGS(ON)1 if FET_LVL = 1, VGS(ON) = VGS(ON)2 if FET_LVL = 0.  
5) (ICHGx@Tj=150°C - ICHGx@Tj=-40°C) / ICHGx@Tj=25°C  
6) (IDCHGx@Tj=150°C - IDCHGx@Tj=-40°C) / IDCHGx@Tj=25°C  
7) (ICHGx@VS=19V - ICHGx@VS=8V) / ICHGx@VS=13.5V  
8) (IDCHGx@VS=19V - ICHGx@VS=8V) / IDCHGx@VS=13.5V  
9) This resistance is the resistance between GHx and GND connected through a diode to SHx. As a consequence, the  
voltage at SHx can rise up to 0.6 V typ. before it is discharged through the resistor.  
10) Not subject to production test, specified by design.  
11) External PWM signal.  
12) Parameter dependent on the capacitance CCP  
.
13) CCPC1 = CCPC2 = 220 nF, CCP = 470 nF. Other CCP values higher than 470 nF can be used. Note that this capacitor  
influences the charge pump rise and turn-on times, and the charge , VCP ripple voltage when charging the gate of a  
MOSFET.  
14) Config Pull-up will be only active during startup-phase for checking external pull-down. After checking, the typ. 40 kΩ  
Pull-down resistance will be present.  
Datasheet  
151  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
13  
Supervision Functions  
13.1  
Reset Function  
VCC1  
RSTN  
Resetlogic  
Incl. filter & delay  
Figure 80 Reset Block Diagram  
13.1.1  
Reset Output Description  
The reset output pin RSTN provides a reset information to the microcontroller, for example, in the event that  
the output voltage has fallen below the undervoltage threshold VRTx. In case of a reset event, the reset output  
RSTN is pulled to low after the filter time tRF and stays low as long as the reset event is present plus a reset  
delay time tRD1 or tRD2 depending on the value in RSTN_DEL. When connecting the device to battery voltage,  
the reset signal remains low initially. When the output voltage VCC1 has reached the reset default threshold  
VRT1,r, the reset output RSTN is released to high after the reset delay time tRD1. A reset can also occur due to a  
watchdog trigger failure. The reset threshold can be adjusted via SPI, the default reset threshold is VRT1,f. The  
RSTN pin has an integrated pull-up resistor. In case reset is triggered, it will be pulled low for VCC1 1V and  
for VSINT VPOR,f (see also Chapter 13.3).  
The timings for the RSTN triggering regarding VCC1 undervoltage and watchdog trigger is shown in Figure 81.  
Datasheet  
152  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
VCC1  
VRT1  
t < tRF  
The reset threshold can be  
configured via SPI in  
Normal Mode, default is VRT1  
undervoltage  
t
tCW  
tOW  
tRD1  
tRDx (config)  
tCW  
tLW  
tLW  
tCW  
tOW  
SPI  
SPI  
Init  
WD  
Trigger  
WD  
Trigger  
SPI  
Init  
t
t
tRF  
RSTN  
t
t
t
LW= long open window  
CW= closed window  
OW= open window  
Init  
Normal  
Restart  
Normal  
Reset_timing.vsd  
Figure 81 Reset Timing Diagram  
13.1.2  
Soft Reset Description  
In Normal Mode and Stop Mode, it is also possible to trigger a device internal reset via a SPI command in order  
to bring the device into a defined state in case of failures. In this case the microcontroller must send a SPI  
command and set the MODE bits to ‘11’ in the M_S_CTRL register. As soon as this command becomes valid,  
the device is set back to Init Mode and all SPI registers are set to their default values (see SPI Chapter 14.5.1  
and Chapter 14.6.1).  
Two different soft reset configurations are possible via the SPI bit SOFT_RESET_RO:  
SOFT_RESET_RO = ‘0’: The reset output (RSTN) is triggered when the soft reset is executed (default  
setting) The configured reset delay time tRD1 or tRD2 is applied depending on the value in RSTN_DEL).  
SOFT_RESET_RO = ‘1’: The reset output (RSTN) is not triggered when the soft reset is executed.  
Note:  
The device must be in Normal Mode or Stop Mode when sending this command.  
Otherwise, the command will be ignored.  
Note:  
Allow CRC configuration after software-reset - or better check once again via SPI after software  
reset.  
Datasheet  
153  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
13.2  
Watchdog Function  
The watchdog is used to monitor the software execution of the microcontroller and to trigger a reset or move  
the device to Fail Safe Mode, if the microcontroller stops serving the watchdog due to a lock up in the software.  
Two different types of watchdog functions are implemented and can be selected via the bit WD_CFG:  
Time-Out Watchdog (default value)  
Window Watchdog  
The respective watchdog functions can be selected and programmed in Normal Mode. The configuration stays  
unchanged in Stop Mode.  
Please refer to Table 34 to match the device modes with the respective watchdog modes.  
Table 34 Watchdog Functionality by modes  
Mode  
Watchdog Mode  
Remarks  
Init Mode  
Starts with Long Open  
Window  
Watchdog starts with Long Open Window after RSTN  
is released.  
Normal Mode  
WD Programmable  
Window Watchdog, Time-Out watchdog or switched  
off for Stop Mode.  
Stop Mode  
Sleep Mode  
Watchdog is fixed or off  
Off  
Device will start with Long Open Window when  
entering Normal Mode.  
Restart Mode  
Off  
Device will start with Long Open Window when  
entering Normal Mode.  
The watchdog timing is programmed via SPI command in the register WD_CTRL. As soon as the watchdog is  
programmed, the timer starts with the new setting and the watchdog must be served. The watchdog is  
triggered by sending a valid SPI-write command to the watchdog configuration register. The watchdog trigger  
command is executed when the SPI command is interpreted.  
When coming from Init Mode, Restart Mode or in certain cases from Stop Mode, the watchdog timer is always  
started with a long open window. The long open window (tLW) allows the microcontroller to run its  
initialization sequences and then to trigger the watchdog via SPI.  
The watchdog timer period can be selected via SPI (WD_TIMER).The timer setting is valid for both watchdog  
types.  
The following watchdog timer periods are available:  
WD Setting 1: 10 ms  
WD Setting 2: 20 ms  
WD Setting 3: 50 ms  
WD Setting 4: 100 ms  
WD Setting 5: 200 ms  
WD Setting 6: 500 ms  
WD Setting 7: 1 s  
WD Setting 8: 10 s  
In case of a reset, Restart Mode or Fail-Safe Mode is entered according to the configuration and the SPI bits  
WD_FAIL are set. Once the RSTN goes high again the watchdog immediately starts with a long open window  
the device enters automatically Normal Mode.  
The Watchdog behaviour in Software Development Mode is described in Chapter 5.4.7.  
Datasheet  
154  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
In case a watchdog-trigger was missed in Software Development Mode, the watchdog will start with the long-  
open-window once again.  
The WD_FAIL bits will be set after a watchdog trigger failure.  
The WD_FAIL bits are cleared automatically when following conditions apply:  
After a successful watchdog trigger.  
When the watchdog is off: in Stop Mode after successfully disabling it, in Sleep Mode, or in Fail-Safe Mode  
(except for a watchdog failure).  
13.2.1  
Time-Out Watchdog  
The time-out watchdog is an easier and less secure watchdog than a window watchdog as the watchdog  
trigger can be done at any time within the configured watchdog timer period.  
A correct watchdog service immediately results in starting a new watchdog timer period. Taking the  
tolerances of the internal oscillator into account leads to the safe trigger area as defined in Figure 82.  
If the time-out watchdog period elapses, a watchdog reset is created by setting the reset output RSTN low and  
the device switches to Restart Mode or Fail-Safe Mode.  
Typical timout watchdog trigger period  
tWD x 1.50  
open window  
uncertainty  
Watchdog Timer Period (WD_TIMER)  
tWD x 1.20  
tWD x 1.80  
t / [tWD_TIMER  
]
safe trigger area  
Figure 82 Time-out Watchdog Definitions  
Datasheet  
155  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
13.2.2  
Window Watchdog  
Compared to the time-out watchdog the characteristic of the window watchdog is that the watchdog timer  
period is divided between a closed and an open window. The watchdog must be triggered within the open  
window.  
A correct watchdog trigger results in starting the window watchdog period by a closed window followed by an  
open window.  
The watchdog timer period is at the same time the typical trigger time and defines the middle of the open  
window. Taking the oscillator tolerances into account leads to a safe trigger area of:  
tWD × 0.72 < safe trigger area < tWD × 1.20.  
The typical closed window is defined to a width of 60% of the selected window watchdog timer period. Taking  
the tolerances of the internal oscillator into account leads to the timings as defined in Figure 83.  
A correct watchdog service immediately results in starting the next closed window.  
If the trigger signal meet the closed window or if the watchdog timer period elapses, then a watchdog reset is  
triggered (RSTN low) and the device switches to Restart Mode or Fail-Safe Mode.  
tWD x 0.6  
tWD x 0.9  
Typ. closed window  
Typ. open window  
tWD x 0.48  
tWD x 0.72  
tWD x 1.0  
tWD x 1.20  
tWD x 1.80  
closed window  
uncertainty  
open window  
uncertainty  
Watchdog Timer Period (WD_TIMER)  
t / [tWD_TIMER  
]
safe trigger area  
Figure 83 Window Watchdog Definitions  
13.2.3  
Watchdog Setting Check Sum  
A check sum bit is part of the SPI command to trigger the watchdog and to set the watchdog setting.  
The sum of the 16 data bits in the register WD_CTRL needs to have even parity (see Equation (13.1)). This is  
realized by either setting the bit CHECKSUM to 0 or 1. If the check sum is wrong, then the SPI command is  
ignored, i.e. the watchdog is not triggered or the settings are not changed and the bit SPI_FAIL is set.  
The written value of the reserved bits of the WD_CTRL register is considered (even if read as ‘0’ in the SPI  
output) for checksum calculation, i.e. if a 1 is written on the reserved bit position, then a 1 will be used in the  
checksum calculation.  
(13.1)  
Bit(CHECKSUM) = Bit22 ⊕ … ⊕ Bit8  
Datasheet  
156  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
13.2.4  
Watchdog during Stop Mode  
The watchdog can be disabled for Stop Mode in Normal Mode. For safety reasons, there is a special sequence  
to be followed in order to disable the watchdog as described in Figure 84. Two different SPI bits  
(WD_STM_EN_0, WD_STM_EN_1) in the registers HW_CTRL and WD_CTRL need to be set.  
Correct WD disabling  
Sequence Errors  
sequence  
Missing to set bit  
WD_STM_EN_0 with the  
next watchdog trigger after  
having set WD_STM_EN_1  
Set bit  
WD_STM_EN_1 = 1  
with next WD Trigger  
Staying in Normal Mode  
instead of going to Stop  
Mode with the next trigger  
Set bit  
WD_STM_EN_0 = 1  
Before subsequent WD Trigger  
Will enable the WD:  
Change to  
Stop Mode  
Switching back to  
Normal Mode  
Triggering the watchdog  
WD is switched off  
Figure 84 Watchdog disabling sequence in Stop Mode  
If a sequence error occurs, then the bit WD_STM_EN_1 will be cleared and the sequence has to be started  
again.  
The watchdog can be enabled by triggering the watchdog in Stop Mode or by switching back to Normal Mode  
via SPI command. In both cases the watchdog will start with a long open window and the bits WD_STM_EN_1  
and WD_STM_EN_0 are cleared. After the long open window the watchdog has to be served as configured in  
the WD_CTRL register.  
Note:  
The bit WD_STM_EN_0 will be cleared automatically when the sequence is started and it was 1  
before. WD_STM_EN_0 can also not be set if WD_STM_EN_1 isn't yet set.  
13.2.5  
Watchdog Start in Stop Mode due to Bus Wake  
In Stop Mode the Watchdog can be disabled. In addition a feature is available which will start the watchdog  
with any BUS wake (CAN, LIN) during Stop Mode. The feature is enabled by setting the bit WD_EN_ WK_BUS =  
1 (default value after POR). The bit can only be changed in Normal Mode and needs to be programmed before  
starting the watchdog disable sequence.  
A wake on the Bus will generate an interrupt and the RXDCAN, RXDLIN is pulled to low. By these signals the  
microcontroller is informed that the watchdog is started with a long open window. After the long open  
window the watchdog has to be served as configured in the WD_CTRL register.  
To disable the watchdog again, the device needs to be switched to Normal Mode and the sequence needs to  
be sent again.  
Datasheet  
157  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
13.3  
VSINT Power On Reset  
At power up of the device, the Power on Reset is detected when VSINT > VPOR,r and the SPI bit POR is set to  
indicate that all SPI registers are set to POR default settings. VCC1 is starting up and the reset output will be  
kept low and will only be released once VCC1 has crossed VRT1,r and after tRD1 has elapsed.  
In case VSINT < VPOR,f, an device internal reset will be generated and the device is switched off and will restart  
in Init Mode at the next VSINT rising. This is shown in Figure 85.  
VSINT  
VPOR,r  
VPOR,f  
t
t
VCC1  
VRT1,r  
The reset threshold can be  
configured via SPI in  
Normal Mode, default is VRT1  
VRTx,f  
RSTN  
Restart Mode is entered  
whenever the Reset is  
triggered  
t
tRD1  
Mode  
Re-  
start  
OFF  
INIT MODE  
Any MODE  
OFF  
t
SPI  
Command  
Figure 85 Ramp up / down example of Supply Voltage  
Datasheet  
158  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
13.4  
VSINT Under- and Overvoltage  
13.4.1  
VSINT Undervoltage  
The VSINT under-voltage monitoring is always active in Init Mode, Restart Mode, Normal Mode. If the supply  
voltage VSINT drops below VSINT,UV for more than tVSUV_FILT, then the device does the following measures:  
The VCC1 short circuit diagnosis becomes inactive (see Chapter 13.8). However, the thermal protection of  
the device remains active. If the undervoltage threshold is exceeded (VSINT rising) then the function will  
be automatically enabled again.  
The status bit VSINT_UV is set and latched until a clear command of SUP_STAT is received.  
Note:  
VSINT under-voltage monitoring is not available in Stop Mode due to current consumption saving  
requirements except if the VCC1 load current is above the active peak threshold (I_PEAK_TH) or if  
VCC1 is below the VCC1 prewarning threshold.  
13.4.2  
VSINT Overvoltage  
The VSINT over-voltage monitoring is always active in Init Mode, Restart Mode and Normal Mode. If VSINT rises  
above VS,OVD1, VS,OVD2 for more than tVSOV_FILT then the device does the following measures:  
1. If HBxMODE = 01b or 10b , then the corresponding MOSFETs are actively turned off with their static  
discharge current during their respective tHBxCCP Active.  
2. Then the charge pump is turned off and the passive discharge is activated.  
3. The status bits VSINT_OV is set and latched until a clear command of SUP_STAT is received.  
If VS or VSINT fall below VS,OVD1 or VS,OVD2  
:
If CPEN = 0 : the charge pumps stays and the bridge driver stay off.  
If CPEN = 1 :  
If BDOV_REC = 0 : Then the charge pump is reactivated but the bridge driver stays off until VS_OV and  
VSINT_OV are cleared.  
If BDOV_REC = 1 : Then the charge pump is reactivated and the bridge driver is enabled if VCP > VCPUVx  
even if VS_OV or VSINT_OV is set. The state of the external MOSFETs is according to the control  
registers.  
,
Datasheet  
159  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
13.5  
VS Under- and Overvoltage  
13.5.1  
VS Undervoltage  
The VS under-voltage monitoring is always active in Init-, Restart Mode and Normal Mode. If VS drops below  
VS,UV for more than tVSUV_FILT, then the device does the following measures:  
1. If HBxMODE = 01b or 10b , then the corresponding MOSFETs are actively turned off with their static  
discharge current during their respective tHBxCCP Active.  
2. Then the charge pump is turned off and the passive discharge is activated .  
3. The status bits VS_UV is set and latched until a clear command of SUP_STAT is received.  
If VS rises above VS,UV, then the charge pump is reactivated (provided that CPEN is set) but the bridge driver  
stays off until VS_UV is cleared. The bridge driver will be reactivated once the VS_UV bit is cleared.  
13.5.2  
VS Overvoltage  
The VS over-voltage monitoring is always active in Init-, Restart Mode and Normal Mode or when the charge  
pump is enabled. If VS rises above VS,OVD1 or VS,OVD2 for more than tVSOV_FILT, then the device does the following  
measures:  
1. If HBxMODE = 01b or 10b , then the corresponding MOSFETs are actively turned off with their static  
discharge current during their respective tHBxCCP Active.  
2. Then the charge pump is turned off and the passive discharge is activated.  
3. The status bits VS_OV is set and latched until a clear command of SUP_STAT is received.  
If VS and VSINT fall below VS,OVD1 or VS,OVD2  
:
If CPEN = 0 : the charge pumps and the bridge driver stay off.  
If CPEN = 1 :  
If BDOV_REC = 0 : Then the charge pump is reactivated but the bridge driver stays off until VS_OV and  
VSINT_OV are cleared.  
If BDOV_REC = 1 : Then the charge pump is reactivated and the bridge driver is enabled if VCP > VCPUVx  
even if VS_OV or VSINT_OV is set. The state of the external MOSFETs is according to the control  
registers.  
,
Datasheet  
160  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
13.6  
VSHS Under- Overvoltage  
13.6.1  
VSHS Undervoltage  
If the supply voltage VSHS passes below the undervoltage threshold (VSHS,UVD) the device does the following  
measures:  
HS1...4 are acting accordingly to the SPI setting (refer also to Chapter 7.2.1).  
LIN: Transmitter and Receiver are disabled during the VSHS undervoltage condition.  
SPI bit HS_UV is set. No other error bits are set. The bit can be cleared once the condition is not present  
anymore.  
13.6.2  
VSHS Overvoltage  
If the supply voltage VSHS reaches the overvoltage threshold (VSHS,OVD) the device triggers the following  
measures:  
HS1...4 are acting accordingly to the SPI setting (refer also to Chapter 7.2.2).  
The status bit HS_OV is set. No other error bits are set. The bit can be cleared once the condition is not  
present anymore.  
Datasheet  
161  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
13.7  
VCC1 Over-/ Undervoltage and Undervoltage Prewarning  
13.7.1  
VCC1 Undervoltage and Undervoltage Prewarning  
This function is always active when the VCC1 voltage regulator is enabled.  
A first-level voltage detection threshold is implemented as a prewarning for the microcontroller. The  
prewarning event is signaled with the bit VCC1_WARN. No other actions are taken.  
As described in Chapter 13.1 and Figure 86, a reset will be triggered (RSTN pulled low) when the VCC1 output  
voltage falls below the selected undervoltage threshold (VRTx). The device will enter Restart Mode and the bit  
VCC1_UV is set when RSTN is released again.  
The hysteresis of the VCC1 undervoltage threshold can be increased by setting the bit RSTN_HYS. In this case  
always the highest rising threshold (VRT1,R) is used for the release of the undervoltage reset. The falling reset  
threshold remains as configured.  
An additional safety mechanism is implemented to avoid repetitive VCC1 undervoltage resets due to high  
dynamic loads on VCC1:  
A counter is increased for every consecutive VCC1 undervoltage event (regardless on the selected reset  
threshold).  
The counter is active in Init Mode, Normal Mode and Stop Mode.  
For VS < VSINT,UV the counter will be stopped in Normal Mode (i.e. the VS UV comparator is always enabled  
in Normal Mode).  
A 4th consecutive VCC1 undervoltage event will lead to Fail-Safe Mode entry and to setting the bit  
VCC1_UV_FS.  
This counter is cleared:  
When Fail-Safe Mode is entered.  
When the bit VCC1_UV is cleared.  
When a Soft-Reset is triggered.  
Note:  
Note:  
After 4 consecutive VCC1_UV events, the device will enter Fail-Safe Mode and the VCC1_UV_FS bit is  
set.  
The VCC1_WARN or VCC1_UV bits are not set in Sleep Mode as VCC1 = 0 V in this case.  
VCC1  
VRTx  
t
tRF  
tRDx (config)  
RSTN  
t
Normal Mode  
Restart Mode  
Normal Mode  
Figure 86 VCC1 Undervoltage Timing Diagram  
Datasheet  
162  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
Note:  
It is recommended to clear the VCC1_WARN and VCC1_UV bit once it is detected by the  
microcontroller software to verify if the undervoltage still exists or not.  
13.7.2  
VCC1 Overvoltage  
For fail-safe reasons a configurable VCC1 over voltage detection feature is implemented. It is active when the  
VCC1 voltage regulator is enabled.  
In case the VCC1,OV,r threshold is crossed, the device triggers following measures depending on the  
configuration:  
The bit VCC1_OV is always set.  
Based on the configuration of VCC1_OV_MOD, different kind of event are generated from device.  
If the VCC1_OV_MOD=11B, in case of the device enters in Fail Safe Mode, the Fail Safe Output is activated  
(according WK2_FO setting).  
VCC1  
VCC1,OV  
t
tOV_filt  
RSTN  
tRDx (config)  
t
Normal Mode  
Restart Mode  
Normal Mode  
Figure 87 VCC1 Over Voltage Timing Diagram  
13.8  
VCC1 Short Circuit Diagnostics  
The short circuit protection feature for VCC1 is implemented as follows:  
The short circuit detection is only enabled if VS > VSINT,UV.  
If VCC1 is not above the VRTx within tVCC1,SC after device power up or after waking from Sleep Mode or Fail-  
Safe Mode (i.e. after VCC1 is enabled) then the SPI bit VCC1_SC bit is set, VCC1 is turned off, the FO pin is  
enabled, FAILURE is set and Fail-Safe Mode is entered. The device can be activated again via a wake-up  
sources.  
The same behavior applies, if VCC1 falls below VRTx for longer than tVCC1,SC.  
13.9  
VCAN Undervoltage  
An undervoltage warning is implemented for VCAN as follows:  
V
V
CAN undervoltage detection: In case the CAN module is enabled and the voltage on VCAN will drop below the  
CAN_UV,f threshold, then the SPI bit VCAN_UV is set and can be only cleared via SPI.  
Datasheet  
163  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
13.10  
Thermal Protection  
Three independent and different thermal protection features are implemented in the device according to the  
system impact:  
Individual thermal shutdown of specific blocks  
Temperature prewarning of VCC1 voltage regulator  
Device thermal shutdown due to VCC1 overtemperature  
13.10.1 Individual Thermal Shutdown  
As a first-level protection measure, LIN, CAN, HSx and the charge pump are independently switched off if the  
respective block reaches the temperature threshold TjTSD1. Then the TSD1 bit is set. This bit can only be  
cleared via SPI once the overtemperature is not present anymore. Independent of the device mode the  
thermal shutdown protection is only active if the respective block is ON.  
The respective modules behave as follows:  
CAN: The transmitter is disabled and stays in CAN Normal Mode acting like CAN Receive Only Mode. The  
status bits CAN_FAIL are set to ‘01’. Once the overtemperature condition is not present anymore, then the  
CAN transmitter is automatically switched on.  
LIN: The transmitter is disabled and stays in LIN Normal Mode acting like LIN Receive Only Mode. The status  
bits LIN_FAIL are set to ‘01’. Once the over temperature condition is not present anymore, then the LIN  
transmitter is automatically switched on.  
HSx: If one or more HSx switches reach the TSD1 threshold, then the HSx switches are turned OFF  
(depending on configuration either individually or all at once) and the control bits for HSx are cleared  
based on HS_OT_SD_DIS setting. The status bits HSx_OT are set (see register HS_OL_OC_OT_STAT).  
Once the over temperature condition is not present anymore, then HSx has to be configured again by SPI.  
Charge pump: If the charge pump reaches TjTSD1, then CP_OT is set, CPEN is cleared and the activated  
MOSFETs are actively discharged with their respective static currents during their respective active cross  
current protection times (tHBxCCP active). When all tHBxCCP active elapsed, then the charge pump and  
the MOSFETs active discharge are disabled . Once the over temperature condition is not present anymore,  
then CPEN has to be configured again by SPI.  
Note:  
The diagnosis bits are not cleared automatically and have to be cleared via SPI once the  
overtemperature condition is not present anymore.  
13.10.2 Temperature Prewarning  
As a next level of thermal protection a temperature prewarning is implemented if the main supply VCC1  
reaches the thermal prewarning temperature threshold TjPW. Then the status bit TPW is set. This bit can only  
be cleared via SPI once the overtemperature is not present anymore.  
13.10.3 Thermal Shutdown  
As a highest level of thermal protection a temperature shutdown of the device is implemented if the main  
supply VCC1 reaches the thermal shutdown temperature threshold TjTSD2. Once a TSD2 event is detected Fail-  
Safe Mode is entered. Only when device temperature falls below the TSD2 threshold then the device remains  
in Fail-Safe Mode for tTSD2 to allow the device to cool down. After this time has expired, the device will  
automatically change via Restart Mode to Normal Mode (see also Chapter 5.4.6).  
When a TSD2 event is detected, then the status bit TSD2 is set. This bit can only be cleared via SPI in Normal  
Mode once the overtemperature is not present anymore.  
Datasheet  
164  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
For increased robustness requirements it is possible to extend the TSD2 waiting time by 64x of tTSD2 after 16  
consecutive TSD2 events by setting the SPI bit TSD2_DEL. The counter is incremented with each TSD2 event  
even if the bit TSD2 is not cleared. Once the counter has reached the value 16, then the bit TSD2_SAFE is set  
and the extended TSD2 waiting time is active. The extended waiting time will be kept until TSD2_SAFE is  
cleared. The TSD counter is cleared when TSD2 or TSD2_DEL is cleared.  
Note:  
In case a TSD2 overtemperature occurs while entering Sleep Mode then Fail-Safe Mode is still  
entered.  
Note:  
In case of a TSD2 event, the FAILURE bit is set to ‘1’ and the DEV_STAT field is set to ‘01’ inside the  
DEV_STAT register.  
Datasheet  
165  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
13.11  
Bridge driver  
This section describes the supervision functions related to the bridge driver.  
13.11.1 Bridge driver supervision with activated charge pump  
This section describes the supervision functions when the charge pump is activated.  
13.11.1.1 Drain-source voltage monitoring  
Voltage comparators monitor the activated MOSFETs to protect high-side MOSFETs and low-side MOSFETs  
against a short circuit respectively to ground and to the battery during ON-state.  
A drain-source overvoltage is detected on a low-side MOSFET if the voltage difference between VSHx and SL  
exceeds the threshold voltage configured by LS_VDS (see Table 35). Consequently, the corresponding half-  
bridge is latched off with the static discharge current.  
A drain-source overvoltage is detected on a high-side MOSFET if the voltage difference between VS and VSHx  
exceeds the threshold voltage configured by HS_VDS (see Table 36). Consequently, the corresponding half-  
bridge is latched off with the static discharge current.  
Table 35 Low-side drain-source overvoltage threshold  
LSxVDSTH[2:0]  
000B  
Drain-Source overvoltage threshold for LSx (typical)  
160 mV  
200 mV (default)  
300 mV  
400 mV  
500 mV  
600 mV  
800 mV  
2 V  
001B  
010B  
011B  
100B  
101B  
110B  
111B  
Table 36 High-side drain-source overvoltage threshold  
HSxVDSTH[2:0]  
000B  
Drain-Source overvoltage threshold for HSx (typical)  
160 mV  
200 mV (default)  
300 mV  
400 mV  
500 mV  
600 mV  
800 mV  
2 V  
001B  
010B  
011B  
100B  
101B  
110B  
111B  
Attention: 2 V threshold is dedicated for the diagnostic in off-state. It is highly recommended to select  
another drain-source overvoltage threshold once the routine of the diagnostic in off-state has  
been performed to avoid additional current consumption from VS and from the charge pump.  
The device reports a Drain-Source overvoltage error if both conditions are met:  
Datasheet  
166  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
After expiration of the blank time .  
If the Drain-Source voltage monitoring exceeds the configured threshold for a duration longer than the  
configured filter time (refer to Table 37 and LS_VDS TFVDS bits).  
Table 37 Drain-Source overvoltage filter time  
TFVDS[2:0]  
Drain-Source overvoltage filter time (typical)  
00B  
01B  
10B  
11B  
0.5 µs (default)  
1 µs  
2 µs  
6 µs  
If a short circuit is detected by the Drain-Source voltage monitoring:  
The impacted half-bridge is latched off with the static discharge current for the configured cross-current  
protection time.  
The corresponding bit in the status register DSOV is set.  
The DSOV bit in Global Status Register GEN_STAT is set.  
If a Drain-Source overvoltage is detected for one of the MOSFETs, then the status register DSOV must be  
cleared in order to re-enable the faulty half-bridge.  
13.11.1.2 Cross-current protection and drain-source overvoltage blank time  
All gate drivers feature a cross-current protection time and a Drain-Source overvoltage blank time.  
The cross-current protection avoids the simultaneous activation of the high-side and the low-side MOSFETs  
of the same half-bridge.  
During the blank time, the drain-source overvoltage detection is disabled, to avoid a wrong fault detection  
during the activation phase of a MOSFET.  
Note:  
The setting of the cross-current protection and of the blank times may be changed by the  
microcontroller only if all HBx_PWM_EN bits are reset.  
Note:  
Changing the Drain-Source overvoltage of a half-bridge x (HBx) in on-state (HBxMODE[1:0]=(0,1) or  
(1,0)) may result in a wrong VDS overvoltage detection on HBx. Therefore it is highly recommended  
to change this threshold when HBxMODE[1:0]=(0,0) or (1,1)  
13.11.1.2.1 Cross-current protection  
The active and freewheeling cross-current protection times of each half-bridge is configured individually with  
the control register CCP_BLK.  
The typical cross-current protection time applied to the freewheeling MOSFET of the half-bridge x is 587 ns +  
266 ns x TCCP[3:0]D, where TCCP[3:0]D is the decimal value of the control bits TCCP.  
13.11.1.2.2 Drain-source overvoltage blank time  
A configurable blank time for the Drain-Source monitoring is applied at the turn-on of the MOSFETs. During  
the blank time, a Drain-Source overvoltage error is masked.  
Datasheet  
167  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
For Half-Bridges in PWM mode with AFWx = 1:  
the blank time of the PWM MOSFET starts at the expiration of the cross-current protection time of the PWM  
MOSFET. Refer to Figure 88.  
the blank time of the free-wheeling MOSFET starts after expiration of the cross-current protection time at  
turn-off of the PWM MOSFET. Refer to Figure 88.  
PWM  
t
IGS_PWM  
MOSFET  
Post-charge  
tPCHGz  
ICHGMAXz  
tPDCHGz  
IPRECHGz  
ICHGz  
t
0
- IDCHGz  
tBLANK for  
PWM MOSFET  
- IPREDCHGz  
tHBxCPP for  
symmetrisation  
tHBxCPP  
tHBxCPP  
IGS Freewheeling  
MOSFET  
ICHGMAXz  
t
tBLANK for  
freewheeling MOSFET  
-
ICHGMAXz  
Figure 88 Blank time for half-bridges in PWM operation with AFW = 1  
For statically activated half-bridges, the blank time starts:  
Case1: at expiration of the cross-current protection (Figure 48), if the opposite MOSFET was previously  
activated.  
Case 2: right after the decoding of the SPI command to turn on a MOSFET, if the half-bridge was in high  
impedance (Figure 49).  
The blank times of the active and FW MOSFETs can be configured with the control register CCP_BLK.  
The typical blank is 587 ns + 266 ns x TBLK[3:0]D).  
Note:  
The blank time is implemented at every new activation of a MOSFET, including a recovery from VS  
undervoltage, VS overvoltage, VSINT overvoltage, CP UV, CP OT.  
13.11.1.3 OFF-state diagnostic  
In order to support the off-state diagnostic (HBxMODE= 11 and CPEN = 1), the gate driver of each MOSFET  
provides pull-up (IPUDiag) and a pull-down currents (IPDDiag) at the SHx pins. This function requires an activated  
charge pump.  
The pull-up current source of a given half-bridge is on when the half-bridge is active: HBxMODE= 01, 10 or 11  
and CPEN = 1.  
The pull-down current of each low-side gate driver is activated by the control bits HBx (HB_ICHG_MAX  
register).  
During the off-state diagnostic routine performed by the microcontroller, the drain-source overvoltage  
threshold of the relevant half-bridges must be set to 2V nominal. Refer to Table 35. Once the routine is  
finished, it is highly recommended to decrease the drain-source overvoltage threshold to a lower value,  
avoiding additional current consumption from the VS input.  
Datasheet  
168  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
The following failures can be detected:  
MOSFET short circuit to GND  
MOSFET short circuit the battery  
Open load (disconnected motor)  
The status of the output voltages VOUTx, can be read back with status bit HBxVOUT (register GEN_STAT) when  
the corresponding half-bridge is in off-state (HBxMODE[1:0] = 11).  
Note:  
HBxVOUT = 0 if the half-bridge x is not actively off (HBxMODE[1:0] = (0,0), (0,1) or (1,0) and CPEN=1)  
or when the charge pump is deactivated (CPEN=0).  
13.11.1.4 Charge pump undervoltage  
The voltage of the charge pump output (VCP) is monitored in order to ensure a correct control of the external  
MOSFETs.  
The charge pump undervoltage threshold is configurable by the control bits FET_LVL and CPUVTH.  
Table 38 Charge pump undervoltage thresholds  
FET_LVL = 0  
FET_LVL = 1  
CPUVTH = 0  
CPUVTH = 1  
V
CPUV1 (6 V typ. referred to VS)  
CPUV2 (6.5 V typ. referred to VS)  
VCPUV3 (7.5 V typ. referred to VS)  
VCPUV4 (8 V typ. referred to VS)  
V
If VCP falls below the configured charge pump undervoltage threshold while CPEN = 1:  
If one of the MOSFET is on, then all MOSFETs are actively turned off with their configured static discharge  
current during their respective tHBxCCP active.  
Then the gate drivers are turned off .  
CP_UV is set and latched.  
The CP_UV is reset and the normal operation is resumed once SUP_STAT is cleared and VCP > VCPUV.  
The charge pump undervoltage detection is blanked (tCPUVBLANK) during each new activation of the charge  
pump1).  
13.11.1.5 Switching parameters of MOSFETs in PWM mode  
The effective switching parameters of the active MOSFETs (EN_GEN_CHECK=1), respectively PWM MOSFET  
(EN_GEN_CHECK=0)can be read out with dedicated status registers:  
The turn-on and turn off delays, noted tDON and tDOFF are reported by the status register  
EFF_TDON_OFF1, EFF_TDON_OFF2.  
The rise and fall times, noted tRISE and tFALL, are reported by the status register TRISE_FALL1,  
TRISE_FALL2.  
Refer to Chapter 12.3 for the definition of tDON, tDOFF, tRISE and tFALL for high-side PWM and low-side PWM  
operations.  
1) Including CPEN set to 1, recovery from VS under/overvoltage, VSINT overvoltage and CP_ OT  
Datasheet  
169  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
13.11.2 Low-side drain-source voltage monitoring during braking  
The low-side MOSFETs are turned-on while the charge pump is deactivated in the following conditions:  
The slam mode is activated and PWM1/CRC is High.  
The parking braking mode is activated and the device is in Sleep Mode or Stop Mode.  
VS overvoltage brake is activated and (VS > VS Overvoltage braking or VSINT > VSINT Overvoltage braking)  
in all device modes if OV_BRK_EN is set.  
Under these conditions, the drain-source voltage of the low-sides are monitored and the applied drain-source  
overvoltage thresholds are according to VDSTH_BRK.  
The applied blank time, which starts at the beginning of the brake activation, is:  
t
t
BLK_BRAKE1 if TBLK_BRK = 0  
BLK_BRAKE2 if TBLK_BRK = 1  
During the blank time, a drain-source overvoltage of the low-sides is masked.  
The applied filter time is tFVDS_BRAKE  
.
If a drain-source overvoltage is detected during braking , then all low-side MOSFETs are turned off (latched)  
within tOFF_BRAKE. SLAM_LSx_DIS (BRAKE, SLAM, PARK_BRK_EN, OV_BRK_EN are unchanged. The  
corresponding status bit LSxDSOV_BRK is set in DSOV.  
The low-sides can be reactivated only if all LSxDSOV_BRK bits (DSOV) are cleared (even in slam mode with the  
respective LSx disabled by the SLAM_LSx_DIS bit).  
If any of the status bits LSxDSOV_BRK is set, then the charge pump stays off (CPEN=1 command is accepted  
but the charge pump stays disabled until all LSxDSOV_BRK are cleared).  
13.11.3 VS or VSINT Overvoltage braking  
The VS and VSINT overvoltage braking is activated if the OV_BRK_EN bit in BRAKE register is set regardless of  
the device mode.  
If VS, respectively VSINT, exceeds VOVBR,cfgx,r (x = 0 to 7), then all low-sides MOSFETs are turned-on within  
tON_BRAKE. The status bits VSOVBRAKE_ST, respectively VSINTOVBRAKE_ST, is set and latched (see DSOV  
register).  
If VS and VSINT decrease below VOVBR,cfgx,r - VHYS,cfgx (x = 0 to 7), then all low-sides MOSFETs are turned-off within  
tOFF_BRAKE after the filter time tOV_BR_FILT.  
If (VSHx - VSL) exceeds the configured threshold, then all low-sides MOSFETs are turned-off within tOFF_BRAKE  
after the filter time tFVDS_BRAKE. The threshold is:  
V
V
VDSMONTH0_BRAKE if VDSTH_BRK = 0  
VDSMONTH1_BRAKE if VDSTH_BRK = 1  
Datasheet  
170  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
13.12  
Electrical Characteristics  
Table 39 Electrical Characteristics  
VSINT = 5.5 V to 28 V; Tj = -40°C to +150°C; Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
VCC1 Monitoring; VCC1 = 5.0V Version  
Undervoltage Prewarning VPW,f  
Threshold Voltage PW,f  
4.53  
4.60  
30  
4.70  
4.75  
50  
4.84  
4.90  
90  
V
VCC1 falling,  
SPI bit is set  
P_13.12.1  
P_13.12.2  
P_13.12.3  
Undervoltage Prewarning VPW,r  
Threshold Voltage PW,r  
V
VCC1 rising  
4)  
Undervoltage Prewarning VPW,hys  
Threshold Voltage  
mV  
hysteresis  
VCC1 UV Prewarning  
Detection Filter Time  
tVCC1,PW_F  
VRT1,f  
VRT1,r  
VRT2,f  
VRT2,r  
VRT3,f  
VRT3,r  
VRT4,f  
5
10  
14  
us  
V
V
V
V
V
V
V
V
2) rising and falling P_13.12.4  
Reset Threshold  
Voltage RT1,f  
4.45  
4.58  
3.70  
3.85  
3.24  
3.39  
2.49  
2.65  
4.6  
4.75  
4.90  
4.00  
4.15  
3.55  
3.70  
2.8  
default setting;  
VCC1 falling  
P_13.12.5  
P_13.12.6  
P_13.12.7  
P_13.12.8  
P_13.12.9  
P_13.12.10  
P_13.12.11  
P_13.12.12  
Reset Threshold  
Voltage RT1,r  
4.74  
3.85  
4.0  
default setting;  
VCC1 rising  
Reset Threshold  
Voltage RT2,f  
VCC1 falling  
Reset Threshold  
Voltage RT2,r  
VCC1 rising  
Reset Threshold  
Voltage RT3,f  
3.40  
3.54  
2.65  
2.76  
VS 4 V;  
VCC1 falling  
Reset Threshold  
Voltage RT3,r  
VS 4 V;  
VCC1 rising  
Reset Threshold  
Voltage RT4,f  
VS 4 V;  
VCC1 falling  
Reset Threshold  
Voltage RT4,r  
VRT4,r  
2.95  
VS 4 V;  
VCC1 rising  
4)  
Reset Threshold Hysteresis VRT,hys  
70  
140  
220  
5.8  
mV  
V
P_13.12.13  
P_13.12.26  
VCC1 Over Voltage  
Detection Threshold  
Voltage  
VCC1,OV,r  
VCC1,OV,f  
tVCC1,OV_F  
5.5  
5.65  
1)4) rising VCC1  
VCC1 Over Voltage  
Detection Threshold  
Voltage  
5.4  
51  
5.55  
64  
5.7  
80  
V
4) falling VCC1  
P_13.12.27  
P_13.12.31  
2)  
VCC1 OV Detection Filter  
Time  
us  
Datasheet  
171  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
Table 39 Electrical Characteristics (cont’d)  
VSINT = 5.5 V to 28 V; Tj = -40°C to +150°C; Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
4
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
VCC1 Short to GND Filter  
Time  
tVCC1,SC  
3.2  
4.8  
ms  
2) blanking time  
during power-up,  
short circuit  
P_13.12.32  
detection for  
VS VS,UV  
Reset Generator; Pin RSTN  
Reset Low Output Voltage VRSTN,L  
0.2  
0.4  
V
V
IRSTN = 1 mA for  
VCC1 1 V &  
VS VPOR,f  
P_13.12.33  
P_13.12.34  
Reset High Output Voltage VRSTN,H  
0.8 x  
VCC1  
+
IRSTN = -20 µA  
VCC1  
0.3 V  
Reset Pull-up Resistor  
Reset Filter Time  
RRSTN  
tRF  
10  
4
20  
10  
40  
26  
kΩ  
VRSTN = 0 V  
P_13.12.35  
P_13.12.36  
2)  
µs  
V
< VRT1x  
CC1  
to RSTN = L see  
also Chapter 13.3  
Reset Delay Time 1  
Reset Delay Time 2  
VCAN Monitoring  
tRD1  
tRD2  
8
10  
2
12  
ms  
ms  
2) RSTN_DEL = 0  
2) RSTN_DEL = 1  
P_13.12.37  
P_13.12.64  
1.6  
2.4  
CAN Supply undervoltage VCAN_UV,f  
detection threshold  
(falling)  
4.5  
4.6  
4.75  
V
VCAN falling  
P_13.12.38  
CAN Supply undervoltage VCAN_UV,r  
detection threshold (rising)  
4.85  
130  
14  
V
VCAN rising  
P_13.12.39  
P_13.12.40  
4)  
VCAN Undervoltage  
VCAN,UV, hys 50  
90  
10  
mV  
µs  
detection hysteresis  
VCAN UV detection Filter  
Time  
tVCAN,UV_F  
5
2) VCAN rising and P_13.12.41  
falling  
Watchdog Generator / Internal Oscillator  
2)  
Long Open Window  
tLW  
160  
0.8  
200  
1.0  
240  
1.2  
ms  
P_13.12.42  
Internal Clock Generator  
Frequency  
fCLKSBC,1  
MHz  
P_13.12.43  
Minimum Waiting time during Fail-Safe Mode  
Min. waiting time Fail-Safe tFS,min 80  
2)3)  
100  
120  
ms  
P_13.12.45  
Power-on Reset, Over / Undervoltage Protection  
VSINT Power on reset rising VPOR,r  
4.5  
3
V
V
VSINT increasing P_13.12.46  
VSINT decreasing P_13.12.47  
VSINT Power on reset  
falling  
VPOR,f  
Datasheet  
172  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
Table 39 Electrical Characteristics (cont’d)  
VSINT = 5.5 V to 28 V; Tj = -40°C to +150°C; Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
VSINT Undervoltage  
Detection Threshold  
VSINT,UV  
5.3  
6.0  
V
Supply UV  
P_13.12.48  
threshold for VCC1  
SC detection;  
hysteresis  
included; includes  
rising and falling  
threshold  
VSHS Overvoltage  
Detection Threshold  
VSHS,OVD  
20  
22  
V
Supply OV  
supervision for  
HSx, LIN;  
hysteresis  
included  
4)  
P_13.12.55  
VSHS Overvoltage  
Detection hysteresis  
VSHS,OVD,hys 100  
VSHS,UVD 4.8  
500  
mV  
V
P_13.12.56  
P_13.12.57  
VSHS Undervoltage  
Detection Threshold  
5.5  
Supply UV  
supervision for  
HSx, LIN;  
hysteresis  
included  
4)  
VSHS Undervoltage  
Detection hysteresis  
VSHS,UVD,hys 50  
200  
10  
350  
14  
mV  
us  
P_13.12.58  
VSHS Undervoltage  
Detection Filter Time  
tVSHS,UV  
tVSHS,OV  
5
5
2) rising and falling P_13.12.300  
2) rising and falling P_13.12.301  
VSHS Overvoltage  
10  
14  
us  
Detection Filter Time  
Charge Pump Undervoltage  
Charge Pump  
Undervoltage Referred to  
VS  
VCPUV1  
5.4  
5.9  
6.4  
V
V
V
FET_LVL = 0  
CPUVTH = 0  
falling threshold,  
VS 6 V  
P_13.12.59  
P_13.12.60  
P_13.12.61  
Charge Pump  
Undervoltage Referred to  
VS  
VCPUV2  
5.85  
6.85  
6.35  
7.35  
6.85  
7.85  
FET_LVL = 0  
CPUVTH = 1  
falling threshold,  
VS 6 V  
Charge Pump  
Undervoltage Referred to  
VS  
VCPUV3  
FET_LVL = 1  
CPUVTH = 0  
falling threshold,  
VS 6 V  
Datasheet  
173  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
Table 39 Electrical Characteristics (cont’d)  
VSINT = 5.5 V to 28 V; Tj = -40°C to +150°C; Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
8
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Charge Pump  
Undervoltage Referred to  
VS  
VCPUV4  
7.5  
8.5  
V
FET_LVL = 1  
CPUVTH = 1  
falling threshold,  
VS 6 V  
P_13.12.62  
Charge Pump  
Undervoltage Filter Time  
tCPUV  
51  
64  
80  
µs  
µs  
4)VS 6 V  
P_13.12.63  
Charge Pump  
tCPUVBLANK  
400  
500  
600  
4)VS 6 V  
P_13.12.175  
Undervoltage Blank Time  
VS monitoring  
VS undervoltage threshold VS,UV  
4.7  
19  
5.4  
V
V
hysteresis  
included  
P_13.12.66  
P_13.12.68  
VS overvoltage threshold VS,OVD1  
22.5  
hysteresis  
detection 1  
included,  
VS_OV_SEL = 0  
VS overvoltage threshold VS,OVD2  
27.75  
31.25  
V
hysteresis  
P_13.12.65  
detection 2  
included,  
VS_OV_SEL = 1  
VS undervoltage filter time tVSUV_FILT  
VS overvoltage filter time tVSOV_FILT  
Off-state open load diagnosis  
5
5
10  
10  
14  
14  
µs  
µs  
2) rising and falling P_13.12.71  
2) rising and falling P_13.12.72  
Pull-up diagnosis current IPUDiag  
-600  
-400  
-270  
µA  
µA  
VS 6 V  
VS 6 V  
P_13.12.73  
P_13.12.74  
Pull-down diagnosis  
current  
IPDDiag  
1600  
2200  
2800  
Diagnosis current ratio  
IDiag_ratio  
4.25  
5.25  
6.25  
Ratio  
P_13.12.302  
IPDDiag / IPUDiag  
Drain-source monitoring CP activated  
Blank time  
tBLANK  
typ-  
20%  
587  
+266  
xTBLK  
typ+20 ns  
%
4) TBLK: decimal  
valueofTBLK[3:0],  
VS 6 V  
P_13.12.75  
P_13.12.76  
Cross-current protection  
time  
tCCP  
typ-  
20%  
587  
+266  
xTCCP  
typ+20 ns  
%
4) TCCP: decimal  
value of  
TCCPx[3:0],  
VS 6 V  
HS/LS Drain-source  
overvoltage 0  
VVDSMONTH0_ 0.115 0.16  
0.195  
0.25  
0.36  
V
V
V
VDSTH[2:0] = 000B, P_13.12.77  
VS6 V, TFVDS=00B  
CPON  
HS/LS Drain-source  
overvoltage 1  
VVDSMONTH1_ 0.16  
0.2  
0.3  
VDSTH[2:0] = 001B, P_13.12.78  
VS6 V, TFVDS=00B  
CPON  
HS/LS Drain-source  
overvoltage 2  
VVDSMONTH2_ 0.24  
VDSTH[2:0] = 010B, P_13.12.79  
VS6 V, TFVDS=00B  
CPON  
Datasheet  
174  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
Table 39 Electrical Characteristics (cont’d)  
VSINT = 5.5 V to 28 V; Tj = -40°C to +150°C; Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
0.4  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
HS/LS Drain-source  
overvoltage 3  
VVDSMONTH3_ 0.32  
0.48  
V
V
V
V
V
VDSTH[2:0] = 011B, P_13.12.80  
VS6 V, TFVDS=00B  
CPON  
HS/LS Drain-source  
overvoltage 4  
VVDSMONTH4_ 0.4  
0.5  
0.6  
0.8  
2.0  
0.6  
VDSTH[2:0] = 100B, P_13.12.81  
VS6 V, TFVDS=00B  
CPON  
HS/LS Drain-source  
overvoltage 5  
VVDSMONTH5_ 0.48  
0.72  
0.96  
2.25  
VDSTH[2:0] = 101B, P_13.12.82  
VS6 V, TFVDS=00B  
CPON  
HS/LS Drain-source  
overvoltage 6  
VVDSMONTH6_ 0.64  
VDSTH[2:0] = 110B, P_13.12.83  
VS6 V, TFVDS=00B  
CPON  
HS/LS Drain-source  
overvoltage 7  
VVDSMONTH7_ 1.75  
VDSTH[2:0] = 111B, P_13.12.84  
VS6 V, TFVDS=00B  
CPON  
Drain-Source monitoring - Slam mode, parking braking and VS overvoltage braking, VS or VSINT 8V  
Blank time  
tBLK_BRAKE1 4.5  
7
9.5  
µs  
TBLK_BRK = 0,  
P_13.12.85  
VS or VSINT 8 V  
Blank time  
tBLK_BRAKE2  
9
11  
13  
µs  
TBLK_BRK = 1,  
P_13.12.86  
VS or VSINT 8 V  
VDS Filter time  
tFVDS_BRAKE 0.5  
VVDSMONTH0_ 0.56  
1
2.5  
µs  
V
VS or VSINT 8 V P_13.12.87  
LS Drain-source  
monitoring thresholds  
0.8  
1.05  
VS or VSINT 8 V P_13.12.89  
VDSTH_BRK = 0  
BRAKE  
LS Drain-source  
monitoring thresholds  
VVDSMONTH1_ 0.15  
0.22  
0.29  
V
VS or VSINT 8 V P_13.12.90  
VDSTH_BRK = 1  
BRAKE  
VS Overvoltage Braking Mode  
VS Overvoltage braking  
config 0 rising  
VOVBR,cfg0,r  
25.65 27  
28.35  
29.40  
30.45  
31.50  
32.55  
33.60  
34.65  
35.70  
0.85  
V
V
V
V
V
V
V
V
V
OV_BRK_TH=000B P_13.12.97  
OV_BRK_TH=001B P_13.12.98  
OV_BRK_TH=010B P_13.12.99  
OV_BRK_TH=011B P_13.12.100  
OV_BRK_TH=100B P_13.12.101  
OV_BRK_TH=101B P_13.12.102  
OV_BRK_TH=110B P_13.12.103  
OV_BRK_TH=111B P_13.12.104  
OV_BRK_TH=000B P_13.12.105  
VS Overvoltage braking  
config 1 rising  
VOVBR,cfg1,r  
VOVBR,cfg2,r  
VOVBR,cfg3,r  
VOVBR,cfg4,r  
VOVBR,cfg5,r  
VOVBR,cfg6,r  
VOVBR,cfg7,r  
VHYS,cfg0  
26.60 28  
27.55 29  
28.50 30  
29.45 31  
30.40 32  
31.35 33  
32.30 34  
VS Overvoltage braking  
config 2 rising  
VS Overvoltage braking  
config 3 rising  
VS Overvoltage braking  
config 4 rising  
VS Overvoltage braking  
config 5 rising  
VS Overvoltage braking  
config 6 rising  
VS Overvoltage braking  
config 7 rising  
VS Overvoltage braking  
config 0  
0.64  
0.75  
Datasheet  
175  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Supervision Functions  
Table 39 Electrical Characteristics (cont’d)  
VSINT = 5.5 V to 28 V; Tj = -40°C to +150°C; Normal Mode; all voltages with respect to ground; positive current  
defined flowing into pin; unless otherwise specified.  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
VS Overvoltage braking  
config 1  
VHYS,cfg1  
VHYS,cfg2  
VHYS,cfg3  
VHYS,cfg4  
VHYS,cfg5  
VHYS,cfg6  
VHYS,cfg7  
0.74  
0.82  
0.9  
V
OV_BRK_TH=001B P_13.12.109  
OV_BRK_TH=010B P_13.12.113  
OV_BRK_TH=011B P_13.12.117  
OV_BRK_TH=100B P_13.12.121  
OV_BRK_TH=101B P_13.12.125  
OV_BRK_TH=110B P_13.12.129  
OV_BRK_TH=111B P_13.12.133  
VS Overvoltage braking  
config 2  
0.80  
0.85  
0.93  
0.97  
1.03  
1.1  
0.89  
0.95  
1.03  
1.08  
1.15  
1.23  
15  
0.98  
1.05  
1.13  
1.19  
1.27  
1.36  
20  
V
VS Overvoltage braking  
config 3  
V
VS Overvoltage braking  
config 4  
V
VS Overvoltage braking  
config 5  
V
VS Overvoltage braking  
config 6  
V
VS Overvoltage braking  
config 7  
V
4)  
VS and VSINT overvoltage tOV_BR_FILT  
10  
µs  
P_13.12.200  
braking filter time  
Overtemperature Shutdown4)  
Thermal Prewarning  
Temperature  
TjPW  
125  
145  
165  
°C  
Tj rising  
Tj rising  
P_13.12.169  
Thermal Shutdown TSD1 TjTSD1  
Thermal Shutdown TSD2 TjTSD2  
170  
170  
185  
185  
25  
200  
200  
°C  
°C  
°C  
P_13.12.170  
P_13.12.171  
P_13.12.172  
Tj rising  
4)  
Thermal Shutdown  
hysteresis  
TjTSD,hys  
TSD/TPW Filter Time  
tTSD_TPW_F  
5
10  
15  
us  
rising and falling, P_13.12.173  
applies to all  
thermal sensors  
(TPW, TSD1, TSD2)  
2)  
Deactivation time after  
thermal shutdown TSD2  
tTSD2  
0.8  
1
1.2  
s
P_13.12.174  
1) It is ensured that the threshold VCC1,OV,r is always higher than the highest regulated VCC1 output voltage VCC1,out4  
.
.
2) Not subject to production test, tolerance defined by internal oscillator tolerance.  
3) This time applies for all failure entries except a device thermal shutdown (TSD2 has a typ. 1 s waiting time tTSD2).  
4) Not subject to production test, specified by design.  
Datasheet  
176  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
14  
Serial Peripheral Interface  
The Serial Peripheral Interface is the communication link between the device and the microcontroller.  
The TLE9560-3QX is supporting multi-slave operation in full-duplex mode with 32-bit data access.  
The SPI behavior for the different device modes is as follows:  
The SPI is enabled in Init Mode, Normal Mode and Stop Mode.  
The SPI is OFF in Sleep Mode, Restart Mode and Fail-Safe Mode.  
14.1  
SPI Block Description  
The Control Input Word is read via the data input SDI, which is synchronized with the clock input CLK provided  
by the microcontroller. The output word appears synchronously at the data output SDO (see Figure 89 with a  
32-bit data access example).  
The transmission cycle begins when the chip is selected by the input CSN (Chip Select Not), LOW active. After  
the CSN input returns from LOW to HIGH, the word that has been read is interpreted according to the content.  
The SDO output switches to tristate status (high impedance) at this point, thereby releasing the SDO bus for  
other use.The state of SDI is shifted into the input register with every falling edge on CLK. The state of SDO is  
shifted out of the output register after every rising edge on CLK. The SPI of the device is not daisy chain  
capable.  
CSN high to low: SDO is enabled. Status information transferred to output shift register  
CSN  
time  
CSN low to high: data from shift register is transferred to output functions  
CLK  
time  
Actual data  
New data  
LSB  
MSB  
0 1  
SDI  
0 1 2 3 4 5 6  
27 28 29 30 31  
+ +  
time  
SDI: will accept data on the falling edge of CLK signal  
Actual status  
New status  
LSB  
MSB  
0
1
ERR  
SDO  
ERR  
0 1 2 3 4 5 6  
27 28 29 30 31  
-
+
+
time  
SDO: will change state on the rising edge of CLK signal  
Figure 89 SPI Data Transfer Timing (note the reversed order of LSB and MSB shown in this figure  
compared to the register description)  
Datasheet  
177  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
14.2  
Failure Signalization in the SPI Data Output  
When the microcontroller sends a wrong SPI command to the device, the device ignores the information.  
Wrong SPI commands are either invalid device mode commands or commands which are prohibited by the  
state machine to avoid undesired device or system states (see below). In this case the diagnosis bit SPI_FAIL  
is set and the SPI Write command is ignored (no partial interpretation). This bit can be only reset by actively  
clearing it via a SPI command.  
Invalid SPI Commands leading to SPI_FAIL are listed below (in this case the SPI command is ignored):  
Illegal state transitions:  
- Going from Stop Mode to Sleep Mode. In this case the device enters Restart Mode.  
- Trying to go to Stop Mode or Sleep Mode from Init Mode1). In this case Normal Mode is entered.  
Uneven parity in the data bit of the WD_CTRL register. In this case the watchdog trigger is ignored and/or  
the new watchdog settings are ignored respectively.  
In Stop Mode: attempting to change any SPI settings, e.g. changing the watchdog configuration, PWM  
settings and HSx configuration settings during Stop Mode, etc.;  
the SPI command is ignored in this case;  
only WD trigger, returning to Normal Mode, triggering a device soft reset, and read & clear status registers  
commands are valid SPI commands in Stop Mode; Note: No failure handling is done for the attempt to go  
to Stop Mode when all bits in the registers BUS_CTRL and WK_CTRL are cleared because the  
microcontroller can leave this mode via SPI.  
When entering Stop Mode and WK_STAT is not cleared; SPI_FAIL will not be set but the INTN pin will be  
triggered.  
Changing from Stop Mode to Normal Mode and changing the other bits of the M_S_CTRL register. The  
other modifications will be ignored.  
Sleep Mode: attempt to go to Sleep Mode without any wake source set, i.e. when all bits in the BUS_CTRL  
and WK_CTRL registers are cleared. In this case the SPI_FAIL bit is set and the device enters Restart Mode.  
Even though the Sleep Mode command is not entered in this case, the rest of the command is executed but  
restart values apply during Restart Mode; Note: At least one wake source must be activated in order to  
avoid a deadlock situation in Sleep Mode.  
If the only wake source is a timer and the timer is OFF, then the device will wake immediately from Sleep  
Mode and enter Restart Mode.  
Setting a longer or equal on-time than the timer period of the respective timer.  
SDI stuck at HIGH or LOW, e.g. SDI received all ‘0’ or all ‘1’.  
Any attempt to configure again the WK2_FO.  
Configured the HSx controlled by SYNC when the WK4/SYNC is not configured as SYNC-input.  
Note:  
Note:  
There is no SPI fail information for unused addresses.  
In case that the register or banking are accessed but they are not valid as address or banks, the  
SPI_FAIL is not triggered and the cmd is ignored.  
1) If the device is externally configured to use SPI with CRC (by PWM1/CRC pin), the attempt to go to Stop or Sleep from Init , will  
generate SPI_FAIL even if it is a SPI command with correct CRC. Still, the first SPI command will put the device from Init to Normal  
Mode even if CRC is not correct (CRC_FAIL status bit will be set).  
Datasheet  
178  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Signalization of the ERR Flag (high active) in the SPI Data Output (see Figure 89):  
The ERR flag presents an additional diagnosis possibility for the SPI communication. The ERR flag is being set  
for following conditions:  
in case the number of received SPI clocks is not 0 or 32.  
in case RSTN is LOW and SPI frames are being sent at the same time.  
Note:  
In order to read the SPI ERR flag properly, CLK must be low when CSN is triggered, i.e. the ERR bit is  
not valid if the CLK is high on a falling edge of CSN.  
The number of received SPI clocks is not 0 or 32:  
The number of received input clocks is supervised to be 0 or 32 clock cycles and the input word is discarded in  
case of a mismatch (0 clock cycle to enable ERR signalization). The error logic also recognizes if CLK was high  
during CSN edges. Both errors ( 0 or 32 bit CLK mismatch or CLK high during CSN edges ) are flagged in the  
following SPI output by a “HIGH” at the data output (SDO pin, bit ERR) before the first rising edge of the clock  
is received. The complete SPI command is ignored in this case.  
RSTN is LOW and SPI frames are being sent at the same time:  
The ERR flag will be set when the RSTN pin is triggered (during device restart) and SPI frames are being sent to  
the device at the same time. The behavior of the ERR flag will be signalized at the next SPI command for below  
conditions:  
If the command begins when RSTN is HIGH and it ends when RSTN is LOW.  
If a SPI command will be sent while RSTN is LOW.  
If a SPI command begins when RSTN is LOW and it ends when RSTN is HIGH.  
And the SDO output will behave as follows:  
Always when RSTN is LOW then SDO will be HIGH.  
When a SPI command begins when RSTN is LOW and ends when RSTN is HIGH, then the SDO should be  
ignored because wrong data will be sent.  
Note:  
Note:  
It is possible to quickly check for the ERR flag without sending any data bits. i.e. only the CSN is pulled  
low and SDO is observed - no SPI Clocks are sent in this case.  
The ERR flag could also be set after the device has entered Fail-Safe Mode because the SPI  
communication is stopped immediately.  
Datasheet  
179  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
14.3  
SPI Programming  
For the TLE9560-3QX, 7 bits are used for the address selection (BIT 6...0). Bit 7 is used to decide between Read  
Only and Read & Clear for the status bits, and between Write and Read Only for configuration bits. For the  
actual configuration and status information, 16 data bits (BIT 23...8) are used.  
Writing, clearing and reading is done word wise. The SPI status bits are not cleared automatically and must be  
cleared by the microcontroller. Some of the configuration bits will automatically be cleared by the device  
(refer to the respective register descriptions for detailed information). In Restart Mode, the device ignores all  
SPI communication, i.e. it does not interpret it.  
There are two types of SPI registers:  
Control registers: These registers are used to configure the device, e.g. mode, watchdog trigger, etc.  
Status registers: These registers indicate the status of the device, e.g. wake events, warnings, failures, etc.  
For the status registers, the requested information is given in the same SPI command in the data out (SDO).  
For the control registers, the status of each byte is shown in the same SPI command as well. However,  
configuration changes of the same register are only shown in the next SPI command (configuration changes  
inside the device become valid only after CSN changes from low to high). See Figure 90.  
Writing of control registers is possible in Init and Normal Mode. During Stop Mode only the change to Normal  
Mode and triggering the watchdog is allowed as well as reading and clearing the status registers.  
No status information can be lost, even if a bit changes right after the first 7 SPI clock cycles before the SPI  
frame ends. In this case the status information field will be updated with the next SPI command. However, the  
flag is already set in the relevant status register.The device status information from the SPI status registers is  
transmitted in a compressed format with each SPI response on SDO in the so-called Status Information Field  
register (see also Table 40). The purpose of this register is to quickly signal changes in dedicated SPI status  
registers to the microcontroller.  
Table 40 Status Information Field  
Bit in Status  
Information Field  
Corresponding  
Address Bit  
Status Register Description  
0
1
2
3
4
SUPPLY_STAT = OR of all bits on SUP_STAT register  
TEMP_STAT = OR of all bits on THERM_STAT register  
BUS_STAT= OR of all bits on BUS_STAT register  
WAKE_UP = OR of all bits on WK_STAT register  
HS_STAT = OR of all bits on HS_OL_OC_OT_STAT  
register  
5
DEV_STAT = OR of all bits on DEV_STAT except  
CRC_STAT and SW_DEV  
6
7
BD_STAT = OR of all bits on DSOV register  
SPI_CRC_FAIL = (SPI_FAIL) OR (CRC_FAIL)  
Datasheet  
180  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
MSB  
LSB  
DI  
0
1
2
3
4
5
6
7
8
x
9
x
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
R/W  
Address Bits  
Data Bits  
CRC or Static Pattern  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Register content of  
selected address  
DO  
0
1
2
3
4
5
6
7
8
x
9
x
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
Status Information Field  
Data Bits  
CRC or Static Pattern  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
time  
LSB is sent first in SPI message  
Figure 90 SPI Operation Mode  
14.3.1  
CRC  
The SPI interface includes also 8 Bits (bits 24 to 31) used for Cyclic Redundancy Check (CRC) to ensure data  
integrity on sent or received SPI command.  
The implemented CRC is based on Autosar specification of CRC Routines revision 4.3.0 and in particular the  
function CRC8-2FH.  
The specification are based on the follow table:  
Table 41 CRC8x2FH definition  
CRC result width:  
Polynomial  
8 bits  
2FH  
FFH  
No  
Initial Value  
Input data reflected  
Result data reflected  
XOR value  
No  
FFH  
DFH  
42H  
Check  
Magic check  
Some examples of CRC calculation are shown in the follow table:  
Table 42 CRC8x2FH calculation example  
Data Bytes (hexadecimal)  
CRC  
12  
00  
F2  
0F  
00  
33  
92  
FF  
00  
01  
AA  
FF  
22  
6B  
FF  
00  
83  
00  
55  
55  
55  
FF  
00  
C2  
C6  
77  
55  
11  
AA  
BB  
CC  
DD  
EE  
FF  
11  
33  
FF  
6C  
Datasheet  
181  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Polynominal  
The polynomial is:  
x8 + x5 + x3 + x2 + x1 + x0  
(14.1)  
Calculation in SDI and SDO  
The calculation of the CRC is done considering the first 24 bits (BIT 0..23) either of SDI or SDO.  
The content of SDO Payload (BIT 8..23) is referring the previous data written at the addressed register via SDI.  
SDI  
r
Add.  
Payload - Configuration  
CRC  
CRC  
w
PASS/FAIL  
SDO  
Status Info. Field  
From previous SPI cmd  
Figure 91 CRC calculation  
CRC Activation and status information  
For CRC activation, refer to Chapter 5.2.  
The CRC status (CRC_STAT)and failure (CRC_FAIL) are readable on DEV_STAT.  
Read out of the register which contains the CRC_STAT and CRC_FAIL is done ignoring the CRC field and no  
failure flag are set.  
The DEV_STAT register shall be cleared considering the CRC setting (ON or OFF).  
The CRC_STAT bit is read only.  
The CRC_FAIL is set in the follow conditions:  
If the CRC is enabled and the µC sends wrong CRC field.  
If the CRC is disabled and the µC sends wrong static pattern (no A5H).  
CRC field in case of CRC disabled  
In case that the CRC is not activated, the bits needed for CRC field have to be filled with static pattern.  
In case of SDI, the CRC field has to be filled with A5H (bits 24:31).  
In case of SDO, the device will always answer with 5AH (bits 24:31).  
The status of the CRC is updated accordingly in CRC_STAT bit.  
Datasheet  
182  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
14.4  
SPI Bit Mapping  
The following figures show the mapping of the registers and the SPI bits of the respective registers.  
The Control Registers are Read/Write Register with the following structure:  
Device Control Registers from 000 0001B to 000 1011B.  
Bridge Driver Control Registers from 001 0000B to 001 1101B.  
SWK Control Registers from 011 0000B to 011 1111B.  
Depending on bit 7 the bits are only read (setting bit 7 to ‘0’) or also written (setting bit 7 to ‘1’). The new setting  
of the bit after a write can be seen with a new read / write command.  
The Status Registers are Read/Clear with the following structure:  
Device Status Registers from 100 0000B to 100 0110B.  
Bridge Driver Status Registers from 101 0000B to 101 1011B.  
SWK Status Registers from 110 0000B to 110 0011B.  
Product Family is 111 0000B.  
The registers can be read or can be cleared (if clearing is possible) depending on bit 7. To clear the payload of  
one of the Status Registers bit 7 must be set to 1.  
The registers WK_LVL_STAT, and FAM_PROD_STAT, SWK_OSC_CAL_STAT, SWK_ECNT_STAT,  
SWK_CDR_STAT are an exception as they show the actual voltage level at the respective WKx pin  
(LOW/HIGH), or a fixed family/ product ID respectively and can thus not be cleared.  
It is recommended for proper diagnosis to clear respective status bits for wake events or failure.  
When changing to a different device mode, certain configurations bits will be cleared automatically or  
modified:  
The device mode bits are updated to the actual status, e.g. when returning to Normal Mode.  
When changing to a low-power mode (Stop Mode or Sleep Mode), the diagnosis bits of the integrated  
module are not cleared.  
When changing to Stop Mode, the CAN, LIN control bits will not be modified.  
When changing to Sleep Mode, the CAN, LIN control bits will be modified if they were not OFF or wake  
capable before.  
FO will stay activated if it was triggered before. Depending on the respective configuration, CAN, LIN  
transceivers will be either OFF, woken or still wake capable.  
Note:  
The detailed behavior of the respective SPI bits and control functions is described in Chapter 14.5,  
Chapter 14.6.and in the respective module chapter. The bit type be marked as ‘rwh’ in case the  
device will modify respective control bits.  
Datasheet  
183  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Reg.  
Type  
7 Address Bits [bits 6...0]  
16 Data Bits [bits 23...8]  
for Register Selection  
for Configuration & Status Information  
Addresses:  
0 0 0 0 0 0 1  
.
.
.
0 0 0 1 0 1 1  
Addresses:  
0 0 1 0 0 0 0  
.
.
.
0 0 1 1 1 0 1  
Addresses:  
0 1 1 0 0 0 0  
.
.
.
0 1 1 1 1 1 1  
If CAN Partial Networking is not available for the respective variant  
then this address space will be reserved  
Addresses:  
1 0 0 0 0 0 0  
.
.
.
1 1 1 0 0 0 0  
The most important status registers are represented in the  
Status Information Field  
Figure 92 SPI Register Mapping Structure  
The detailed register mappings for control registers and status registers are shown in Table 43 and Table 86  
respectively.  
14.4.1  
Register Banking  
In order to minimize the number of configuration registers, seven registers follow a bank structure.  
The banked registers are:  
WK_CTRL  
PWM_CTRL  
CCP_BLK  
TPRECHG  
HB_ICHG  
HB_PCHG_INIT  
TDON_HB_CTRL  
TDOFF_HB_CTRL  
Datasheet  
184  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
In these register, the first 3 bits of the payload (bit 8 to 10) select the bank that has to be configured. The rest  
of the payload is used to configure the selected bank (for more details refer to the specific banked register).  
In case that CRC is used, the CRC calculation is done considering the first 24 bits (from bit 0 to 23).  
The banked registers can be read like the other configuration registers but in the SDO one ‘0’ is automatically  
added after the status information field. Figure 93 shows the structure of SDO in banked register.  
SDI  
B
K
0
B
K
1
B
K
2
R
e
s
Configuration of selected Bank  
r
w
Add.  
CRC  
CRC  
SDO  
Status Info. Filed  
B
K
0
B
K
1
B
K
2
Selected Bank Content  
0
Figure 93 Register read Out of banked register (3 bit banking)  
Datasheet  
185  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
14.5  
SPI control registers  
READ/WRITE Operation (see also Chapter 14.3):  
The ‘POR / Soft Reset Value’ defines the register content after POR or device reset.  
The ‘Restart Value’ defines the register content after device restart, where ‘x’ means the bit is unchanged.  
There are different bit types:  
‘r’ = READ: read only bits (or reserved bits).  
‘rw’ = READ/WRITE: readable and writable bits.  
‘rwh’ = READ/WRITE/Hardware: readable/writable bits, which can also be modified by the device  
hardware.  
Reserved bits are marked as “Reserved” and always read as “0”. The respective bits shall also be  
programmed as “0”.  
Reading a register is done word wise by setting the SPI bit 7 to “0” (= Read Only).  
SPI control bits are in general not cleared or changed automatically. This must be done by the  
microcontroller via SPI programming. Exceptions to this behavior are stated at the respective register  
description and the respective bit type is marked with a ‘h’ meaning that the device is able to change the  
register content.  
The registers are addressed wordwise.  
Table 43 Register Overview  
Register Short Name  
Register Long Name  
Offset Address Page  
Number  
SPI control registers, Device Control Registers  
M_S_CTRL  
HW_CTRL  
Mode and Supply Control  
0000001B  
0000010B  
0000011B  
0000100B  
0000101B  
0000110B  
0000111B  
0001000B  
0001001B  
0001010B  
0001011B  
188  
Hardware Control  
190  
192  
194  
196  
198  
200  
203  
205  
207  
208  
WD_CTRL  
Watchdog Control  
BUS_CTRL  
WK_CTRL  
CAN and LIN Control  
Wake-up Control  
TIMER_CTRL  
SW_SD_CTRL  
HS_CTRL  
Timer 1 and Timer 2 Control and Selection  
High-Side Switch Shutdown Control  
High-Side Switch Control  
Interrupt Mask Control  
PWM Configuration Control  
System Status Control  
INT_MASK  
PWM_CTRL  
SYS_STAT_CTRL  
SPI control registers, Control registers bridge driver  
GENCTRL  
LS_VDS  
General Bridge Control  
0010000B  
0010010B  
0010011B  
0010100B  
0010101B  
0010110B  
0010111B  
209  
211  
212  
213  
214  
215  
216  
Drain-Source monitoring threshold  
Drain-Source monitoring threshold  
CCP and times selection  
HS_VDS  
CCP_BLK  
HBMODE  
TPRECHG  
ST_ICHG  
Half-Bridge MODE  
PWM pre-charge and pre-discharge time  
Static charge/discharge current  
Datasheet  
186  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Table 43 Register Overview (cont’d)  
Register Short Name  
Register Long Name  
Offset Address Page  
Number  
217  
HB_ICHG  
PWM charge/discharge current  
0011000B  
0011001B  
HB_ICHG_MAX  
PWM max. pre-charge/pre-discharge current  
and diagnostic pull-down  
218  
HB_PCHG_INIT  
TDON_HB_CTRL  
TDOFF_HB_CTRL  
BRAKE  
PWM pre-charge/pre-discharge initialization  
PWM inputs TON configuration  
PWM inputs TOFF configuration  
Brake control  
0011010B  
0011011B  
0011100B  
0011101B  
220  
221  
222  
223  
SPI control registers, Selective Wake Registers  
SWK_CTRL  
CAN Selective Wake Control  
0110000B  
0110001B  
0110010B  
0110011B  
0110100B  
0110101B  
0110110B  
0110111B  
0111000B  
0111001B  
0111010B  
0111011B  
225  
226  
227  
228  
229  
231  
233  
234  
235  
236  
237  
238  
SWK_BTL1_CTRL  
SWK_ID1_CTRL  
SWK Bit Timing Control  
SWK WUF Identifier bits 28...13  
SWK WUF Identifier bits 12...0  
SWK WUF Identifier Mask bits 28...13  
SWK WUF Identifier Mask bits 12...0  
SWK Frame Data Length Code Control  
SWK Data7-Data6 Register  
SWK_ID0_CTRL  
SWK_MASK_ID1_CTRL  
SWK_MASK_ID0_CTRL  
SWK_DLC_CTRL  
SWK_DATA3_CTRL  
SWK_DATA2_CTRL  
SWK_DATA1_CTRL  
SWK_DATA0_CTRL  
SWK_CAN_FD_CTRL  
SWK Data5-Data4 Register  
SWK Data3-Data2 Register  
SWK Data1-Data0 Register  
CAN FD Configuration Control Register  
SPI control registers, Selective Wake trim and configuration Registers  
SWK_OSC_TRIM_CTRL  
SWK_OSC_CAL_STAT  
SWK_CDR_CTRL  
SWK Oscillator Trimming and option Register 0111100B  
239  
240  
241  
243  
SWK Oscillator Calibration Register  
Clock Data Recovery Control Register  
SWK Clock Data Recovery Limit Control  
0111101B  
0111110B  
0111111B  
SWK_CDR_LIMIT  
Datasheet  
187  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
14.5.1  
Device Control Registers  
Mode and Supply Control  
M_S_CTRL  
Mode and Supply Control  
(000 0001B)  
Reset Value: see Table 44  
15  
MODE  
rwh  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
VCC1_OV_MO  
D
RSTN_  
HYS  
I_PEA  
K_TH  
RES  
RES  
RES  
RES  
VCC1_RT  
r
rwh  
r
rw  
r
rw  
r
rw  
Field  
Bits  
15:14  
Type  
Description  
Device Mode Control  
MODE  
rwh  
00B NORMAL, Normal Mode  
01B SLEEP, Sleep Mode  
10B STOP, Stop Mode  
11B RESET, Device reset: Soft reset is executed  
(configuration of RSTN triggering in bit  
SOFT_RESET_RO)  
RES  
13:11  
10:9  
r
Reserved, always reads as 0  
VCC1_OV_MOD  
rwh  
Reaction in case of VCC1 Over Voltage  
00B NO, no reaction  
01B INTN, INTN event is generated  
10B RSTN, RSTN event is generated  
11B FAILSAFE, Fail-Safe Mode is entered  
RES  
8
7
r
Reserved, always reads as 0  
RSTN_HYS  
rw  
VCC1 Undervoltage Reset Hysteresis Selection (see  
also Chapter 13.7.1 for more information)  
0B DEFAULT, default hysteresis applies as specified  
in the electrical characteristics table  
1B HIGHEST, the highest rising threshold (VRT1,R) is  
always used for the release of the undervoltage  
reset  
RES  
6
5
r
Reserved, always reads as 0  
I_PEAK_TH  
rw  
VCC1 Active Peak Threshold Selection  
0B LOW, low VCC1 active peak threshold selected  
1B HIGH, high VCC1 active peak threshold selected  
RES  
4:2  
1:0  
r
Reserved, always reads as 0  
VCC1_RT  
rw  
VCC1 Reset Threshold Control  
00B VRT1, Vrt1 selected (highest threshold)  
01B VRT2, Vrt2 selected  
10B VRT3, Vrt3 selected  
11B VRT4, Vrt4 selected  
Datasheet  
188  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Table 44 Reset of M_S_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 0000 x0x0 00xxB  
Notes  
1. It is not possible to change from Stop Mode to Sleep Mode via SPI Command. See also the State Machine  
Chapter.  
2. After entering Restart Mode, the MODE bits will be automatically set to Normal Mode.  
3. The SPI output will always show the previously written state with a Write Command (what has been  
programmed before) .  
Datasheet  
189  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Hardware Control  
HW_CTRL  
Hardware Control  
(000 0010B)  
Reset Value: see Table 45  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SOFT_  
RESET  
_RO  
WD_S  
TM_E  
N_1  
TSD2_ VS_OV SH_DI RSTN_  
DEL _SEL SABLE DEL  
FO_O  
N
RES  
RES  
RES  
RES  
r
rw  
rw  
rw  
rw  
r
rw  
rwh  
r
rwh  
r
Field  
RES  
Bits  
Type  
Description  
Reserved, always reads as 0  
TSD2 minimum Waiting Time Selection  
15:13  
12  
r
TSD2_DEL  
rw  
0B 1s, Minimum waiting time until TSD2 is released  
again is always 1 s  
1B 64s, Minimum waiting time until TSD2 is released  
again is 1 s, after >16 TSD2 consecutive events, it  
will extended x 64  
VS_OV_SEL  
SH_DISABLE  
RSTN_DEL  
RES  
11  
10  
9
rw  
rw  
rw  
VS OV comparator threshold change  
0B 20V, Default threshold setting (VS,OVD1  
1B 30V, increased threshold setting (VS,OVD2  
)
)
Sample and hold circuitry disable  
0B ENABLED, Gate driver S&H circuitry enabled  
1B DISABLED, Gate driver S&H circuitry disabled  
Reset delay time  
0B 10ms, Reset delay time 10 ms (tRD1  
1B 2ms, Reset delay time to 2 ms (tRD2  
Reserved, always reads as 0  
Soft Reset Configuration  
)
)
8:7  
6
r
SOFT_RESET_RO  
rw  
0B RSTN, RSTN will be triggered (pulled low) during  
a Soft Reset  
1B NO_RSTN, no RSTN trigger during a Soft Reset  
FO_ON  
5
rwh  
Failure Output Activation  
0B DISABLED, FO not activated by software, FO will  
be activated by specified failures  
1B ENABLED, FO activated by software (via SPI),  
only if WK2/FO pin is configured as Fail Safe  
Output  
RES  
4:3  
2
r
Reserved, always reads as 0  
WD_STM_EN_1  
rwh  
Watchdog Deactivation during Stop Mode, bit1  
0B ACTIVE, Watchdog is active in Stop Mode  
1B INACTIVE, Watchdog is deactivated in Stop Mode  
RES  
1:0  
r
Reserved, always reads as 0  
Datasheet  
190  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Table 45 Reset of HW_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR  
0000 0000 0000 0000B  
Soft reset  
Restart  
0000 00x0 0000 0000B  
000x 00x0 0x00 0000B  
Notes  
1. Clearing the FO_ON bit will not disable the FO outputs in case a failure occurred which triggered the FO  
outputs. In this case the FO outputs have to be disabled by clearing the FAILURE bit.  
If the FO_ON bit is set by the software then it will be cleared by the device after Restart Mode was entered and  
the FO outputs will be disabled (if no failures occurred which triggered the fail outputs) .  
2. WD_STM_EN_1 will also be cleared when changing from Stop Mode to Normal Mode .  
Datasheet  
191  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Watchdog Control  
WD_CTRL  
Watchdog Control  
(000 0011B)  
Reset Value: see Table 46  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WD_S  
TM_E  
N_0  
WD_E  
N_WK RES  
_BUS  
CHEC  
KSUM  
WD_C  
FG  
RES  
WD_TIMER  
rw  
r
rwh  
rw  
rwh  
r
rwh  
Field  
Bits  
Type  
Description  
Watchdog Setting Check Sum Bit  
CHECKSUM  
15  
rw  
0B 0, Counts as 0 for checksum calculation  
1B 1, Counts as 1 for checksum calculation  
RES  
14:7  
6
r
Reserved, always reads as 0  
WD_STM_EN_0  
rwh  
Watchdog Deactivation during Stop Mode, bit0  
0B ACTIVE, Watchdog is active in Stop Mode  
1B INACTIVE, Watchdog is deactivated in Stop Mode  
WD_CFG  
5
4
rw  
Watchdog Configuration  
0B TIMEOUT, Watchdog works as a Time-Out  
watchdog  
1B WINDOW, Watchdog works as a Window  
watchdog  
WD_EN_ WK_BUS  
rwh  
Watchdog Enable after Bus Wake in Stop Mode  
0B DISABLED, Watchdog will not start after a CAN or  
LIN wake-up event  
1B ENABLED, Watchdog starts with a long open  
window after CAN or LIN Wake-up event  
RES  
3
r
Reserved, always reads as 0  
WD_TIMER  
2:0  
rwh  
Watchdog Timer Period  
000B 10ms, 10ms  
001B 20ms, 20ms  
010B 50ms, 50ms  
011B 100ms, 100ms  
100B 200ms, 200ms  
101B 500ms, 500ms  
110B 1s, 1s  
111B 10s, 10s  
Table 46 Reset of WD_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0001 0100B  
0000 0000 000x 0100B  
Datasheet  
192  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Notes  
1. See also Chapter 13.2.4 for more information on disabling the watchdog in Stop Mode.  
2. See chapter Chapter 13.2.5 for more information on the effect of the bit WD_EN_WK_BUS.  
3. See chapter Chapter 13.2.3 for calculation of checksum.  
Datasheet  
193  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
CAN and LIN Control  
BUS_CTRL  
CAN and LIN Control  
(000 0100B)  
Reset Value: see Table 47  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LIN_T  
XD_T  
O
LIN_F LIN_L  
LASH SM  
RES  
LIN  
CAN  
r
rw  
rw  
rw  
rwh  
rwh  
Field  
RES  
Bits  
Type  
Description  
15:8  
7
r
Reserved, always reads as 0  
LIN_FLASH  
rw  
LIN Flash  
0B ACTIVE, Slope control mechanism active  
1B INACTIVE, Deactivation of slope control for  
baudrates up to 115 kBaud  
LIN_LSM  
6
rw  
LIN LSM  
0B NORMAL, LIN Normal Mode is activated  
1B LOW_SLOPE, LIN Low-Slope Mode (10.4 kBaud)  
activated  
LIN_TXD_TO  
LIN  
5
rw  
LIN TXD TO  
0B DISABLED, TXD Time-out feature disabled  
1B ENABLED, TXD Time-out feature enabled  
4:3  
rwh  
LIN Module Modes  
00B OFF, LIN OFF  
01B WAKE, LIN wake capable  
10B RECEIVE, LIN Receive Only Mode  
11B NORMAL, LIN Normal Mode  
CAN  
2:0  
rwh  
HS-CAN Module Modes  
000B OFF, CAN OFF  
001B WAKE, CAN is wake capable (no SWK)  
010B RECEIVE, CAN Receive Only Mode (no SWK)  
011B NORMAL, CAN Normal Mode (no SWK)  
100B OFF, CAN OFF  
101B WAKE_SWK, CAN is wake capable with SWK  
110B RECEIVE_SWK, CAN Receive Only Mode with SWK  
111B NORMAL_SWK, CAN Normal Mode with SWK  
Table 47 Reset of BUS_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 0000 xx0y 0x00B  
Datasheet  
194  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Notes  
1. The reset values for CAN, LIN transceivers are marked with ‘y’ because they will vary depending on the cause  
of change.  
2. See Figure 30, Figure 37 for detailed state changes of CAN, LIN transceivers for different device modes.  
3. The bit CAN_2 is not modified by the device but can only be changed by the user. Therefore, the bit type is ‘rw’  
compared to bits CAN_0 and CAN_1.  
4. In case SYSERR = 0 and the CAN transceiver is configured to ‘x11’ while going to Sleep Mode, it will be  
automatically set to wake capable (‘x01’). The SPI bits will be changed to wake capable. If configured to ‘x10’  
and Sleep Mode is entered, then the transceiver is set to wake capable, while it will stay in Receive Only Mode  
when it had been configured to ‘x10’ when going to Stop Mode. If it had been configured to wake capable or  
OFF then the mode will remain unchanged.The Receive Only Mode has to be selected by the user before  
entering Stop Mode. Please refer to Chapter 5.9 for detailed information on the Selective Wake Mode  
changes.  
5. Failure Handling Mechanism: When the device enters Fail-Safe Mode due to a failure, then BUS_CTRL is  
modified by the device to 0000 0000 xxx0 1001B to ensure that the device can be woken again. See also the  
description in Chapter 8.1, Chapter 9.1 and Chapter 10.2.1 for WK_CTRL for other wake sources when  
entering Fail-Safe Mode.  
6. When in Software Development Mode the POR/Soft Reset value are: CAN=001B , LIN=11B.  
Datasheet  
195  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Wake-up Control  
WK_CTRL  
Wake-up Control  
(000 0101B)  
Reset Value: see Table 48  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WK2_  
FO  
RES  
WK_FILT  
WK_PUPD  
RES  
WK_EN  
rw  
RES  
WK_BNK  
rw  
r
rw  
rw  
r
r
rw  
Field  
Bits  
Type  
Description  
WK2 / FO configuration  
WK2_FO  
15  
rw  
0B FAIL_SAFE, WK2/FO pin configured as Fail Safe  
Output  
1B WAKE_UP, WK2/FO pin configured as Wake-up  
Input  
RES  
14  
r
Reserved, always reads as 0  
WK_FILT  
13:11  
rw  
Wake-up Filter Time Configuration  
000B 16us, Filter with 16 µs filter time (static sensing)  
001B 64us, Filter with 64 µs filter time (static sensing)  
010B TIMER1, Filtering at the end of the on-time; filter  
time of 16 µs (cyclic sensing) is selected, Timer1  
011B TIMER2, Filtering at the end of the on-time; filter  
time of 16 µs (cyclic sensing) is selected, Timer2  
100B SYNC, Filter at the end of settle time (80 µs), filter  
time of 16 µs (cyclic sensing) is selected, SYNC  
101B , reserved  
110B , reserved  
111B , reserved  
WK_PUPD  
10:9  
rw  
WKx Pull-Up/Pull-Down Configuration  
00B NO, No pull-up/pull-down selected  
01B PULL_DOWN, Pull-down resistor selected  
10B PULL_UP, Pull-up resistor selected  
11B AUTO, Automatic switching to pull-up or pull-  
down  
RES  
8:7  
6:5  
r
Reserved, always reads as 0  
WK_EN  
rw  
WKx Enable  
00B WK_OFF, WKx module OFF  
01B WK_ON, WKx module ON  
10B SYNC, OFF or (in case of WK4), it is configured as  
SYNC input  
11B OFF, OFF  
RES  
4:3  
r
Reserved, always reads as 0  
Datasheet  
196  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
WK_BNK  
2:0  
rw  
WKs input Banking  
000B WK1, WK1 Module (Bank 1)  
001B WK2, WK2 Module (Bank 2)  
010B WK3, WK3 Module (Bank 3)  
011B WK4, WK4 Module (Bank 4)  
101B , reserved  
110B , reserved  
111B , reserved  
Table 48 Reset of WK_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0010 0000B  
x0xx xxx0 0xx0 0000B  
Notes  
1. WK2_FO bit is accessable only if the Bank 2 is selected.  
2. The SYNC functionality is accessable only if the Bank 4 is selected.  
3. When selecting a filter time configuration, the user must make sure to also assign the respective timer/SYNC  
to at least one HS switch during cyclic sense operation.  
4. At Fail-Safe Mode entry WK_EN will be automatically changed (by the device) in “01”.  
Exceptions: WK2 is configured as FO and WK4 if configured as SYNC previously  
5. During Fail-Safe Mode the WK_FILT bits are ignored and static-sense with 16 µs filter time is used by default.  
Datasheet  
197  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Timer 1 and Timer2 Control and Selection  
TIMER_CTRL  
Timer 1 and Timer2 Control and Selection  
(000 0110B)  
Reset Value: see Table 49  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TIMER2_ON  
RES  
TIMER2_PER  
CYCWK  
rwh  
TIMER1_ON  
RES  
TIMER1_PER  
rwh  
r
rwh  
rwh  
r
rwh  
Field  
Bits  
Type  
Description  
Timer2 On-Time Configuration  
TIMER2_ON  
15:13  
rwh  
000B OFF_LOW, OFF / Low (timer not running, HSx  
output is low)  
001B 100us, 0.1ms on-time  
010B 300us, 0.3ms on-time  
011B 1ms, 1.0ms on-time  
100B 10ms, 10ms on-time  
101B 20ms, 20ms on-time  
110B OFF_HIGH, OFF / HIGH (timer not running, HSx  
output is high)  
111B , reserved, same behaviour as 110B  
RES  
12  
r
Reserved, always reads as 0  
TIMER2_PER  
11:9  
rwh  
Timer2 Period Configuration  
000B 10ms, 10ms  
001B 20ms, 20ms  
010B 50ms, 50ms  
011B 100ms, 100ms  
100B 200ms, 200ms  
101B 500ms, 500ms  
110B 1s, 1s  
111B 2s, 2s  
CYCWK  
8:7  
rwh  
Cyclic Wake Configuration  
00B DISABLED, Timer1 and Timer2 disabled as wake-  
up sources  
01B TIMER1, Timer1 is enabled as wake-up source  
(Cyclic Wake)  
10B TIMER2, Timer2 is enabled as wake-up source  
(Cyclic Wake)  
11B , reserved  
Datasheet  
198  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
TIMER1_ON  
6:4  
rwh  
Timer1 On-Time Configuration  
000B OFF_LOW, OFF / Low (timer not running, HSx  
output is low)  
001B 100us, 0.1ms on-time  
010B 300us, 0.3ms on-time  
011B 1ms, 1.0ms on-time  
100B 10ms, 10ms on-time  
101B 20ms, 20ms on-time  
110B OFF_HIGH, OFF / HIGH (timer not running, HSx  
output is high)  
111B , reserved, same behaviour as 110B  
RES  
3
r
Reserved, always reads as 0  
TIMER1_PER  
2:0  
rwh  
Timer1 Period Configuration  
000B 10ms, 10ms  
001B 20ms, 20ms  
010B 50ms, 50ms  
011B 100ms, 100ms  
100B 200ms, 200ms  
101B 500ms, 500ms  
110B 1s, 1s  
111B 2s, 2s  
Table 49 Reset of TIMER_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 0000 0000 0000B  
Notes  
1. The timer must be first assigned and is then automatically activated as soon as the on-time is configured.  
2. If cyclic sense is selected and the HSx switch is cleared during Restart Mode then also the timer settings  
(period and on-time) are cleared to avoid incorrect switch detection. However, the timer settings are not  
cleared in case of failure not leading to Restart Mode.  
3. In case the timer is set as wake sources and cyclic sense is running, then both cyclic sense and cyclic wake will  
be active at the same time.  
4. Timer accuracy is linked to the oscillator accuracy (see Parameter P_13.12.43).  
Datasheet  
199  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
High-Side Switch Shutdown Control  
SW_SD_CTRL  
High-Side Switch Shutdown Control  
(000 0111B)  
Reset Value: see Table 50  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HS4_ HS3_ HS2_ HS1_  
OV_S OV_S OV_S OV_S  
DN_DI DN_DI DN_DI DN_DI  
HS4_ HS3_ HS2_ HS1_ HS_O  
OV_RE OV_RE OV_RE OV_RE T_SD_  
HS_O HS_U  
V_SDS V_SD_ RES  
_DIS DIS  
HS_U  
V_REC  
RES  
C
C
C
C
DIS  
S
S
rw  
S
rw  
S
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
r
rw  
r
Field  
Bits  
Type  
Description  
HS4_OV_REC  
HS3_OV_REC  
HS2_OV_REC  
HS1_OV_REC  
15  
14  
13  
12  
11  
rw  
rw  
rw  
rw  
rw  
Switch recovery after removal of VSHS Overvoltage  
for HS4  
0B DISABLED, Switch recovery is disabled  
1B PREVIOUS, Previous state before VSHS  
Overvoltage is enabled after Overvoltage  
considtion is removed  
Switch recovery after removal of VSHS Overvoltage  
for HS3  
0B DISABLED, Switch recovery is disabled  
1B PREVIOUS, Previous state before VSHS  
Overvoltage is enabled after Overvoltage  
considtion is removed  
Switch recovery after removal of VSHS Overvoltage  
for HS2  
0B DISABLED, Switch recovery is disabled  
1B PREVIOUS, Previous state before VSHS  
Overvoltage is enabled after Overvoltage  
considtion is removed  
Switch recovery after removal of VSHS Overvoltage  
for HS1  
0B DISABLED, Switch recovery is disabled  
1B PREVIOUS, Previous state before VSHS  
Overvoltage is enabled after Overvoltage  
considtion is removed  
HS_OT_SD_DIS  
Shutdown Disabling of all HS in case of  
Overtemperature event  
0B ALL, shudown for all HSx in case of  
Overtemperature  
1B INDIVIDUAL, individual shudown in case of  
Overtemperature  
Datasheet  
200  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
HS4_OV_SDN_DIS  
10  
rw  
Shutdown Disabling of HS4 in case of input supply  
overvoltage in Normal Mode  
0B ENABLED, shudown enabled in case of VSHS  
Overvoltage  
1B DISABLED, shudown disabled in case of VSHS  
Overvoltage  
HS3_OV_SDN_DIS  
HS2_OV_SDN_DIS  
HS1_OV_SDN_DIS  
HS_OV_SDS_DIS  
HS_UV_SD_DIS  
9
8
7
6
5
rw  
rw  
rw  
rw  
rw  
Shutdown Disabling of HS3 in case of input supply  
overvoltage in Normal Mode  
0B ENABLED, shudown enabled in case of VSHS  
Overvoltage  
1B DISABLED, shudown disabled in case of VSHS  
Overvoltage  
Shutdown Disabling of HS2 in case of input supply  
overvoltage in Normal Mode  
0B ENABLED, shudown enabled in case of VSHS  
Overvoltage  
1B DIASBLED, shudown disabled in case of VSHS  
Overvoltage  
Shutdown Disabling of HS1 in case of input supply  
overvoltage in Normal Mode  
0B ENABLED, shudown enabled in case of VSHS  
Overvoltage  
1B DISABLED, shudown disabled in case of VSHS  
Overvoltage  
Shutdown Disabling of HSx in case of input supply  
overvoltage in Stop Mode or Sleep Mode  
0B ENABLED, shudown enabled in case of VSHS  
Overvoltage  
1B DISABLED, shudown disabled in case of VSHS  
Overvoltage  
Shutdown Disabling of HSx in case of input supply  
undervoltage  
0B ENABLED, shudown enabled in case of VSHS  
Undervoltage  
1B DISABLED, shudown disabled in case of VSHS  
Undervoltage  
RES  
4
3
r
Reserved, always reads as 0  
HS_UV_REC  
rw  
Switch recovery after removal of Undervoltage for  
HSx  
0B DISABLED, Switch recovery is disabled  
1B PREVIOUS, Previous state before VSHS  
Undervoltage is enabled after Undervoltage  
considtion is removed  
RES  
2:0  
r
Reserved, always reads as 0  
Datasheet  
201  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Table 50 Reset of SW_SD_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
xxxx xxxx xxx0 x000B  
Datasheet  
202  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
High-Side Switch Control  
HS_CTRL  
High-Side Switch Control  
(000 1000B)  
Reset Value: see Table 51  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HS4  
HS3  
HS2  
HS1  
rwh  
rwh  
rwh  
rwh  
Field  
HS4  
Bits  
15:12  
Type  
rwh  
Description  
HS4 Configuration  
0000BOFF, OFF  
0001BON, ON  
0010BTIMER1, Controlled by Timer1  
0011BTIMER2, Controlled by Timer2  
0100BPWM1, Controlled by PWM1  
0101BPWM2, Controlled by PWM2  
0110BPWM3, Controlled by PWM3  
0111BPWM4, Controlled by PWM4  
1000BWK4_SYNC, Synchronized with WK4/SYNC  
1001B, reserved  
1010B, reserved  
1011B, reserved  
1100B, reserved  
1101B, reserved  
1110B, reserved  
1111B, reserved  
HS3  
11:8  
rwh  
HS3 Configuration  
0000BOFF, OFF  
0001BON, ON  
0010BTIMER1, Controlled by Timer1  
0011BTIMER2, Controlled by Timer2  
0100BPWM1, Controlled by PWM1  
0101BPWM2, Controlled by PWM2  
0110BPWM3, Controlled by PWM3  
0111BPWM4, Controlled by PWM4  
1000BWK4_SYNC, Synchronized with WK4/SYNC  
1001B, reserved  
1010B, reserved  
1011B, reserved  
1100B, reserved  
1101B, reserved  
1110B, reserved  
1111B, reserved  
Datasheet  
203  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Field  
HS2  
Bits  
Type  
Description  
7:4  
rwh  
HS2 Configuration  
0000BOFF, OFF  
0001BON, ON  
0010BTIMER1, Controlled by Timer1  
0011BTIMER2, Controlled byTimer2  
0100BPWM1, Controlled by PWM1  
0101BPWM2, Controlled by PWM2  
0110BPWM3, Controlled by PWM3  
0111BPWM4, Controlled by PWM4  
1000BWK4_SYNC, Synchronized with WK4/SYNC  
1001B, reserved  
1010B, reserved  
1011B, reserved  
1100B, reserved  
1101B, reserved  
1110B, reserved  
1111B, reserved  
HS1  
3:0  
rwh  
HS1 Configuration  
0000BOFF, OFF  
0001BON, ON  
0010BTIMER1, Controlled by Timer1  
0011BTIMER2, Controlled by Timer2  
0100BPWM1, Controlled by PWM1  
0101BPWM2, Controlled by PWM2  
0110BPWM3, Controlled by PWM3  
0111BPWM4, Controlled by PWM4  
1000BWK4_SYNC, Synchronized with WK4/SYNC  
1001B, reserved  
1010B, reserved  
1011B, reserved  
1100B, reserved  
1101B, reserved  
1110B, reserved  
1111B, reserved  
Table 51 Reset of HS_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 0000 0000 0000B  
PWMx in this register designates the internal PWM generators for the integrated high-side switches.  
Datasheet  
204  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Interrupt Mask Control1)  
INT_MASK  
Interrupt Mask Control  
(000 1001B)  
Reset Value: see Table 52  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
INTN_ WD_S  
CYC_E DM_DI  
SPI_C  
RC_FA  
IL  
SUPP  
LY_ST  
AT  
WD_S  
DM  
BD_ST HS_ST BUS_S TEMP  
RES  
AT  
AT  
TAT _STAT  
N
SABLE  
r
rw  
rw  
rw  
rw  
rw  
rw  
rw rw  
rw  
Field  
RES  
Bits  
Type  
Description  
15:9  
8
r
Reserved, always reads as 0  
INTN_CYC_EN  
rw  
Periodical INTN generation  
0B DISABLED, no periodical INTN event generated in  
case of pending interrupts  
1B ENABLED, periodical INTN event generated in  
case of pending interrupts  
WD_SDM_DISABLE  
WD_SDM  
7
6
5
4
3
rw  
rw  
rw  
rw  
rw  
Disable Watchdog in Software Development Mode  
0B ENABLED, WD is enabled in Software  
Development Mode  
1B DISABLED, WD is disabled in Software  
Development Mode  
Watchdog failure in Software Development Mode  
0B DISABLED, no INTN event generated in case of  
WD trigger failure in Software Development Mode  
1B ENABLED, one INTN event is generated in case of  
WD trigger failure in Software Development Mode  
SPI_CRC_FAIL  
BD_STAT  
SPI and CRC interrupt generation  
0B DISABLED, no INTN event generated in case of  
SPI_FAIL or CRC_FAIL  
1B ENABLED, one INTN event is generated n case of  
SPI_FAIL or CRC_FAIL  
Bridge Driver Interrupt generation  
0B DISABLED, no INTN event generated in case  
BD_STAT (on Status Information Field) is set  
1B ENABLED, one INTN event generated in case  
BD_STAT (on Status Information Field) is set  
HS_STAT  
High Side Interrupt generation  
0B DISABLED, no INTN event generated in case  
HS_STAT (on Status Information Field) is set  
1B ENABLED, one INTN event generated in case  
HS_STAT (on Status Information Field) is set  
1) Every event will generate a signal on the INTN pin (when masked accordingly).  
Even if the status-bit was already set in the corresponding status-register it can still trigger a signal on the INTN pin.  
Datasheet  
205  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
BUS_STAT  
2
rw  
BUS Interrupt generation  
0B DISABLED, no INTN event generated in case  
BUS_STAT (on Status Information Field) is set  
1B ENABLED, one INTN event generated in case  
BUS_STAT (on Status Information Field) is set  
TEMP_STAT  
1
0
rw  
rw  
Temperature Interrupt generation  
0B DISABLED, no INTN event generated in case  
TEMP_STAT (on Status Information Field) is set  
1B ENABLED, one INTN event generated in case  
TEMP_STAT (on Status Information Field) is set  
SUPPLY_STAT  
SUPPLY Status Interrupt generation  
0B DISABLED, no INTN event generated in case  
SUPPLY_STAT (on Status Information Field) is set  
1B ENABLED, one INTN event generated in case  
SUPPLY_STAT (on Status Information Field) is set  
Table 52 Reset of INT_MASK  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0001 0100 0000B  
0000 000x xxxx xxxxB  
Datasheet  
206  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
PWM Configuration Control  
PWM_CTRL  
PWM Configuration Control  
(000 1010B)  
Reset Value: see Table 53  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PWM_  
FREQ  
RES  
PWM_DC  
RES  
PWM_BNK  
r
rw  
rw  
r
rw  
Field  
RES  
Bits  
Type  
r
Description  
Reserved, always reads as 0  
15  
14  
PWM_FREQ  
rw  
PWM generator Frequency Setting  
0B 100Hz, 100Hz is selected  
1B 200Hz, 200Hz is selected  
PWM_DC  
13:4  
rw  
PWM Duty Cycle Setting (bit4 = LSB; bit13 = MSB)  
00 0000 0000B, 100% OFF, i.e. HS = OFF  
xx xxxx xxxxB, ON with duty cycle fraction of 1024  
11 1111 1111B, 100% ON, i.e. HS = ON  
RES  
3
r
Reserved, always reads as 0  
PWM_BNK  
2:0  
rw  
Internal PWM generator selection  
000B PWM1, PWM1 Module  
001B PWM2, PWM2 Module  
010B PWM3, PWM3 Module  
011B PWM4, PWM4 Module  
1xxB , Don’t care  
Table 53 Reset of PWM_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0xxx xxxx xxxx 0000B  
PWMx in this register designates the internal PWM generators for the integrated high-side switches.  
Notes  
1. 0% and 100% duty cycle settings are used to have the switch turned ON or OFF respectively.  
2. The desired duty cycle should be set first before the HSx is enabled as PWM.  
3. The PWM signal is correct only after at least one PWM pulse.  
4. PWM generator accuracy is linked to the oscillator accuracy (see parameter P_13.12.43).  
Datasheet  
207  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
System Status Control  
SYS_STAT_CTRL  
System Status Control  
(000 1011B)  
Reset Value: see Table 54  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SYS_STAT  
rw  
Field  
Bits  
15:0  
Type  
rw  
Description  
System Status Control (bit0=LSB; bit15=MSB)  
SYS_STAT  
Dedicated bytes for system configuration, access only  
by microcontroller. Cleared after power up and soft  
reset.  
Table 54 Reset of SYS_STAT_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR / Soft reset  
Restart  
0000 0000 0000 0000B  
xxxx xxxx xxxx xxxxB  
Note:  
This register is intended for storing system configuration of the ECU by the microcontroller and is  
only accessible in Normal Mode. The register is not accessible by the TLE9560-3QX and is also not  
cleared after Fail-Safe or Restart Mode. It allows the microcontroller to quickly store system  
configuration without loosing data.  
Datasheet  
208  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
14.5.2  
Control registers bridge driver  
General Bridge Control  
GENCTRL  
General Bridge Control  
(001 0000B)  
Reset Value: see Table 55  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
EN_GE  
N_CH IHOLD  
ECK  
BDFR  
EQ  
PWM1 CPUV FET_L CPST BDOV IPCHG  
POCH AGCFI  
FMOD  
E
RES  
AGC  
CPEN  
MAP  
TH  
VL  
GA _REC ADT  
rw rw rw  
GDIS  
LT  
rw  
r
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
Description  
BDFREQ  
15  
rw  
Bridge driver synchronization frequency  
0B 18MHz, typ. 18.75 MHz (default)  
1B 37MHz, typ. 37.5 MHz  
RES  
14  
13  
r
Reserved, always reads as 0  
PWM1MAP  
PWM1MAP  
rw  
0B PWM1_TO_HB1, PWM1/CRC mapped to HB1  
(default)  
1B PWM1_TO_HB2, PWM1/CRC mapped to HB2  
CPUVTH  
12  
rw  
Charge pump under voltage (referred to VS)  
0B TH1, (default) CPUV threshold 1 for FET_LVL = 0,  
CPUV threshold 1 for FET_LVL = 1  
1B TH2, CPUV threshold 2 for FET_LVL = 0, CPUV  
threshold 2 for FET_LVL = 1  
FET_LVL  
CPSTGA  
11  
10  
rw  
rw  
External MOSFET normal / logic level selection  
0B LOGIC, Logic level MOSFET selected  
1B NORMAL, Normal level MOSFET selected(default)  
Automatic switchover between dual and single  
charge pump stage  
0B INACTIVE, Automatic switch over deactivated  
(default)  
1B ACTIVE, Automatic switch over activated  
BDOV_REC  
IPCHGADT  
9
8
rw  
rw  
Bridge driver recover from VS and VSINT  
Overvoltage  
0B INACTIVE, Recover deactivated (default)  
1B ACTIVE, Recover activated  
Adaptation of the pre-charge and pre-discharge  
current  
0B 1STEP, 1 current step (default)  
1B 2STEPS, 2 current steps  
Datasheet  
209  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Field  
AGC  
Bits  
Type  
Description  
7:6  
rw  
Adaptive gate control  
00B INACTIVE1, (default) Adaptive gate control  
disabled, pre-charge and pre-discharge disabled  
01B INACTIVE2, Adaptive gate control disabled,  
precharge is enabled with IPRECHG = IPCHGINIT,  
predischarge is enabled with IPREDCHG =  
IPDCHGINIT  
10B ACTIVE, Adaptive gate control enabled, IPRECHG  
and IPREDCHG are self adapted  
11B , reserved. Adaptive gate control enabled,  
IPRECHG and IPREDCHG are self adapted  
CPEN  
5
4
rw  
rw  
CPEN  
0B DISABLED, Charge pump disabled (default)  
1B ENABLED, Charge pump enabled  
POCHGDIS  
Postcharge disable bit  
0B ENABLED, The postcharge phase is enabled  
during PWM (default)  
1B DISABLED, The postcharge phase is disabled  
during PWM  
AGCFILT  
3
2
1
0
rw  
rw  
rw  
rw  
Filter for adaptive gate control  
0B NO_FILT, No filter applied (default)  
1B FILT_APPL, Filter applied  
EN_GEN_CHECK  
IHOLD  
Detection of active / FW MOSFET  
0B DISABLED, Detection disabled (default)  
1B ENABLED, Detection enabled  
Gate driver hold current IHOLD  
0B TH1, (default) Charge: ICHG19 , discharge IDCHG19  
1B TH2, Charge: ICHG25, discharge: ICHG25  
.
FMODE  
Frequency modulation of the charge pump  
0B NO, No modulation  
1B 15KHz, Modulation frequency 15.6 kHz (default)  
Table 55 Reset of GENCTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 1000 0000 0001B  
x0xx xxxx xxxx xxxxB  
Datasheet  
210  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Drain-Source monitoring threshold LS1-2  
LS_VDS  
VDS monitoring threshold LS1-2  
(001 0010B)  
Reset Value: see Table 56  
15  
14  
13  
TFVDS  
rw  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RES  
RES  
RES  
LS2VDSTH  
LS1VDSTH  
r
r
r
rw  
rw  
Field  
RES  
Bits  
Type  
Description  
Reserved. Always read as 0  
15:14  
13:12  
r
TFVDS  
rw  
Filter time of drain-source voltage monitoring  
00B 500ns, 0.5 µs (default)  
01B 1us, 1 µs  
10B 2us, 2 µs  
11B 6us, 6 µs  
RES  
RES  
11:9  
8:6  
r
Reserved, always reads as 0  
Reserved, always reads as 0  
r
LS2VDSTH  
5:3  
rw  
LS2 drain-source overvoltage threshold  
000B 160mV, 0.16V  
001B 200mV, 0.20 V (default)  
010B 300mV, 0.30 V  
011B 400mV, 0.40 V  
100B 500mV, 0.50 V  
101B 600mV, 0.60 V  
110B 800mV, 0.80 V  
111B 2V, 2.0 V  
LS1VDSTH  
2:0  
rw  
LS1 drain-source overvoltage threshold  
000B 160mV, 0.16 V  
001B 200mV, 0.20 V (default)  
010B 300mV, 0.30 V  
011B 400mV, 0.40 V  
100B 500mV, 0.50 V  
101B 600mV, 0.60 V  
110B 800mV, 0.80 V  
111B 2V, 2.0 V  
Table 56 Reset of LS_VDS  
Register Reset Type Reset Values  
Reset Short Name  
Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 1001B 0000 0000 0000 0000  
0000 0000 00xx xxxxB  
Datasheet  
211  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Drain-Source monitoring Threshold HS1-2  
HS_VDS  
VDS monitoring threshold HS1-2  
(001 0011B)  
Reset Value: see Table 57  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DEEP_  
ADAP  
RES  
RES  
RES  
RES  
HS2VDSTH  
HS1VDSTH  
r
rw  
rw  
r
r
rw  
rw  
Field  
RES  
RES  
Bits  
Type  
Description  
Reserved. Always read as 0  
15:14  
13  
r
rw  
rw  
Reserved. This bit must be programmed to ‘0‘  
DEEP_ADAP  
12  
Deep adaptation enable  
0B NO_DEEP_ADAP, Deep adaptation disabled  
(default)  
1B DEEP_ADAP, Deep adaptation enabled  
RES  
11:9  
8:6  
r
Reserved, always reads as 0  
Reserved, always reads as 0  
RES  
r
HS2VDSTH  
5:3  
rw  
HS2 drain-source overvoltage threshold  
000B 160mV, 0.16 V  
001B 200mV, 0.20 V (default)  
010B 300mV, 0.30 V  
011B 400mV, 0.40 V  
100B 500mV, 0.50 V  
101B 600mV, 0.60 V  
110B 800mV, 0.80 V  
111B 2V, 2.0 V  
HS1VDSTH  
2:0  
rw  
HS1 drain-source overvoltage threshold  
000B 160mV, 0.16 V  
001B 200mV, 0.20 V (default)  
010B 300mV, 0.30 V  
011B 400mV, 0.40 V  
100B 500mV, 0.50 V  
101B 600mV, 0.60 V  
110B 800mV, 0.80 V  
111B 2V, 2.0 V  
Table 57 Reset of HS_VDS  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 1001B  
00xx 0000 0xx0 0000B  
Datasheet  
212  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
CCP and times selection  
CCP_BLK  
CCP and times selection  
(001 0100B)  
Reset Value: see Table 58  
15  
14  
TBLANK  
rw  
13  
12  
11  
10  
TCCP  
rw  
9
8
7
6
5
4
3
2
1
0
RES  
CCP_BNK  
r
rw  
Field  
Bits  
Type  
Description  
Blank time  
TBLANK  
15:12  
rw  
nom. tHBxBLANK = 587 ns + 266 x T[3:0]D  
The CCP_BNK bits select the blank time for the FW or  
active MOSFET and the half-bridge HBx  
Reset of active and FW tHBxBLANK: 2450 ns typ.  
TCCP  
11:8  
rw  
Cross-current protection time  
nom. tHBxCCP = 587 ns + 266 x TCCP[3:0]D  
The CCP_BNK bits select the cross-current protection  
time for the FW or active MOSFET and the half-bridge  
HBx  
Reset of all active and FW tHBxCCP: 2450 ns typ.  
RES  
7:3  
2:0  
r
Reserved, always reads as 0  
CCP_BNK  
rw  
Cross-current and time banking  
000B ACT_HB1, Active blank and cross-current prot.  
times for HB1 (default)  
001B ACT_HB2, Active blank and cross-current prot.  
times for HB2  
010B RES, reserved  
011B RES, reserved  
100B FW_HB1, FW blank and cross-current prot. times  
for HB1  
101B FW_HB2, FW blank and cross-current prot. times  
for HB2  
111B RES, reserved  
111B RES, reserved  
Table 58 Reset of CCP_BLK  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0111 0111 0000 0000B  
xxxx xxxx 0000 0000B  
Datasheet  
213  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Half-Bridge MODE  
HBMODE  
Half-Bridge MODE  
(001 0101B)  
Reset Value: see Table 59  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HB2_  
HB1_  
RES  
HB2MODE AFW2 PWM_ HB1MODE AFW1 PWM_  
EN  
EN  
r
rw  
rw  
rw  
rw  
rw  
rw  
Field  
RES  
Bits  
Type  
Description  
15:8  
7:6  
r
Reserved, always reads as 0  
HB2MODE  
rw  
Half-bridge 2 MODE selection  
00B PASSIVE_OFF, LS2 and HS2 are off by passive  
discharge (default)  
01B LS2_ON, LS2 is ON  
10B HS2_ON, HS2 is ON  
11B ACTIVE_OFF, LS2 and HS2 kept off by the active  
discharge  
AFW2  
5
rw  
rw  
rw  
Active freewheeling for half-bridge 2 during PWM  
0B DISABLED, active freewheeling disabled  
1B ENABLED, active freewheeling enabled (default)  
HB2_PWM_EN  
HB1MODE  
4
PWM mode for half-bridge 2  
0B INACTIVE, PWM deactivated for HB2(default)  
1B ACTIVE, PWM activated for HB2  
3:2  
Half-bridge 1 MODE selection  
00B PASSIVE_OFF, LS1 and HS1 are off by passive  
discharge (default)  
01B LS1_ON, LS1 is ON  
10B HS1_ON, HS1 is ON  
11B ACTIVE_OFF, LS1 and HS1 kept off by the active  
discharge  
AFW1  
1
0
rw  
rw  
Active freewheeling for half-bridge 1 during PWM  
0B DISABLED, active freewheeling disabled  
1B ENABLED, active freewheeling enabled (default)  
HB1_PWM_EN  
PWM mode for half-bridge 1  
0B INACTIVE, PWM deactivated for HB1 (default)  
1B ACTIVE, PWM activated for HB1  
Table 59 Reset of HBMODE  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0010 0010B  
0000 0000 0010 0010B  
Datasheet  
214  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
HB pre-charge and pre-discharge time  
TPRECHG  
HB pre-charge and pre-discharge time  
(001 0110B)  
Reset Value: see Table 60  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RES  
TPCHG2  
TPCHG1  
RES  
TPCHG_BNK  
r
rw  
rw  
r
rw  
Field  
Bits  
Type  
Description  
Reserved, always reads as 0  
RES  
15:10  
9:7  
r
TPCHG2  
rw  
If TPCHG_BNK=0: precharge time of HB 2, If  
TPCHG_BNK=1: predischarge time of HB 2  
000B 107ns, tPCHG000 / tPDCHG000 (default)  
001B 160ns, tPCHG001 / tPDCHG001  
010B 214ns, tPCHG010 / tPDCHG010  
011B 267ns, tPCHG011 / tPDCHG011  
100B 320ns, tPCHG100 / tPDCHG100  
101B 533ns, tPCHG101 / tPDCHG101  
110B 747ns, tPCHG110 / tPDCHG110  
111B 1067ns, tPCHG111 / tPDCHG111  
TPCHG1  
6:4  
rw  
If TPCHG_BNK=0: precharge time of HB 1, If  
TPCHG_BNK=1: predischarge time of HB 1  
000B 107ns, tPCHG000 / tPDCHG000 (default)  
001B 160ns, tPCHG001 / tPDCHG001  
010B 214ns, tPCHG010 / tPDCHG010  
011B 267ns, tPCHG011 / tPDCHG011  
100B 320ns, tPCHG100 / tPDCHG100  
101B 533ns, tPCHG101 / tPDCHG101  
110B 747ns, tPCHG110 / tPDCHG110  
111B 1067ns, tPCHG111 / tPDCHG111  
RES  
TPCHG_BNK  
3
r
Reserved, always read as 0  
2:0  
rw  
Precharge/predischarge time selection  
000B PRECHARGE, Precharge time selected (default)  
001B PREDISCHARGE, Predischarge time selected  
x1xB , wrong setting of TPCHG_BNK  
1xxB , wrong setting of TPCHG_BNK  
Table 60 Reset of TPRECHG  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 00xx xxxx 0000B  
Datasheet  
215  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Static charge/discharge current  
ST_ICHG  
Static charge/discharge current  
(001 0111B)  
Reset Value: see Table 61  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RES  
RES  
ICHGST2  
ICHGST1  
r
r
rw  
rw  
Field  
RES  
RES  
Bits  
Type  
Description  
15:12  
11:8  
7:4  
r
Reserved, always read as 0  
Reserved, always read as 0  
r
ICHGST2  
rw  
Static charge and discharge currents of HB2  
Refer to Table 29  
Default: 0100B - charge: ICHG16, 9.2 mA typ., discharge  
IDCHG16, 9.2 mA typ.  
ICHGST1  
3:0  
rw  
Static charge and discharge currents of HB1  
Refer to Table 29  
Default: 0100B - charge: ICHG16, 9.2 mA typ., discharge  
IDCHG16, 9.2 mA typ.  
Table 61 Reset of ST_ICHG  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0100 0100B  
0000 0000 xxxx xxxxB  
Datasheet  
216  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
HB charge/discharge currents for PWM operation  
HB_ICHG  
HB charge/discharge currents for PWM operation  
(001 1000B)  
Reset Value: see Table 62  
15  
14  
13  
IDCHG  
rw  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ICHG  
RES  
ICHG_BNK  
rw  
r
rw  
Field  
Bits  
15:10  
Type  
Description  
IDCHG  
rw  
rw  
If ICHG_BNK =0xxB: Discharge current of HBx active  
MOSFET  
If ICHG_BNK=1xxB: Reserved. Always read as ‘0’  
Default value for all active MOSFETs discharge  
currents: 001111B, IDCHG15  
Refer to Table 32 for the configuration of the discharge  
current  
ICHG  
9:4  
If ICHG_BNK=0xxB: Charge current of HBx active  
MOSFET  
If ICHG_BNK=1xxB: Charge and discharge current of  
HBx FW MOSFETs  
Default value for all active MOSFETs charge currents  
and all FW MOSFETs charge/discharge currents:  
001101B, ICHG13  
Refer to Table 31 for the configuration of the charge  
current of the active and FW MOSFET  
Refer to Table 32 for the configuration of the discharge  
current of the FW MOSFET  
RES  
ICHG_BNK  
3
r
Reserved, always read as 0  
2:0  
rw  
Banking bits for charge and discharge currents of  
active MOSFETs  
000B ACT_HB1, Active MOSFET of HB1 is selected  
(default)  
001B ACT_HB2, Active MOSFET of HB2 is selected  
010B RES, reserved  
011B RES, reserved  
100B FW_HB1, FW MOSFET of HB1 is selected  
101B FW_HB2, FW MOSFET of HB2 is selected  
110B RES, reserved  
111B RES, reserved  
Table 62 Reset of HB_ICHG  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
0011 1100 1101 0000B  
POR value valid for  
ICHG_BNK = 0  
Restart  
xxxx xxxx xxxx 0000B  
Datasheet  
217  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
HB max. pre-charge/pre-discharge in PWM operation current and diagnostic pull-down  
HB_ICHG_MAX  
HB max. pre-charge/pre-discharge in PWM operation current and diagnostic pull-down  
(001 1001B)  
Reset Value: see Table 63  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HB2ID HB1ID  
RES RES  
RES  
RES  
RES  
ICHGMAX2  
ICHGMAX1  
IAG  
IAG  
r
r
rw  
rw  
r
r
r
rw  
rw  
Field  
RES  
RES  
Bits  
Type  
Description  
15  
14  
13  
r
Reserved, always read as 0  
Reserved, always read as 0  
r
HB2IDIAG  
rw  
Control of HB2 pull-down for off-state diagnostic  
0B INACTIVE, Pull-down deactivated (default)  
1B ACTIVE, Pull-down activated  
HB1IDIAG  
12  
rw  
Control of HB1 pull-down for off-state diagnostic  
0B INACTIVE, Pull-down deactivated (default)  
1B ACTIVE, Pull-down activated  
RES  
11:8  
7:6  
5:4  
3:2  
r
Reserved, always read as 0  
Reserved, always reads as 0  
Reserved, always reads as 0  
RES  
r
RES  
r
ICHGMAX2  
rw  
Maximum drive current of HB2 during the pre-  
charge phase and pre-discharge phases1)  
00B 19mA, charge ICHG24: typ. 19.2 mA, discharge  
IDCHG24: typ. 18.8 mA (default)  
01B 32mA, charge ICHG32: typ. 32.8 mA, discharge  
I
DCHG32: typ. 32.2 mA  
10B 73mA, charge ICHG52: typ. 73.2 mA, discharge  
DCHG52: typ. 72.4mA  
I
11B 100mA, charge ICHG63: typ. 100 mA, discharge  
IDCHG63: typ. 100 mA  
ICHGMAX1  
1:0  
rw  
Maximum drive current of HB1 during the pre-  
charge and pre-discharge phases1)  
00B 19mA, charge ICHG24: typ. 19.2 mA, discharge  
I
DCHG24: typ. 18.8 mA (default)  
01B 32mA, charge ICHG32: typ. 32.8 mA, discharge  
DCHG32: typ. 32.2 mA  
I
10B 73mA, charge ICHG52: typ. 73.2 mA, discharge  
IDCHG52: typ. 72.4mA  
11B 100mA, charge ICHG63: typ. 100 mA, discharge  
IDCHG63: typ. 100 mA  
1) ICHGMAX is also the current applied during the post-charge of the PWM MOSFET.  
Datasheet  
218  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Table 63 Reset of HB_ICHG_MAX  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
00xx 0000 0000 xxxxB  
Datasheet  
219  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
HBx pre-charge/pre-dischage initialization configuration in PWM operation  
HB_PCHG_INIT  
HBx pre-charge/pre-discharge initialization configuration in PWM operation  
(001 1010B)  
Reset Value: see Table 64  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PDCHGINIT  
PCHGINIT  
RES  
INIT_BNK  
rw  
rw  
r
rw  
Field  
Bits  
Type  
Description  
PDCHGINIT  
15:10  
rw  
Initial predischarge current of HBx, IPDCHGINITx  
The INIT_BNK bits select the addressed half-bridge  
Default: 001111B  
PCHGINIT  
9:4  
rw  
Initial precharge current of HBx, IPCHGINITx  
The INIT_BNK bits select the addressed half-bridge  
Default: 001101B  
RES  
3
r
Reserved, always reads as 0  
INIT_BNK  
2:0  
rw  
Banking bits for Precharge an Predischarge Initial  
Current  
000B HB1, precharge/discharge init. for HB1 selected  
(default)  
001B HB2, precharge/discharge init. for HB2 selected  
010B RES, reserved  
011B RES, reserved  
1xxB , wrong setting of INIT_BANK  
Table 64 Reset of HB_PCHG_INIT  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0011 1100 1101 0000B  
xxxx xxxx xxxx 0000B  
Datasheet  
220  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
HBx inputs TDON configuration  
TDON_HB_CTRL  
HBx inputs TDON configuration  
(001 1011B)  
Reset Value: see Table 65  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RES  
TDON  
RES  
HB_TDON_BNK  
r
rw  
r
rw  
Field  
RES  
Bits  
Type  
Description  
Reserved, always read as 0  
15:14  
13:8  
r
TDON  
rw  
Turn-on delay time of active MOSFET of HBx  
The HB_TDON_BNK bits selects the turn-on delay time  
of the active MOSFET of the half-bridge HBx  
Nominal tDON = 53.3 ns x TDON[5:0]D  
Default: 00 1100B : 640 ns typ.  
RES  
7:3  
2:0  
r
Reserved, always read as 0  
HB_TDON_BNK  
rw  
Banking bits for turn-on delay time  
000B HB1, tDON of HB1 selected (default)  
001B HB2, tDON of HB2 selected  
010B RES, reserved  
011B RES, reserved  
1xxB , wrong setting of PWM_TDON_BNK  
Table 65 Reset of TDON_HB_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 1100 0000 0000B  
00xx xxxx 0000 0000B  
Datasheet  
221  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
HBx TDOFF configuration  
TDOFF_HB_CTRL  
HBx TDOFF configuration  
(001 1100B)  
Reset Value: see Table 66  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RES  
TDOFF  
RES  
HB_TDOFF_BNK  
r
rw  
r
rw  
Field  
RES  
Bits  
Type  
Description  
Reserved, always read as 0  
15:14  
13:8  
r
TDOFF  
rw  
Turn-off delay time of active MOSFET of HBx  
The HB_TDOFF_BNK bits selects the turn-off delay  
time of the active MOSFET of the half-bridge HBx  
Nominal tDOFF = 53.3 ns x TDOFF[5:0]D  
Default: 0000 1100B : 640 ns  
RES  
7:3  
2:0  
r
Reserved, always read as 0  
HB_TDOFF_BNK  
rw  
Banking bits for turn-off delay time  
000B HB1, tDOFF of HB1 selected (default)  
001B HB2, tDOFF of HB2 selected  
010B RES, reserved  
011B RES, reserved  
1xxB , wrong setting of PWM_TDOFF_BNK  
Table 66 Reset of TDOFF_HB_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 1100 0000 0000B  
00xx xxxx 0000 0000B  
Datasheet  
222  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Brake control  
BRAKE  
Brake control  
(001 1101B)  
Reset Value: see Table 67  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SLAM SLAM  
RES RES _LS2_ _LS1_ SLAM H_BR  
VDST  
PARK_ OV_B  
BRK_E RK_E  
TBLK_  
BRK  
RES  
RES  
OV_BRK_TH  
DIS  
DIS  
K
N
N
r
r
r
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
RES  
RES  
RES  
Bits  
Type  
Description  
15:14  
13  
r
Reserved, always read as 0  
Reserved, always read as 0  
Reserved, always read as 0  
r
12  
r
SLAM_LS2_DIS  
11  
rw  
LS2 output disable during SLAM mode  
0B ACTIVE, LS2 control active in Slam mode  
(default)  
1B DISABLED, LS2 control disabled in Slam mode  
SLAM_LS1_DIS  
10  
rw  
LS1 output disable during SLAM mode  
0B ACTIVE, LS1 control active in Slam mode  
(default)  
1B DISABLED, LS1 control disabled in Slam mode  
SLAM  
9
rw  
rw  
rw  
rw  
rw  
rw  
Slam mode  
0B INACTIVE, Slam mode deactivated (default)  
1B AVTIVE, Slam mode activated  
VDSTH_BRK  
TBLK_BRK  
PARK_BRK_EN  
OV_BRK_EN  
RES  
8
VDS Overvoltage for LS1-2 during braking  
0B 800mV, VVDSMONTH0_BRAKE, 0.8 V, typ. (default)  
1B 220mV, VVDSMONTH1_BRAKE, 0.22 V typ.  
7
Blank time of VDS overvoltage during braking  
0B 7uS, tBLK_BRAKE1,7 µs typ.  
1B 11uS, tBLK_BRAKE2, 11 µs typ. (default)  
6
Parking brake enable  
0B DISABLED, Parking brake disabled (default)  
1B ENABLED, Parking brake enabled  
5
Overvoltage brake enable  
0B DISABLED, Overvoltage brake disabled  
1B ENABLED, Overvoltage brake enabled (default)  
4:3  
Reserved, to be set to 0  
Datasheet  
223  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
OV_BRK_TH  
2:0  
rw  
Overvoltage brake threshold  
000B 27V, typ. 27V (default)  
001B 28V, typ. 28V  
010B 29V, typ. 29V  
011B 30V, typ. 30V  
100B 31V, typ. 31V  
101B 32V, typ. 32V  
110B 33V, typ. 33V  
111B 34V, typ. 34V  
Table 67 Reset of BRAKE  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 1010 0000B  
0000 xxxx xxx0 0xxxB  
Note:  
For min and max values of OV_BRK_TH, refer to Chapter 13.12.  
Datasheet  
224  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
14.5.3  
Selective Wake Registers  
CAN Selective Wake Control  
SWK_CTRL  
CAN Selective Wake Control  
(011 0000B)  
Reset Value: see Table 68  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CANT  
TRIM_EN O_MA  
SK  
OSC_  
CAL  
CFG_V  
AL  
RES  
RES  
r
rw  
rw  
rw  
r
rwh  
Field  
RES  
Bits  
Type  
Description  
15:8  
7
r
Reserved, always reads as 0  
OSC_CAL  
rw  
Oscillator Calibration Mode  
0B DISABLED, Oscillator Calibration is disabled  
1B ENABLED, Oscillator Calibration is enabled  
TRIM_EN  
6:5  
4
rw  
rw  
(Un)locking mechanism of oscillator recalibration  
00B LOCKED, locked  
01B LOCKED, locked  
10B LOCKED, locked  
11B UNLOCKED, unlocked  
CANTO_ MASK  
CAN Time Out Masking  
0B MASKED, CAN time-out is masked - no interrupt  
(on pin INTN) is triggered  
1B UNMASKED, CAN time-out is signaled on INTN  
RES  
3:1  
0
r
Reserved, always reads as 0  
CFG_VAL  
rwh  
SWK Configuration valid  
0B NOT_VALID, Configuration is not valid (SWK not  
possible)  
1B VALID, SWK configuration valid, needs to be set  
to enable SWK  
Table 68 Reset of SWK_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 0000 xxxx 0000B  
Notes  
1. TRIM_EN unlocks the oscillation calibration mode. Only the bit combination ‘11’ is the valid unlock. The pin  
TXDCAN is used for oscillator synchronisation (trimming).  
2. The microcontroller needs to validate the SWK configuration and set ‘CFG_VAL’ to ‘1’. The device will only  
enable SWK if CFG_VAL’ to ‘1’. The bit will be cleared automatically by the device after a wake up or POR or if  
a SWK configuration data is changed by the microcontroller.  
Datasheet  
225  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
3. CANTO bit will only be updated inside BUS_STAT while CAN_2 is set. Therefore, an interrupt is only signaled  
upon occurrence of CANTO while CAN_2 (SWK is enabled) is set in Normal Mode and Stop Mode.  
SWK Bit Timing Control  
SWK_BTL1_CTRL  
SWK Bit Timing Control  
(011 0001B)  
Reset Value: see Table 69  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SP  
RES  
TBIT  
rw  
r
rw  
Field  
SP  
Bits  
Type  
Description  
Sampling Point Position  
Represents the sampling point position (fractional  
15:10  
rw  
number < 1). Example: 0011 0011 = 0.796875 (~80%)  
RES  
9:8  
7:0  
r
Reserved, always reads as 0  
TBIT  
rw  
Number of Time Quanta in a Bit Time  
Represents the number of time quanta in a bit time.  
Quanta is depending on x<1:0> from the x register.  
Table 69 Reset of SWK_BTL1_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
1100 1100 1001 0110B  
xxxx xx00 xxxx xxxxB  
Datasheet  
226  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
SWK WUF Identifier bits  
SWK_ID1_CTRL  
SWK WUF Identifier bits 28...13  
(011 0010B)  
Reset Value: see Table 70  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
ID28  
ID27  
ID26  
ID25  
ID24  
ID23  
ID22  
ID21  
ID20  
ID19  
ID18  
ID17  
ID16  
ID15  
ID14  
ID13  
Bits  
Type  
Description  
15  
14  
13  
12  
11  
10  
9
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
WUF Identifier Bit 28  
WUF Identifier Bit 27  
WUF Identifier Bit 26  
WUF Identifier Bit 25  
WUF Identifier Bit 24  
WUF Identifier Bit 23  
WUF Identifier Bit 22  
WUF Identifier Bit 21  
WUF Identifier Bit 20  
WUF Identifier Bit 19  
WUF Identifier Bit 18  
WUF Identifier Bit 17  
WUF Identifier Bit 16  
WUF Identifier Bit 15  
WUF Identifier Bit 14  
WUF Identifier Bit 13  
8
7
6
5
4
3
2
1
0
Table 70 Reset of SWK_ID1_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
xxxx xxxx xxxx xxxxB  
Datasheet  
227  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
SWK WUF Identifier bits  
SWK_ID0_CTRL  
SWK WUF Identifier bits 12...0  
(011 0011B)  
Reset Value: see Table 71  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ID12 ID11 ID10 ID9  
ID8  
ID7  
ID6  
ID5  
RES  
ID4  
ID3  
ID2  
ID1  
ID0 RTR IDE  
rw rw rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
r
rw  
rw  
rw  
rw  
Field  
ID12  
ID11  
ID10  
ID9  
Bits  
Type  
Description  
15  
14  
13  
12  
11  
10  
9
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
r
WUF Identifier Bit 12  
WUF Identifier Bit 11  
WUF Identifier Bit 10  
WUF Identifier Bit 9  
WUF Identifier Bit 8  
WUF Identifier Bit 7  
WUF Identifier Bit 6  
WUF Identifier Bit 5  
ID8  
ID7  
ID6  
ID5  
8
RES  
ID4  
7
Reserved, always reads as 0  
WUF Identifier Bit 4  
WUF Identifier Bit 3  
WUF Identifier Bit 2  
WUF Identifier Bit 1  
WUF Identifier Bit 0  
6
rw  
rw  
rw  
rw  
rw  
rw  
ID3  
5
ID2  
4
ID1  
3
ID0  
2
RTR  
1
Remote Transmission Request Field (acc. ISO11898-  
2:2016)  
0B NORMAL, Normal Data Frame  
1B REMOTE, Remote Transmission Request  
IDE  
0
rw  
Identifier Extension Bit  
0B STD, Standard Identifier Length (11 bit)  
1B EXT, Extended Identifier Length (29 bit)  
Table 71 Reset of SWK_ID0_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
xxxx xxxx 0xxx xxxxB  
Datasheet  
228  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
SWK WUF Identifier Mask bits 28...13  
SWK_MASK_ID1_CTRL  
SWK WUF Identifier Mask bits 28...13  
(011 0100B)  
Reset Value: see Table 72  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK  
_ID28 _ID27 _ID26 _ID25 _ID24 _ID23 _ID22 _ID21 _ID20 _ID19 _ID18 _ID17 _ID16 _ID15 _ID14 _ID13  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
Field  
Bits  
Type  
Description  
WUF Identifier Mask Bit 28  
0B UNMASKED, Unmasked - bit is ignored  
MASK_ID28  
MASK_ID27  
MASK_ID26  
MASK_ID25  
MASK_ID24  
MASK_ID23  
MASK_ID22  
MASK_ID21  
MASK_ID20  
MASK_ID19  
MASK_ID18  
15  
14  
13  
12  
11  
10  
9
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 27  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 26  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 25  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 24  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 23  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 22  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
8
WUF Identifier Mask Bit 21  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
7
WUF Identifier Mask Bit 20  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
6
WUF Identifier Mask Bit 19  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
5
WUF Identifier Mask Bit 18  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
Datasheet  
229  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
MASK_ID17  
4
rw  
WUF Identifier Mask Bit 17  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
MASK_ID16  
MASK_ID15  
MASK_ID14  
MASK_ID13  
3
2
1
0
rw  
rw  
rw  
rw  
WUF Identifier Mask Bit 16  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 15  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 14  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 13  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
Table 72 Reset of SWK_MASK_ID1_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
xxxx xxxx xxxx xxxxB  
Datasheet  
230  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
SWK WUF Identifier Mask bits 12...0  
SWK_MASK_ID0_CTRL  
SWK WUF Identifier Mask bits 12...0  
(011 0101B)  
Reset Value: see Table 73  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASK MASK MASK MASK MASK MASK MASK MASK  
_ID12 _ID11 _ID10 _ID9 _ID8 _ID7 _ID6 _ID5  
MASK MASK MASK MASK MASK  
_ID4 _ID3 _ID2 _ID1 _ID0  
RES  
RES  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
r
rw  
rw  
rw  
rw  
rw  
r
Field  
Bits  
Type  
Description  
WUF Identifier Mask Bit 12  
0B UNMASKED, Unmasked - bit is ignored  
MASK_ID12  
MASK_ID11  
MASK_ID10  
MASK_ID9  
MASK_ID8  
MASK_ID7  
MASK_ID6  
MASK_ID5  
15  
14  
13  
12  
11  
10  
9
rw  
rw  
rw  
rw  
rw  
rw  
rw  
rw  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 11  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 10  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 9  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 8  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 7  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 6  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
8
WUF Identifier Mask Bit 5  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
RES  
7
6
r
Reserved, always reads as 0  
MASK_ID4  
rw  
WUF Identifier Mask Bit 4  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
MASK_ID3  
MASK_ID2  
5
4
rw  
rw  
WUF Identifier Mask Bit 3  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
WUF Identifier Mask Bit 2  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
Datasheet  
231  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
MASK_ID1  
3
rw  
WUF Identifier Mask Bit 1  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
MASK_ID0  
RES  
2
rw  
r
WUF Identifier Mask Bit 0  
0B UNMASKED, Unmasked - bit is ignored  
1B MASKED, Masked - bit is compared in CAN frame  
1:0  
Reserved, always reads as 0  
Table 73 Reset of SWK_MASK_ID0_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
xxxx xxxx 0xxx xx00B  
Datasheet  
232  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
SWK Frame Data Length Code Control  
SWK_DLC_CTRL  
SWK Frame Data Length Code Control  
(011 0110B)  
Reset Value: see Table 74  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RES  
DLC  
r
rw  
Field  
RES  
DLC  
Bits  
Type  
Description  
Reserved, always reads as 0  
Payload length in number of bytes  
15:4  
3:0  
r
rw  
0000B0, Frame Data Length = 0 or cleared  
0001B1, Frame Data Length = 1  
0010B2, Frame Data Length = 2  
0011B3, Frame Data Length = 3  
0100B4, Frame Data Length = 4  
0101B5, Frame Data Length = 5  
0110B6, Frame Data Length = 6  
0111B7, Frame Data Length = 7  
1000B8, to 1111B Frame Data Length = 8  
Table 74 Reset of SWK_DLC_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 0000 0000 xxxxB  
Note:  
The number of transmitted bytes in the data field has to be indicated by the DLC. The DLC value  
consists of four bits. The admissible number of data bytes for a data frame is in a range from zero to  
eight. DLCs in the range of zero to seven indicates data fields of length of zero to seven bytes. DLCs  
in the range from eight to fifteen indicate data fields with a length of eight bytes. The configured DLC  
value has to match bit by bit with the DLC in the received wake-up frame (refer also to  
Chapter 5.9.2.2).  
Datasheet  
233  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
SWK Data7-Data6 Register  
SWK_DATA3_CTRL  
SWK Data7-Data6 Register  
(011 0111B)  
Reset Value: see Table 75  
15  
14  
13  
12  
DATA7  
rw  
11  
10  
9
8
7
6
5
4
3
2
1
0
DATA6  
rw  
Field  
Bits  
15:8  
7:0  
Type  
Description  
DATA7  
DATA6  
rw  
rw  
Data7 byte content(bit0=LSB; bit7=MSB)  
Data6 byte content(bit0=LSB; bit7=MSB)  
Table 75 Reset of SWK_DATA3_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
xxxx xxxx xxxx xxxxB  
Datasheet  
234  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
SWK Data5-Data4 Register  
SWK_DATA2_CTRL  
SWK Data5-Data4 Register  
(011 1000B)  
Reset Value: see Table 76  
15  
14  
13  
12  
DATA5  
rw  
11  
10  
9
8
7
6
5
4
3
2
1
0
DATA4  
rw  
Field  
Bits  
15:8  
7:0  
Type  
Description  
DATA5  
DATA4  
rw  
rw  
Data5 byte content(bit0=LSB; bit7=MSB)  
Data4 byte content(bit0=LSB; bit7=MSB)  
Table 76 Reset of SWK_DATA2_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
xxxx xxxx xxxx xxxxB  
Datasheet  
235  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
SWK Data3-Data2 Register  
SWK_DATA1_CTRL  
SWK Data3-Data2 Register  
(011 1001B)  
Reset Value: see Table 77  
15  
14  
13  
12  
DATA3  
rw  
11  
10  
9
8
7
6
5
4
3
2
1
0
DATA2  
rw  
Field  
Bits  
15:8  
7:0  
Type  
Description  
DATA3  
DATA2  
rw  
rw  
Data3 byte content(bit0=LSB; bit7=MSB)  
Data2 byte content(bit0=LSB; bit7=MSB)  
Table 77 Reset of SWK_DATA1_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
xxxxx xxxx xxxx xxxxB  
Datasheet  
236  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
SWK Data1-Data0 Register  
SWK_DATA0_CTRL  
SWK Data1-Data0 Register  
(011 1010B)  
Reset Value: see Table 78  
15  
14  
13  
12  
DATA1  
rw  
11  
10  
9
8
7
6
5
4
3
2
1
0
DATA0  
rw  
Field  
Bits  
15:8  
7:0  
Type  
Description  
DATA1  
DATA0  
rw  
rw  
Data1 byte content(bit0=LSB; bit7=MSB)  
Data0 byte content(bit0=LSB; bit7=MSB)  
Table 78 Reset of SWK_DATA0_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
xxxx xxxx xxxx xxxxB  
Datasheet  
237  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
CAN FD Configuration Control Register  
SWK_CAN_FD_CTRL  
CAN FD Configuration Control Register  
(011 1011B)  
Reset Value: see Table 79  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DIS_E  
RR_C RES  
NT  
CAN_F  
D_EN  
RES  
FD_FILTER  
r
rwh  
r
rw  
rw  
Field  
RES  
Bits  
15:6  
5
Type  
Description  
Reserved, always reads as 0  
Error Counter Disable Function  
r
DIS_ERR_ CNT  
rwh  
0B ENABLED, Error Counter is enabled during SWK  
1B DISABLED, Error counter is disabled during SWK  
only if CAN_FD_EN = ‘1’  
RES  
4
r
Reserved, always reads as 0  
FD_FILTER  
3:1  
rw  
CAN FD Dominant Filter Time  
000B 50ns, 50 ns  
001B 100ns, 100 ns  
010B 150ns, 150 ns  
011B 200ns, 200 ns  
100B 250ns, 250 ns  
101B 300ns, 300 ns  
110B 350ns, 350 ns  
111B 775ns, 775 ns  
CAN_FD_EN  
0
rw  
Enable CAN FD Tolerant Mode  
0B DISABLED, CAN FD Tolerant Mode disabled  
1B ENABLED, CAN FD Tolerant Mode enabled  
Table 79 Reset of SWK_CAN_FD_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 0000 00x0 xxxxB  
Notes  
1. DIS_ERR_ CNT is cleared by the device at tsilence expiration.  
2. The Normal Mode CAN Receiver (RX_WK_SEL = 0B) has to selected with a CAN FD tolerant operation for baud  
rates > 2 MBit/s.  
Datasheet  
238  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
14.5.4  
Selective Wake trim and configuration Registers  
SWK Oscillator Trimming and option Register  
SWK_OSC_TRIM_CTRL  
SWK Oscillator Trimming and option Register  
(011 1100B)  
Reset Value: see Table 80  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RX_W  
K_SEL  
RES  
RES  
TEMP_COEF  
TRIM_OSC  
r
rw  
r
rw  
rw  
Field  
RES  
Bits  
Type  
r
Description  
Reserved, always reads as 0  
15  
14  
RX_WK_SEL  
rw  
SWK Receiver selection (only accessible if  
TRIM_EN = ‘11’)  
0B LOW_POWER, Low-Power Receiver selected  
during SWK  
1B STD, Standard Receiver selected during SWK  
RES  
13:12  
11:7  
r
Reserved, always reads as 0  
TEMP_COEF  
rw  
Trimming of temp_coef (only writable if  
TRIM_EN = ‘11’)  
TRIM_OSC  
6:0  
rw  
Trimming of oscillator (only writable if  
TRIM_EN = ‘11’)  
Table 80 Reset of SWK_OSC_TRIM_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0x00 xxxx xxxx xxxx B  
Notes  
1. The bit RX_WK_SEL is used to select the respective receiver during Selective Wake operation. The lowest  
quiescent current during Frame Detect Mode is achieved with the default setting RX_WK_SEL = ‘0’, i.e. the  
Low-Power Receiver is already selected.  
2. TRIM_OSC[6:0] represent the 128-steps coarse trimming range, which is not monotonous.  
It is not recommended to change these values.  
Datasheet  
239  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
SWK Oscillator Calibration Register  
SWK_OSC_CAL_STAT  
SWK Oscillator Calibration Register  
(011 1101B)  
Reset Value: see Table 81  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
OSC_CAL_H  
OSC_CAL_L  
r
r
Field  
Bits  
Type  
Description  
OSC_CAL_H  
OSC_CAL_L  
15:8  
7:0  
r
r
Oscillator Calibration High Register  
Oscillator Calibration Low Register  
Table 81 Reset of SWK_OSC_CAL_STAT  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
xxxx xxxx xxxx xxxx B  
Datasheet  
240  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Clock Data Recovery Control Register  
SWK_CDR_CTRL  
Clock Data Recovery Control Register  
(011 1110B)  
Reset Value: see Table 82  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SEL_OSC_CL  
K
CDR_E  
N
RES  
RES  
SELFILT  
RES  
r
rw  
r
rw  
r
rw  
Field  
RES  
Bits  
Type  
Description  
Reserved, always reads as 0  
15:7  
6:5  
r
SEL_OSC_CLK  
rw  
Input Frequency for CDR module  
See Table 83 and Table 84  
RES  
4
r
Reserved, always reads as 0  
SELFILT  
3:2  
rw  
Select Time Constant of Filter  
00B 8, Time constant 8  
01B 16, Time constant 16 (default)  
10B 32, Time constant 32  
11B ADAPTIVE, adapt  
distance between falling edges 2, 3 bit: Time  
constant 32  
distance between f. edges 4, 5, 6, 7, 8 bit: Time  
constant 16  
distance between falling edges 9, 10 bit: Time  
constant 8  
RES  
1
0
r
Reserved, always reads as 0  
CDR_EN  
rw  
Enable CDR  
0B DISABLED, CDR disabled  
1B ENABLED, CDR enabled  
Table 82 Reset of SWK_CDR_CTRL  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0100B  
0000 0000 0xx0 xx0xB  
Table 83 Frequency Settings of Internal Clock for the CDR  
SEL_OSC_CLK[1:0]  
int. Clock for CDR  
00  
01  
10  
11  
75 MHz  
37.5 MHz  
18.75 MHz  
9.375 MHz  
Datasheet  
241  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Table 84 Recommended CDR Settings for Different Baud Rates  
SEL_OSC_CLK  
[1:0]  
Baudrate SWK_BTL1_CTRL Value  
SWK_CDR_LIMIT Value  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
500k  
500k  
500k  
500k  
250k  
250k  
250k  
250k  
125k  
125k  
125k  
125k  
xxxx xxxx 1001 0110  
xxxx xxxx 0100 1011  
1001 1101 1000 1111  
0100 1110 0100 0111  
CDR Setting not recommended for this baudrate due to insufficient precision  
CDR Setting not recommended for this baudrate due to insufficient precision  
CDR Setting not to be used due to excessive time quanta (counter overflow)  
xxxx xxxx 1001 0110  
xxxx xxxx 0100 1011  
1001 1101 1000 1111  
0100 1110 0100 0111  
CDR Setting not recommended for this baudrate due to insufficient precision  
CDR Setting not to be used due to excessive time quanta (counter overflow)  
CDR Setting not to be used due to excessive time quanta (counter overflow)  
xxxx xxxx 1001 0110  
xxxx xxxx 0100 1011  
1001 1101 1000 1111  
0100 1110 0100 0111  
Datasheet  
242  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
SWK Clock Data Recovery Limit Control  
SWK_CDR_LIMIT  
SWK Clock Data Recovery Limit Control  
(011 1111B)  
Reset Value: see Table 85  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CDR_LIM_H  
CDR_LIM_L  
rw  
rw  
Field  
Bits  
Type  
Description  
CDR_LIM_H  
15:8  
rw  
Upper Bit Time Detection Range of Clock and Data  
Recovery  
x values > + 5% will be clamped  
CDR_LIM_L  
7:0  
rw  
Lower Bit Time Detection Range of Clock and Data  
Recovery  
x values > - 5% will be clamped  
Table 85 Reset of SWK_CDR_LIMIT  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
1001 1101 1000 1111B  
xxxx xxxx xxxx xxxxB  
Datasheet  
243  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
14.6  
SPI status information registers  
READ/CLEAR Operation (see also Chapter 14.3):  
One 32-bit SPI command consist of four bytes:  
- The 7-bit address and one additional bit for the register access mode and  
- following the two data bytes and the CRC.  
The numbering of following bit definitions refers to the data byte and correspond to the bits D0...D7 and to  
the SPI bits 8...23 (see also figure).  
There are two different bit types:  
- ‘r’ = READ: read only bits (or reserved bits).  
- ‘rc’ = READ/CLEAR: readable and clearable bits.  
Reading a register is done word wise by setting the SPI bit 7 to “0” (= Read Only).  
Clearing a register is done word wise by setting the SPI bit 7 to “1”. No single bits can be cleared. Therefore  
the content of a SPI message (bit 8..23) doesn’t matter.  
SPI status registers are in general not cleared or changed automatically (an exception are the x bits). This  
must be done by the microcontroller via SPI command.  
The registers are addressed wordwise.  
Table 86 Register Overview  
Register Short Name  
Register Long Name  
Offset Address Page  
Number  
SPI status information registers, Device Status Registers  
SUP_STAT  
Supply Voltage Fail Status  
Thermal Protection Status  
Device Information Status  
Bus Communication Status  
Wake-up Source and Information Status  
WK Input Level  
1000000B  
1000001B  
1000010B  
1000011B  
1000100B  
1000101B  
1000110B  
246  
THERM_STAT  
DEV_STAT  
248  
249  
251  
253  
255  
256  
BUS_STAT  
WK_STAT  
WK_LVL_STAT  
HS_OL_OC_OT_STAT  
High-Side Switch Status  
SPI status information registers, Status registers bridge driver  
GEN_STAT  
TDREG  
GEN Status register  
1010000B  
1010001B  
1010010B  
258  
259  
261  
263  
Turn-on/off delay regulation register  
Drain-source overvoltage HBVOUT  
DSOV  
EFF_TDON_OFF1  
Effective MOSFET turn-on/off delay - PWM half- 1010011B  
bridge 1  
EFF_TDON_OFF2  
Effective MOSFET turn-on/off delay - PWM half- 1010100B  
bridge 2  
264  
TRISE_FALL1  
TRISE_FALL2  
MOSFET rise/fall time - PWM half-bridge 1  
MOSFET rise/fall time - PWM half-bridge 2  
1010111B  
1011000B  
265  
266  
SPI status information registers, Selective wake status registers  
SWK_STAT  
Selective Wake Status  
1100000B  
1100001B  
1100011B  
267  
268  
269  
SWK_ECNT_STAT  
SWK_CDR_STAT  
Selective Wake ECNT Status  
Selective Wake CDR Status  
Datasheet  
244  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Table 86 Register Overview (cont’d)  
Register Short Name  
Register Long Name  
Offset Address Page  
Number  
SPI status information registers, Family and product information register  
FAM_PROD_STAT  
Family and Product Identification Register  
1110000B  
270  
Datasheet  
245  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
14.6.1  
Device Status Registers  
Supply Voltage Fail Status  
SUP_STAT  
Supply Voltage Fail Status  
(100 0000B)  
Reset Value: see Table 87  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CP_O VCC1_ HS_U HS_O VSINT VSINT  
VCC1_ VCC1_ VCC1_ VCC1_  
POR  
RES  
VS_UV VS_OV CP_UV  
T
UV_FS  
V
V
_UV _OV  
rc rc  
SC  
UV  
OV WARN  
rc  
r
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc  
rc rc  
Field  
POR  
Bits  
15  
Type  
Description  
rc  
Power-On reset detection  
0B NO_POR, No POR  
1B POR, POR occurred  
RES  
14:13  
12  
r
Reserved, always reads as 0  
CP_OT  
rc  
Charge pump overtemperature  
0B NO_CP_OT, No charge pump OT detected  
1B CP_OT, Charge pump OT detected  
VCC1_UV_FS  
11  
rc  
4th consecutive VCC1 UV-Detection  
0B NO_FAILSAFE, No Fail-Safe Mode entry due to  
4th consecutive VCC1_UV  
1B FAILSAFE, Fail-Safe Mode entry due to 4th  
consecutive VCC1_UV  
HS_UV  
10  
9
rc  
rc  
rc  
rc  
rc  
HS Supply UV-Detection  
0B NO_UV, No Undervoltage  
1B UV_EVENT, HS Supply Undervoltage detected  
HS_OV  
HS Supply OV-Detection  
0B NO_OV, No Overvoltage  
1B OV_EVENT, HS Supply Overvoltage detected  
VSINT_UV  
VSINT_OV  
VS_UV  
8
VSINT UV-Detection  
0B NO_UV, No Undervoltage  
1B UV_EVENT, VSINT Undervoltage detected  
7
VSINT OV-Detection  
0B NO_OV, No Overvoltage  
1B OV_EVENT, VSINT Overvoltage detected  
6
VS Undervoltage Detection (VS,UV)  
0B NO_VS, No VS undervoltage detected  
1B VS_EVENT, VS undervoltage detected (detection  
is only active when VCC1 is enabled)  
VS_OV  
5
rc  
VS Overvoltage Detection (VS,OV)  
0B NO_OV, No VS overvoltage detected  
1B OV_EVENT, VS overvoltage detected (detection is  
only active when VCC1 is enabled)  
Datasheet  
246  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
CP_UV  
4
rc  
CP_UV  
0B NO_UV, No CP undervoltage detected  
1B UV_EVENT, CP undervoltage detected  
VCC1_SC  
3
2
1
0
rc  
rc  
rc  
rc  
VCC1 SC  
0B NO_SC, No VCC1 short to GND detected  
1B SC_EVENT, VCC1 short to GND  
VCC1_UV  
VCC1_OV  
VCC1_WARN  
VCC1 UV-Detection (due to Vrtx reset)  
0B NO_UV, No VCC1_UV detection  
1B UV_EVENT, VCC1 undervoltage detected  
VCC1 Overvoltage Detection  
0B NO_OV, No VCC1 overvoltage warning  
1B OV_EVENT, VCC1 overvoltage detected  
VCC1 Undervoltage Prewarning  
0B NO_UV, No VCC1 undervoltage prewarning  
1B UV_PREWARN, VCC1 undervoltage prewarning  
detected  
Table 87 Reset of SUP_STAT  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
y000 0000 0000 0000B  
x00x xxxx xxxx xxxxB  
Notes  
1. The VCC1 undervoltage prewarning threshold VPW,f / VPW,r is a fixed threshold and independent of the VCC1  
undervoltage reset thresholds.  
2. VSINT undervoltage monitoring is not available in Stop Mode due to current consumption saving  
requirements. Exception: VSINT undervoltage detection is also available in Stop Mode if the VCC1 load current  
is above the active peak threshold (I_PEAK_TH) or if VCC1 is below the VCC1 prewarning threshold  
(VCC1_WARN is set).  
3. The MSB of the POR/Soft Reset value is marked as ‘y’: the default value of the POR bit is set after Power-on  
reset (POR value = 1000 0000). However it will be cleared after a device Soft Reset command (Soft Reset value  
= 0000 0000).  
4. During Sleep Mode, the bits VCC1_SC, VCC1_OV and VCC1_UV will not be set when VCC1 is off.  
5. The VCC1_UV bit is never updated in Restart Mode, in Init Mode it is only updated after RSTN was released, it  
is always updated in Normal Mode and Stop Mode, and it is always updated in any device modes in a VCC1_SC  
condition (after VCC1_UV = 1 for > 2 ms).  
Datasheet  
247  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Thermal Protection Status  
THERM_STAT  
Thermal Protection Status  
(100 0001B)  
Reset Value: see Table 88  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TSD2_  
SAFE  
RES  
TSD2 TSD1 TPW  
rc rc rc  
r
rc  
Field  
RES  
Bits  
Type  
Description  
Reserved, always reads as 0  
15:4  
3
r
TSD2_SAFE  
rc  
TSD2 Thermal Shut-Down Safe State Detection  
0B NO_TSD2_SF, No TSD2 safe state detected  
1B TSD2_SF, TSD2 safe state detected: >16  
consecutive TSD2 events occurred, next TSD2  
waiting time will be 64s  
TSD2  
TSD1  
TPW  
2
1
0
rc  
rc  
rc  
TSD2 Thermal Shut-Down Detection  
0B NO_TSD2, No TSD2 event  
1B TSD2_EVENT, TSD2 OT detected - leading to Fail-  
Safe Mode  
TSD1 Thermal Shut-Down Detection  
0B NO_TSD1, No TSD1 fail  
1B TSD1_EVENT, TSD1 OT detected (affected  
module is disabled)  
Thermal Pre Warning  
0B NO_TPW, No Thermal Pre warning  
1B TPW, Thermal Pre warning detected  
Table 88 Reset of THERM_STAT  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 0000 0000 xxxxB  
Note:  
Temperature warning and shutdown bits are not reset automatically, even if the temperature pre  
warning or the TSD condition is not present anymore.  
Datasheet  
248  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Device Information Status  
DEV_STAT  
Device Information Status  
(100 0010B)  
Reset Value: see Table 89  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CRC_S CRC_F  
SW_D  
EV  
SPI_F FAILU  
RES  
DEV_STAT  
RES  
WD_FAIL  
TAT  
AIL  
AIL  
RE  
r
r
rc  
rc  
r
rh  
rh  
rc  
rc  
Field  
RES  
Bits  
Type  
Description  
15:10  
9
r
r
Reserved, always read as 0  
CRC_STAT  
CRC_FAIL  
DEV_STAT  
CRC STAT Information  
0B DISABLED, CRC disabled  
1B ENABLED, CRC enabled  
CRC Fail Information1)  
0B NO_FAIL, No CRC Failure  
8
rc  
rc  
1B FAIL, CRC Failure detected  
7:6  
Device Status before Restart Mode  
00B CLEARED, Cleared (Register must be actively  
cleared)  
01B RESTART, Restart due to failure (WD fail, TSD2,  
VCC1_UV, trial to access Sleep Mode without any  
wake source activated); also after a wake from  
Fail-Safe Mode  
10B SLEEP, Sleep Mode  
11B , reserved  
RES  
5
4
r
Reserved, always reads 0  
SW_DEV  
rh  
Status of Operating Mode  
0B NORMAL, Normal operation  
1B SW_DEV, Software Development Mode is  
enabled  
WD_FAIL  
3:2  
rh  
Number of WD-Failure Events  
00B NO_FAIL, No WD Fail  
01B 1x, 1x WD Fail,  
10B 2x, 2x WD Fail  
11B 3x, more than 3xWD Fail  
SPI_FAIL  
FAILURE  
1
0
rc  
rc  
SPI Fail Information  
0B NO_FAIL, No SPI fail  
1B INVALID, Invalid SPI command detected  
Failure detection  
0B NO_FAIL, No Failure  
1B FAIL, Failure occured  
1) The CRC_FAIL bit will not be set in case the static CRC enabling / disabling sequence is sent (see Chapter 5.2).  
Datasheet  
249  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Table 89 Reset of DEV_STAT  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 00xx xx0x xxxxB  
Notes  
1. The bits DEV_STAT show the status of the device before exiting Restart Mode. Either the device came from  
regular Sleep Mode or a failure (Restart Mode or Fail-Safe Mode) occurred. Coming from Sleep Mode will also  
be shown if there was a trial to enter Sleep Mode without having cleared all wake flags before.  
2. The WD_FAIL bits are implemented as a counter and are the only status bits, which are cleared automatically  
by the device.  
3. The SPI_FAIL bit can only be cleared via SPI command.  
4. The bit CRC_STAT and CRC_FAIL can be read regardless the CRC setting. The SPI read command on  
DEV_STAT ignores the CRC field.  
Datasheet  
250  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Bus Communication Status  
BUS_STAT  
Bus Communication Status  
(100 0011B)  
Reset Value: see Table 90  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CANT SYSER  
VCAN_  
UV  
RES  
LIN_FAIL  
CAN_FAIL  
O
R
r
rc  
rc  
rc  
rc  
rc  
Field  
RES  
Bits  
Type  
Description  
15:7  
6:5  
r
Reserved, always reads as 0  
LIN_FAIL  
rc  
LIN failure status  
00B NO_FAIL, No failures  
01B LIN_TSD, LIN Thermal shutdown  
10B LIN_TXD_DOM_TO, LIN_TXD_DOM: detected a  
TXDLIN dominant timeout  
11B LIN_BUS_DOM_TO, LIN_BUS_DOM: detected a  
LIN dominant timeout  
CANTO  
4
3
rc  
rc  
CAN Time Out Detection  
0B NO_FAIL, Normal operation  
1B TIME_OUT, CAN Time Out detected  
SYSERR  
SWK System Error  
0B NO_FAIL, Selective Wake Mode is possible  
1B FAIL, System Error detected, SWK enabling not  
possible  
CAN_FAIL  
VCAN_UV  
2:1  
rc  
rc  
CAN failure status  
00B NO_ERR, No error  
01B CAN_TSD, CAN Thermal shutdown  
10B CAN_TXD_DOM_TO, CAN_TXD_DOM: TXD  
dominant time out detected  
11B CAN_BUS_DOM_TO, CAN_BUS_DOM: BUS  
dominant time out detected  
0
Under Voltage CAN Bus Supply  
0B NORMAL, Normal operation  
1B UNDERVOLTAGE, CAN Supply undervoltage  
detected. Transmitter disabled  
Table 90 Reset of BUS_STAT  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 0000 0xxx xxxxB  
Notes  
1. The VCAN_UV comparator is enabled if CAN Normal or CAN Receive Only Mode.  
Datasheet  
251  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
2. CAN and LIN Recovery Conditions:  
1.) TXD Time Out: TXD goes HIGH or transmitter is set to wake capable or switched off.  
2.) Bus dominant time out: Bus will become recessive or transceiver is set to wake capable or switched off.  
3.) Supply under voltage: as soon as the threshold is crossed again, i.e. VCAN > VCAN_UV for CAN.  
4.) In all cases (also for TSD shutdown): to enable the Bus transmission again, TXD needs to be HIGH  
(recessive) for a certain time (transmitter enable time).  
3. CANTO will be set only if CAN2 = 1 (=SWK Mode enabled). It will be set as soon as CANSIL was set and will stay  
set even in CANSIL it is reset. An interrupt is issued in Stop Mode and Normal Mode as soon as CANTO is set and  
the interrupt is not masked out, i.e. CANTO_MASK must be set to 1.  
4. The SYSERR Flag is set in case of a configuration error and in case of an error counter overflow (n > 32)  
It is only updated if SWK is enabled (CAN_2 = ‘1’). See also chapter x.  
5. CANTO is set asynchronously to the INTN pulse. In order to prevent undesired clearing of CANTO and thus  
possibly missing this interrupt, the bit will be prevented from clearing (i.e. cannot be cleared) until the next  
falling edge of INTN.  
Datasheet  
252  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Wake-up Source and Information Status  
WK_STAT  
Wake-up Source and Information Status  
(100 0100B)  
Reset Value: see Table 91  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LIN_W CAN_ TIMER TIMER  
WK4_ WK3_ WK2_ WK1_  
RES  
RES  
RES  
U
WU 2_WU 1_WU  
rc rc rc  
WU  
WU  
WU  
WU  
r
rc  
r
r
rc  
rc  
rc  
rc  
Field  
Bits  
Type  
Description  
RES  
15:11  
10  
r
Reserved, always reads as 0  
LIN_WU  
rc  
LIN wake up  
0B NO_WU, No Wake up  
1B WU, Wake up detected  
CAN_WU  
9
8
7
rc  
rc  
rc  
Wake up via CAN Bus  
0B NO_WU, No Wake up  
1B WU, Wake up detected  
TIMER2_WU  
TIMER1_WU  
Wake up via Timer2  
0B NO_WU, No Wake up  
1B WU, Wake up detected  
Wake up via Timer1  
0B NO_WU, No Wake up  
1B WU, Wake up detected  
RES  
6:5  
4
r
Reserved, always reads as 0  
Reserved, always reads as 0  
RES  
r
WK4_WU  
3
rc  
Wake up via WK4  
0B NO_WU, No Wake up  
1B WU, Wake up detected  
WK3_WU  
WK2_WU  
WK1_WU  
2
1
0
rc  
rc  
rc  
Wake up via WK3  
0B NO_WU, No Wake up  
1B WU, Wake up detected  
Wake up via WK2  
0B NO_WU, No Wake up  
1B WU, Wake up detected  
Wake up via WK1  
0B NO_WU, No Wake up  
1B WU, Wake up detected  
Table 91 Reset of WK_STAT  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 0xxx x000 00x0B  
Datasheet  
253  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Note:  
At Fail-Safe Mode entry, the WK_STAT register is automatically cleared by the device.  
Datasheet  
254  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
WK Input Level  
WK_LVL_STAT  
WK Input Level  
(100 0101B)  
Reset Value: see Table 92  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WK4_ WK3_ WK2_ WK1_  
RES  
RES  
LVL  
LVL  
LVL  
LVL  
r
r
r
r
r
r
Field  
RES  
RES  
Bits  
Type  
Description  
15:5  
4
r
r
r
Reserved, always reads as 0  
Reserved, always reads as 0  
WK4_LVL  
WK3_LVL  
WK2_LVL  
WK1_LVL  
3
Status of WK4  
0B LOW, Low Level (=0)  
1B HIGH, High Level (=1)  
2
1
0
r
r
r
Status of WK3  
0B LOW, Low Level (=0)  
1B HIGH, High Level (=1)  
Status of WK2  
0B LOW, Low Level (=0)  
1B HIGH, High Level (=1)  
Status of WK1  
0B LOW, Low Level (=0)  
1B HIGH, High Level (=1)  
Table 92 Reset of WK_LVL_STAT  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 00x0B  
0000 0000 0000 00x0B  
Note:  
WK_LVL_STAT is updated in Normal Mode and Stop Mode and also in Init and Restart Mode. In cyclic  
sense or wake mode, the registers contain the sampled level, i.e. the registers are updated after  
every sampling.  
Datasheet  
255  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
High-Side Switch Status  
HS_OL_OC_OT_STAT  
High-Side Switch Status  
(100 0110B)  
Reset Value: see Table 93  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HS4_ HS3_ HS2_ HS1_  
HS4_ HS3_ HS2_ HS1_  
HS4_ HS3_ HS2_ HS1_  
RES  
RES  
RES  
OT  
OT  
OT  
OT  
OL  
OL  
OL  
OL  
OC  
OC  
OC  
OC  
r
rc  
rc  
rc  
rc  
r
rc  
rc  
rc  
rc  
r
rc  
rc  
rc  
rc  
Field  
Bits  
Type  
Description  
Reserved, always reads as 0  
RES  
15:14  
13  
r
HS4_OT  
rc  
Overtemperature Detection on HS4  
0B NO_OT, No OT  
1B OT, OT detected  
HS3_OT  
HS2_OT  
HS1_OT  
12  
11  
10  
rc  
rc  
rc  
Overtemperature Detection on HS3  
0B NO_OT, No OT  
1B OT, OT detected  
Overtemperature Detection on HS2  
0B NO_OT, No OT  
1B OT, OT detected  
Overtemperature Detection on HS1  
0B NO_OT, No OT  
1B OT, OT detected  
RES  
9
8
r
Reserved, always reads as 0  
HS4_OL  
rc  
Open-Load Detection on HS4  
0B NO_OL, No OL  
1B OL, OL detected  
HS3_OL  
HS2_OL  
HS1_OL  
7
6
5
rc  
rc  
rc  
Open-Load Detection on HS3  
0B NO_OL, No OL  
1B OL, OL detected  
Open-Load Detection on HS2  
0B NO_OL, No OL  
1B OL, OL detected  
Open-Load Detection on HS1  
0B NO_OL, No OL  
1B OL, OL detected  
RES  
4
3
r
Reserved, always reads as 0  
HS4_OC  
rc  
Overcurrent Detection on HS4  
0B NO_OC, No OC  
1B OC, OC detected  
HS3_OC  
2
rc  
Overcurrent Detection on HS3  
0B NO_OC, No OC  
1B OC, OC detected  
Datasheet  
256  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
HS2_OC  
1
rc  
Overcurrent Detection on HS2  
0B NO_OC, No OC  
1B OC, OC detected  
HS1_OC  
0
rc  
Overcurrent Detection on HS1  
0B NO_OC, No OC  
1B OC, OC detected  
Table 93 Reset of HS_OL_OC_OT_STAT  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
00xx xxxx xxxx xxxxB  
Datasheet  
257  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
14.6.2  
Status registers bridge driver  
General Status register  
GEN_STAT  
General Status register  
(101 0000B)  
Reset Value: see Table 94  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
HB2V HB1V  
OUT OUT  
PWM1  
STAT  
RES  
RES RES  
RES RES RES RES RES  
r
r
r
r
r
r
r
r
r
r
r
Field  
RES  
RES  
RES  
Bits  
Type  
Description  
15:10  
r
r
r
r
Reserved, always reads as 0  
Reserved, always reads as 0  
Reserved, always reads as 0  
9
8
7
HB2VOUT  
Voltage level at VSH2 when HB2MODE[1:0] = 11 and  
CPEN=11)  
0B LOW, VSH2 = Low : VS - VSH2 > VHS2VDSTHx  
1B HIGH, VSH2 = High: VS - VSH2 VHS2VDSTHx  
HB1VOUT  
6
r
Voltage level at VSH1 when HB1MODE[1:0] = 11 and  
CPEN=11)  
0B LOW, VSH1 = Low : VS - VSH1 > VHS1VDSTHx  
1B HIGH, VSH1 = High: VS - VSH1 VHS1VDSTHx  
RES  
5
4
3
2
1
0
r
r
r
r
r
r
Reserved, always reads as 0  
Reserved, always reads as 0  
Reserved, always reads as 0  
Reserved, always reads as 0  
Reserved, always reads as 0  
RES  
RES  
RES  
RES  
PWM1STAT  
PWM1/CRC status  
0B LOW, PWM1/CRC is Low  
1B HIGH, PWM1/CRC is High  
1) HBxVOUT = 0 if (CPEN=1 and HBxMODE 11) or CPEN=0.  
Table 94 Reset of GEN_STAT  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 0000 xx00 000xB  
Datasheet  
258  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Turn-on/off delay regulation register  
TDREG  
Turn-on/off delay regulation register  
(101 0001B)  
Reset Value: see Table 95  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
IPDCH IPDCH  
G2_ST G1_ST  
IPCHG IPCHG  
2_ST 1_ST  
TDRE TDRE  
RES  
RES RES  
RES RES  
RES RES  
G2  
G1  
r
r
r
r
r
r
r
r
r
r
r
r
r
Field  
RES  
RES  
RES  
Bits  
15:12  
11  
Type  
Description  
r
r
r
r
Reserved, always reads as 0  
Reserved, always reads as 0  
Reserved, always reads as 0  
HB2 predischarge status  
10  
IPDCHG2_ST  
9
0B CLAMP, the predischarge current is equal to  
0.5 mA typ. or ICHGMAX2 if AGC[1:0] = 10B or 11B,  
and HB2_PWM_EN = 11)  
1B NO_CLAMP, 0.5 mA < predischarge current <  
ICHGMAX21)  
IPDCHG1_ST  
8
r
HB1 predischarge status  
0B CLAMP, the predischarge current is equal to the  
0.5 mA typ. or ICHGMAX1 if AGC[1:0] = 10B or 11B,  
and HBx_PWM_EN = 11)  
1B NO_CLAMP, 0.5 mA < predischarge current <  
ICHGMAX11)  
RES  
7
6
5
r
r
r
Reserved, always reads as 0  
Reserved, always reads as 0  
RES  
IPCHG2_ST  
HB2 precharge status  
0B CLAMP, the precharge current is equal to 0.5 mA  
typ. or ICHGMAX2 if AGC[1:0] = 10B or 11B, and  
HB2_PWM_EN = 11)  
1B NO_CLAMP, 0.5 mA < precharge current <  
ICHGMAX21)  
IPCHG1_ST  
4
r
HB1 precharge status  
0B CLAMP, the precharge current is equal to the  
0.5 mA typ. or ICHGMAX1 if AGC[1:0] = 10B or 11B,  
and HB1_PWM_EN = 11)  
1B NO_CLAMP, 0.5 mA < precharge current <  
ICHGMAX11)  
RES  
3
2
1
r
r
r
Reserved, always reads as 0  
Reserved, always reads as 0  
RES  
TDREG2  
HB2 Regulation of turn-on/off delay  
0B NO_REG, tDON2 and tDOFF2 are not in regulation  
1B REG, tDON2 and/or tDOFF2 are in regulation  
Datasheet  
259  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
TDREG1  
0
r
HB1 Regulation of turn-on/off delay  
0B NO_REG, tDON and tDOFF are not in regulation  
1B REG, tDON and/or tDOFF are in regulation  
1) IPCHGx_ST = 1 otherwise (PWM disabled, HB in high impedance or AGC[1:0] = 00B or 01B ).  
Table 95 Reset of TDREG  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 0000 xx00 000xB  
Datasheet  
260  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Drain-source overvoltage status  
DSOV  
Drain-source overvoltage  
(101 0010B)  
Reset Value: see Table 96  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
VSINT  
OVBR  
AKE_S  
T
VSOV  
LS2DS LS1DS  
LS2DS HS2D LS1DS HS1D  
RES RES  
BRAK RES RES OV_B OV_B RES RES RES RES  
E_ST  
OV  
SOV  
OV  
SOV  
RK  
RK  
r
r
rc  
rc  
r
r
rc  
rc  
r
r
r
r
rc  
rc  
rc  
rc  
Field  
RES  
RES  
Bits  
15  
Type  
Description  
r
Reserved, always reads as 0  
Reserved, always reads as 0  
VSINT Brake status  
14  
r
VSINTOVBRAKE_ST  
13  
rc  
0B NOT_DETECT, VSINT overvoltage brake  
condition is not detected  
1B DETECT, VSINT overvoltage brake conditions is  
detected  
VSOVBRAKE_ST  
12  
rc  
VS Brake status  
0B NOT_DETECT, VS overvoltage brake conditions is  
not detected  
1B DETECT, VS overvoltage brake conditions is  
detected  
RES  
11  
10  
9
r
Reserved, always reads as 0  
Reserved, always reads as 0  
RES  
r
LS2DSOV_BRK  
rc  
Drain-source overvoltage on low-side 2 during  
braking  
0B NO_OV, No drain-source overvoltage on LS2  
1B OV, Drain-source overvoltage on LS2  
LS1DSOV_BRK  
8
rc  
Drain-source overvoltage on low-side 1 during  
braking  
0B NO_OV, No drain-source overvoltage on LS1  
1B OV, Drain-source overvoltage on LS1  
RES  
7
6
5
4
3
r
Reserved, always reads as 0  
Reserved, always reads as 0  
Reserved, always reads as 0  
Reserved, always reads as 0  
RES  
r
RES  
r
RES  
r
LS2DSOV  
rc  
Drain-source overvoltage on low-side 2  
0B NO_OV, No drain-source overvoltage on LS2  
1B OV, Drain-source overvoltage on LS2  
HS2DSOV  
2
rc  
Drain-source overvoltage on high-side 2  
0B NO_OV, No drain-source overvoltage on HS2  
1B OV, Drain-source overvoltage on HS2  
Datasheet  
261  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Field  
Bits  
Type  
Description  
LS1DSOV  
1
rc  
Drain-source overvoltage on low-side 1  
0B NO_OV, No drain-source overvoltage on LS1  
1B OV, Drain-source overvoltage on LS1  
HS1DSOV  
0
rc  
Drain-source overvoltage on high-side 1  
0B NO_OV, No drain-source overvoltage on HS1  
1B OV, Drain-source overvoltage on HS1  
Table 96 Reset of DSOV  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
00xx 00xx 0000 xxxxB  
Datasheet  
262  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Effective MOSFET turn.on/off delay - PWM half-bridge 1  
EFF_TDON_OFF1  
Effective MOSFET turn.on/off delay - HB1  
(101 0011B)  
Reset Value: see Table 97  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RES  
TDOFF1EFF  
RES  
TDON1EFF  
r
r
r
r
Field  
RES  
Bits  
Type  
Description  
Reserved, always reads as 0  
Effective active MOSFET turn-off delay HB1  
15:14  
13:8  
r
r
TDOFF1EFF  
Nominal effective tDOFF1 = 53.3 ns x TDOFF1EFF[13:8]D  
RES  
7:6  
5:0  
r
r
Reserved, always reads as 0  
TDON1EFF  
Effective active MOSFET turn-on delay HB1  
Nominal effective tDON1 = 53.3 ns x TDON1EFF[5:0]D  
Table 97 Reset of EFF_TDON_OFF1  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
00xx xxxx 00xx xxxxB  
Datasheet  
263  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Effective MOSFET turn.on/off delay - PWM half-bridge 2  
EFF_TDON_OFF2  
Effective MOSFET turn.on/off delay - HB 2  
(101 0100B)  
Reset Value: see Table 98  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RES  
TDOFF2EFF  
RES  
TDON2EFF  
r
r
r
r
Field  
RES  
Bits  
Type  
Description  
Reserved, always reads as 0  
Effective active MOSFET turn-off delay HB2  
15:14  
13:8  
r
r
TDOFF2EFF  
Nominal effective tDOFF2 = 53.3 ns x TDOFF2EFF[13:8]D  
RES  
7:6  
5:0  
r
r
Reserved, always reads as 0  
TDON2EFF  
Effective active MOSFET turn-on delay HB2  
Nominal effective tDON2 = 53.3 ns x TDON2EFF[5:0]D  
Table 98 Reset of EFF_TDON_OFF2  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
00xx xxxx 00xx xxxxB  
Datasheet  
264  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
MOSFET rise/fall time - PWM half-bridge 1  
TRISE_FALL1  
MOSFET rise/fall time - HB1  
(101 0111B)  
Reset Value: see Table 99  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RES  
TFALL1  
RES  
TRISE1  
r
r
r
r
Field  
RES  
Bits  
Type  
Description  
15:14  
13:8  
r
r
Reserved, always reads as 0  
TFALL1  
Active MOSFET fall time HB1  
Nominal tFALL1 = 53.3 ns x TFALL1[5:0]D  
RES  
7:6  
5:0  
r
r
Reserved, always reads as 0  
TRISE1  
Active MOSFET rise time HB1  
Nominal tRISE1 = 53.3 ns x TRISE1[5:0]D  
Table 99 Reset of TRISE_FALL1  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
00xx xxxx 00xx xxxxB  
Datasheet  
265  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
MOSFET rise/fall time - PWM half-bridge 2  
TRISE_FALL2  
MOSFET rise/fall time - HB2  
(101 1000B)  
Reset Value: see Table 100  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RES  
TFALL2  
RES  
TRISE2  
r
r
r
r
Field  
RES  
Bits  
Type  
Description  
15:14  
13:8  
r
r
Reserved, always reads as 0  
TFALL2  
Active MOSFET fall time HB2  
Nominal tFALL2 = 53.3 ns x TFALL2[5:0]D  
RES  
7:6  
5:0  
r
r
Reserved, always reads as 0  
TRISE2  
Active MOSFET rise time HB2  
Nominal tRISE2 = 53.3 ns x TRISE2[5:0]D  
Table 100 Reset of TRISE_FALL2  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
00xx xxxx 00xx xxxxB  
Datasheet  
266  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
14.6.3  
Selective wake status registers  
Selective Wake Status  
SWK_STAT  
Selective Wake Status  
(110 0000B)  
Reset Value: see Table 101  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CANSI SWK_  
RES  
SYNC WUP WUF  
rc rc  
RES  
L
SET  
r
r
r
r
r
Field  
RES  
Bits  
Type  
Description  
Reserved, always reads as 0  
15:7  
6
r
r
SYNC  
Synchronisation (at least one CAN frame without  
fail must have been received)  
0B NO_SYNC, SWK function not working or not  
synchronous to CAN bus  
1B SYNC, Valid CAN frame received, SWK function is  
synchronous to CAN bus  
WUP  
5
rc  
rc  
r
Wake-up Pattern Detection  
0B NO_WUP, No WUP  
1B WUP_DETECTED, WUP detected  
WUF  
4
SWK Wake-up Frame Detection  
0B NO_WUF, No WUF  
1B WUF_DETECTED, WUF detected  
CANSIL  
3
CAN Silent Time during SWK operation  
0B NO_SIL, tsilence not exceeded  
1B SIL_EXCEEDED, set if tsilence is exceeded.  
SWK_SET  
RES  
2
r
Selective Wake Activity  
0B INACTIVE, Selective Wake is not active  
1B ACTIVE, Selective Wake is activated  
1:0  
r
Reserved, always reads as 0  
Table 101 Reset of SWK_STAT  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 0000 0xxx xx00B  
Note:  
SWK_SET is set to flag that the selective wake functionality is activated (SYSERR = 0, CFG_VAL = 1,  
CAN_2 = 1). The selective wake function is activated via a CAN mode change, except if CAN = ‘100’.  
Datasheet  
267  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Selective Wake ECNT Status  
SWK_ECNT_STAT  
Selective Wake ECNT Status  
(110 0001B)  
Reset Value: see Table 102  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RES  
ECNT  
r
r
Field  
RES  
Bits  
15:6  
5:0  
Type  
Description  
Reserved, always reads as 0  
SWK CAN Frame Error Counter  
00 0000BNO_ERR, No Frame Error  
r
r
ECNT  
01 1111B31, 31 Frame Errors have been counted  
10 0000BOVERFLOW, Error counter overflow - SWK  
function will be disabled  
Table 102 Reset of SWK_ECNT_STAT  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0000 0000 0000B  
0000 0000 00xx xxxxB  
Note:  
If a frame has been received that is valid according to ISO11898-2:2016 and the counter is not zero,  
then the counter shall be decremented. If the counter has reached a value of 32, the following  
actions shall be performed: Selective Wake function shall be disabled, SYSERR shall be set and CAN  
wake capable function shall be enabled, which leads to a wake with the next WUP.  
Datasheet  
268  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Selective Wake CDR Status  
SWK_CDR_STAT  
Selective Wake CDR Status  
(110 0011B)  
Reset Value: see Table 103  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
N_AVG  
RES  
r
r
Field  
Bits  
Type  
Description  
Output Value from Filter Block  
N_AVG  
15:4  
r
N_AVG is representing the integer part of the number of  
selected input clock frequency per CAN bus bit.  
RES  
3:0  
r
Reserved, always reads as 0  
Table 103 Reset of SWK_CDR_STAT  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
1010 0000 0000 0000B  
xxxx xxxx xxxx 0000B  
Datasheet  
269  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
14.6.4  
Family and product information register  
Family and Product Identification Register  
FAM_PROD_STAT  
Family and Product Identification Register (111 0000B)  
Reset Value: see Table 104  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RES  
FAM  
PROD  
r
r
r
Field  
RES  
Bits  
Type  
Description  
15:11  
10:7  
r
r
Reserved, always reads as 0  
FAM  
Device Family Identifier  
1000B, DC Motor System IC  
PROD  
6:0  
r
Device Product Identifier  
000 0000BTLE9562-3QX/QX, TLE9562-3QX/-3QXJ/QX  
000 0001BTLE9561-3QX/QX, TLE9561-3QX/-3QXJ/QX  
000 0010BTLE9563-3QX, TLE9563-3QX/-3QXJ  
000 0011BTLE9564QX, TLE9564QX,TLE9185QX  
001 0000BTLE9562-3QX V33, TLE9562-3QX V33  
001 0010BTLE9563-3QX V33, TLE9563-3QX V33  
001 0011BTLE9564QX V33,  
TLE9564QX V33,TLE9185QX V33  
001 1000BTLE9560QX, TLE9560-3QX/-3QXJ  
Table 104 Reset of FAM_PROD_STAT  
Register Reset Type Reset Values  
Reset Short Name Reset Mode  
Note  
POR/Soft reset  
Restart  
0000 0100 0000 1000B  
0000 0100 0000 1000B  
Datasheet  
270  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
14.7  
Electrical Characteristics  
Table 105 Electrical Characteristics: Power Stage  
VSINT = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
SPI frequency  
1)  
Maximum SPI frequency  
fSPI,max  
6.0  
MHz  
V
> 3 V  
P_14.7.1  
CC1  
SPI Interface; Logic Inputs SDI, CLK and CSN  
H-input Voltage Threshold VIH  
L-input Voltage Threshold VIL  
Hysteresis of input Voltage VIHY  
0.7 ×  
VCC1  
V
P_14.7.2  
P_14.7.3  
P_14.7.4  
P_14.7.5  
0.3 ×  
VCC1  
V
1)  
0.12 ×  
VCC1  
V
Pull-up Resistance at pin  
CSN  
RICSN  
20  
20  
40  
40  
10  
80  
80  
kΩ  
kΩ  
pF  
Pull-down Resistance at pin RICLK/SDI  
SDI and CLK  
VSDI/CLK = 0.2 × VCC1 P_14.7.6  
1)  
Input Capacitance at pin  
CSN, SDI or CLK  
CI  
V
, VSDI, VCLK  
=
P_14.7.7  
CSN  
VCC1  
Logic Output SDO  
H-output Voltage Level  
VSDOH  
VSDOL  
0.8 ×  
VCC1  
V
IDOH = -2 mA  
P_14.7.8  
P_14.7.9  
P_14.7.11  
P_14.7.38  
L-output Voltage Level  
0.2 ×  
VCC1  
V
IDOL = 2 mA  
1)  
‘Tri-state Input Capacitance CSDO  
10  
15  
pF  
µA  
V
, VSDI, VCLK =  
CSN  
VCC1  
1)  
Tri-state Leakage Current  
ISDOLK  
–10  
10  
V
= VCC1,  
CSN  
0V < VSDO< VCC1  
Data Input Timing1)  
Clock Period  
tpCLK  
tCLKH  
tCLKL  
160  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
P_14.7.12  
P_14.7.13  
P_14.7.14  
P_14.7.15  
P_14.7.16  
P_14.7.17  
P_14.7.18  
P_14.7.19  
P_14.7.20  
Clock HIGH Time  
Clock LOW Time  
70  
Clock LOW before CSN LOW tbef  
70  
CSN Setup Time  
CLK Setup Time  
tlead  
tlag  
160  
160  
70  
Clock LOW after CSN HIGH tbeh  
SDI Setup Time  
SDI Hold Time  
tDISU  
tDIHO  
60  
40  
Datasheet  
271  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Serial Peripheral Interface  
Table 105 Electrical Characteristics: Power Stage (cont’d)  
VSINT = 5.5 V to 28 V, Tj = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Input Signal Rise Time at pin trIN  
SDI, CLK and CSN  
20  
ns  
ns  
µs  
µs  
P_14.7.21  
P_14.7.22  
P_14.7.23  
P_14.7.24  
Input Signal Fall Time at pin tfIN  
SDI, CLK and CSN  
3
20  
5
3)  
Delay Time for Mode  
Changes2)  
tDel,Mode  
CSN HIGH Time  
tCSN(high)  
Data Output Timing1)  
SDO Rise Time  
trSDO  
tfSDO  
30  
30  
40  
40  
ns  
ns  
CL = 50 pF, 0.2 × VCC1 P_14.7.25  
to 0.8 × VCC1  
SDO Fall Time  
CL = 50 pF, 0.8 × VCC1 P_14.7.26  
to 0.2 × VCC1  
SDO Enable Time  
SDO Disable Time  
SDO Valid Time  
tENSDO  
tDISSDO  
tVASDO  
40  
40  
40  
ns  
ns  
ns  
LOW impedance  
HIGH impedance  
CL = 50 pF  
P_14.7.27  
P_14.7.28  
P_14.7.29  
1) Not subject to production test; specified by design.  
2) Applies to all mode changes triggered via SPI commands.  
3) Guaranteed by design.  
24  
CSN  
15  
16  
17  
18  
13  
14  
CLK  
SDI  
19  
20  
LSB  
MSB  
MSB  
not defined  
27  
28  
29  
SDO  
Flag  
LSB  
Figure 94 SPI Timing Diagram  
Note:  
Numbers in drawing correlate with the last 2 digits of the Number field in the Electrical  
Characteristics table.  
Datasheet  
272  
Rev. 1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Application Information  
15  
Application Information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
15.1  
Application Diagrams  
VSHS  
Drev1  
VSINT  
VCC1  
CVCC1  
L1  
Trev1  
VS  
VBAT  
Cin1  
CCP  
Cin5  
SDI  
CP  
CPC1N  
CPC1P  
CPC2N  
CPC2P  
SDO  
CLK  
CSN  
Rrev2  
CCP1  
Trev2  
Drev3  
CCP2  
RSTN  
INTN  
RLED  
CHS2  
CHS1  
HS1  
HS2  
HS3  
HS4  
RLED  
GHx  
Q1  
CHS2  
CHS1  
RLED  
SHx  
GLx  
CHB1x  
CHB2x  
CHS2  
CHS1  
RLED  
Q2  
CHS2  
CHS1  
TLE9560  
Microcontroller  
HS4  
to other bridges  
SL  
WK1  
RWK2  
CWK1  
WK2/FO  
VS  
WK3  
Fail out  
WK4/SYNC  
PWM1  
CANH  
CANL  
VCAN  
VCC1  
CVCAN  
RCAN  
RCAN  
TxD_CAN  
RxD_CAN  
CCAN  
VSHS  
DLIN  
TxD_LIN  
RxD_LIN  
RLIN  
LIN  
GND  
CLIN  
Figure 95 TLE9560-3QX Application Diagram  
Note:  
This is a very simplified example of an application circuit. The function must be always verified in the  
real application.  
Datasheet  
273  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Application Information  
Table 106 Bill of Material  
Ref.  
Typical Value  
Purpose / Comment  
Capacitances  
Cin1  
100 nF ±20%  
ceramic  
Input filter battery capacitor for optimum EMC behavior  
Cin2  
100 µF ±20%, 50 V  
Electrolytic  
Buffering capacitor to cut off battery spikes, depending on the  
application  
Cin2b  
Cin3  
470 µF ±20%, 50 V  
Electrolytic  
Buffering capacitor for bridges. Cut off battery spikes,  
depending on the application  
100 nF ±20%, 50 V  
Ceramic  
Input capacitor  
Cin4  
100 nF ±20%, 50 V  
Ceramic  
Input capacitor  
Cin5  
470 µF ±20%, 50 V  
Electrolytic  
Buffering capacitor for bridges. Cut off battery spikes,  
depending on the application  
CCP  
470 nF ±20%, 50 V  
Ceramic  
Charge-Pump buffering capacitor  
CCP1/ CCP2  
220 nF ±20%, 50 V  
Ceramic  
Charge-Pump flying capacitor to be placed as closed as possible  
to the device pins, in order to minimize the length of the PCB  
tracks  
CCAN  
CLIN  
4.7 nF / OEM dependent  
1 nF / OEM dependent  
2.2 uF ±20%, 16 V  
Split termination stability  
LIN master termination  
CVCC1  
Blocking capacitor. Low ESR. Minimum 1 uF effective  
capacitance  
CVCAN  
CHB1x  
CHB2x  
1 uF ... 4.7 uF  
Input filter CAN supply. The capacitor must be placed close to  
the VCAN pin. For optimum EMC and CAN FD performances, the  
capacitor has to be 2.2 µF  
10 nF ±20%, 50 V  
Ceramic  
Half-Bridge EME (electromagnetic emission) and ESD  
suppression filter to be placed close to the connector. Other  
capacitance values might be needed depending on application  
560 pF ±20%, 50 V  
Ceramic  
Optional filter for EMI immunity to be placed close to the SHx pin  
(PCB footprints highly recommended). Other capacitance values  
might be needed depending on application  
CHS1  
CHS2  
47 pF / OEM dependent  
33 nF / OEM dependent  
47 nF / OEM dependent  
Only required om case of off-board connection to optimize  
EMC behavior, place close to pin  
As required by application, mandatory protection for off-board  
connection  
CWK1 / CWK2  
Spike filtering, as required by application, mandatory protection  
for off-board connections  
Inductances  
L1  
4 uH ... 6 uH  
Input filter for power stage - consider high current rating  
(application dependent)  
Datasheet  
274  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Application Information  
Table 106 Bill of Material (cont’d)  
Ref.  
Typical Value  
Purpose / Comment  
Resistances  
RREV1  
100 k±5%  
10 k±5%  
10 k±5%  
60 / OEM dependent  
1 k ±5%  
Other values needed depending on application  
Device protection against reverse battery  
RREV2  
RREV3  
RCAN  
CAN bus termination  
LIN master termination  
Limit LED-current  
RLIN  
RLED  
1 k  
R
WK1 / RWK2  
RWK3 / RWK4  
Active Components  
/
10 k±5%  
DREV1  
DREV2  
DREV3  
TREV1  
TREV2  
Q1 / Q2  
DLIN  
RR268MM600  
Reverse polarity protection  
Gate protection. Limit VGS  
BZX84C16  
BAS21  
IPZ40N04S5L-2R8  
BC846  
Reverse battery protection, N-MOS  
Main power switches  
IPZ40N04S5-5R4  
BAS70  
Requested by LIN standard; reverse polarity protection of  
network  
Datasheet  
275  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Application Information  
15.2  
ESD Tests  
15.2.1  
ESD according to IEC61000-4-2  
Tests for ESD robustness according to IEC61000-4-2 “GUN test” (150 pF, 330 ) have been performed.  
The results and test condition are available in a test report. The values for the test are listed below.  
Table 107 ESD “GUN test”1)2)  
Performed Test  
Result  
Unit  
Remarks  
ESD at pin CANH, CANL, LIN, HSx,  
VS,VSINT,VSHS, WKx  
versus GND  
> 6  
kV  
positive pulse  
ESD at pin CANH, CANL, LIN, HSx,  
VS,VSINT,VSHS, WKx  
versus GND  
< -6  
kV  
negative pulse  
1) ESD susceptibility “ESD GUN” according to EMC 1.3 Test specification, Section 4.3 (IEC 61000-4-2). Tested by external  
test house (IBEE Zwickau, EMC Test report Nr. 20.12.20).  
2) ESD Test “Gun Test” is specified with external components for pins VS, VSINT, VSHS, WKx, HSx. See the application  
diagram in Chapter 15.1 for more information.  
15.2.2  
ESD according to SAE J2962  
Tests for ESD robustness according to SAE J2962 have been performed.  
Table 108 ESD according to SAE J2962  
Performed Test  
Result  
Unit  
Remarks  
ESD at pin CANH, CANL, LIN versus ± 4  
GND  
kV  
Unpowered, contact discharge  
ESD at pin CANH, CANL versus GND ± 8  
kV  
kV  
kV  
kV  
Powered, contact discharge  
1)Powered, contact discharge  
Powered, air discharge  
ESD at pin LIN versus GND  
ESD at pin CANH, CANL versus GND ± 15  
ESD at pin LIN versus GND ± 25  
± 8  
1)Powered, air discharge  
1) For ESD pulses - 6 kV, VCC1 undervoltage may be detected.  
Datasheet  
276  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Application Information  
15.3  
Thermal Behavior of Package  
Bottom view  
cooling area  
Detail solder  
pads and vias  
Top view  
Figure 96 Board Setup  
Board setup is defined according JESD 51-2, -5, -7.  
Board: 76.2 × 114.3 × 1.5 mm3 with 2 inner copper layers (35 µm thick), with thermal via array under the  
exposed pad contacting the first inner copper layer and 300 mm2 cooling area on the bottom layer (70 µm).  
15.4  
Further Application Information  
The VS pin supplies the bridge driver and the charge pump, and is the sense pin for the high-side MOSFETs  
drain voltage. It is therefore highly recommended to connect a 100 nF / 50V ceramic by-pass capacitor as  
close as possible to the VS pin with a short PCB trace to GND.  
Please contact us for information regarding the FMEA pin  
For further information you may contact http://www.infineon.com/  
Datasheet  
277  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Package Outlines  
16  
Package Outlines  
0ꢀ9 MAXꢀ  
(0ꢀ65)  
11 x 0ꢀ5 = 5ꢀ5  
0ꢀ5  
0ꢀ1  
7
A
0ꢀ03  
6ꢀ8  
0ꢀ1  
+0ꢀ031)  
2)  
37  
B
36  
25  
24  
13  
48x  
0ꢀ08  
48  
1
12  
Index Marking  
48x  
0ꢀ1  
0ꢀ4 x 45°  
0ꢀ05  
Index Marking  
0ꢀ23  
M
A B C  
(0ꢀ2)  
0ꢀ05 MAXꢀ  
(5ꢀ2)  
(6)  
C
1) Vertical burr 0ꢀ03 maxꢀ, all sides  
2) These four metal areas have exposed diepad potential  
PG-VQFN-48-29, -31-PO V05  
Figure 97 PG-VQFN-481)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages  
https://www.infineon.com/packages  
1) Dimensions in mm  
Datasheet  
278  
Rev.1.0  
2021-03-19  
TLE9560-3QX  
DC Motor System IC  
Revision History  
17  
Revision History  
Revision Date  
Changes  
1.0  
2021-03-19  
First release  
Datasheet  
279  
Rev.1.0  
2021-03-19  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2021-03-19  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2021 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
a written document signed by  

相关型号:

TLE9561QX

The device is designed for various motor control automotive applications. To support these applications, the device provides the main functions, such as a 5 V lowdropout voltage regulator one HS-CAN transceiver supporting CAN FD, four half-bridges for DC motor control, and one 32 bit serial peripheral interface (SPI). The device includes diagnostic and supervision features, such as drain-source monitoring and open-load detection, short circuit protection, configurable time-out and window watchdog, fail-safe output, as well as overtemperature protection.
INFINEON

TLE9562-3QX

The device is designed for various motor control automotive applications. To support these applications, the device provides the main functions, such as a 5 V lowdropout voltage regulator one HS-CAN transceiver supporting CAN FD, CAN Partial Networking (incl. FD Tolerant Mode), one LIN transceiver, four half-bridges for DC motor control, and one 32 bit serial peripheral interface (SPI). The device includes diagnostic and supervision features, such as drain-source monitoring and open-load detection, short circuit protection, configurable time-out and window watchdog, fail-safe output, as well as overtemperature protection.
INFINEON

TLE9563-3QX

The device is designed for various motor control automotive applications. To support these applications, the device provides the main functions, such as a 5 V lowdropout voltage regulator one HS-CAN transceiver supporting CAN FD, CAN Partial Networking (incl. FD Tolerant Mode), three half-bridges for BDLC motor control, one current sense amplifier and one 32 bit serial peripheral interface (SPI). The device includes diagnostic and supervision features, such as drain-source monitoring and open-load detection, short circuit protection, configurable time-out and window watchdog, fail-safe output, as well as overtemperature protection.
INFINEON

TLE9564QX

The device is designed for various motor control automotive applications. To support these applications, the device provides the main functions, such as a 5 V lowdropout voltage regulator , one LIN transceiver, three half-bridges for BDLC motor control, one current sense amplifier and one 32 bit serial peripheral interface (SPI). The device includes diagnostic and supervision features, such as drain-source monitoring and open-load detection, short circuit protection, configurable time-out and window watchdog, fail-safe output, as well as overtemperature protection.
INFINEON

TLE9831QV

Smart LIN-based Relay Driver IC & Switch Panel Interface with integrated 8-bit MCU
INFINEON

TLE9832

Microcontroller with LIN and Power Switches for Automotive Applications
INFINEON

TLE9832-2

Microcontroller with LIN and Power Switches for Automotive Applications
INFINEON

TLE9832-2QV

Smart LIN-based Relay Driver IC & Switch Panel Interface with integrated 8-bit MCU
INFINEON

TLE9832-2QX

Smart LIN-based Relay Driver IC & Switch Panel Interface with integrated 8-bit MCU
INFINEON

TLE9832QV

Smart LIN-based Relay Driver IC & Switch Panel Interface with integrated 8-bit MCU
INFINEON

TLE9832QX

Smart LIN-based Relay Driver IC & Switch Panel Interface with integrated 8-bit MCU
INFINEON

TLE9832QX_15

Material Content Data Sheet
INFINEON