TLD6098-2ES [INFINEON]

LITIX™ Power TLD6098-2ES is a dual-channel DC-DC boost controller with spread spectrum frequency modulation and with built-in diagnosis and protection features specially designed for LED drivers.;
TLD6098-2ES
型号: TLD6098-2ES
厂家: Infineon    Infineon
描述:

LITIX™ Power TLD6098-2ES is a dual-channel DC-DC boost controller with spread spectrum frequency modulation and with built-in diagnosis and protection features specially designed for LED drivers.

文件: 总51页 (文件大小:1123K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
Features  
Dual channel device  
Wide input voltage (up to 58 V) and output voltage range  
(up to 70 V)  
Switching frequency range from 100 kHz to 500 kHz and  
synchronization at 2.2 MHz with an external clock source  
EMC optimized device  
Analog adjust input  
Overvoltage, Short to ground, overcurrent, open feedback  
and overtemperature diagnostic output  
PMOS gate driver for dimming and protection with  
enhanced dimming features  
LED current accuracy ±3.5%  
Product type Package  
Marking  
TLD6098-2ES PG-TSDSO-24 TLD6098-2  
Potential applications  
LED driver for: front light module, rear light module, interior light  
Voltage regulator  
VS  
L1,2  
D1,2  
RFB1,2  
MP1,2  
CBO  
LED1-1,2  
LED2-1,2  
IVCC  
IN  
M1,2  
SWO1,2  
IVCC  
CIVCC  
LED3-1,2  
LED4-1,2  
LED5-1,2  
LED6-1,2  
LED7-1,2  
LED8-1,2  
SWCS1,2  
FPWM/FAULT1,2  
RSWCS1,2  
RFAULT1,2  
FBH1,2  
FBL1,2  
FREQ/SYNC/SPREAD  
RFREQ  
IVCC  
RSETH1,2  
RVFBH1,2  
SET1,2  
VFB1,2  
IVCC  
RSETL1,2  
RVFBL1,2  
RDCH1,2  
DC/PWMI1,2  
COMP1,2  
PWMO1,2  
GND  
RDCL1,2  
CCOMP1-1,2  
RCOMP1,2  
CCOMP2-1,2  
TLD6098-2ES  
B2G-2ch.vsdx  
Figure 1  
Application diagram  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
Description of TLD6098-2ES  
Description of TLD6098-2ES  
TLD6098-2ES is a dual channel multi-topology DC-DC controller designed for LED applications with built-in  
protection features to implement a compact LED driver.  
The output current generated by the two channels are independent and they are regulated by means of a peak  
current control loop. An internal slope compensation is used to avoid sub-harmonic oscillation at high duty  
cycle (e.g. higher than 50%).  
The current accuracy is better than 3.5% (with no analog adjustment applied) over the operating temperature  
range. A rail to rail current sense amplifiers provide flexibility on the topology choice needed to supply LED  
string with more than 20 white LED (up to 70 V at output).  
The switching frequency can be adjusted from 100 kHz to 500 kHz using an external resistor. A synchronization  
with an external clock is also possible. The device incorporates even a spread spectrum modulator to achieve  
easy fulfilment of electromagnetic emission standards.  
Each channel of TLD6098-2ES can drive an external PMOS for dimming and protection.  
For this purpose each channel of TLD6098-2ES incorporates even a PWM generator controlled by an analog  
voltage on DC/PWM1,2 pin. The generated PWM signal has the duty cycle adjustable from 0 to 100% with 10 bits  
of resolution and the frequency range programmable from 150 Hz to 750 Hz. On the same DC/PWMI1,2 pin the  
digital PWM signal can also be used.  
Product validation  
Qualified for automotive applications.  
Product validation according to AEC-Q100.  
Datasheet  
2
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
Table of contents  
Table of contents  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1  
3.2  
3.3  
4
4.1  
4.2  
Switching regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Soꢀ start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5
5.1  
5.2  
Linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Undervoltage protection for the external switching MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6
6.1  
Switching frequency setup and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Switching frequency setup with external resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Synchronization with external clock (low frequency mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Synchronization with external clock (high frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.1.1  
6.1.2  
6.1.2.1  
6.2  
6.2.1  
6.3  
7
Analog output adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
7.1  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8
8.1  
8.2  
8.2.1  
8.3  
Dimming functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Digital PWM dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Embedded PWM engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
8.3.1  
9
9.1  
9.2  
9.2.1  
9.3  
9.3.1  
9.4  
9.4.1  
Protections and fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Short to ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Output overvoltage and voltage regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Overvoltage on FBH pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Datasheet  
3
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
Table of contents  
9.5  
Output overcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
9.5.1  
9.6  
9.6.1  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Overtemperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
10  
11  
12  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Datasheet  
4
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
1 Block diagram  
1
Block diagram  
Internal  
supply  
VIVCC  
LDO  
IN  
IVCC  
Power on  
reset  
DC/PWMI1  
DC/PWMI2  
On/Off logic +  
digital PWM  
dimming  
SWO1  
SWO2  
Power switch  
gate driver  
VM1_INT  
VM2_INT  
PWM dimming  
generator + fault  
report logic +  
control loop  
selector  
Slope comp.  
FPWM/FAULT1  
FPWM/FAULT2  
Switch current  
error amplifier  
SWCS1  
SWCS2  
DC/DC  
switching regulators  
and logic  
Leading edge  
blanking  
Clock  
generator  
FREQ/SYNC/SPREAD  
Slope comp.  
Thermal  
protection  
Switch current  
error amplifier  
V
V
FBH1 – VFBL1  
FBH2 – VFBL2  
Leading edge  
blanking  
Soft start  
Open load and  
short to GND  
VFBH1  
VFBH2  
Over  
voltage  
protection  
VM1_INT  
gm1  
VFB1  
VVFB_REF  
COMP1  
SET1  
FBL1  
FBH1  
gm2  
x1  
Reference current  
V
FBH1 – VFBL1  
generation  
Open load and  
short to GND  
VM2_INT  
gm1  
VFB2  
VVFB_REF  
COMP2  
SET2  
FBL2  
FBH2  
gm2  
x1  
Reference current  
generation  
V
FBH2 – VFBL2  
GND  
Block diagram TLD6098-2.vsdx  
Figure 2  
Block diagram  
Datasheet  
5
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
2 Pin configuration  
2
Pin configuration  
1
2
24  
23  
22  
21  
20  
19  
18  
PWMO1  
SET1  
FBH1  
FBL1  
VFB1  
SWO1  
3
IVCC  
Exposed  
Pad  
COMP1  
4
FPWM/FAULT1  
IN  
5
SWCS1  
GND  
6
DC/PWMI1  
7
FREQ/SYNC/SPREAD  
SWCS2  
PIN_POS_24.VSDX  
8
17  
DC/PWMI2  
FPWM/FAULT2  
COMP2  
SWO2  
9
16  
15  
14  
13  
10  
11  
12  
VFB2  
FBL2  
SET2  
FBH2  
PWMO2  
Figure 3  
Table 1  
Pin configuration - PG-TSDSO-24  
Pin configuration of PG-TSDSO-24  
Name  
Pos.  
Description  
Direction  
PWMO1  
1
PMOS driver for dimming and protection  
Channel 1  
Output  
Connect to gate of external MOSFET  
Pin must be leꢀ open if external MOSFET is not used  
SET1  
2
Analog adjust input  
Input  
Channel 1  
Load current adjustment pin  
Pin must not be leꢀ open  
If analog adjustment is not used, connect to IVCC pin  
IVCC  
3
4
Internal linear voltage regulator  
Used for internal biasing and gate drive  
Bypass with external capacitor  
Pin must not be leꢀ open  
Output  
Input  
COMP1  
Compensation  
Channel 1  
Connect R and C network for stability  
(table continues...)  
Datasheet  
6
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
2 Pin configuration  
Table 1  
(continued) Pin configuration of PG-TSDSO-24  
Name  
Pos.  
Description  
Direction  
FPWM/FAULT1  
5
PWM frequency selector/Fault  
Channel 1  
Input/Output  
Connect external R to set PWM frequency  
Faults are reported by raising the voltage on this pin  
IN  
6
7
Supply  
Supply for internal biasing  
Input  
Input  
DC/PWMI1  
PWM adjustment  
Channel 1  
Set Duty cycle of PWM engine or digital input for PWM  
dimming  
DC/PWMI2  
8
9
PWM adjustment  
Channel 2  
Set Duty cycle of PWM engine or digital input for PWM  
dimming  
Input  
FPWM/FAULT2  
PWM frequency selector / Fault  
Channel 2  
Input/Output  
Connect external R to set PWM frequency  
Faults are reported by raising the voltage on this pin  
COMP2  
SET2  
10  
11  
Compensation  
Channel 2  
Connect R and C network for stability  
Input  
Input  
Analog adjust input  
Channel 2  
Load current adjustment pin  
Pin must not be leꢀ open  
If analog adjustment is not used, connect to IVCC pin  
PWMO2  
12  
PMOS driver for dimming and protection  
Channel 2  
Output  
Connect to gate of external MOSFET  
Pin must be leꢀ open if external MOSFET is not used  
FBH2  
FBL2  
VFB2  
13  
14  
15  
Voltage feedback positive  
Channel 2  
Non inverting input (+)  
Input  
Input  
Input  
Voltage feedback negative  
Channel 2  
Inverting input (-)  
Overvoltage/Voltage loop reference  
Channel 2  
(table continues...)  
Datasheet  
7
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
2 Pin configuration  
Table 1  
Name  
(continued) Pin configuration of PG-TSDSO-24  
Pos.  
Description  
Direction  
Connect to resistive voltage divider to set the maximum  
voltage at output and the short to ground threshold  
SWO2  
16  
Switch gate driver  
Output  
Channel 2  
Connect to gate of external switching power n-channel  
MOSFET  
SWCS2  
17  
18  
Current sense/Power ground  
Channel 2  
Detects peak current through power switch  
Power ground for gate driver of SWO2  
Input  
Input  
FREQ/SYNC/SPREAD  
Frequency select or synchronization  
Connect external resistor to GND to set switching frequency  
Apply square waveform for synchronization  
GND  
19  
20  
Ground  
SWCS1  
Current sense/Power ground  
Channel 1  
Input  
Detects peak current through power switch  
Power ground for gate driver of SWO1  
SWO1  
VFB1  
21  
22  
Switch gate driver  
Channel 1  
Connect to gate of external switching power n-channel  
MOSFET  
Output  
Input  
Overvoltage/Voltage loop reference  
Channel 1  
Connect to resistive voltage divider to set the maximum  
voltage at output and the short to ground threshold  
FBL1  
23  
24  
EP  
Voltage feedback negative  
Channel 1  
Inverting input (-)  
Input  
Input  
FBH1  
Voltage feedback positive  
Channel 1  
Non inverting input (+)  
Exposed pad  
Exposed pad  
Used only for heat dissipation  
Connect to pin 19 (GND)  
Datasheet  
8
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
3 General product characteristics  
3
General product characteristics  
3.1  
Absolute maximum ratings  
Table 2  
Absolute maximum ratings  
TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Not subject to production test, specified by design  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
-0.3  
Max.  
60  
Power supply input  
voltage  
VIN  
V
V
V
V
V
V
PRQ-31  
Voltage at pin SET1,  
SET2  
VSET1,2  
-0.3  
-0.3  
-1  
5.5  
60  
75  
75  
75  
PRQ-182  
PRQ-286  
PRQ-171  
PRQ-172  
PRQ-173  
Voltage at pin DC/  
PWMI1, DC/PWMI2  
VDC/PWMI1,2  
VFBH1,2  
VFBL1,2  
Voltage at pin FBH1,  
FBH2  
Voltage at pin FBL1,  
FBL2  
-1  
Differential input  
VREF1,2(MAX)  
-75  
VREF1,2(MAX) = VFBH1,2 -  
voltage  
VFBL1,2  
Differential signal (not  
referred to ground)  
Current at pin FBH1,  
FBH2, FBL1, FBL2  
IFBH1,2  
IFBL1,2  
-7.5  
7.5  
mA  
VREF1,2 =150 mV  
PRQ-288  
Voltage at pin VFB1,  
VFB2  
VFB1,2  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
5.5  
0.3  
5.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
V
V
V
PRQ-174  
PRQ-175  
PRQ-176  
PRQ-179  
PRQ-177  
PRQ-180  
PRQ-42  
Voltage at pin SWCS1, VSWCS1,2  
SWCS2  
Voltage at pin SWO1,  
SWO2  
VSWO1,2  
Voltage at pin FPWM/  
FAULT1  
VFPWM/FAULT1  
VFPWM/FAULT2  
Voltage at pin FPWM/  
FAULT2  
Voltage at pin COMP1, VCOMP1,2  
COMP2  
Voltage at pin FREQ/  
SYNC/SPREAD  
VFREQ/SYNC  
(table continues...)  
Datasheet  
9
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
3 General product characteristics  
Table 2  
(continued) Absolute maximum ratings  
TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Not subject to production test, specified by design  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
-0.3  
Max.  
75  
Voltage at pin PWMO1, VPWMO1,2  
PWMO2  
V
V
PRQ-181  
PRQ-580  
PMOS output voltage  
VPMOS1,2  
-1  
10  
VPMOS1,2= VFBH1,2 -  
VPWMO1,2  
Differential signal (Not  
referred to ground)  
Voltage at pin IVCC  
VIVCC  
-0.3  
5.5  
V
PRQ-45  
Temperature  
Junction temperature TJ  
-40  
-40  
150  
150  
°C  
°C  
PRQ-46  
PRQ-47  
Storage temperature  
ESD susceptibility  
ESD susceptibility  
Tstg  
VESD_HBM  
-2  
2
kV  
kV  
kV  
HBM: ESD  
PRQ-48  
PRQ-49  
PRQ-50  
susceptibility, Human  
Body Model "HBM"  
according to AEC  
Q100-002  
ESD susceptibility  
inner pins  
VESD_CDM  
-0.5  
-0.75  
0.5  
0.75  
CDM: ESD  
susceptibility, Charged  
Device Model "CDM"  
according to AEC  
Q100-011  
ESD susceptibility  
corner pins  
VESD_CDM_CR  
CDM: ESD  
susceptibility, Charged  
Device Model "CDM"  
according to AEC  
Q100-011  
Attention:  
1.  
Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability  
2.  
Integrated protection functions are designed to prevent IC destruction under fault conditions  
described in the datasheet. Fault conditions are considered as "outside" normal operating range.  
Protection functions are not designed for repetitive operation.  
Datasheet  
10  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
3 General product characteristics  
3.2  
Functional range  
Table 3  
Functional range  
TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
4.5  
Max.  
58  
1)  
Extended power supply VIN_EXT  
input voltage range  
V
PRQ-51  
PRQ-52  
Parameter deviations  
possible  
Power supply input  
voltage operating  
range  
VIN_OP  
8
36  
V
Operating voltage at  
pin FBH1, FBH2  
VFBH1,2_OP  
VFBL1,2_OP  
fSWO  
0
-
70  
V
PRQ-303  
PRQ-582  
PRQ-85  
PRQ-90  
Operating voltage at  
pin FBL1, FBL2  
-0.3  
100  
100  
70  
V
Switching frequency  
adjustment range  
500  
500  
kHz  
kHz  
Synchronization low  
frequency capture  
range  
fFREQ/SYNC/  
SPREAD(LF)  
Synchronization high  
frequency capture  
range  
fFREQ/SYNC/  
SPREAD(HF)  
2
2.4  
MHz  
Hz  
PRQ-132  
PRQ-213  
PWM1, PWMO2  
frequency range  
fPWMO1,2  
150  
750  
1) Not subject to production test, specified by design  
Attention: Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
3.3  
Thermal resistance  
Table 4  
Thermal resistance  
Not subject to production test, specified by design  
Parameter  
Symbol  
Values  
Typ.  
22.3  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1)  
Junction to case  
RthJC  
RthJA  
RthJA  
K/W  
PRQ-362  
PRQ-363  
PRQ-364  
Junction to ambient  
52.7  
K/W  
K/W  
2) 2s2p  
2) 1s0p + 600 mm2  
Junction to ambient  
(table continues...)  
Datasheet  
71.2  
11  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
3 General product characteristics  
Table 4  
(continued) Thermal resistance  
Not subject to production test, specified by design  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
2) 1s0p + 300 mm2  
P-  
Number  
Min.  
Max.  
Junction to ambient  
RthJA  
80.4  
K/W  
PRQ-365  
1) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and exposed pads  
are fixed to ambient temperature) TA = 25°C dissipates 1 W  
2) Specified RthJA value is according JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) +  
heatsink area at natural convection on FR4 board. The device was simulated on 76.2 x 114.3 x 1.5 mm  
board. The 2s2p board has 2 outer copper layers (2 x 70 μm Cu) and 2 inner copper layer (2 x 35 μm  
Cu). A thermal via (diameter = 0.3 mm and 25 μm plating) array was applied under the exposed pad and  
connected the top layer and the inner layers to bottom layers of JEDEC PCB. TA = 25°C; IC dissipates 1 W  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For further  
information visit https://www.jedec.org  
Datasheet  
12  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
4 Switching regulator  
4
Switching regulator  
The TLD6098-2ES implements a dual channel regulator suitable for Boost-to-ground, Boost-to-battery, Buck-to-  
battery, SEPIC, Flyback and Cuk configurations. The two channels work independently.  
Each channel has two distinct control loops:  
A current control loop (always enabled)  
A voltage control loop (optional)  
If the voltage loop is enabled the device regulates the output current as long as the feedback voltage on VFB1,2  
pin is below the VFB1,2 voltage mode ON threshold (VVFB1,2_VM(ON)). The voltage control loop takes over and  
regulates the output voltage once the VFB1,2 reference voltage (VVFB1,2_REF) is reached.  
The controller generates two independent PWM signals by sensing the inductor peak currents and the output  
of the internal error amplifiers. The control signals are applied to the internal gate drivers connected to SWO1,2  
pin to drive the external n-channel MOSFETs.  
4.1  
Soꢀ start  
The soꢀ start routine has 2 functionalities:  
Limiting the input current and output overshoot  
Guaranteeing that the system output reaches the target value in a reasonable time even when being  
operated in PWM dimming with low duty cycles  
Each channel performs its own soꢀ start routine independently.  
The first rising edge on DC/PWMI1,2 pin or the first cycle of the embedded PWM engine enables the soꢀ start  
routine.  
It is then performed in the following cases:  
At start-up  
Aꢀer an overvoltage on FBH1,2 pin  
Aꢀer an overvoltage on VFB1,2 pin  
Aꢀer an overtemperature fault  
Aꢀer an undervoltage on IVCC pin  
The soꢀ start is applied aꢀer a short to ground fault and retriggered every tFAULT in case of continuous presence  
of the fault.  
The operation of the soꢀ start is conditioned by the analog output adjustment.  
During the soꢀ start the switching regulator adjusts the PWM signal to make the voltage between FBH1,2 and  
FBL1,2 evolve from 0 to VREF(100%)in tSS time. The evolution is performed in 15 steps if the analog adjustment is  
not applied, otherwise the intended steady-state is reached before the soꢀ start ends.  
An ON time extension of the PWM dimming pulses is applied to ensure a reasonable power-up time when a low  
duty cycle dimming is applied.  
Datasheet  
13  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
4 Switching regulator  
VIN  
VIN(ON)  
t
t
VDC/PWMI1,2  
V
FBH1,2 VFBL1,2  
VREF  
VPWM_EXT  
t
ON time extension  
SWO1,2  
Gate driver  
enabled  
Gate driver enabled  
t
t
PWMO1,2  
PMOS  
OFF  
PMOS  
OFF  
PMOS  
OFF  
PMOS ON  
PMOS ON  
soft start timing diagram_TLD6098-2ES.vsdx  
Figure 4  
Soꢀ start timing diagram (the linear waveform of VVFBH-VVFBL is an example of possible  
scenario)  
The ON time extension is triggered if :  
The applied PWM dimming signal (or the signal generated by the PWM engine) has an ON time shorter than  
tSS during the soꢀ start  
and  
The voltage across FBH1,2 and FBL1,2 is lower than the reference voltage during PWM extension VPWM_EXT at  
the end of the ON time of the PWM signal  
The ON time extension persists as long as the voltage across FBH1,2 and FBL1,2 reaches VPWM_EXT.  
The VPWM_EXT is limited by the analog output adjustment down to a minimum reference voltage during ON time  
extension VPWM_MIN  
For the first 3 steps of the VREF signal, the VPWM_EXT is higher than VREF  
.
If the reference voltage across FBH1,2 and FBL1,2 adjusted by analog adjustment feature is lower than the  
VPWM_MIN the ON time extension ends aꢀer tSS  
.
Datasheet  
14  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
4 Switching regulator  
VREF  
VPWM_EXT  
VREF(100%)  
VREF  
VPWM_EXT  
VPWM_MIN  
t
tSS  
VREF evolution during soft-start.vsdx  
Figure 5  
VREF and VPWM_EXT waveforms during the soꢀ start routine without analog output  
adjustment  
VREF  
VPWM_EXT  
Soft start steady state  
Adjusted VREF  
VREF  
VPWM_EXT  
VPWM_MIN  
t
tSS  
VREF evolution during soft-start.vsdx  
Figure 6  
VREF and VPWM_EXT waveforms during the soꢀ start routine with analog output  
adjustment  
If the ON time extension ends before tSS elapsed, the ON time extension is retriggered in the following PWM  
cycle, in case the voltage between FBH1,2 and FBL1,2 is once again lower than VPWM_EXT  
When the ON time extension ends, the remaining part of the soꢀ start is allowed to evolve during the following  
ON time of the PWM dimming signal. In this case the actual duration of soꢀ start could be longer than tSS  
.
Datasheet  
15  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
4 Switching regulator  
4.2  
Electrical characteristics  
Table 5  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
Regulator  
VFB1,2 reference  
voltages (voltage loop)  
VVFB1,2_REF  
1.568 1.6  
144.75 150  
1.632  
V
PRQ-183  
Current loop reference VREF1,2(100%)  
155.25 mV  
Differential signal (not PRQ-184  
voltages  
referred to ground)  
VREF1,2 = VFBH1,2  
VFBL1,2  
-
;
VSET1,2 = 5V  
1)  
Current loop reference VREF1,2(40%)  
voltages  
54.6  
60  
65.4  
10  
mV  
mV  
PRQ-185  
Differential signal (not  
referred to ground)  
VSET1,2 = 940 mV  
Current loop reference VREF1,2(0%)  
Differential signal (not PRQ-186  
voltages  
referred to ground)  
VSET1,2 = 100 mV  
1)  
Transconductance  
error amplifier voltage  
loop  
gm1  
0.95  
1.6  
mS  
mS  
PRQ-600  
1)  
Transconductance  
error amplifier current  
loop  
gm2  
PRQ-463  
Switch current limit  
thresholds  
VSWCS1,2_TH  
80  
91  
88  
100  
120  
mV  
%
PRQ-187  
PRQ-70  
PRQ-71  
Maximum duty cycle in DMAX  
adjust. freq. mode  
RFREQ/SYNC/  
SPREAD = 27 kΩ  
Maximum duty cycle  
in low frequency sync  
mode  
DMAX(LF)  
%
fSW = 500 kHz  
Maximum duty cycle  
in high frequency sync  
mode  
DMAX(HF)  
80  
%
fSW = 2.2 MHz  
PRQ-289  
1)  
Soꢀ start time  
tSS  
1.8  
2
2.2  
ms  
V
PRQ-72  
1)  
Reference voltage  
VPWM_EXT  
0.8*VRE  
PRQ-588  
during PWM extension  
F1,2  
VPWM_EXT > VPWM_MIN  
(table continues...)  
Datasheet  
16  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
4 Switching regulator  
Table 5  
(continued) Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1)  
Minimum reference  
voltage during PWM  
extension  
VPWM_MIN  
31.5  
mV  
PRQ-589  
PRQ-188  
Input current at pin  
FBH1, FBH2  
IFBH1,2  
550  
800  
μA  
VFBH1,2 -  
VFBL1,2 = 0.15 V  
VFBH1,2 = 60 V  
Input current at pin  
FBL1, FBL2  
IFBL1,2  
IFBH1,2  
50  
50  
70  
70  
μA  
μA  
VFBH1,2 - VFBL1,2 = 0.15V PRQ-189  
VFBH1,2 = 60 V  
Input current at pin  
FBH1, FBH2  
VFBH1,2 - VFBL1,2 = 0.15 V PRQ-190  
VFBL1,2 = 0 V  
Current flows out of  
pin  
Input current at FBL1, IFBL1,2  
FBL2  
50  
70  
μA  
VFBH1,2 - VFBL1,2 = 0.15 V PRQ-191  
VFBL1,2 = 0 V  
Current flows out of  
pin  
1)  
Threshold voltage high VFBH1,2_HSS  
side sensing  
2.55  
2.3  
2.8  
V
V
V
PRQ-265  
VFBH1,2 increasing  
1)  
Threshold voltage low VFBH1,2_LSS  
side sensing  
2.1  
2.5  
PRQ-266  
VFBH1,2 decreasing  
Power supply  
undervoltage  
shutdown  
VIN(OFF)  
4.5  
VIN decreasing  
PRQ-77  
PRQ-78  
PRQ-430  
Power supply  
minimum startup  
voltage  
VIN(ON)  
8
5.5  
12  
V
VIN increasing  
Power supply current IIN  
mA  
VDC/PWMI1,2 = 0 V  
consumption  
VSET1,2 = VIVCC  
RFREQ/SYNC/SPREAD  
=
33 kΩ  
RFPWM/FAULT1,2 = 57 kΩ  
no faults detected  
Gate driver for external switch  
(table continues...)  
Datasheet  
17  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
4 Switching regulator  
Table 5  
(continued) Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1)  
Gate drivers peak  
output current  
ISWO1,2  
1
A
PRQ-192  
VSWO1,2 increasing 1 V  
to 4 V  
Current flows out of  
pin  
1)  
Gate drivers peak  
output current  
ISWO1,2  
1
A
PRQ-193  
PRQ-194  
VSWO1,2 decreasing 4 V  
to 1 V  
1)  
Gate drivers output rise tR_SWO1,2  
time  
20  
20  
ns  
CL_SWO1,2 = 3.3 nF  
VSWO1,2 increasing 1 V  
to 4 V  
1)  
Gate drivers output fall tF_SWO1,2  
ns  
PRQ-195  
time  
CL_SWO1,2 = 3.3 nF  
VSWO1,2 decreasing 4 V  
to 1 V  
1)  
Gate driver high side  
resistance  
RSWO_HS  
RSWO_LS  
1
1
3
3
Ω
PRQ-83  
ISWO = -10 mA  
1)  
Gate driver low side  
resistance  
Ω
PRQ-196  
ISWO = 10 mA  
1) Not subject to production test, specified by design  
Datasheet  
18  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
5 Linear regulator  
5
Linear regulator  
The device incorporates a linear regulator to generate a 5 V output used to supply the internal gate drivers  
and, through IVCC pin, other auxiliary devices on the PCB (for example a microcontroller and resistor dividers).  
The maximum output current of the linear regulator is limited to the IVCC output current limit IIVCC  
.
If the load on IVCC (gate drivers plus connected devices on PCB) draws more than IIVCC the linear regulator  
output voltage decreases.  
The linear regulator starts to deliver current to IVCC pin when the input voltage VIN goes above the power supply  
minimum start up voltage VIN (ON) for a time longer than IVCC start time tST  
A low ESR capacitor has to be connected from IVCC to ground (CIVCC in the figure) to stabilize the output voltage  
of the linear regulator.  
The ESR of the capacitor CIVCC has to be lower than IVCC buffer capacitor ESR RIVCC(ESR)  
.
VS  
IVCC  
IN  
Voltage regulator  
Clock generator  
CIVCC  
FREQ/SYNC  
SWO1  
SWO2  
DC/PWMI1  
DC/PWMI2  
Switching  
regulators 1 & 2  
TLD6098-2ES  
Linear regulator on TLD6098-2ES.vsdx  
Figure 7  
Block diagram of the linear regulator  
5.1  
Undervoltage protection for the external switching MOSFET  
During the ON time of the switching PWM signal, the gate drivers have to bias the switching NMOS in deep  
ohmic region to avoid the overheating of the MOSFET themselves. This is ensured by choosing a logic level  
MOSFET with a maximum threshold voltage lower than IVCC undervoltage switch-off threshold VIVCC_TH_D.  
TLD6098-2ES has an integrated undervoltage reset threshold circuit to disable the gate driver if the VIVCC drops  
below the VIVCC_TH_D. The gate driver are then enabled again when the VIVCC goes above the IVCC undervoltage  
switch-on threshold VIVCC_TH_I  
.
Datasheet  
19  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
5 Linear regulator  
VIN  
VIN(ON)  
VIN(OFF)  
t
VIVCC  
VIVCC_TH_I  
VIVCC_TH_D  
t
t
VDC/PWMI1,2  
tST  
VDC/PWMI1,2(ON)  
VSWO1,2  
tSS  
tSS  
Gate drivers  
disabled  
Gate driver  
disabled  
Gate drivers disabled  
Gate drivers enabled  
Gate drivers enabled  
t
t
VFPWM1,2  
Soft start routine  
VFPWM/FAULT1,2  
Timing diagram of linear regulator on TLD6098-2ES.vsdx  
Figure 8  
Thresholds and timing diagram related to the linear regulator  
5.2  
Electrical characteristics  
Table 6  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
4.85  
Max.  
5.15  
IVCC output voltage  
VIVCC  
IIVCC  
5
V
8 V ≤ VIN ≤ 36 V; 0.1 mA PRQ-58  
IIVCC ≤ 40 mA  
IVCC output current  
limit  
51  
100  
mA  
8 V < VIN < 13.5 V; VIVCC PRQ-59  
< 4.5 V; Current flows  
out of pin  
IVCC dropout voltage  
IVCC start time  
VIVCC_DV  
tST  
0.5  
V
VIN = 5 V; IIVCC < 20 mA PRQ-60  
1)  
300  
μs  
PRQ-285  
VIN slew rate higher  
than 1 V/10 μs  
1)  
IVCC buffer capacitor  
CIVCC  
1
4.7  
10  
μF  
PRQ-61  
If embedded PWM  
engine is used, 4.7 μF  
has to be chosen as a  
minimum  
(table continues...)  
Datasheet  
20  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
5 Linear regulator  
Table 6  
(continued) Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
0.2  
1)  
IVCC buffer capacitor  
RIVCC(ESR)  
Ω
PRQ-62  
ESR  
Maximum value given  
for regulator stability  
IVCC undervoltage  
switch-off threshold  
VIVCC_TH_D  
VIVCC_TH_I  
3.6  
4.0  
4.5  
V
V
VIVCC decreasing  
PRQ-64  
PRQ-65  
IVCC undervoltage  
switch-on threshold  
VIVCC increasing  
1) Not subject to production test, specified by design  
Attention: Select external switching MOSFET with worst case threshold voltage VGS(th) lower than minimum  
VIVCC_TH_D  
Datasheet  
21  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
6 Switching frequency setup and synchronization  
6
Switching frequency setup and synchronization  
The DC-DC switching frequency is adjusted by a resistor placed from FREQ/SYNC/SPREAD pin to ground or by  
providing to this pin a digital clock. The device incorporates also a spread spectrum modulator to reduce the  
design effort to fulfill the EMI compliance.  
By using a resistor, the switching frequency of the regulator is adjusted in the switching frequency adjustment  
range fSWO  
.
If an external clock is provided, the device accepts a digital clock in these two working windows:  
Synchronization low frequency capture range fFREQ/SYNC/SPREAD(LF) (low frequency synchronization mode)  
Synchronization high frequency capture range fFREQ/SYNC/SPREAD(HF) (high frequency synchronization mode)  
Outside these ranges, the device does not recognize a valid clock and then the behavior of the regulator can be  
out of specification.  
TLD6098-2ES  
Spread spectrum  
modulator  
Clock generator  
FREQ/SYNC/SPREAD  
SWO1  
SWO2  
DC/DC  
switching  
regulator  
Gate  
driver  
Multiplexer  
Clock frequency  
detector  
Oscillator and synchronization block inside TLD6098-2.vsdx  
Figure 9  
Diagram of switching frequency adjustment and synchronization blocks  
To limit the input current spikes and then to relax the input filter requirements, SWO2 is in phase opposition  
to SWO1.  
This means SWO2 is activated with a 1/(2*fSWO) delay respect to SWO1.  
6.1  
Switching frequency setup with external resistor  
The resistor placed on FREQ/SYNC/SPREAD pin adjusts the frequency of the DC-DC and enables or disables the  
spread spectrum modulator.  
The relationship between the biasing resistor and switching frequency with spread spectrum activated is  
1
fSW  
=
(1)  
1 . 11 · 109 · RFREQ/SYNC/SPREAD  
The relationship between the biasing resistor and the switching frequency with the spread spectrum not active  
is  
1
fSW  
=
(2)  
1 . 11 · 1010 · RFREQ/SYNC/SPREAD  
Datasheet  
22  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
6 Switching frequency setup and synchronization  
Figure 10  
Switching frequency versus RFREQ/SYNC/SPREAD  
6.1.1  
Electrical characteristics  
Table 7  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
288  
Max.  
378  
Switching frequency  
fSWO_SSM(OFF)  
333  
kHz  
mA  
RFREQ/SYNC/SPREAD  
27 kΩ  
=
PRQ-277  
FREQ/SYNC/SPREAD  
output current  
IFREQ/SYNC/  
SPREAD  
3
VFREQ/SYNC/SPREAD = 0 V PRQ-86  
Current flowing out of  
pin  
FREQ/SYNC/SPREAD  
output voltage  
VFREQ/SYNC/  
SPREAD_SSM(OFF)  
0.72  
0.8  
0.88  
V
RFREQ/SYNC/SPREAD  
27 kΩ  
=
PRQ-87  
6.1.2  
Spread Spectrum  
The spread spectrum modulation technique significantly reduces the electromagnetic harmonics  
emission at the lower frequency range of the spectrum (f < 30 MHz).  
This technique is enabled by changing the switching frequency over the time. The final result is the movement  
over a broad band of the energy associated with the peaks of the electromagnetic harmonics emission.  
The switching frequency is modulated with a triangular shape digitalized in 7 steps equally distributed over the  
entire frequency span (2 times the frequency deviation fDEV).  
Datasheet  
23  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
6 Switching frequency setup and synchronization  
fSWO  
fDEV  
fSW_SSM(ON)  
fDEV  
t
1/fFM  
Spread spectrum modulator characteristic.vsdx  
Figure 11  
Spread spectrum modulator characteristic  
6.1.2.1  
Electrical characteristics  
Table 8  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
288  
Max.  
378  
1)  
Average switching  
frequency  
fSWO_SSM(ON)  
333  
kHz  
PRQ-84  
PRQ-88  
PRQ-89  
PRQ-385  
RFREQ/SYNC/SPREAD  
=
2.7 kΩ  
1)  
Modulation frequency fFM  
13.5  
15  
16.5  
kHz  
kHz  
V
1.8 kΩ ≤ RFREQ/SYNC/  
SPREAD ≤ 9 kΩ  
1)  
Frequency deviation  
fDEV  
0.09*fS 0.15*fS  
WO  
WO  
1.8 kΩ ≤ RFREQ/SYNC/  
SPREAD ≤ 9 kΩ  
FREQ/SYNC/SPREAD  
output voltage  
VFREQ/SYNC/  
SPREAD_SSM(ON)  
0.72  
0.8  
0.88  
RFREQ/SYNC/SPREAD =  
2.7 kΩ  
1) Not subject to production test, specified by design  
Datasheet  
24  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
6 Switching frequency setup and synchronization  
6.2  
Synchronization with external clock (low frequency mode)  
The switching frequency is synchronized with an external clock source applied on FREQ/SYNC/SPREAD pin if the  
frequency is in the synchronization low frequency capture range fFREQ/SYNC/SPREAD(LF) and the duty cycle is in the  
synchronization input duty cycle range DCFREQ/SYNC/SPREAD  
.
The device detects the external clock source if the voltage on FREQ/SYNC/SPREAD exceeds the two thresholds:  
The synchronization input high voltage VFREQ/SYNC/SPREAD(H) during the positive pulse,  
The synchronization input low voltage VFREQ/SYNC/SPREAD(L) during the negative pulse.  
VFREQ/SYNC/SPREAD  
t
FREQ/SYNC/SPREAD = 1 / fFREQ/SYNC/SPREAD  
tFREQ/SYNC/SPREAD(H)  
tFREQ/SYNC/SPREAD(ON)  
tFREQ/SYNC/SPREAD  
DCSWO  
=
VFREQ/SYNC/SPREAD(H)  
VFREQ/SYNC/SPREAD(L)  
t
Timing diagram in synchronization mode.vsdx  
Figure 12  
Timing diagram when synchronization mode is enabled  
6.2.1  
Electrical characteristics  
Table 9  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
3.0  
Max.  
Synchronization input VFREQ/SYNC/  
high voltage  
V
PRQ-91  
PRQ-92  
PRQ-94  
SPREAD(H)  
Synchronization input VFREQ/SYNC/  
low voltage  
0.8  
60  
V
SPREAD(L)  
1)  
Synchronization input DCFREQ/SYNC/  
40  
%
duty cycle range  
SPREAD  
1) Not subject to production test, specified by design  
6.3  
Synchronization with external clock (high frequency range)  
High switching frequency enables a system cost down due to reduced value for the reactive components.  
The high frequency synchronization is enabled if the input clock is in the synchronization high frequency  
capture range fFREQ/SYNC/SPREAD(HF).  
Voltage threshold levels on FREQ/SYNC/SPREAD pin are the same as in the low frequency synchronization  
mode.  
Datasheet  
25  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
7 Analog output adjustment  
7
Analog output adjustment  
Each channel can adjusts the reference voltage VREF1,2 across FBH1,2 and FBL1,2 pins (thus adjusting the output  
currents) by monitoring the analog voltage on the respective SET1,2 pin (VSET1,2).  
The analog output adjustment acts independently channel by channel without any relations between the  
channels.  
The SWO1,2 NMOS gate driver is disabled If the voltage applied on the SET1,2 pin is lower than SET input  
voltage no switching activity VSET1,2(NOSW).  
The SET1,2 pin has to be connected to a voltage higher than VSET1,2(100%) (e.g. connecting SET1,2 pin to IVCC pin)  
to exclude the output current adjustment feature.  
The voltage on SET1,2 pins influences the voltage reference of the corresponding channel following the  
behavior of showed in the picture below.  
V
FBH1,2-VFBL1,2  
VREF1,2(100%)  
VREF1,2(40%)  
VREF1,2(OFFSET)  
VSET1,2(NOSW) VSET1,2(0%)  
VSET1,2(40%)  
VSET1,2(100%)  
VSET1,2  
Gate  
driver  
0%  
100%  
dimming  
dimming  
disabled  
Analog dimming with TLD6098-2ES.vsdx  
Figure 13  
Relationship between VSET1,2 and the respective voltage VREF1,2  
The SET pin can also be wired to an external thermistor (usually mounted on the LED module) to perform a  
thermal protection.  
7.1  
Electrical characteristics  
Table 10  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
2.2  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1)  
SET1 SET2 input  
voltage 100%  
VSET1,2(100%)  
VSET1,2(40%)  
VSET1,2(0%)  
V
PRQ-596  
PRQ-599  
PRQ-598  
1)  
SET1 SET2 input  
voltage 40%  
940  
100  
mV  
1)  
SET1 SET2 input  
voltage 0%  
mV  
(table continues...)  
Datasheet  
26  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
7 Analog output adjustment  
Table 10  
(continued) Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
50  
SET1 SET2 input  
voltage no switching  
activity  
VSET1,2(NOSW)  
mV  
PRQ-597  
1) Not subject to production test, specified by design  
Datasheet  
27  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
8 Dimming functions  
8
Dimming functions  
The TLD6098-2ES offers two dimming inputs (one for each channel) for pulse width modulating (PWM) the  
output current.  
This modulation is beneficial to reduce the average current at output (and then the brightness of the LEDs),  
without showing color shiꢀ on the light produced by the LEDs.  
The output current modulation is operated by the channel as function of the signal on DC/PWMI1,2 pins:  
A digital clock signal imposes the duty cycle and the frequency  
An analog voltage is translated to a duty cycle and the frequency is adjusted with a resistor on FPWM/  
FAULT1,2 pin.  
These features are present on both channels and they act independently channel by channel without any  
relations between channels.  
For each channel, different voltage levels on DC/PWMI1,2 pins activates different functions on the respective  
channel, as described below:  
If the voltage is higher than DC/PWMI1,2 input voltage high threshold VDC/PWMI(ON) the dimming duty cycle is  
set to 100%  
If the voltage is in between the two digital thresholds (VDC/PWMI(100%) and VDC/PWMI(0%)), the embedded PWM  
dimming function is activated  
If the voltage is lower than DC/PWMI1,2 input voltage low threshold VDC/PWMI(OFF) the dimming duty cycle is  
0%  
When a dimming function is activated, the PWM signal controls the switching regulator gate driver and the  
PMOS gate driver of the respective channel where the dimming function is applied.  
To allow fast transitions of the dimming PMOS even at low output voltage, the positive power supply of the  
PWMO1,2 gate driver is connected to FBH1,2 pin if its voltage VFBH1,2 is higher than VIVCC, otherwise the gate  
driver is supplied by the IVCC pin.  
During the ON state of the PWM dimming of each channel, the respective PMOS is biased with a PWMO output  
voltage ON state VPWMO1,2,ON (minimum VPWMO1,2,ON cannot go below 0 V).  
8.1  
Electrical characteristics  
Table 11  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1)  
PWMO1, PWMO2 peak IPWMO1,2  
2
5
mA  
PRQ-199  
output current  
VFBH1,2 = 14 V  
VPWMO1,2 increasing  
VPWMO1,2(ON) + 0.5 V to  
VPWMO1,2(ON) + 3.5 V  
CL,PWMO1,2 = 3.3 nF  
Current flows out of  
pin  
(table continues...)  
Datasheet  
28  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
8 Dimming functions  
Table 11  
(continued) Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1)  
PWMO1 PWMO2 peak IPWMO1,2  
2
5
mA  
PRQ-200  
output current  
VFBH1,2 = 14 V  
VPWMO1,2  
decreasing VPWMO1,2(OF  
F) - 0.5 V to  
VPWMO1,2(OFF) - 3.5 V  
CL,PWMO1,2 = 3.3 nF  
1)  
PWMO1 PWMO2 gate  
drivers output rise time  
tR_PWMO1,2  
2
2
6
6
μs  
PRQ-201  
PRQ-202  
VFBH1,2 = 14 V  
VPWMO1,2 increasing  
VPWMO1,2(ON) + 0.5 V to  
VPWMO1,2(ON) + 3.5 V  
CL,PWMO1,2 = 3.3 nF  
1)  
PWMO1 PWMO2 gate  
drivers output fall time  
tF_PWMO1,2  
μs  
VFBH1,2 = 14 V  
VPWMO1,2 decreasing  
VPWMO1,2(OFF) - 0.5 V to  
VPWMO1,2(OFF) - 3.5 V  
CPWMO1,2 = 3.3 nF  
1)  
PWMO1 PWMO2 output VPWMO1,2(ON)  
voltage ON state  
VFBH1,2 VFBH - 5 V  
- 6.5  
PRQ-203  
PRQ-204  
VFBH1,2 > 7.5  
1)  
PWMO1 PWMO2 output VPWMO1,2(OFF)  
VFBH1,2  
V
voltage OFF state  
VFBH1,2 = 14 V  
1) Not subject to production test, specified by design  
8.2  
Digital PWM dimming  
Each channel of the TLD6098-2ES has a dedicated input pin to modulate the average current in a LED string  
with a digital pattern.  
Each channel recognizes a digital PWM dimming signal on DC/PWMI1,2 pin if:  
The minimum voltage on DC/PWMI1,2 pin is lower than VDC/PWMI1,2(OFF)  
The maximum voltage on DC/PWMI1,2 pin is higher than VDC/PWMI1,2(ON)  
The maximum frequency on DC/PWMI1,2 is less than 1 kHz  
No faults are detected  
If a valid pattern is recognized and the VDC/PWMI is higher than VDC/PWMI(ON) the NMOS gate driver is enabled and  
the voltage of PWMO pin is VPWMO(ON); else the NMOS gate driver is disabled and the voltage of PWMO pin is  
VPWMO(OFF)  
Datasheet  
29  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
8 Dimming functions  
8.2.1  
Electrical characteristics  
Table 12  
Electrical Characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
DC/PWMI1, DC/PWMI2 VDC/PWMI1,2(ON) 4.0  
input voltage high  
threshold  
V
V
PRQ-205  
PRQ-206  
DC/PWMI1, DC/PWMI2 VDC/PWMI1,2(OFF)  
input voltage low  
0.8  
threshold  
DC/PWMI1 DC/PWMI2 IDC/PWMI1,2  
input current  
6
200  
1
μA  
μA  
μs  
VDC/PWMI1,2 = VIN  
VDC/PWMI1,2 = 0.8 V  
PRQ-207  
PRQ-208  
PRQ-209  
DC/PWMI1 DC/PWMI2 IDC/PWMI1,2  
input current  
DC/PWMI1 DC/PWMI2 tDC/PWMI1,2(ON)  
minimum ON time  
8.3  
Embedded PWM engine  
The embedded PWM engine helps to reduce the color shiꢀ when a LED string is dimmed down without using  
timer or microcontroller. It generates a pulse width modulation (PWM) adjustable in frequency and duty cycle. A  
possible application is the daytime running light dimmed down to position light without using microcontroller  
or timer.  
For each channel the embedded PWM dimming function is enabled if the voltage on DC/PWMI pin is in between  
DC/PWMI input voltage 0% dimming VDC/PWM1,2(0%) and DC/PWMI input voltage 100% dimming VDC/PWMI1,2(100%).  
This voltage is translated in the duty cycle of the PWM signal with DC/PWMI duty cycle resolution nDC/PWMI  
.
DCPWMO1,2  
100%  
0%  
VDC/PWMI1,2(OFF)  
VDC,PWMI1,2(0%)  
VDC/PWMI1,2(100%)  
VDC/PWMI(ON)  
VDC/PWMI1,2  
Digital dimming  
PWMO1,2 = VPWMO1,2(OFF)  
Digital dimming  
PWMO1,2 = VPWMO1,2(ON)  
Embedded PWM engine working window  
V
V
Duty cycle vs PWMIn voltage.vsdx  
Figure 14  
Relationship between VDC/PWMI1,2 and dimming duty cycle  
Datasheet  
30  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
8 Dimming functions  
If the embedded PWM dimming function is enabled the behavior of PWMO1,2 pin is the following:  
The PWMO1,2 voltage switches between PWMO1,2 output voltage ON state VPWMO1,2(ON) and PWMO1,2  
output voltage OFF state VPWMO1,2(OFF)  
The PWMO1,2 switching frequency depends on the resistor value placed on FPWM/FAULT1,2 pin  
The PWM duty cycle is linearly adjusted with the voltage on DC/PWMI1,2 pin  
Any fault disables the embedded PWM engine and forces the voltage on PWMO1,2 pin to VPWMO1,2(OFF)  
.
The resistor connected on FPWM/FAULT1,2 is used to:  
Adjust the frequency of the embedded PWM engine  
Enables two different reactions on FPWM/FAULT1,2 pin during the fault report  
Enable or disable the voltage control loop on the respective channel  
If the resistor on FPWM/FAULT1,2 pin is in FPWM/FAULT high resistor range RFPWM/FAULT(H) the channel has the  
following behavior:  
The frequency of PWM engine is adjusted in fPWMO range  
In case a fault is detected, it is reported on FPWM/FAULT1,2 pin with proper duty cycle  
The voltage loop is disabled and the overvoltage is detected with a comparator (detailed information are  
described in Protection and fault management section)  
while, if resistor on FPWM/FAULT1,2 pin is in FPWM/FAULT low resistor range RFPWM/FAULT(L)  
:
The frequency of PWM engine is adjusted in fPWMO range  
The faults are reported on FPWM/FAULT1,2 pin without a specific indication  
Voltage regulation loop is enabled and concurrent to current regulation loop  
The frequency of embedded PWM generator can be calculated by:  
1
fPWMO_HR  
=
=
(3)  
(4)  
7 . 4 · 108 · RFPWM/FAULT  
for resistor RFPWM/FAULT(H) range  
1
fPWMO_LR  
7 . 4 · 107 · RFPWM/FAULT  
for resistor RFPWM/FAULT(L) range.  
Datasheet  
31  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
8 Dimming functions  
Figure 15  
Relationship between RFPWM/FAULT and the frequency of PWMO  
The table below summarizes the differences between two resistor sets on FPWM/FAULT pin  
Table 13  
Resistor differences on fault pin  
RFPWM/FAULT(H)  
RFPWM/FAULT(L)  
Fault report  
Each fault reported with a dedicated duty The faults are reported by raising the  
cycle on the respective FPWM/FAULT1,2  
Disabled  
voltage on the respective FPWM/FAULT1,2  
pin until the faulty status is removed  
Voltage loop  
Enabled  
Datasheet  
32  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
8 Dimming functions  
8.3.1  
Electrical characteristics  
Table 14  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
VDC/PWMI1,2(0%) 0.965  
Max.  
DCPWMI1 DC/PWMI2  
input voltage 0%  
dimming  
1
1.035  
V
VIVCC = 5 V  
VIVCC = 5 V  
PRQ-211  
PRQ-212  
PRQ-434  
DC/PWMI1 DC/PWMI2 VDC/  
input voltage 100%  
dimming  
3.53  
1.5  
3.6  
2.5  
3.67  
3.5  
V
PWMI1,2(100%)  
DC/PWMI1 DC/PWMI2 RDC/PWMI1,2  
equivalent pull down  
resistor  
MΩ  
VDC/PWMI1,2 = 4 V  
1)  
PWMO duty cycle  
DCPWMO  
8
10  
12  
%
V
VPWMI = 1.26 V  
VIVCC = 5 V  
PRQ-112  
PRQ-214  
FPWM/FAULT1, FPWM/ VFPWM/  
0.72  
0.80  
0.88  
FAULT2 reference  
FAULT1,2(REF)  
voltage  
FPWM/FAULT1, FPWM/ IFPWM/FAULT1,2  
3
mA  
VFPWM1,2 = 0 V  
PRQ-215  
FAULT2 output current  
PWMO1, PWMO2  
dimming frequency  
fPWMO1,2  
fPWMO1,2  
nDC/PWMI  
315  
315  
345  
345  
10  
375  
375  
Hz  
Hz  
bit  
kΩ  
kΩ  
RFPWM1,2 = 3.92 kΩ  
PRQ-216  
PRQ-374  
PRQ-313  
PRQ-590  
PRQ-591  
PWMO1, PWMO2  
dimming frequency  
RFPWM/FAULT1,2 =  
39.2 kΩ  
1)  
1)  
1)  
DC/PWMI duty cycle  
resolution  
FPWM/FAULT high  
range resistor  
RFPWM/FAULT(H) 18  
90  
9
FPWM/FAULT low range RFPWM/FAULT(L) 1.8  
resistor  
1) Not subject to production test, specified by design  
Datasheet  
33  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
9 Protections and fault management  
9
Protections and fault management  
The fault conditions are identified by checking the status of PWMO1,2, IVCC and FPWM/FAULT1,2 pins. The  
faults on the two channels are independently managed and reported.  
Each channel of the device disables the gate drivers and reports fault on its FPWM/FAULT1,2 pin if it detects:  
Short to ground  
Overvoltage on VFB1,2 pin  
Overtemperature  
Overvoltage on FBH1,2 pin  
Overcurrent  
The faults are reported by raising the voltage on the respective FPWM/FAULT1,2 pin to VFPWM/FAULT1,2(FAULT)  
.
The output waveform of the fault reporting depends on the resistor connected to FPWM/FAULT1,2 pin.  
The status of FPWM/FAULT1,2 pin can be monitored by a microcontroller. In this case a series resistor (10 kΩ  
minimum) has to be used between FPWM/FAULT1,2 and the input pin of the microcontroller.  
The PWMO1,2 gate driver biases the respective PMOS in OFF state to disconnect the load from the DC-DC output  
during:  
Overvoltage on VFB1,2 pin,  
Overvoltage on FBH1,2 pin  
Overtemperature  
Overcurrent  
During a short to ground, the PMOS is biased in OFF state during the tS2G and it is biased in ON state every  
tFAULT for a (tSS) to detect if the fault has been removed.  
9.1  
Electrical characteristics  
Table 15  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
1)  
FPWM/FAULT1,2 output VFPWM/  
4
9
V
PRQ-609  
PRQ-133  
voltage with fault  
FAULT1,2(FAULT)  
1)  
Fault period  
tFAULT  
10  
11  
ms  
1) Not subject to production test, specify by design  
9.2  
Short to ground  
The short to ground detection feature protects each channel from an excess of current during a short circuit.  
Each channel detects this fault if the voltage of VFB1,2 pin is lower than short to ground voltage  
threshold VFB1,2_S2G for a time longer than short to ground reaction time tS2G_RT. Aꢀer a fault time with short  
to ground tS2G a soꢀ start routine is triggered. The fault is released if the voltage on VFB1,2 pin is higher than  
(VFB1,2_S2G+VFB1,2_S2G_HYST) at the end of the soꢀ start  
During soꢀ-start routine, the short to ground detection is disabled and the voltage of FPWM/FAULT1,2 pin is  
kept at VFPWM/FAULT1,2(REF)  
The reaction to short to ground is:  
1. The voltage on FPWM/FAULT1,2 pin is raised to VFPWM/FAULT1,2(FAULT) for tS2G time  
.
Datasheet  
34  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
9 Protections and fault management  
2.  
3.  
Aꢀer a tS2G time the soꢀ-start routine is performed  
At the end of soꢀ-start routine, the check on the voltage VVFB1,2 is redone  
If the fault is still present, the procedure is repeated, otherwise the channel restarts.  
This routine is valid whatever resistor used on FPWM/FAULT pin.  
VVFB1,2  
VVFB1,2_S2G_HYS  
VVFB1,2_S2G  
t
tfault  
tS2G  
tfault  
tSS  
tfault  
tSS  
VPWM/FAULT1,2  
tSS  
VFPWM/FAULT1,2(HIGH)  
VFPWM/FAULT1,2(REF)  
t
t
VSWO1,2  
Gate driver  
disabled  
Gate driver  
disabled  
Gate driver  
disabled  
Gate driver enabled  
Gate driver enabled  
S2G - TLD6098-2ES.vsdx  
Figure 16  
Timing diagram during short to ground detection  
A short to ground event simultaneous with an overcurrent event is detected once even the voltage on DC/  
PWMI1,2 pin is lower than VDC/PWMI1,2(OFF)  
.
In all the other cases, the short to ground is not detected when the voltage on DC/PWMI1,2 pin is lower than  
VDC/PWMI1,2(OFF)  
.
9.2.1  
Electrical characteristics  
Table 16  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
7.2  
Max.  
8.8  
1)  
Fault time with short to tS2G  
ground  
8
ms  
PRQ-134  
PRQ-121  
PRQ-218  
PRQ-219  
Short to ground  
reaction time  
tS2G_RT  
4
20  
μs  
Short to ground  
voltage threshold  
VFB1,2_S2G  
93  
100  
5
107  
10  
mV  
mV  
Voltage decreasing  
1)  
Short to ground  
VFB1,2_S2G_HYST  
voltage hysteresis  
1) Not subject to production test, specified by design  
Datasheet  
35  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
9 Protections and fault management  
9.3  
Output overvoltage and voltage regulation  
Based on the resistor used on FPWM/FAULT1,2 pin the channel implements an overvoltage detection with a  
comparator or enabling a voltage regulation by using the internal voltage loop.  
If the resistor connected to FPWM/FAULT1,2 pin is in the RFPWM/FAULT(H) range, the overvoltage comparator is  
enabled with VFB1 VFB2 overvoltage threshold VVFB1,2_OV. The fault is detected when the VFB voltage is above  
this threshold.  
The channel reacts by:  
raising the respective VFPWM/FAULT1,2 to VFPWM/FAULT1,2(FAULT) for a fault time with overvoltage tOVFB  
disabling the respective NMOS gate driver for tFAULT  
aꢀer tFAULT the voltage on VFB1,2 is rechecked and if it is still higher than (VVFB1,2_OV -VVFB1,2_OV,HYS) the routine is  
repeated, else the device restarts with a soꢀ-start routine.  
VVFB1,2  
VVFB1,2_OV  
VVFB1,2_OV_HIS  
t
VFPWM/FAULT1,2  
VFPWM/FAULT1,2(FAULT)  
VFPWM/FAULT1,2(REF)  
t
tOVFB  
VSWO1,2  
tfault  
tfault  
Gate driver disabled  
tfault  
Gate driver enabled  
Gate driver disabled  
Gate driver enabled  
Gate driver enabled  
t
OVFB-HR TLD6098-2ES.vsdx  
Figure 17  
Timing diagram during overvoltage detection  
The channel works as a voltage regulator with the voltage loop enabled if the resistor connected to FPWM/  
FAULT1,2 pin is in the RFPWM/FAULT(L) range.  
The voltage loop is taking over the regulation when the voltage on VFB1,2 pin goes higher than VFB1,2_VM(ON). At  
this time the voltage on FPWM/FAULT1,2 pin is raised to VFPWM/FAULT1,2(FAULT)  
.
The channel also reports when the voltage on VFB1,2 pin goes below VFB1,2_VM(OFF) to highlight the voltage loop  
is ineffective. In this condition the voltage on FPWM/FAULT pin is VFPWM/FAULT1,2(REF)  
The fault is detected even the voltage on DC/PWMI1,2 pin is lower than VDC/PWMI1,2(OFF)  
.
.
Datasheet  
36  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
9 Protections and fault management  
VVFB1,2  
VVFB1,2_REF  
VVFB1,2_VM(ON)  
VVFB1,2_VM(OFF)  
t
t
VFPWM/FAULT1,2  
VFPWM/FAULT1,2(FAULT)  
VFPWM/FAULT1,2(REF)  
VSWO1,2  
Gate driver enabled  
t
OVFB-LR-TLD6098-2ES.vsdx  
Figure 18  
Timing diagram in voltage regulation  
9.3.1  
Electrical characteristics  
Table 17  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
Max.  
VFB1, VFB2 overvoltage VVFB1,2_OV  
threshold  
1.568 1.6  
1.632  
V
Voltage increasing  
PRQ-217  
PRQ-323  
PRQ-221  
1)  
VFB overvoltage  
hysteresis  
VVFB_OV_HYS  
IVFB1,2  
180  
-1  
200  
-0.1  
220  
1
mV  
μA  
VFB1, VFB2 input  
current  
VFB1,2 = 1.6 V  
VFB1, VFB2 voltage  
mode ON thresholds  
VVFB1,2_VM(ON) 1.45  
VVFB1,2_VM(OFF) 1.3  
tOVFB 3.6  
1.5  
1.55  
1.4  
V
V
Voltage increasing  
Voltage decreasing  
1)  
PRQ-408  
PRQ-409  
VFB1, VFB2 voltage  
mode OFF threshold  
1.35  
Fault time with  
overvoltage  
4
4.4  
ms  
PRQ-135  
1) Not subject to production test, specified by design  
9.4  
Overvoltage on FBH pin  
The channels have a protection feature to prevent an excess voltage on FBH1,2 pin. The report of this fault  
depends on the resistor connected to FPWM/FAULT1,2 pin.  
Datasheet  
37  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
9 Protections and fault management  
An overvoltage on FBH1,2 pin fault is detected if the voltage VFBH1,2 is higher than FBH1,2 overvoltage high  
threshold VFBH1,2(H) and the fault is released when the voltage VFB1,2 is below the FBH overvoltage low threshold  
VFBH1,2(L)  
.
With a resistor on FPWM/FAULT1,2 pin in RFPWM/FAULT(H) range the channel reacts by:  
Disabling the respective NMOS gate driver  
Raising the voltage of FPWM/FAULT1,2 pin to VFPWM/FAULT1,2(FAULT) for tFBH time  
Aꢀer tFAULT period, the device checks if VFBH1,2 is still higher than VFBH1,2(L)  
VVFBH1,2  
VVFBH1,2(H)  
VVFBH1,2(L)  
t
tfault  
tFBH  
tfault  
tfault  
VFPWM/FAULT1,2  
VFPWM/FAULT1,2(FAULT)  
VFPWM/FAULT1,2(REF)  
t
t
VSWOn  
Gate driver enabled  
Gate driver disabled  
Gate driver enabled  
OV_FBH_HRES_TLD6098-2ES.vsdx  
Figure 19  
Timing diagram during overvoltage on FBH1,2 detection with RFPWM/FAULT(H) used on  
FPWM/FAULT1,2 pin  
With a resistor on FPWM/FAULT1,2 pin in RFPWM/FAULT(L) range the channel reacts to the fault by:  
Disabling the respective NMOS gate driver  
Raising the voltage of respective FPWM/FAULTn pin to VFPWM/FAULT1,2(FAULT)  
Aꢀer tFAULT period, the device checks if the voltage on FBH pin is still higher than VFBH1,2(L)  
Datasheet  
38  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
9 Protections and fault management  
VVFBH1,2  
VVFBH1,2(H)  
VVFBH1,2(L)  
t
tFAULT  
tFAULT  
tFAULT  
VFPWM/FAULT1,2n  
VFPWM/FAULT1,2(FAULT)  
VFPWM/FAULT1,2(REF)  
t
t
VSWO1,2  
Gate driver enabled  
Gate driver disabled  
Gate driver enabled  
OV_FBH_LRES_TLD6098-2ES.vsdx  
Figure 20  
Timing diagram during overvoltage on FBH detection with RFPWM/FAULT(L) used on  
FPWM/FAULT1,2 pin  
When the fault disappears, the channel restarts with soꢀ-start routine and lowers the voltage of FPWM/FAULT1,2  
pin to VFPWM/FAULT1,2(REF)  
.
If the fault appears during the soꢀ-start routine, it interrupts the soꢀ-start for a tFAULT time and then the routine  
restarts.  
The fault is detected even when the voltage on DC/PWMI1,2 pin is lower than VDC/PWMI1,2(OFF)  
.
9.4.1  
Electrical characteristics  
Table 18  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
70  
Max.  
75  
FBH1 FBH2 overvoltage VFBH1,2(H)  
upper threshold  
V
VFBH1,2 increasing  
PRQ-414  
PRQ-415  
PRQ-329  
FBH1 FBH2 overvoltage VFBH1,2(L)  
lower threshold  
65  
6
V
VFBH1,2 decreasing  
1)  
Fault time FBH  
tFBH  
5.4  
6.6  
ms  
1) Not subject to production test, specified by design  
Datasheet  
39  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
9 Protections and fault management  
9.5  
Output overcurrent  
An output overcurrent event could damage the load if the current exceed the load specification. The output  
overcurrent detection increases the system reliability by reducing the load average current.  
The output overcurrent detection acts independently for each channel.  
The output overcurrent is detected when voltage across FBH1,2 and FBL1,2 is higher than overcurrent detection  
threshold VOC_200%  
.
The channel reacts in overcurrent detection time tOC_200% by increasing the voltage of PWMO1,2 pin  
to VPWMO1,2(OFF) and disabling the respective NMOS gate driver.  
The protection is released when the voltage across FBH1,2 and FBL1,2 drops below (VOC_200% - VOC_HYS). At  
this time the NMOS gate driver is enabled again and the voltage of PWMO1,2 pin evolves as demanded by the  
dimming features.  
A continuously re-triggering of the protection could cause an overheating of the PMOS. Then a timer records  
the period in which the channel is in over current state. The fault reporting depends on the resistor used on  
FPWM/FAULT pin.  
With a resistor on FPWM/FAULT1,2 pin in RFPWM/FAULT(H) range, the channel reacts to an overcurrent by:  
Entering into overcurrent state  
Disables the NMOS gate driver and raises the voltage on PWMO1,2 pin to VPWMO1,2(OFF)  
As soon as (VFBH1,2 - VFBL1,2) < (VOC_200% - VOC_HYS) the NMOS gate driver is enabled again  
PWMO1,2 pin is again controlled by the dimming features  
Exiting from the overcurrent state  
When the cumulative time in which the channel is in overcurrent state reaches the overcurrent detection tOC in  
a time window of 8*tFAULT the channel:  
Raises the voltage of FPWM/FAULT1,2 pin at VFPWM/FAULT1,2(FAULT) for the overcurrent fault time tFBH-FBL and  
then releases it to VFPWM/FAULT1,2(REF) for (tFAULT - tFBH-FBL  
)
Repeats this sequence 8 times  
V
FBH1,2-VFBL1,2  
8*tFAULT time window  
VOC_HYS  
VOC_200%  
VREF  
t
8*tFAULT  
+
tFAULT  
VFPWM/FAULT1,2  
tFBH-FBL  
Cumulative time > tOC  
VFPWM/FAULT1,2(FAULT)  
VFPWM/FAULT1,2(REF)  
t
t
t
VPWMO1,2  
VPWMO1,2(OFF)  
VPWMO1,2(ON)  
VSWO1,2  
Gate driver enebled  
Gate driver disabled  
Gate driver enabled  
Overcurrent HRES with PMOS-TLD6098-2ES.vsdx  
Figure 21  
System behavior with RFPWM/FAULT(H) during overcurrent detection with PMOS as  
dimming/protection element  
Datasheet  
40  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
9 Protections and fault management  
V
FBH1,2-VFBL1,2  
VOC_200%  
VREF  
t
t
VOUT1,2  
VIN  
8*tFAULT  
tFAULT  
tOC tFBH-FBL  
VFPWM/FAULT1,2  
VFPWM/FAULT1,2(FAULT)  
VFPWM/FAULT1,2(REF)  
t
t
VSWO1,2  
Gate driver enabled  
Gate driver disabled  
Gate driver enabled  
Overcurrent HRES without PMOS-TLD6098-2ES.vsdx  
Figure 22  
System behavior with RFPWM/FAULT(H) during overcurrent detection without PMOS as  
dimming/protection element  
With a resistor on FPWM/FAULT pin in RFPWM/FAULT(L) range, the channel reacts to an overcurrent by:  
Entering into the overcurrent state  
Disabling the NMOS gate driver and raises the voltage on PWMO1,2 pin to VPWMO1,2(OFF)  
As soon as (VFBH1,2 - VFBL1,2) < (VOC_200% - VOC_HYS) the NMOS gate driver is enabled again  
PWMO1,2 pin is again controlled by the dimming feature  
Exiting from the overcurrent state  
When the cumulative time in which the device is in overcurrent state reaches tOC in a time window of 8*tFAULT  
Raises the voltage of FPWM/FAULT1,2 pin at VFPWM/FAULT1,2(FAULT) for a time 8*tFAULT and then releases it  
to VFPWM/FAULT1,2(REF)  
Datasheet  
41  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
9 Protections and fault management  
V
FBH1-VFBL2  
8*tFAULT time window  
VOC_HYS  
VOC_200%  
VREF  
t
8*tFAULT  
+
VFPWM/FAULT1,2  
Cumulative time > tOC  
VFPWM/FAULT1,2(FAULT)  
VFPWM/FAULT1,2(REF)  
t
t
t
VPWMO1,2  
VPWMO1,2(OFF)  
VPWMO1,2(ON)  
VSWO1,2  
Gate driver enebled  
Gate driver disabled  
Gate driver enabled  
Overcurrent LRES with PMOS-TLD6098-2ES.vsdx  
Figure 23  
System behavior with RFPWM/FAULT(L) during overcurrent detection with PMOS as  
dimming/protection element  
V
FBH1,2-VFBL1,2  
VOC_200%  
VREF  
t
t
VOUT1,2  
VIN  
8*tFAULT  
VFPWM/FAULT1,2  
VFPWM/FAULT1,2(FAULT)  
VFPWM/FAULT1,2(REF)  
tOC  
t
t
VSWO1,2  
Gate driver enabled  
Gate driver disabled  
Gate driver enabled  
Overcurrent LRES without PMOS-TLD6098-2ES.vsdx  
Figure 24  
System behavior with RFPWM/FAULT(L) during overcurrent detection without PMOS as  
dimming/protection element  
During the overcurrent detection, the tS2G_RT filter time is bypassed. In case of simultaneous short to ground  
detection and overcurrent detection, the channel reacts to short to ground failure, cumulating the time in which  
Datasheet  
42  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
9 Protections and fault management  
the channel is in overcurrent state. When the cumulated time reaches the tOC, in a time window of 8*tFAULT, the  
overcurrent is detected.  
The fault is detected even the voltage on DC/PWMI1,2 pin is lower than VDC/PWMI1,2(OFF)  
.
9.5.1  
Electrical characteristics  
Table 19  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
280  
Max.  
Overcurrent detection VOC_200%  
threshold  
300  
mV  
mV  
ms  
VFBH1,2-VFBL1,2  
increasing  
PRQ-604  
PRQ-532  
PRQ-533  
1)  
Overcurrent detection VOC_HYS  
hysteresis  
15  
4
35  
1)  
Overcurrent detection tOC  
3.6  
4.4  
time  
1)  
1)  
Overcurrent fault time tFBH-FBL  
1.8  
2
2.2  
2
ms  
μs  
PRQ-555  
PRQ-538  
Reaction time during  
overcurrent detection  
tOC_200%  
1) Not subject to production test, specified by design  
9.6  
Overtemperature  
Thermal shutdown is an internal feature designed to prevent the device destruction and it is not intended for  
continuous use in normal operation.  
If the junction temperature reaches the overtemperature shutdown TJ(SD), the integrated thermal shutdown  
function turns off the gate drivers and internal linear voltage regulator.  
The junction temperature is checked each tFAULT period, and when it is cooled down to (TJ(SD)-TJ(SD_HYS)) the  
device will automatically restart with a soꢀ-start.  
The thermal shutdown operates on both the channels  
Datasheet  
43  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
9 Protections and fault management  
TJ  
TJ(SD)  
TJ(SD_HYS)  
t
VFPWM/FAULT1,2  
tfault  
tfault  
tfault  
tfault  
VFPWM/FAULT1,2(FAULT)  
VFPWM/FAULT1,2(REF)  
t
VIVCC  
VIVCC_TH_I  
t
VSWO1,2  
Gate driver  
enabled  
Gate driver enabled  
Gate driver disabled  
Gate driver enabled  
Gate driver disabled  
t
Overtemperatue-TLD6098-2ES.vsdx  
Figure 25  
Timing diagram during overtemperature protection  
9.6.1  
Electrical characteristics  
Table 20  
Electrical characteristics  
VIN = 8 V to 36 V; TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin;  
(unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
P-  
Number  
Min.  
160  
Max.  
190  
1)  
Overtemperature  
shutdown  
TJ(SD)  
175  
°C  
PRQ-336  
PRQ-337  
1)  
Overtemperature  
TJ(SD_HYS)  
10  
°C  
shutdown hysteresis  
1) Not subject to production test, specified by design  
Datasheet  
44  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
10 Application information  
10  
Application information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device  
VS  
L1,2  
D1,2  
RFB1,2  
MP1,2  
CBO  
LED1-1,2  
LED2-1,2  
IVCC  
IN  
M1,2  
SWO1,2  
IVCC  
CIVCC  
LED3-1,2  
LED4-1,2  
LED5-1,2  
LED6-1,2  
LED7-1,2  
LED8-1,2  
SWCS1,2  
FPWM/FAULT1,2  
RSWCS1,2  
RFAULT1,2  
FBH1,2  
FBL1,2  
FREQ/SYNC/SPREAD  
RFREQ  
IVCC  
RSETH1,2  
RVFBH1,2  
SET1,2  
VFB1,2  
IVCC  
RSETL1,2  
RVFBL1,2  
RDCH1,2  
DC/PWMI1,2  
COMP1,2  
PWMO1,2  
GND  
RDCL1,2  
CCOMP1-1,2  
RCOMP1,2  
CCOMP2-1,2  
TLD6098-2ES  
B2G-2ch.vsdx  
Figure 26  
Boost to battery application schematic  
Note:  
The figure applies whether looking at a single channel or both channels. The channels are identical  
and independent.  
Datasheet  
45  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
10 Application information  
LED4-1,2 LED3-1,2 LED2-1,2 LED1-1,2  
CBO2-1,2  
VS  
L1,2  
D1,2  
RFB1,2  
CBO1-1,2  
MP1,2  
IVCC  
IN  
M1,2  
SWO1,2  
IVCC  
CIVCC  
SWCS1,2  
FPWM/FAULT1,2  
RFAULT1,2  
RSWCS1,2  
FREQ/SYNC/SPREAD  
RFREQ  
IVCC  
FBH1,2  
FBL1,2  
RSETH1,2  
RVFBH1,2  
SET1,2  
IVCC  
RSETL1,2  
VFB1,2  
RVFBL1,2  
RDCH1,2  
DC/PWMI1,2  
COMP1,2  
RDCL1,2  
PWMO1,2  
GND  
CCOMP1-1,2  
CCOMP2-1,2  
RCOMP1,2  
TLD6098-2ES  
B2B-2ch.vsdx  
Figure 27  
Boost to battery application schematic  
Note:  
The figure applies whether looking at a single channel or both channels. The channels are identical  
and independent.  
Datasheet  
46  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
10 Application information  
VS  
CSEPIC1,2  
L1-1,2  
D1,2  
RFB1,2  
MP1,2  
CBO  
LED1-1,2  
LED2-1,2  
IVCC  
IN  
L2-1,2  
MN1,2  
SWO1,2  
IVCC  
CIVCC  
LED3-1,2  
LED4-1,2  
LED5-1,2  
LED6-1,2  
LED7-1,2  
LED8-1,2  
SWCS1,2  
FPWM/FAULT1,2  
RFAULT1,2  
RSWCS1,2  
FBH1,2  
FREQ/SYNC/SPREAD  
RFREQ  
IVCC  
FBL1,2  
RSETH1,2  
RVFBH1,2  
SET1,2  
VFB1,2  
IVCC  
RSETL1,2  
RVFBL1,2  
RDCH1,2  
DC/PWMI1,2  
COMP1,2  
PWMO1,2  
GND  
RDCL1,2  
CCOMP1-1,2  
RCOMP1,2  
CCOMP2-1,2  
TLD6098-2ES  
SEPIC-2ch.vsdx  
Figure 28  
SEPIC application schematic  
Note:  
The figure applies whether looking at a single channel or both channels. The channels are identical  
and independent.  
VS  
C1,2  
L1-1,2  
L2-1,2  
CBO  
ROVH1,2  
LED1-1,2  
LED2-1,2  
IVCC  
CIVCC  
D1,2  
IN  
MN1,2  
SWO1,2  
IVCC  
IVCC  
Q3-1,2  
LED3-1,2  
LED4-1,2  
LED5-1,2  
LED6-1,2  
LED7-1,2  
LED8-1,2  
SWCS1,2  
IVCC  
RCML1,2  
RCMR1,2  
FPWM/FAULT1,2  
RSWCS1,2  
RFAULT1,2  
Q1-1,2  
ROVL1,2  
Q2-1,2  
MP1,2  
VFB1,2  
FREQ/SYNC/SPREAD  
RPWMO1-1,2  
RPWMO2-1,2  
RFREQ  
IVCC  
RSETH1,2  
PWMO1,2  
FBL1,2  
MPWM1,2  
SET1,2  
IVCC  
RSETL1,2  
RFB1,2  
RDCH1,2  
FBH1,2  
GND  
DC/PWMI1,2  
COMP1,2  
RDCL1,2  
CCOMP1-1,2  
RCOMP1,2  
CCOMP2-1,2  
TLD6098-2ES  
Cuk-2ch.vsdx  
Figure 29  
Cuk application schematic  
Datasheet  
47  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
10 Application information  
Note:  
The figure applies whether looking at a single channel or both channels. The channels are identical  
and independent.  
VS  
L1,2  
D1,2  
CBO  
IVCC  
CIVCC  
IN  
M1,2  
SWO1,2  
IVCC  
RLOAD1,2  
SWCS1,2  
FPWM/FAULT1,2  
RSWCS1,2  
RFAULT1,2  
RVFBH1,2  
FREQ/SYNC/SPREAD  
RFREQ  
VFB1,2  
IVCC  
RVFBL1,2  
RSET1,2  
PWMO1,2  
SET1,2  
IVCC  
FBH1,2  
FBL1,2  
RENABLE1,2  
DC/PWMI1,2  
COMP1,2  
GND  
CCOMP1-1,2  
RCOMP1,2  
CCOMP2-1,2  
TLD6098-2ES  
B2G_CV-2ch.vsdx  
Figure 30  
Constant output voltage boost to ground DC-DC application schematic  
Note:  
The figure applies whether looking at a single channel or both channels. The channels are identical  
and independent.  
Datasheet  
48  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
11 Package  
11  
Package  
Figure 31  
Package dimensions PG-TSDSO-24  
Note:  
Green product (RoHS compliant) To meet the world-wide customer requirements for  
environmentally friendly products and to be compliant with government regulations the device is  
available as a green product. Green products are RoHS-Compliant (i.e. Pb-free finish on leads and  
suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Further information on packages https://www.infineon.com/packages  
Datasheet  
49  
Rev.1.10  
2021-09-30  
LITIXPower TLD6098-2ES  
Multitopology dual-channel DC-DC controller  
12 Revision history  
12  
Revision history  
Document Date of  
Description of changes  
version  
release  
Rev.1.10  
2021-09-30  
Editorial changes  
New application schematics  
Rev.1.00  
2021-04-16 Initial Datasheet  
Datasheet  
50  
Rev.1.10  
2021-09-30  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2021-09-30  
Published by  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
Infineon Technologies AG  
81726 Munich, Germany  
a written document signed by  
©
2021 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-xem1632149255298  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

TLD6S10AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S11AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S12AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S13AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S14AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S15AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S16AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S17AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S18AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S20AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S22AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC

TLD6S24AH

4600W, 10V – 43V Surface Mount Transient Voltage Suppressor
TSC