PBL38621/2SOS [INFINEON]

SLIC, Bipolar, PDSO24, SOIC-24;
PBL38621/2SOS
型号: PBL38621/2SOS
厂家: Infineon    Infineon
描述:

SLIC, Bipolar, PDSO24, SOIC-24

电信 光电二极管 电信集成电路
文件: 总46页 (文件大小:861K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, DS1, June 2003  
FlexiSLICTM  
Subscriber Line Interface Circuit  
PBL 38621/2, Version 2  
Wired Communications  
N e v e r s t o p t h i n k i n g .  
FlexiSLIC  
Revision History:  
Previous Version:  
2003-06-25  
DS1  
Page  
Subjects (major changes since last revision)  
ABM®, ACE®, AOP®, ARCOFI®, ASM®, ASP®, DigiTape®, DuSLIC®, EPIC®, ELIC®,  
FALC®, GEMINAX®, IDEC®, INCA®, IOM®, IPAT®-2, ISAC®, ITAC®, IWE®, IWORX®,  
MUSAC®, MuSLIC®, OCTAT®, OptiPort®, POTSWIRE®, QUAT®, QuadFALC®,  
SCOUT®, SICAT®, SICOFI®, SIDEC®, SLICOFI®, SMINT®, SOCRATES®, VINETIC®,  
10BaseV®, 10BaseVX® are registered trademarks of Infineon Technologies AG.  
10BaseS™, EasyPort™, VDSLite™ are trademarks of Infineon Technologies AG.  
Microsoft® is a registered trademark of Microsoft Corporation, Linux® of Linus Torvalds,  
Visio® of Visio Corporation, and FrameMaker® of Adobe Systems Incorporated.  
The information in this document is subject to change without notice.  
Edition 2003-06-25  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
81669 München, Germany  
© Infineon Technologies AG 2003.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
FlexiSLIC  
PBL 38621/2  
Table of Contents  
Page  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.1  
1.2  
1.3  
1.4  
2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1  
Characterictics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4
Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Recommended Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Design Supporting Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.1  
4.2  
5
Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Two-Wire Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Two-Wire to Four-Wire Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Four-Wire to Two-Wire Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Four-Wire to Four-Wire Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Hybrid Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Longitudinal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Capacitors CTC and CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
AC - DC Separation Capacitor, CHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
High-pass Transmit Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Capacitor CLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
5.10  
5.11  
6
Battery Feed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
CODEC Receive Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Programmable Overhead Voltage (POV) . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Analog Temperature Guard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
6.1  
6.2  
6.3  
7
Loop Monitoring Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Loop Current Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Ground Key Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Ring Trip Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.1  
7.2  
7.3  
8
Relay Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
9
Control Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Open Circuit (C3, C2, C1 = 0, 0, 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Ringing (C3, C2, C1 = 0, 0, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Active States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
9.1  
9.2  
9.3  
10  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Data Sheet  
3
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Table of Contents  
Page  
10.1  
10.2  
Overvoltage Protection - General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Secondary Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
11  
12  
Power-Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Printed Circuit Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
13  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
24-pin SSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
24-pin SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
28-pin PLCC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
13.1  
13.2  
13.3  
Data Sheet  
4
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
List of Figures  
Page  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Configuration, 24L-SOIC, 24L-SSOP and 28L-PLCC (top view). . 10  
Overhead Level, VTRO, Two-Wire Port. . . . . . . . . . . . . . . . . . . . . . . . . 23  
Longit. to Metallic, BLME and Longit. to Four-Wire, BLFE Balance. . . . . 24  
Metallic to Longit., BMLE and Four-Wire to Longit. Balance, BFLE . . . . . 24  
Overhead Level, VTXO, Four-Wire Transmit Port . . . . . . . . . . . . . . . . . 24  
Frequency Response, Insertion Loss, Gain Tracking . . . . . . . . . . . . . 25  
Application Example of PBL 38621/2 with CODEC/filter . . . . . . . . . . . 26  
Simplified AC Model of PBL 38621/2. . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Hybrid Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Codec Receive Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Battery Feed Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Programmable Overhead Voltage (POV). RL= 600 or Infinitive . . . . 38  
P-SSOP-24-1 (Plastic Shrink Small Outline Package). . . . . . . . . . . . . 43  
P-DSO-24-1 (Plastic Dual Small Outline Package) . . . . . . . . . . . . . . . 44  
P-LCC-28-2 (Plastic Leaded Chip Carrier Package) . . . . . . . . . . . . . . 45  
Data Sheet  
5
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
List of Tables  
Page  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SLIC Operating States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Resistors (values according to IEC E96 series). . . . . . . . . . . . . . . . . . 27  
Capacitors (values according to IEC E96 series) . . . . . . . . . . . . . . . . 27  
Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Feeding Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Battery Overhead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Internal bias current of RSN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Data Sheet  
6
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Subscriber Line Interface Circuit  
Version 2  
1
Overview  
1.1  
Features  
• 24-pin SSOP package  
• High and low battery with automatic switching  
• 60 mW on-hook power dissipation in active state  
• On-hook transmission  
• Long loop battery feed tracks Vbat for maximum line  
voltage  
• Selectable transmit gain (1x or 0.5x)  
• No power-up sequence  
• 44 V open loop voltage @ -48 V battery feed  
• Full longitudinal current capability during  
on-hook state  
• Analog overtemperature protection permits transmis-  
sion while the protection circuits is active  
• Polarity reversal  
P-DSO-24-1, -3  
• Integrated Ring Relay driver  
• Ground key detector  
• Programmable signal headroom  
• -40 oC to +85 oC ambient temperature range  
1.2  
Typical Applications  
• Basic functionality Central Office Line card  
• Private branch exchange (PABX)  
• Digital added mainline (DAML)  
• Terminal adapters (CPE)  
• ISDN terminal adapters  
• Other shortloop applications  
Type  
Package  
PBL 38621/2 SH  
PBL 38621/2 SO  
PBL 38621/2 QN  
P-SSOP-24-1  
P-DSO-24-1  
P-LCC-28-2  
Data Sheet  
7
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Overview  
1.3  
Description  
The PBL 38621/2 Subscriber Line Interface Circuit (SLIC) is a 90 V bipolar integrated  
circuit for use in PBX, Terminal adapters and other telecommunications equipment. The  
PBL 38621/2 SLIC has been optimized for low total line interface cost and for a high  
degree of flexibility in different applications.  
The PBL 38621/2 SLIC has constant current feed, programmable to maximum 30 mA.  
A second lower battery voltage may be connected to the device to reduce short loop  
power dissipation. The SLIC automatically switches between the two battery supply  
voltages without need for external components or external control.  
The SLIC incorporates loop current, ground key and ring-trip detection functions. The  
PBL 38621/2 is compatible with loop start signalling.  
Two- to four-wire and four- to two-wire voice frequency (VF) signal conversion is  
accomplished by the SLIC in conjunction with either a conventional CODEC/filter or with  
a programmable CODEC/filter, for example SiCoFi PEB 2466. The programmable two-  
wire impedance, complex or real, is set by a simple external network.  
Longitudinal voltages are suppressed by a feedback loop in the SLIC and the  
longitudinal balance specifications meet Bellcore TR909 requirements.  
The PBL 38621/2 SLIC package options are 24-pin SSOP, 24-pin SOIC or 28-pin PLCC.  
Data Sheet  
8
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Overview  
1.4  
Block Diagram  
VCC  
AGND  
DT  
DR  
Ring Trip  
Comparator  
Ring Relay  
Driver  
RRLY  
C1  
C2  
C3  
Input  
Decoder  
and  
Ground Key  
Detector  
Control  
TIPX  
HP  
DET  
Line Feed  
Controller  
and  
POV  
PSG  
PLC  
LP  
Longitudinal  
Signal  
Two-wire  
Interface  
Suppression  
RINGX  
Off - Hook  
Detector  
PLD  
REF  
RSN  
VTX  
VF signal  
Transmission  
BGND  
VBAT  
PTG  
VBAT2  
bl_sch_21  
Figure 1  
Block Diagram  
Data Sheet  
9
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Pin Configuration  
2
Pin Configuration  
PTG 1  
RRLY 2  
HP 3  
24 VTX  
23 AGND  
22 RSN  
21 REF  
20 PLC  
4
3
2
1 28 27 26  
RINGX  
4
RINGX  
BGND  
TIPX  
5
6
7
8
9
25 NC  
BGND 5  
TIPX 6  
VBAT 7  
VBAT2 8  
PSG 9  
LP 10  
24 REF  
PLC  
23  
24-pin SOIC  
and  
19 POV  
18 PLD  
17 VCC  
16 DET  
15 C1  
28-pin PLCC  
VBAT  
22 POV  
21 PLD  
20 VCC  
19 NC  
24- pin SSOP  
VBAT2  
PSG 10  
NC 11  
12 13 14 15 16 17 18  
DT 11  
14 C2  
DR 12  
13 C3  
pinout_21  
Figure 2  
Table 1  
Pin Configuration, 24L-SOIC, 24L-SSOP and 28L-PLCC (top view).  
Pin Definition and Functions  
P-DSO  
P-SSOP  
Pin No.  
P-LCC  
Name  
I/O Function  
Pin No.  
1
1
PTG  
Programmable transmit gain. Left open  
transmit gain = 0.0 dB, connected to AGND  
transmit gain = -6.02 dB.  
2
3
2
3
RRLY  
HP  
O
Ring relay driver output. The relay coil may  
be connected to maximum +14 V.  
Connection for high pass filter capacitor, CHP.  
Other end of CHP connects to TIPX.  
Data Sheet  
10  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Pin Configuration  
Table 1  
Pin Definition and Functions (cont’d)  
P-DSO  
P-SSOP  
Pin No.  
P-LCC  
Name  
I/O Function  
Pin No.  
4
5
RINGX  
The RINGX pin connects to the ring lead of  
the two-wire interface via over voltage  
protection components and ring relay (and  
optional test relay).  
5
6
6
7
BGND  
TIPX  
Battery ground, should be tied together with  
AGND.  
The TIPX pin connects to the tip lead of the  
two-wire interface via over voltage protection  
components and ring relay (and optional test  
relay).  
7
8
9
8
VBAT  
VBAT2  
PSG  
Battery supply voltage. Negative with respect  
to GND.  
9
An optional second (2) Battery Voltage  
connects to this pin via an external diode.  
Programmable saturation guard. The  
resistive part of the DC feed characteristics is  
not used for PBL 38621/2, RSG = 0 Ω  
10  
10  
11  
12  
13  
LP  
DT  
I
Connection for low pass filter capacitor, CLP.  
Other end of CLP connects to VBAT.  
Input to the ring trip comparator. With DR  
more positive than DT the detector output,  
DET, is at logic level low, indicating off-hook  
condition. The external ring trip network  
connects to this input.  
12  
14  
DS  
I
Input to the ring trip comparator. With DR  
more positive than DT the detector output,  
DET, is at logic level low, indicating off-hook  
condition. The external ring trip network  
connects to this input.  
13  
14  
15  
15  
16  
17  
C3  
C2  
C1  
I
I
I
C1, C2, C3 are digital inputs, which control  
the SLIC operating states. Refer to Table 2  
for details.  
Data Sheet  
11  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Pin Configuration  
Table 1  
Pin Definition and Functions (cont’d)  
P-DSO  
P-SSOP  
Pin No.  
P-LCC  
Name  
I/O Function  
Pin No.  
16  
18  
DET  
O
Detector output. Active low when indicating  
loop or ring-trip detection, active high when  
indicating ground key detection.  
17  
18  
20  
21  
VCC  
PLD  
+5 V power supply.  
Programmable loop detector threshold. The  
loop detection threshold is programmed by a  
resistor connected from this pin to AGND.  
19  
22  
POV  
Programmable overhead voltage. If pin is left  
open: The overhead voltage is internally set  
to min 1.0 V in off- and on-hook. If a resistor  
is connected between this pin and AGND:  
The overhead voltage can be set to higher  
values.  
20  
23  
PLC  
Programmable line current, the constant part  
of the DC feed characteristic is programmed  
by a resistor connected from this pin to  
AGND.  
21  
22  
24  
26  
REF  
RSN  
A reference, 49.9 k, resistor should be  
connected from this pin to AGND.  
Receive summing node. 200 times the AC  
current flowing into this pin equals the  
metallic (transversal) AC current flowing from  
RINGX to TIPX. Programming networks for  
two-wire impedance and receive gain  
connect to the receive node. A resistor should  
be connected from this pin to AGND.  
23  
27  
AGND  
Analog ground, should be tied together with  
BGND.  
Data Sheet  
12  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Pin Configuration  
Table 1  
Pin Definition and Functions (cont’d)  
P-DSO  
P-SSOP  
Pin No.  
P-LCC  
Name  
I/O Function  
Pin No.  
24  
28  
VTX  
O
Transmit vf output. The AC voltage difference  
between TIPX and RINGX, the AC metallic  
voltage, is reproduced as an unbalanced  
GND referenced signal at VTX with a gain of  
one (or one half, see pin PTG). The two-wire  
impedance programming network connects  
between VTX and RSN.  
-
4, 11, 19, NC  
25  
Not Connected.  
Table 2  
State  
SLIC Operating States  
C3  
C2  
C1  
SLIC Operating Active Detector  
State  
(DET Response)  
0
1
2
0
0
0
Open circuit  
No active detector  
(DET is set high)  
0
0
1
Ringing  
Active  
Ring-trip detector  
(DET active low)  
0
1
0
Loop detector  
(DET active low)  
3
4
5
0
1
1
1
0
0
1
0
1
Not applicable  
Not applicable  
Active  
Ground key detector  
(DET active high)  
6
7
1
1
1
1
0
1
Active reverse  
Active reverse  
Loop detector  
(DET active low)  
Ground key detector  
(DET active high)  
Data Sheet  
13  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Electrical Characteristics  
3
Electrical Characteristics  
Table 3  
Absolute Maximum Ratings  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit  
Note/Test  
Condition  
Temperature, Humidity  
Storage temperature range TStg  
-55  
-40  
+150 °C  
+110 °C  
Operating temperature  
TAmb  
range  
Operating junction  
temperature range1)  
TJ  
-40  
+140 °C  
Power Supply (-40 °C TAmb +85 °C)  
V
V
CC with respect to A/BGND VCC  
BAT2 with respect to  
-0.4  
VBAT  
6.5  
0.4  
V
V
VBAT2  
A/BGND  
V
BAT with respect to  
VBAT  
VBAT  
-75  
-80  
0.4  
0.4  
V
V
A/BGND, continuous  
VBAT with respect to  
A/BGND, 10 ms  
Power Dissipation  
Continuous power  
dissipation  
Ground  
PD  
1.5  
0.3  
W
V
T
Amb +85 °C  
Voltage between AGND and VG  
-0.3  
BGND  
Relay Driver  
Ring relay supply voltage  
BGN  
V
D+14  
Ring Trip Comparator  
Input voltage  
VDT,  
VBAT  
AGN  
D
5
V
VDR  
Input current  
IDT, IDR -5  
mA  
Digital Inputs, Outputs (C1, C2, C3, DET)  
Input voltage  
Output voltage  
VID  
VOD  
-0.4  
-0.4  
VCC  
VCC  
V
V
Data Sheet  
14  
DS1, 2003-06-25  
 
FlexiSLIC  
PBL 38621/2  
Electrical Characteristics  
Table 3  
Absolute Maximum Ratings (cont’d)  
Symbol Values  
Min. Typ. Max.  
TIPX and RINGX Terminals (-40 °C TAmb +85 °C, VBAT = -50 V)  
Parameter  
Unit  
Note/Test  
Condition  
TIPX or RINGX current  
ITIPX  
,
-100  
100  
mA  
IRINGX  
TIPX or RINGX voltage,  
continuous (referenced to  
AGND)2)  
VTA, VRA -80  
2
V
TIPX or RINGX2)  
VTA, VRA VBAT  
5
V
pulse <  
- 10  
10 ms,  
tRep > 10 s  
TIPX or RINGX2)  
TIP or RING2)3)  
VTA, VRA VBAT  
10  
15  
V
V
pulse < 1 µs,  
- 25  
tRep > 10 s  
VTA, VRA VBAT  
pulse <  
- 35  
250 ns,  
tRep > 10 s  
1) The circuit includes thermal protection. Operation above max. junction temperature may degrade device  
reliability.  
2) With the diodes DVB and DVB2 included, see Figure 8.  
3) RF1 and RF2 > 20 is also required. Pulse is supplied to RING and TIP outside RF1 and RF2.  
Attention: Stresses above the max. values listed here may cause permanent  
damage to the device. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Maximum ratings are absolute ratings; exceeding only one of these  
values may cause irreversible damage to the integrated circuit.  
Table 4  
Operating Range  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
Unit Note/Test  
Condition  
Ambient temperature  
TAmb  
VCC  
VBAT  
-40  
4.75  
-58  
+85 °C  
V
V
CC with respect to AGND  
BAT with respect to AGND  
5.25  
-8  
V
V
AGND with respect to BGND VG  
-100 –  
100 mV  
Data Sheet  
15  
DS1, 2003-06-25  
 
FlexiSLIC  
PBL 38621/2  
Electrical Characteristics  
3.1  
Characterictics  
The specification is made with following setup: -40 °C TAmb +85 °C, PTG = open (see  
pin description), VCC = +5 V ±5%, VBAT = -58 V to -40 V, VBAT2 = -17 V, RLC = 38.3 k,  
IL = 22 mA, RL = 600 , RF1 = RF2 = 0, RREF = 49.9 k, CHP = 47 nF, CLP = 0.15 µF, RT =  
120 k, RSG = 0 k, RRX = 60 k, RR = 52.3 k, ROV = infinite.  
Current definition: current is positive if flowing into a pin unless stated otherwise.  
Table 5  
Parameter  
Characteristics  
Symbol  
Values  
Typ. Max.  
Unit  
Note/Test  
Condition  
Min.  
Two-Wire Port  
Overhead level1) ,  
VTRO  
1.0  
1.0  
VPeak  
VPeak  
Active, 1% THD  
On-Hook,  
R
OV = infinite  
ILDC 5 mA  
see Figure 3  
Input impedance2)  
ZTRX  
ZT/  
200  
Longitudinal  
impedance  
ZLOT  
,
20  
35  
/wire 0 < f < 100 Hz  
ZLOR  
Longitudinal current  
ILOT  
,
10  
53  
mArms/ Active  
wire  
limit  
ILOR  
Longitudinal to metallic BLM  
balance (IEEE  
dB  
dB  
dB  
0.2 kHz f  
1.0 kHz  
1.0 kHz < f  
< 3.4 kHz  
standard 455-1984)  
53  
53  
Reverse polarity  
0.2 kHz < f  
< 3.4 kHz  
Longitudinal to metallic BLME  
53  
53  
53  
75  
70  
68  
dB  
dB  
dB  
0.2 kHz f  
balance  
1.0 kHz  
BLME = 20 ×  
1.0 kHz < f  
log|ELO/VTR|,  
see Figure 4  
< 3.4 kHz  
Reverse polarity  
0.2 kHz < f  
< 3.4 kHz  
Data Sheet  
16  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Electrical Characteristics  
Table 5  
Characteristics (cont’d)  
Parameter  
Symbol  
Min.  
Values  
Typ. Max.  
Unit  
Note/Test  
Condition  
Longitudinal to four-  
wire balance  
BLFE  
53  
53  
53  
75  
70  
68  
dB  
dB  
dB  
0.2 kHz f  
1.0 kHz  
B
LFE = 20 ×  
1.0 kHz < f  
log|ELO/VTX|,  
see Figure 4  
< 3.4 kHz  
Reverse polarity  
0.2 kHz < f  
< 3.4 kHz  
Metallic to longitudinal BMLE  
40  
50  
dB  
0.2 kHz < f  
balance  
< 3.4 kHz  
BMLE = 20 ×  
log|VTR/VLO|,  
ERX = 0 V, see  
Figure 5  
Four-wire to  
BFLE  
40  
50  
dB  
0.2 kHz < f  
longitudinal balance  
< 3.4 kHz  
B
FLE = 20 ×  
log|ERX/VLO|,  
see Figure 5  
Two-wire return loss3)  
r
27  
20  
35  
dB  
dB  
0.2 kHz < f  
< 1.0kHz  
Z
TRX + ZL  
TRX ZL  
------------------------  
r = 20 × log  
22  
1.0 kHz < f  
Z
< 3.4 kHz  
TIPX idle voltage  
RINGX idle voltage  
VTI  
VRI  
-1.1  
V
V
Active, IL = 0 mA  
Active, IL = 0 mA  
V
BAT+ –  
2.5  
Open loop voltage  
VTR  
V
BAT+ –  
V
Active, IL = 0 mA  
3.6  
Four-Wire Transmit Port (VTX)  
Overhead level4),  
Load imp. > 20 kΩ  
1% THD  
VTXO  
1.0  
1.0  
VPeak  
VPeak  
On-Hook, IL  
5 mA  
see Figure 6  
Output offset voltage  
VTX  
-100  
100  
mV  
Data Sheet  
17  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Electrical Characteristics  
Table 5  
Characteristics (cont’d)  
Parameter  
Symbol  
Min.  
Values  
Typ. Max.  
Unit  
Note/Test  
Condition  
Output impedance  
ZTX  
15  
50  
0.2 kHz < f  
< 3.4 kHz  
Four-Wire Receive Port (receive summing node = RSN)  
RSN DC voltage  
RSN impedance  
VRSNdc 1.15  
1.25  
8
1.35  
20  
V
IRSN = -55 µA  
0.2 kHz < f  
< 3.4 kHz  
RSN current (IRSN ) to αRSN  
metallic loop current  
(IL) gain  
200  
ratio  
0.3 kHz < f  
< 3.4 kHz  
Frequency Response  
Two-wire to four-wire, g2-4  
relative to 0 dBm,  
-0.20  
-1.0  
0.10  
0.1  
dB  
dB  
dB  
0.3 kHz < f  
< 3.4 kHz  
1.0 kHz, ERX = 0 V,  
see Figure 7  
f = 8 kHz, 12 kHz,  
16 kHz  
Four-wire to two-wire, g4-2  
relative to 0 dBm,  
1.0 kHz, EL = 0 V,  
see Figure 7  
-0.2  
0.1  
0.3 kHz < f  
< 3.4 kHz  
f = 8 kHz, 12 kHz  
f = 16 kHz  
0.3 kHz < f  
< 3.4 kHz  
-1.0  
-2.0  
-0.2  
0
0
0.1  
dB  
dB  
dB  
Four-wire to four-wire, g4-4  
relative to 0 dBm,  
1.0 kHz, EL = 0 V,  
see Figure 7  
Insertion Loss  
Two-wire to four-wire5), G2-4  
-0.2  
0.2  
dB  
ERX = 0 V,  
G
2-4 = 20 ×  
PTG = Open  
see Figure 7  
log|VTX/VTR|  
0 dBm, 1.0 kHz  
-6.22 -6.02 -5.82 dB  
-0.2  
PTG = AGND  
0 dBm, 1.0 kHz  
Four-wire to two-wire6), G4-2  
0.2  
dB  
G
4-2 = 20 ×  
log|VTR/ERX|,  
EL = 0 V, see Figure 7  
Data Sheet  
18  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Electrical Characteristics  
Table 5  
Characteristics (cont’d)  
Parameter  
Symbol  
Min.  
Values  
Typ. Max.  
Unit  
Note/Test  
Condition  
Gain Tracking  
Two-wire to four-wire7),  
Ref. -10 dBm, 1.0 kHz,  
see Figure 7  
-0.1  
-0.2  
0.1  
0.2  
dB  
dB  
-40 dBm to  
+0 dBm  
-55 dBm to  
-40 dBm  
Four-wire to two-wire,  
Ref. -10 dBm, 1.0 kHz,  
see Figure 7  
-0.1  
-0.2  
0.1  
0.2  
dB  
dB  
-40 dBm to  
+0 dBm  
-55 dBm to  
-40 dBm  
Noise  
Idle channel noise at  
12  
dBrnC C-message  
weighting  
two-wire port8)  
(TIPX-RINGX) or four-  
wire (VTX) output  
-78  
dBmp Psophometrical  
weighting  
Harmonic Distortion  
Two-wire to four-wire,  
-67  
-67  
-50  
-50  
dB  
dB  
0 dBm  
see Figure 7  
0.3 kHz < f <  
3.4 kHz  
Four-wire to two-wire  
Battery Feed Characteristics  
Constant loop current, ILProg  
RLC in kΩ  
0.92 × ILProg 1.08 × mA  
1000  
ILProg  
ILProg  
ILProg = ----------- 4, 0  
RLC  
see Figure 12  
I
LProg @ 0.95 × ILProg 1.05 × mA  
1000  
30 mA ILProg  
ILProg  
ILProg = ----------- 4, 2  
RLC  
I
LProg @ 0.94 × ILProg 1.06 × mA  
1000  
18 mA ILProg  
ILProg  
ILProg = ----------- 3, 9  
RLC  
RL = 0 Ω  
Open circuit loop  
current  
ILOC  
-100  
0
100  
µA  
Loop Detector  
Data Sheet  
19  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Electrical Characteristics  
Table 5  
Characteristics (cont’d)  
Parameter  
Symbol  
Min.  
Values  
Typ. Max.  
Unit  
Note/Test  
Condition  
Programmable  
threshold,  
ILTh  
0.85 × ILTh  
ILTh  
1.15 × mA  
ILTh  
RLD in k,  
7 mA ILTh  
I
LTh = 500/RLD  
Ground Key Detector  
Ground key detector  
threshold  
10  
16  
22  
mA  
ITIPX and IRINGX  
difference to  
trigger ground key  
detector.  
Ring Trip Comparator  
Offset voltage  
VDTDR -20  
0
20  
mV  
Source resistance,  
RS = 0 Ω  
Input bias current  
IB  
-200  
-20  
200  
-1  
nA  
V
IB=(IDT +IDR)/2  
Input common mode  
VDT, VDR VBAT  
range  
+1  
Ring Relay Driver  
Saturation voltage  
VOL  
ILK  
0.2  
0.5  
10  
V
µA  
IOL = 50 mA  
VOH = 12 V  
Off state leakage  
current  
Digital Inputs (C1, C2, C3)  
Input low voltage  
Input high voltage  
Input low current  
Input high current  
VIL  
VIH  
IIL  
0
2.5  
0.5  
VCC  
-50  
50  
V
V
µA  
µA  
VIL = 0.5 V  
VIH = 2.5 V  
IIH  
Data Sheet  
20  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Electrical Characteristics  
Table 5  
Characteristics (cont’d)  
Parameter  
Symbol  
Min.  
Values  
Typ. Max.  
Unit  
Note/Test  
Condition  
Detector Output (DET)  
Output low voltage  
VOL  
15  
0.7  
V
kΩ  
IOL = 0.5 mA  
Internal pull-up resistor  
to VCC  
Power Dissipation (VBAT -48 V, VBAT2 = -17 V)  
Power Dissipation  
Power Dissipation  
P1  
P2  
10  
60  
15  
80  
mW  
mW  
Open circuit  
Active (On-hook)  
Long current =  
0 mA  
Power Dissipation  
Power Dissipation  
P3  
P4  
290  
145  
mW  
mW  
Active (Off-hook)  
RL = 300 Ω  
Active (Off-hook)  
RL = 500 Ω  
Power Supply Currents (VBAT = -48 V)  
VCC current  
VBAT current  
VCC current  
ICC  
IBAT  
ICC  
-0.1  
1.2  
-0.05  
2.8  
2.0  
4.0  
mA  
mA  
mA  
Open circuit  
Open circuit  
Active, On-hook,  
Long current =  
0 mA  
VBAT current  
IBAT  
-1.5  
-1.0  
mA  
Active, On-hook,  
Long current =  
0 mA  
Power Supply Rejection Ratios  
V
CC to 2- or 4-wire port  
30  
40  
36  
42  
60  
45  
dB  
dB  
dB  
Active, f = 1 kHz,  
Vn = 100 mV  
V
BAT2 to 2- or 4-wire  
Active, f = 1 kHz,  
port  
Vn = 100 mV  
VBAT to 2- or 4-wire port  
Active, f = 1 kHz,  
Vn = 100 mV  
Data Sheet  
21  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Electrical Characteristics  
Table 5  
Characteristics (cont’d)  
Parameter  
Symbol  
Min.  
Values  
Typ. Max.  
Unit  
Note/Test  
Condition  
Temperature Guard  
Junction threshold  
temperature  
TJG  
145  
°C  
Thermal Resistance  
24-pin SSOP  
Θ
55  
66.9  
°C/W  
JP24SSOP  
Rth, jA  
°C/W P-SSOP-24-1,  
4-layer PCB;  
Junction to  
ambient thermal  
resistance in  
JEDEC still air  
chamber  
24-pin SOIC  
28-pin PLCC  
Θ
43  
80.2  
°C/W  
JP24SOIC  
Rth, jA  
°C/W P-DSO-24-1-3,  
4-layer PCB;  
Junction to  
ambient thermal  
resistance in  
JEDEC still air  
chamber  
Θ
39  
50.4  
°C/W  
JP28PLCC  
Rth, jA  
°C/W P-LCC-28-2,  
4-layer PCB;  
Junction to  
ambient thermal  
resistance in  
JEDEC still air  
chamber  
1) The overhead level can be adjusted with the resistor ROV for higher levels, for example min 3.1 VPeak, and is  
specified at the two-wire port with the signal source at the four-wire receive port.  
Data Sheet  
22  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Electrical Characteristics  
2) The two-wire impedance is programmable by selection of external component values according to:  
Z
TRX = ZT/(|G2-4S × αRSN|) where:  
Z
TRX = impedance between the TIPX and RINGX terminals  
ZT = programming network between the VTX and RSN terminals  
G
2-4S = transmit gain, nominally = 1 (or 0.5, see pin PTG)  
αRSN = receive current gain, nominally 200 (current defined as positive flowing into the receive summing node,  
RSN, and when flowing from ring to tip).  
3) Higher return loss values can be achieved by adding a reactive component to RT, the two-wire terminating  
impedance programming resistance, for example by dividing RT into two equal halves and connecting a  
capacitor from the common point to ground.  
4) The overhead level can be adjusted with the resistor ROV for higher levels, for example min 3.1 VPeak, and is  
specified at the four-wire transmit port, (VTX) with the signal source at the two-wire port. Note that the gain  
from the two-wire port to the four-wire transmit port is G2-4S = 1 (or 0.5, see pin PTG).  
5) Pin PTG = Open sets transmit gain to nom. 0.0 dB.  
Pin PTG = AGND sets transmit gain to nom. -6.02 dB  
Secondary resistor RF impact the insertion loss as explained in the text, Chapter 5. The specified insertion loss  
is for RF = 0.  
6) The specified insertion loss tolerance does not include errors caused by external components.  
7) The level is specified at the two-wire port.  
8) The two-wire idle noise is specified with the port terminated in 600 (RL), and with the four-wire receive port  
grounded (ERX = 0; see Figure 7). The four-wire idle noise at VTX is specified with the two-wire port terminated  
in 600 (RL). The noise specification is referenced to a 600 two-wire impedance level at VTX. The four-wire  
receive port is grounded (ERX = 0).  
C
TIPX  
VTX  
RSN  
V TRO  
ILDC  
R L  
PBL 38621  
R T  
ERX  
RINGX  
R RX  
Fig3_21  
Figure 3  
Overhead Level, VTRO, Two-Wire Port  
1/ωC << RL, RL = 600 , RT = 120 k, RRX = 60 kΩ  
Data Sheet  
23  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Electrical Characteristics  
TIPX  
VTX  
RSN  
E LO  
C
R LT  
R LR  
VTR  
PBL 38621  
R T  
VTX  
RINGX  
R RX  
Fig4_21  
Figure 4  
Longit. to Metallic, BLME and Longit. to Four-Wire, BLFE Balance  
1/ωC << 150 , RLT = RLR = RL /2 = 300 , RT = 120 k, RRX = 60 kΩ  
TIPX  
VTX  
RSN  
C
R LT  
R LR  
VTR  
PBL 38621  
R T  
ERX  
V LO  
RINGX  
R RX  
Fig5_21  
Figure 5  
Metallic to Longit., BMLE and Four-Wire to Longit. Balance, BFLE  
1/ωC << 150 , RLT = RLR = RL /2 = 300 , RT = 120 k, RRX = 60 kΩ  
C
TIPX  
VTX  
RSN  
R L  
I LDC  
PBL 38621  
R T  
V TXO  
E L  
RI NGX  
R RX  
Fig6_21  
Figure 6  
Overhead Level, VTXO, Four-Wire Transmit Port  
1/ωC << RL, RL = 600 , RT = 120 k, RRX = 60 kΩ  
Data Sheet  
24  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Electrical Characteristics  
C
TIPX  
VTX  
RSN  
R L  
V TR  
I LDC  
PBL 38621  
R T  
V TX  
E RX  
E L  
RI NGX  
R RX  
Fig7_21  
Figure 7  
Frequency Response, Insertion Loss, Gain Tracking  
1/ωC << RL, RL = 600 , RT = 120 k, RRX = 60 kΩ  
Data Sheet  
25  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Application Schematic  
4
Application Schematic  
sch_21  
Figure 8  
Application Example of PBL 38621/2 with CODEC/filter  
Data Sheet  
26  
DS1, 2003-06-25  
 
FlexiSLIC  
PBL 38621/2  
Application Schematic  
4.1  
Recommended Components  
Table 6  
Resistor  
RSG  
RLD  
ROV  
RLC  
RREF  
RR  
RT  
RRX  
RTX  
RB  
RFB  
R1  
Resistors (values according to IEC E96 series)  
Value  
Tolerance Specification  
0 Ω  
49.9 kΩ  
User programmable  
38.3 kΩ  
49.9 kΩ  
64.9 kΩ  
105 kΩ  
52.3 kΩ  
24.9 kΩ  
22.1 kΩ  
depending on codec  
604 kΩ  
604 kΩ  
249 kΩ  
280 kΩ  
330 Ω  
Line resistor, 40 Ω  
1%  
1%  
1/10 W  
1/10 W  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
5%  
1%  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
2 W  
R2  
R3  
R4  
RRT  
RF1, RF2  
Table 7  
Capacitor Value  
Capacitors (values according to IEC E96 series)  
Tolerance Specification  
CVB  
CVB2  
CTC  
CRC  
CHP  
CVCC  
CLP  
100 nF  
150 nF  
2.2 nF  
2.2 nF  
47 nF  
100 nF  
150 nF  
100 nF  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
100 V  
100 V  
100 V  
100 V  
100 V  
10 V  
100 V  
10 V  
CTX  
Data Sheet  
27  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Application Schematic  
Table 7  
CGG  
C1  
Capacitors (values according to IEC E96 series) (cont’d)  
220 nF  
330 nF  
330 nF  
10%  
10%  
10%  
100 V  
63 V  
63 V  
C2  
Table 8  
Diode  
DVB  
DVB2  
DBB  
Diodes  
Value  
1N4448  
1N4448  
1N4448  
1N44481)  
Tolerance Specification  
DHP  
1) It is required to connect DHP beween terminals HP and ground if CHP > 47 nF  
OVP  
Secondary protection (Bournes TISP PBL2). The ground terminals of the secondary  
protection should be connected to the common ground on the Printed Board Assembly  
with a track as short and wide as possible, preferably to a ground plane.  
4.2  
Design Supporting Tools  
The following supporting tools are available for the PBL 38621/2:  
• Test board TB 208 for PLCC package  
• Test board TB 208SSOP for SSOP package  
• Pspice model for PBL 38621/2  
Data Sheet  
28  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Transmission  
5
Transmission  
5.1  
General  
A simplified AC model of the transmission circuit is shown in Figure 9.  
TIP  
RF  
TIPX  
HP  
IL  
+
ZL  
+
_
VTR  
ZTR  
VTX  
RHP  
+
+
VTX  
EL  
G2-4S  
_
_
IL  
_
ZT  
RING RF  
RINGX  
IL/  
ZRX  
RSN  
+
RSN  
PBL 38621  
VRX  
_
ac_sch_21  
Figure 9  
Simplified AC Model of PBL 38621/2  
Circuit analysis from the AC model in Figure 9 yields following equations:  
VTX  
VTR = --------------- + IL × 2RF  
G2 4S  
[1]  
IL  
VTX VRX  
------------ = --------- + ---------  
[2]  
[3]  
αRSN  
ZT ZRX  
VTR = EL IL × ZL  
Data Sheet  
29  
DS1, 2003-06-25  
 
 
 
 
FlexiSLIC  
PBL 38621/2  
Transmission  
where:  
VTX  
Is the ground referenced version of the AC metallic voltage between the  
TIPX and RINGX terminals.  
VTR  
EL  
IL  
Is the AC metallic voltage between TIP and RING.  
Is the line open circuit AC metallic voltage.  
Is the AC metallic current.  
RF  
Is a fuse resistor.  
G2-4S  
Is the programmable SLIC two-wire to four-wire gain (transmit  
direction)1).  
ZL  
Is the line impedance.  
ZRX  
ZT  
VRX  
αRSN  
Controls four- to two-wire gain.  
Determines the SLIC TIPX to RINGX impedance at voice frequencies.  
Is the analog ground referenced receive signal.  
Is the receive summing node current to metallic loop current gain.  
αRSN = 200  
1) The SLIC two-wire to four-wire gain, G2-4S, is user programmable beween two fixe values. See Table 5.  
5.2  
Two-Wire Impedance  
To calculate ZTR, the impedance presented to the two-wire line by the SLIC including the  
fuse resistor RF, let VRX = 0.  
From Equation [1] and Equation [2]:  
ZT  
ZTR = ----------------------------------- + 2RF  
αRSN × G2 4S  
[4]  
[5]  
Thus with ZTR, G2-4S, αRSN and RF known:  
ZT = αRSN × G2 4S × (ZTR 2RF)  
5.3  
Two-Wire to Four-Wire Gain  
From Equation [1] and Equation [2] with VRX = 0:  
ZT ⁄ αRSN  
----------------------------------------------------  
ZT  
VTX  
---------  
G2 4  
=
=
[6]  
VTR  
----------------------------------- + 2RF  
αRSN × G2 4S  
Data Sheet  
30  
DS1, 2003-06-25  
 
FlexiSLIC  
PBL 38621/2  
Transmission  
5.4  
Four-Wire to Two-Wire Gain  
From Equation [1] to Equation [3] with EL = 0:  
ZT  
ZL  
VTR  
G4 2 = --------- = –  
VRX  
1
--------- --------------- -----------------------------------------------------------------  
×
×
[7]  
G2 4S  
ZRX  
ZT  
----------------------------------- + ZL + 2RF  
αRSN × G2 4S  
For applications where  
ZT  
----------------------------------- + 2RF = ZL  
αRSN × G2 4S  
[8]  
[9]  
the expression for G4-2 simplifies to:  
ZT  
1
--------------------------  
G4 2 = –  
×
---------  
ZRX  
2 × G2 4S  
5.5  
Four-Wire to Four-Wire Gain  
From Equation [1] to Equation [3] with EL = 0:  
ZT  
ZL + 2RF  
VTX  
G4 4 = --------- = –  
VRX  
--------- -----------------------------------------------------------------  
×
[10]  
ZRX  
ZT  
----------------------------------- + ZL + 2RF  
αRSN × G2 4S  
5.6  
Hybrid Function  
The hybrid function can easily be implemented utilizing the uncommitted amplifier in  
conventional non software programmable codec/filters. Please, refer to Figure 10. Via  
impedance ZB a current proportional to VRX is injected into the summing node of the  
combination codec/filter amplifier. As can be seen from the expression for the four-wire  
to four-wire gain, G4-4, a voltage proportional to VRX is returned to VTX. This voltage is  
converted by RTX to a current flowing into the same summing node. These currents can  
be made to cancel by letting:  
VTX VRX  
--------- + --------- = 0  
(EL = 0)  
RTX ZB  
[11]  
Data Sheet  
31  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Transmission  
The four-wire to four-wire gain, G4-4, includes the required phase shift and thus the  
balance network ZB can be calculated from:  
ZT  
----------------------------------- + ZL + 2RF  
αRSN × G2 4S  
VRX  
ZRX  
×
---------  
--------- -----------------------------------------------------------------  
ZB = RTX ×  
= RTX ×  
[12]  
VTX  
ZT  
ZL + 2RF  
When selecting the RTX resistance value, make sure the load resistance on the VTX  
terminal is at least 20 k.  
If calculation of the ZB formula above yields a balance network containing an inductor,  
an alternate method is recommended.  
The PBL 38621/2 SLIC may also be used together with programmable CODEC/filters.  
The programmable CODEC/filter allows for system controller adjustment of hybrid  
balance to accomodate different line impedances without change of hardware. In  
addition, the transmit and receive gain may be adjusted. Please, refer to the  
programmable CODEC/filter data sheets for design information.  
RFB  
RTX  
VTX  
VT  
PBL 38621  
ZT  
ZB  
Codec/Filter  
ZRX  
VRX  
RSN  
Hybrid_21  
Figure 10  
Hybrid Function  
Data Sheet  
32  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Transmission  
5.7  
Longitudinal Impedance  
A feedback loop within the SLIC counteracts longitudinal voltages at the two-wire port by  
injecting longitudinal currents in opposing phase. Thus longitudinal disturbances will  
appear as longitudinal currents and the TIPX and RINGX terminals will experience very  
small longitudinal voltage excursions, leaving metallic voltages well within the SLIC  
common mode range.  
The SLIC longitudinal impedance per wire, ZLOT and ZLOR, appears as typically 20 to  
longitudinal disturbances. It should be noted that longitudinal currents may exceed the  
DC loop current without disturbing the VF transmission.  
5.8  
Capacitors CTC and CRC  
The capacitors designated CTC and CRC in Figure 8, connected beween TIPX and  
ground as well as beween RINGX and ground, can be used for RFI filtering. The  
recommended value for CTC and CRC is 2200 pF. Higher capacitance values may be  
used, but care must be taken to prevent degradation of either longitudinal balance or  
return loss. CTC and CRC contribute to a metallic impedance of 1/(π × f × CTC) =  
1/(π × f × CRC), a TIPX to ground impedance of 1/(2π × f × CTC) and a RINGX to ground  
impedance of 1/(2π × f × CRC).  
5.9  
AC - DC Separation Capacitor, CHP  
The high pass filter capacitor connected between terminals HP and TIPX provides the  
separation of the AC and DC signals, such that only AC signals are forwarded to the VTX  
terminal. CHP positions the low end frequency response break point of the AC feedback  
loop in the SLIC. The CHP value of 47 nF will position the low end frequency response  
3 dB break point of the AC loop at 5.6 Hz (f3dB) according to f3dB = 1/(2π × RHP × CHP)  
where RHP = 600 k.  
5.10  
High-pass Transmit Filter  
The capacitor CTX in Figure 8 connected between the VTX output and the CODEC/filter  
forms, together with RTX and/or the input impedance of a programmable CODEC/filter, a  
high-pass RC filter. It is recommended to position the 3 dB break point of this filter  
between 30 and 80 Hz to get a faster response for the DC steps that may occur at DTMF  
signalling.  
5.11  
Capacitor CLP  
The capacitor CLP, which connects between the terminals LP and VBAT, positions the  
high end frequency break point of the low pass filter in the DC feedback loop (battery  
feed controlling loop) of the SLIC. CLP together with CHP and ZT(see Chapter 5.2) forms  
the total two-wire output impedance of the SLIC. The choise of these programmable  
Data Sheet  
33  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Transmission  
components have an influence on the power supply rejection ratio (PSRR) from VBAT  
to the two-wire side at sub audio frequencies.At these frequencies CLP also influences  
the transversal to longitudinal balance in the SLIC. Table 9 suggests a suitable value on  
CLP. The typical value of the transversal to longitudinal balance at 200 Hz is given in the  
table below, for the chosen value on CLP.  
Table 9  
Symbol  
RFeed  
RSG  
CLP  
Feeding Setup  
Value  
2x25  
0
150  
-46  
47  
Unit  
Specification  
kΩ  
nF  
dB  
nF  
T-L bal. @ 200 Hz  
CHP  
Data Sheet  
34  
DS1, 2003-06-25  
 
FlexiSLIC  
PBL 38621/2  
Battery Feed  
6
Battery Feed  
The PBL 38621/2 SLIC emulate a battery characteristic with current limitation  
adjustable. The open loop voltage measured between the TIPX and RINGX terminals is  
tracking the battery voltage VBAT. The signalling headroom, or overhead voltage VTRO, is  
programmable with a resistor ROV connected between terminal POV on the SLIC and  
ground. Please refer to Chapter 6.2. The battery voltage overhead,VOH, depends on the  
programmed signal overhead voltage VTRO. VOH defines the TIP and RING voltage at  
open loop conditions according to  
VTR(at IL = 0 mA) = |VBAT| - VOH  
Refer to the table below for the typical value on VOH.  
Table 10  
Symbol  
VOH  
Battery Overhead  
Value (typ)  
Unit  
V
Specification  
2.5 + VTRO  
The current limit (reference A - C in Figure 12) is adjusted by connecting a resistor, RLC,  
between terminal PLC and ground according to the equation:  
where RLC is in kfor ILProg in mA.  
1000  
ILProg = ----------- 4, 0  
[13]  
RLC  
A second lower battery voltage may be connected to the device at terminal VBAT2 to  
reduce short loop power dissipation.  
The SLIC automatically switches between the two battery supply voltages without need  
for external control. The silent battery switching occurs when the line voltage passes the  
value  
|VB2| - 40 × IL - VTRO = 3.6  
For correct functionality it is important to connect the terminal VBAT2 to the second  
power supply via the diode DVB2, see Figure 8. An optional diode DBB connected  
between terminal VBAT and the VB2 power supply, see Figure 8, will make sure that the  
SLIC continues to work on the second battery even if the first battery voltage disappears.  
If a second battery voltage is not used, VBAT2 is connected to VBAT on the SLIC and  
CVB2, DBB and DVB2 are removed.  
6.1  
CODEC Receive Interface  
The PBL 38621/2 SLIC has got a receive interface at the four- wire side which makes it  
possible to reduce the number of capacitors in the applications and to fit both single and  
dual battery feed CODECs. The RSN terminal, connecting to the CODEC receive output  
via the resistor RRX, is DC biased with +1.25 V. This makes it possible to compensate for  
Data Sheet  
35  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Battery Feed  
currents floating due to DC voltage differences between RSN and the CODEC output  
without using any capacitors. This is done by connecting a resistor RR between the RSN  
terminal and ground. With current directions defined as in Figure 11, current summation  
gives:  
1, 25 – VCODEC  
1, 25  
RT  
1, 25  
RR  
IRSN = IRT + IRRX + IRR = ------------- + ----------------------------------------- + -------------  
[14]  
RRX  
where VCODEC is the reference voltage of the CODEC at the receive output. From this  
equation the resistor RR can be calculated as  
1, 25  
RR = -------------------------------------------------------------------------------------  
[15]  
1, 25 – VCODEC  
1, 25  
IRSN ------------- -----------------------------------------  
RT  
RRX  
For the value on IRSN, see table below. The resistor RR has no influence in the AC  
transmission.  
Table 11  
Symbol  
IRSN  
Internal bias current of RSN  
Value (typ)  
-55  
Unit  
µA  
VTX  
RT  
DC-GND  
CODEC  
I
IRT  
RRX  
IRSN  
IRX  
_
+
RSN  
IRR  
+1.25  
UREFcodec  
RR  
codecIF  
Figure 11  
Codec Receive Interface  
Data Sheet  
36  
DS1, 2003-06-25  
 
FlexiSLIC  
PBL 38621/2  
Battery Feed  
A
B
C
D
E
VTR [V]  
batfeed21  
Figure 12  
Battery Feed Characteristics  
A
IL(@VTR = 0) = ILProg  
B
C
Constant current  
103  
RLC  
–3  
I
LConst(typ) = ILProg =  
--------- – 4× 10  
VTR = |VBAT| - VOH -50 x ILProg  
D
E
R
FEED = 2 × 25 Ω  
VTROpen = |VBAT| - VOH  
Data Sheet  
37  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Battery Feed  
6.2  
Programmable Overhead Voltage (POV)  
With the POV function the overhead voltage can be increased. If the POV pin is left open  
the overhead voltage is internally set to 1.1 VPeak. The overhead voltage is equal in on-  
hook and off-hook. If a resistor ROV is connected between the POV pin and AGND, the  
overhead voltage can be set to higher values, typical values can be seen in Figure 13.  
The ROV and corresponding VTRO (signal headroom) are typical values for THD < 1% and  
the signal frequency 1000 Hz.  
Observe that the four-wire output terminal VTX can not handle more than 3.2 VPeak. So if  
the two- to four-wire gain is 0 dB, 3.2 VPeak is maximum also for the two-wire side. Signal  
levels between 3.2 and 6.4 VPeak on the two-wire side can be handled with the PTG  
shorted so that the gain G2-4S becomes -6.02 dB. Please note that:  
ZT  
RR  
G4 - 4  
has to be recalculated if the PTG is shorted.  
Please note that the maximum signal current at the two-wire side can not be greater than  
9 mA.  
How to use POV:  
1. Decide what overhead voltage (VTRO) is needed. The POV function is only needed if  
the overhead voltage exceeds 1.1 VPeak  
.
2. In Figure 13 the corresponding ROV for the decided VTRO can be found.  
3. If the overhead voltage exceeds 3.2 VPeak, the G2-4S gain has to be changed to -6.02  
dB by connecting PTG pin to AGND  
7
6
5
4
3
2
1
0
0
10  
20  
30  
40  
50  
60  
ROV(kohm)  
POV  
Figure 13  
Programmable Overhead Voltage (POV). RL= 600 or Infinitive  
Data Sheet  
38  
DS1, 2003-06-25  
 
FlexiSLIC  
PBL 38621/2  
Loop Monitoring Functions  
6.3  
Analog Temperature Guard  
The widely varying environmental conditions in which SLICs operate may lead to the  
chip temperature limitations being exceeded The PBL 38621/2 SLIC reduce the DC line  
o
current when the chip temperature reaches approximately 145 C and increases line  
current again automatically when the temperature drops. Accordingly transmission is not  
lost under high ambient temperature conditions.  
The detector output, DET, is forced to a logic low level when the temperature guard is  
active.  
7
Loop Monitoring Functions  
The loop current, ground key and ring-trip detectors report their status through a  
common output, DET. The particular detector to be connected to the detector pin, DET,  
is selected via the three bit control interface C1, C2 and C3. Please refer to Chapter 9  
for a description of the control interface.  
7.1  
Loop Current Detector  
The loop current detector indicates that the telephone is off-hook and that DC current is  
flowing in the loop by setting the output pin DET to a logic low level when selected. The  
loop current detector threshold value, ILTh, where the loop current detector changes  
state, is programmable with the RLD resistor. RLD connects between pin PLD and ground  
and is calculated according to:  
500  
RLD = ---------  
[16]  
ILth  
The loop current detector is internally filtered and is not influenced by the AC signal at  
the two-wire side.  
7.2  
Ground Key Detector  
The ground key detector is indicating when the ground key is pressed (active) by putting  
the output pin DET to a logical high level, when selected. The ground key detector circuit  
senses the difference between TIPX and RINGX currents. When the current at the  
RINGX side exceeds the current at the TIPX side with the threshold value, the detector  
is triggered. For threshold current values, please refer to the datasheet.  
Data Sheet  
39  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Relay Driver  
7.3  
Ring Trip Detector  
Ring trip detection is accomplished by connecting an external network to a comparator  
in the SLIC with inputs DT and DR. The ringing source can be balanced or unbalanced  
superimposed on VB or GND. The unbalanced ringing source may be applied to either  
the ring lead or the tip lead with return via the other wire. A ring relay driven by the SLIC  
ring relay driver connects the ringing source to tip and ring.  
The ring trip function is based on a polarity change at the comparator input when the line  
goes off-hook. In the on-hook state no DC current flows through the loop and the voltage  
at comparator input DT is more positive than the voltage at input DR. When the line goes  
off-hook, while ring relay is energized, DC current flows and the comparator input voltage  
reverses polarity.  
Figure 8 gives an example of a ring trip detector network. This network is applicable  
when the ring voltage is superimposed on VB and is injected on the ring lead of the two-  
wire port. The DC voltage across sense resistor RRT is monitored by the ring trip  
comparator input DT and DR via the network R1,R2 ,R3 ,R4 ,C1 and C2.  
When the line is on-hook (no DC current), DT is more positive than DR and the DET  
output will report logic level high, that is the detector is not tripped. When the line goes  
off-hook, while ringing, a DC current will flow through the loop including sense resistor  
RRT and will cause input DT to become more negative than input DR. This changes  
output DET to logic level low, that is tripped detector conditions. The system controller  
(or line card processor) responds by de-energizing the ring relay, that is ring trip.  
Complete filtering of the 20 Hz AC component at terminal DT and DR is not necessary.  
A toggling DET output can be examined by a software routine to determine the duty  
cycle. When the DET output is at logic level low for more than half the time, off-hook  
conditions is indicated.  
8
Relay Driver  
The PBL 38621/2 SLIC incorporates a ring relay driver designed as open collector (npn),  
with a current sinking capability of 50 mA. The drive transistor emitter is connected to  
BGND. The relay driver has an internal zener diode clamp for inductive kick back  
voltages.  
Data Sheet  
40  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Control Inputs  
9
Control Inputs  
The SLIC has three digital control inputs, C1, C2 and C3. A decoder in the SLIC  
interprets the control input condition and determining the commanded operating state.  
C1, C2 and C3 are internally pulled up.  
9.1  
Open Circuit (C3, C2, C1 = 0, 0, 0)  
In the Open Circuit the TIPX and RINGX line drive amplifiers as well as other circuit  
blocks are powered down. This causes the SLIC to present a high impedance to the line.  
Power dissipation is at a minimum and no detectors are active. DET output is set high.  
9.2  
Ringing (C3, C2, C1 = 0, 0, 1)  
The ring relay driver and the ring trip detector are activated and the ring trip detector is  
indicating off-hook with a logic low level at the detector output.  
As the SLIC do not have any stand by state the SLIC will remain in the active normal  
state.  
9.3  
Active States  
TIPX is the terminal closest to ground and sources loop current while RINGX is the more  
negative terminal and sinks loop current. VF signal transmission is normal. The loop  
current detector is activated. The loop current detector indicates off-hook with a logic low  
level and the ground key detector is indicating active ground key with a logic high level  
present at the detector output.  
10  
Overvoltage Protection  
10.1  
Overvoltage Protection - General  
The SLIC must be protected against foreign voltages on the telephone line.  
Overvoltages can result from lightning, AC power contact, induction and other causes.  
Refer to Table 3, TIPX and RINGX terminals, for maximum continuous and transient  
voltages that may be applied to the SLIC.  
10.2  
Secondary Protection  
The circuit shown in Figure 8 utilizes series resistors (RF1, RF2) together with a  
programmable overvoltage protector (OVP, for example Bournes TISP PBL2) as  
secondary protection.  
The TISP PBL2 is a dual forward-conducting buffered p-gate overvoltage protector. The  
protector gate references the protection (clamping) voltage to the negative supply  
Data Sheet  
41  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Power-Up Sequence  
voltage (that is the battery voltage, VB). As the protection voltage will track the negative  
supply voltage the overvoltage stress on the SLIC is minimized.  
Positive overvoltages are clamped to ground by a diode. Negative overvoltages are  
initially clamped close to the SLIC negative supply rail voltage and the protector will  
crowbar into a low voltage on-state condition, by firing an internal thyristor.  
A gate decoupling capacitor, CGG, is needed to carry enough charge to supply a high  
enough current to quickly turn on the thyristor in the protector. CGG should be placed  
close to the overvoltage protection device. Without the capacitor even the low  
inductance in the track to the VB supply will limit the current and delay the activation of  
the thyristor clamp.  
The fuse resistors RF serve the dual purposes of being non-destructive energy  
dissipators when transients are clamped, and of being fuses when the line is exposed to  
a power cross. If a PTC is choosen for RF, note that it is important to always use PTC’s  
in series with resistors not sensitive to temperature, as the PTC will act as a capacitance  
for fast transients and therefore will not protect the SLIC.  
11  
Power-Up Sequence  
No special power-up sequence is necessary, except that ground has to be present  
before all other power supply voltages.  
12  
Printed Circuit Board Layout  
Care in Printed Circuit Board (PCB) layout is essential for proper function. The  
components connection to the RSN input should be placed in close proximity to that pin,  
such that no interference is injected into the receive summing node (RSN). Ground plane  
surrounding the RSN pin is advisable.  
Analog Ground (AGND) should be connected to Battery Ground (BGND) on the PCB, in  
one point. The capacitors for the battery should be connected with short wide leads of  
the same length.  
Data Sheet  
42  
DS1, 2003-06-25  
FlexiSLIC  
PBL 38621/2  
Package Outlines  
13  
Package Outlines  
The SLIC is provided in three different packages: 24-pin SSOP, 24-pin SOIC and 28-pin  
PLCC.  
13.1  
24-pin SSOP Package  
GPS05388  
Figure 14  
P-SSOP-24-1 (Plastic Shrink Small Outline Package)  
You can find all of our packages, sorts of packing and others in our  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Dimensions in mm  
DS1, 2003-06-25  
SMD = Surface Mounted Device  
Data Sheet  
43  
FlexiSLIC  
PBL 38621/2  
Package Outlines  
13.2  
24-pin SOIC Package  
0.35 x 45˚  
1)  
7.6 -0.2  
+0.09  
0.23  
8˚ max  
0.4 +0.8  
10.3 ±0.3  
1.27  
0.35 +0.152)  
0.1  
0.2 24x  
24  
13  
12  
1
1)  
15.6-0.4  
Index Marking  
1) Does not include plastic or metal protrusions of 0.15 max rer side  
2) Does not include dambar protrusion of 0.05 max per side  
GPS05144  
GPS05144  
Figure 15  
P-DSO-24-1 (Plastic Dual Small Outline Package)  
You can find all of our packages, sorts of packing and others in our  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Dimensions in mm  
DS1, 2003-06-25  
SMD = Surface Mounted Device  
Data Sheet  
44  
FlexiSLIC  
PBL 38621/2  
Package Outlines  
13.3  
28-pin PLCC Package  
GPL05039  
Figure 16  
P-LCC-28-2 (Plastic Leaded Chip Carrier Package)  
You can find all of our packages, sorts of packing and others in our  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Dimensions in mm  
DS1, 2003-06-25  
SMD = Surface Mounted Device  
Data Sheet  
45  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

PBL38621/2SOT

TELECOM-SLIC, PDSO24, SOIC-24
ROCHESTER

PBL38621/2SOT

SLIC, Bipolar, PDSO24, SOIC-24
INTEL

PBL38621/2SOT

SLIC, 2-4 Conversion, Bipolar, PDSO24, SOIC-24
INFINEON

PBL38621/2SOT

SLIC, Bipolar, PDSO24, SOIC-24
ERICSSON

PBL386212

Subscriber Line Interface Circuit
ERICSSON

PBL386212QNS

Subscriber Line Interface Circuit
ERICSSON

PBL386212QNT

Subscriber Line Interface Circuit
ERICSSON

PBL386212SHT

Subscriber Line Interface Circuit
ERICSSON

PBL386212SOS

Subscriber Line Interface Circuit
ERICSSON

PBL386212SOT

Subscriber Line Interface Circuit
ERICSSON

PBL38622

Subscriber Line Interface Circuit
INFINEON

PBL38630

Subscriber Line Interface Circuit
INFINEON