IRF1607 [INFINEON]

Power MOSFET(Vdss=75V, Rds(on)=0.0075ohm, Id=142A); 功率MOSFET ( VDSS = 75V , RDS(ON) = 0.0075ohm ,ID = 142A )
IRF1607
型号: IRF1607
厂家: Infineon    Infineon
描述:

Power MOSFET(Vdss=75V, Rds(on)=0.0075ohm, Id=142A)
功率MOSFET ( VDSS = 75V , RDS(ON) = 0.0075ohm ,ID = 142A )

晶体 晶体管 开关 脉冲 局域网
文件: 总9页 (文件大小:234K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -94158  
AUTOMOTIVE MOSFET  
IRF1607  
Typical Applications  
HEXFET® Power MOSFET  
42 Volts Automotive Electrical Systems  
Electrical Power Steering (EPS)  
Integrated Starter Alternator  
D
VDSS = 75V  
Benefits  
Ultra Low On-Resistance  
Dynamic dv/dt Rating  
175°C Operating Temperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
RDS(on) = 0.0075Ω  
G
ID = 142A†  
S
Automotive [Q101] Qualified  
Description  
Specifically designed for Automotive applications, this  
Stripe Planar design of HEXFET® Power MOSFETs  
utilizes the lastest processing techniques to achieve  
extremelylow on-resistancepersiliconarea. Additional  
features of this HEXFET power MOSFET are a 175°C  
junction operating temperature, fast switching speed  
andimprovedrepetitiveavalancherating.Thesebenefits  
combine to make this design an extremely efficient and  
reliable device for use in Automotive applications and a  
wide variety of other applications.  
TO-220AB  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current   
142†  
100†  
A
570  
PD @TC = 25°C  
Power Dissipation  
380  
W
W/°C  
V
Linear Derating Factor  
2.5  
VGS  
EAS  
IAR  
Gate-to-Source Voltage  
± 20  
1250  
Single Pulse Avalanche Energy‚  
Avalanche Current  
mJ  
A
See Fig.12a, 12b, 15, 16  
EAR  
dv/dt  
TJ  
Repetitive Avalanche Energy‡  
Peak Diode Recovery dv/dt ƒ  
Operating Junction and  
mJ  
V/ns  
5.2  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
°C  
300 (1.6mm from case )  
10 lbf•in (1.1N•m)  
Thermal Resistance  
Parameter  
Junction-to-Case  
Typ.  
–––  
Max.  
Units  
RθJC  
RθCS  
RθJA  
0.40  
–––  
62  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
0.50  
–––  
°C/W  
www.irf.com  
1
9/4/01  
IRF1607  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
75 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
V
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.086 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
––– 0.00580.0075  
V
S
VGS = 10V, ID = 85A „  
VDS = 10V, ID = 250µA  
VDS = 25V, ID = 85A  
VDS = 75V, VGS = 0V  
VDS = 60V, VGS = 0V, TJ = 150°C  
VGS = 20V  
2.0  
79  
––– 4.0  
––– –––  
Forward Transconductance  
––– ––– 20  
––– ––– 250  
––– ––– 200  
––– ––– -200  
––– 210 320  
IDSS  
Drain-to-Source Leakage Current  
µA  
nA  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
IGSS  
VGS = -20V  
Qg  
ID = 85A  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
45  
68  
nC VDS = 60V  
VGS = 10V  
73 110  
22 –––  
VDD = 38V  
––– 130 –––  
ID = 85A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
–––  
–––  
84 –––  
86 –––  
RG = 1.8Ω  
VGS = 10V „  
D
Between lead,  
4.5  
LD  
LS  
Internal Drain Inductance  
Internal Source Inductance  
–––  
–––  
–––  
–––  
6mm (0.25in.)  
nH  
G
from package  
7.5  
and center of die contact  
S
Ciss  
Input Capacitance  
––– 7750 –––  
––– 1230 –––  
––– 310 –––  
––– 5770 –––  
––– 790 –––  
––– 1420 –––  
VGS = 0V  
Coss  
Output Capacitance  
pF  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
ƒ = 1.0MHz, See Fig. 5  
Coss  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 60V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 60V  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance ꢀ  
Source-Drain Ratings and Characteristics  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
D
IS  
MOSFET symbol  
––– –––  
142†  
showing the  
A
G
ISM  
Pulsed Source Current  
(Body Diode)   
integral reverse  
––– ––– 570  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse RecoveryCharge  
Forward Turn-On Time  
––– ––– 1.3  
––– 130 200  
V
TJ = 25°C, IS = 85A, VGS = 0V „  
ns  
TJ = 25°C, IF = 85A  
Qrr  
ton  
––– 690 1040 nC di/dt = 100A/µs „  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚Starting TJ = 25°C, L = 0.21mH  
RG = 25, IAS = 85A, VGS=10V (See Figure 12).  
ƒISD 85A, di/dt 310A/µs, VDD V(BR)DSS  
TJ 175°C  
Coss eff. is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
.
†
‡
Calculated continuous current based on maximum allowable  
junction temperature. Package limitation current is 75A.  
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
,
„Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRF1607  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
TOP  
TOP  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
BOTTOM 4.5V  
BOTTOM 4.5V  
4.5V  
4.5V  
20µs PULSE WIDTH  
Tj = 25°C  
20µs PULSE WIDTH  
T = 175 C  
J
°
1
1
0.1  
0.1  
1
10  
100  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
3.0  
142A  
=
I
D
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
°
T = 175 C  
J
100  
10  
1
°
T = 25 C  
J
V
= 25V  
DS  
20µs PULSE WIDTH  
V
= 10V  
GS  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
°
4.0  
5.0  
V
6.0  
7.0  
8.0 9.0  
10.0  
T , Junction Temperature ( C)  
J
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRF1607  
20  
16  
12  
8
12000  
I
D
= 85A  
V
= 0V,  
f = 1 MHZ  
GS  
C
= C + C  
,
C
SHORTED  
V
V
V
= 60V  
= 37V  
= 15V  
iss  
gs  
gd  
ds  
DS  
DS  
DS  
C
= C  
10000  
Ciss  
8000  
rss  
gd  
C
= C + C  
oss  
ds gd  
6000  
4000  
2000  
0
Coss  
Crss  
4
FOR TEST CIRCUIT  
SEE FIGURE 13  
0
1
10  
100  
0
100  
200  
300  
400  
Q
, Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
°
T = 175 C  
J
100µsec  
1msec  
°
T = 25 C  
J
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
10msec  
V
= 0 V  
GS  
1.8  
1
0.1  
0.2  
0.6  
1.0  
1.4  
2.2  
1
10  
100  
1000  
V
,Source-to-Drain Voltage (V)  
SD  
V
, Drain-toSource Voltage (V)  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF1607  
160  
120  
80  
40  
0
RD  
VDS  
LIMITED BY PACKAGE  
VGS  
10V  
D.U.T.  
RG  
+VDD  
-
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 10a. Switching Time Test Circuit  
V
DS  
90%  
25  
50  
75  
100  
125  
150  
175  
°
, Case Temperature ( C)  
T
C
10%  
V
GS  
Fig 9. Maximum Drain Current Vs.  
t
t
r
t
t
f
d(on)  
d(off)  
Case Temperature  
Fig 10b. Switching Time Waveforms  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
0.02  
P
DM  
SINGLE PULSE  
(THERMAL RESPONSE)  
0.01  
0.01  
0.001  
t
1
t
2
Notes:  
1. Duty factor D =  
t / t  
1 2  
2. Peak T = P  
x Z  
+ T  
C
J
DM  
thJC  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF1607  
3000  
2500  
2000  
1500  
1000  
500  
I
15V  
D
TOP  
35A  
60A  
85A  
BOTTOM  
DR IV ER  
L
V
D S  
D.U .T  
R
+
G
V
D D  
-
I
A
A S  
VGS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
0
25  
50  
75  
100  
125  
150  
175  
°
Starting T , Junction Temperature ( C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
Q
Q
5.0  
GS  
GD  
V
G
4.0  
3.0  
2.0  
1.0  
I
= 250µA  
Charge  
D
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
V
GS  
T
3mA  
J
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF1607  
1000  
100  
10  
Duty Cycle = Single Pulse  
0.01  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses  
0.05  
0.10  
1
1.0E-07  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
1400  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
TOP  
BOTTOM 10% Duty Cycle  
= 85A  
Single Pulse  
1200  
1000  
800  
600  
400  
200  
0
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
Fig 16. Maximum Avalanche Energy  
Iav = 2T/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRF1607  
Peak Diode Recovery dv/dt Test Circuit  
+
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T*  
ƒ
-
+
‚
-
„
-
+

RG  
dv/dt controlled by RG  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
+
-
VDD  
VGS  
* Reverse Polarity of D.U.T for P-Channel  
Driver Gate Drive  
P.W.  
Period  
Period  
D =  
P.W.  
V
=10V  
[
] ***  
GS  
D.U.T. I Waveform  
SD  
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  
V
DD  
[
[
]
Re-Applied  
Voltage  
Body Diode  
Forward Drop  
Inductor Curent  
I
]
SD  
Ripple 5%  
*** VGS = 5.0V for Logic Level and 3V Drive Devices  
Fig 17. For N-channel HEXFET® power MOSFETs  
8
www.irf.com  
IRF1607  
Package Outline  
TO-220AB  
Dimensions are shown in millimeters (inches)  
10.54 (.415)  
10.29 (.405)  
- B  
-
3.78 (.149)  
3.54 (.139)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
1.32 (.052)  
1.22 (.048)  
- A  
-
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
1.15 (.045)  
M IN  
LEAD ASSIG NM ENTS  
1
2
3
4
- GATE  
1
2
3
- DRAIN  
- SOU RC E  
- DRAIN  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
0.46 (.018)  
3X  
3X  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B
A
M
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
N OTES:  
1
2
D IM ENSIONING  
&
TOLERANCING PER ANSI Y14.5M , 1982.  
3
4
OUTLINE CONFORM S TO JEDEC OUTLINE TO-220AB.  
HEATSINK LEAD M EASUREM ENTS DO NOT INCLU DE BURRS.  
C ONTROLLING DIM ENSION : INCH  
&
Part Marking Information  
TO-220AB  
EXAMPLE : THIS IS AN IR F1010  
W ITH ASSEM BLY  
A
INTERNATIONAL  
RECTIFIER  
LOGO  
PART NU M BER  
LOT C ODE 9B1M  
IR F1010  
9246  
9B  
1M  
D ATE COD E  
(YYW W )  
ASSEMBLY  
LOT  
CO DE  
YY  
=
YEAR  
= W EEK  
W W  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101] market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 9/01  
www.irf.com  
9

相关型号:

IRF1607PBF

AUTOMOTIVE MOSFET
INFINEON

IRF1704

Power MOSFET(Vdss=40V, Rds(on)=0.004ohm, Id=170A)
INFINEON

IRF1704PBF

Power Field-Effect Transistor, 75A I(D), 40V, 0.004ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, LEAD FREE PACKAGE-3
INFINEON

IRF1730G

Power MOSFET(Vdss=400V, Rds(on)=1.0ohm, Id=3.7A)
INFINEON

IRF1902

Power MOSFET(Vdss=20V)
INFINEON

IRF1902PBF

HEXFET Power MOSFET
INFINEON

IRF1902TR

Small Signal Field-Effect Transistor, 4.2A I(D), 20V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, SO-8
INFINEON

IRF1902TRPBF

Small Signal Field-Effect Transistor, 4.2A I(D), 20V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, SO-8
INFINEON

IRF19520G

Power Field-Effect Transistor, 5.2A I(D), 100V, 0.6ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220, FULL PACK-3
VISHAY

IRF200

50W to 500W HIGH POWER WIRE WOUND RESISTORS FLAT SHAPED ALUMINUM HOUSED
ETC

IRF200B211

Brushed Motor drive applications
INFINEON

IRF200B211_15

Brushed Motor drive applications
INFINEON