HYB39S128800DT-6 [INFINEON]

Synchronous DRAM, 16MX8, 5ns, CMOS, PDSO54, 0.400 X 0.875 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54;
HYB39S128800DT-6
型号: HYB39S128800DT-6
厂家: Infineon    Infineon
描述:

Synchronous DRAM, 16MX8, 5ns, CMOS, PDSO54, 0.400 X 0.875 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54

动态存储器 光电二极管 内存集成电路
文件: 总52页 (文件大小:451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
128-MBit Synchronous DRAM  
Preliminary Target Specification 10.01  
High Performance:  
Multiple Burst Read with Single Write  
Operation  
-6  
-7  
-7.5 -8  
Units  
Automatic and Controlled Precharge  
Command  
fCK  
166 143 133 125 MHz  
tCK3  
tAC3  
tCK2  
tAC2  
6
7
7.5  
5.4  
10  
6
8
ns  
ns  
ns  
ns  
Data Mask for Read/Write Control (x4, x8)  
Data Mask for byte control (x16)  
5
5.4  
7.5  
5.4  
6
Auto Refresh (CBR) and Self Refresh  
Power Down and Clock Suspend Mode  
4096 Refresh Cycles / 64 ms  
7.5  
5.4  
10  
6
Single Pulsed RAS Interface  
Random Column Address every CLK  
(1-N Rule)  
Fully Synchronous to Positive Clock Edge  
0 to 70 °C operating temperature  
Single 3.3 V ± 0.3 V Power Supply  
LVTTL Interface  
Four Banks controlled by BA0 & BA1  
Programmable CAS Latency: 2, 3  
Plastic Packages:  
P-TSOPII-54 400mil x 875 mil width  
(x4, x8, x16)  
Programmable Wrap Sequence: Sequential  
or Interleave  
-6  
-7  
for PC 166 3-3-3 applications  
for PC 133 2-2-2 applications  
Programmable Burst Length:  
1, 2, 4, 8 and full page  
-7.5 for PC 133 3-3-3 applications  
-8 for PC100 2-2-2 applications  
The HYB 39S128400/800/160DT(L) are four bank Synchronous DRAM’s organized as  
4
banks × 8MBit x4, 4 banks × 4MBit x8 and 4 banks × 2Mbit x16 respectively. These synchronous  
devices achieve high speed data transfer rates by employing a chip architecture that prefetches  
multiple bits and then synchronizes the output data to a system clock. The chip is fabricated using  
the Infineon advanced 0.17 micron process technology.  
The device is designed to comply with all industry standards set for synchronous DRAM products,  
both electrically and mechanically. All of the control, address, data input and output circuits are  
synchronized with the positive edge of an externally supplied clock.  
Operating the four memory banks in an interleave fashion allows random access operation to occur  
at higher a rate than is possible with standard DRAMs. A sequential and gapless data rate is  
possible depending on burst length, CAS latency and speed grade of the device.  
Auto Refresh (CBR) and Self Refresh operation are supported. These devices operate with a single  
3.3 V ± 0.3 V power supply and are available in TSOPII packages.  
INFINEON Technologies  
1
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
Ordering Information  
Type  
Function Code Package  
Description  
166MHz 4B × 8M x4 SDRAM  
143MHz 4B × 8M x4 SDRAM  
133 MHz 4B × 8M x4 SDRAM  
100 MHz 4B × 8M x4 SDRAM  
166 MHz 4B × 4M x8 SDRAM  
143 MHz 4B × 4M x8 SDRAM  
133 MHz 4B × 4M x8 SDRAM  
100 MHz 4B × 4M x8 SDRAM  
166 MHz 4B × 2M x16 SDRAM  
143 MHz 4B × 2M x16 SDRAM  
133 MHz 4B × 2M x16 SDRAM  
100 MHz 4B × 2M x16 SDRAM  
HYB 39S128400DT-6  
HYB 39S128400DT-7  
HYB 39S128400DT-7.5  
HYB 39S128400DT-8  
HYB 39S128800DT-6  
HYB 39S128800DT-7  
HYB 39S128800DT-7.5  
HYB 39S128800DT-8  
HYB 39S128160DT-6  
HYB 39S128160DT-7  
HYB 39S128160DT-7.5  
HYB 39S128160DT-8  
HYB 39S128160DTL-8  
PC166-333-520 P-TSOP-54 (400mil)  
PC133-222-520 P-TSOP-54 (400mil)  
PC133-333-520 P-TSOP-54 (400mil)  
PC100-222-620 P-TSOP-54 (400mil)  
PC166-333-520 P-TSOP-54 (400mil)  
PC133-222-520 P-TSOP-54 (400mil)  
PC133-333-520 P-TSOP-54 (400mil)  
PC100-222-620 P-TSOP-54 (400mil)  
PC166-333-520 P-TSOP-54 (400mil)  
PC133-222-520 P-TSOP-54 (400mil)  
PC133-333-520 P-TSOP-54 (400mil)  
PC100-222-620 P-TSOP-54 (400mil)  
PC100-222-620 P-TSOP-54 (400mil)  
100 MHz 4B × 2M x16 SDRAM  
Low Power (L) version  
133 MHz 4B × 2M x16 SDRAM  
Low Power (L) version  
HYB 39S128160DTL-7.5 PC133-333-520 P-TSOP-54 (400mil)  
133 MHz 4B × 2M x16 SDRAM  
Low Power (L) version  
HYB 39S128160DTL-7  
PC133-222-520 P-TSOP-54 (400mil)  
Pin Definitions and Functions  
CLK  
CKE  
Clock Input  
DQ  
Data Input/Output  
Data Mask  
Clock Enable  
DQM, LDQM,  
UDQM  
CS  
Chip Select  
VDD  
VSS  
Power (+ 3.3 V)  
Ground  
RAS  
Row Address Strobe  
CAS  
Column Address Strobe VDDQ  
Power for DQs (+ 3.3 V)  
Ground for DQs  
Not connected  
WE  
Write Enable  
Address Inputs  
Bank Select  
VSSQ  
A0 - A11  
BA0, BA1  
N.C.  
INFINEON Technologies  
2
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
8 M x 16  
16 M x 8  
32 M x 4  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
1
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
DQ0  
VDDQ  
DQ0  
VDDQ  
N.C.  
VDDQ  
2
3
N.C.  
VSSQ  
DQ7  
VSSQ  
DQ15  
VSSQ  
DQ1  
DQ2  
VSSQ  
N.C.  
DQ1  
VSSQ  
N.C.  
DQ0  
VSSQ  
4
5
6
N.C.  
DQ3  
VDDQ  
N.C.  
DQ6  
VDDQ  
DQ14  
DQ13  
VDDQ  
DQ3  
DQ4  
VDDQ  
N.C.  
DQ2  
VDDQ  
N.C.  
N.C.  
VDDQ  
7
N.C.  
N.C.  
VSSQ  
N.C.  
DQ5  
VSSQ  
DQ12  
DQ11  
VSSQ  
8
9
DQ5  
DQ6  
VSSQ  
N.C.  
DQ3  
VSSQ  
N.C.  
DQ1  
VSSQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
N.C.  
DQ2  
VDDQ  
N.C.  
DQ4  
VDDQ  
DQ10  
DQ9  
VDDQ  
DQ8  
VSS  
DQ7  
VDD  
N.C.  
VDD  
N.C.  
VDD  
N.C.  
VSS  
N.C.  
VSS  
LDQM N.C.  
N.C.  
WE  
CAS  
RAS  
CS  
N.C.  
DQM  
CLK  
CKE  
N.C.  
A11  
A9  
N.C.  
DQM  
CLK  
CKE  
N.C.  
A11  
A9  
N.C.  
UDQM  
CLK  
CKE  
N.C.  
A11  
A9  
WE  
CAS  
RAS  
CS  
WE  
CAS  
RAS  
CS  
BA0  
BA1  
A10  
A0  
BA0  
BA1  
A10  
A0  
BA0  
BA1  
A10  
A0  
A8  
A8  
A8  
A7  
A7  
A7  
A1  
A2  
A3  
VDD  
A1  
A2  
A3  
VDD  
A1  
A2  
A3  
VDD  
A6  
A5  
A4  
VSS  
A6  
A5  
A4  
VSS  
A6  
A5  
A4  
VSS  
TSOPII-54 (10.16 mm x 22.22 mm, 0.8 mm pitch)  
SPP04121  
Pin Configuration for x4, x8 & x16 Organized 128M-DRAMs  
INFINEON Technologies  
3
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
Functional Block Diagrams  
Column Addresses  
Row Addresses  
A0 - A9, A11, AP,  
BA0, BA1  
A0 - A11,  
BA0, BA1  
Column Address  
Counter  
Column Address  
Buffer  
Row Address  
Buffer  
Refresh Counter  
Row  
Decoder  
Row  
Decoder  
Row  
Decoder  
Row  
Decoder  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
4096  
x 2048  
x 4 Bit  
4096  
x 2048  
x 4 Bit  
4096  
x 2048  
x 4 Bit  
4096  
x 2048  
x 4 Bit  
Input Buffer Output Buffer  
DQ0 - DQ3  
Control Logic &  
Timing Generator  
SPB04122  
Block Diagram: 32M x4 SDRAM (12 / 11 / 2 addressing)  
INFINEON Technologies  
4
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
Column Addresses  
Row Addresses  
A0 - A9, AP,  
BA0, BA1  
A0 - A11,  
BA0, BA1  
Column Address  
Counter  
Column Address  
Buffer  
Row Address  
Buffer  
Refresh Counter  
Row  
Decoder  
Row  
Decoder  
Row  
Decoder  
Row  
Decoder  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
4096  
x 1024  
x 8 Bit  
4096  
x 1024  
x 8 Bit  
4096  
x 1024  
x 8 Bit  
4096  
x 1024  
x 8 Bit  
Input Buffer Output Buffer  
DQ0 - DQ7  
Control Logic &  
Timing Generator  
SPB04123  
Block Diagram: 16M x8 SDRAM (12 / 10 / 2 addressing)  
INFINEON Technologies  
5
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
Column Addresses  
Row Addresses  
A0 - A8, AP,  
BA0, BA1  
A0 - A11,  
BA0, BA1  
Column Address  
Counter  
Column Address  
Buffer  
Row Address  
Buffer  
Refresh Counter  
Row  
Decoder  
Row  
Decoder  
Row  
Decoder  
Row  
Decoder  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Memory  
Array  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
4096 x 512  
x 16 Bit  
4096 x 512  
x 16 Bit  
4096 x 512  
x 16 Bit  
4096 x 512  
x 16 Bit  
Input Buffer Output Buffer  
DQ0 - DQ15  
Control Logic &  
Timing Generator  
SPB04124  
Block Diagram: 8M x16 SDRAM (12 / 9 / 2 addressing)  
INFINEON Technologies  
6
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
Signal Pin Description  
Pin  
Type Signal Polarity Function  
CLK  
Input  
Pulse Positive The system clock input. All of the SDRAM inputs are  
Edge  
sampled on the rising edge of the clock.  
CKE  
CS  
Input  
Level Active  
High  
Activates the CLK signal when high and deactivates the  
CLK signal when low, thereby initiating either the Power  
Down mode, Suspend mode, or the Self Refresh mode.  
Input  
Input  
Pulse Active  
Low  
CS enables the command decoder when low and disables  
the command decoder when high. When the command  
decoder is disabled, new commands are ignored but  
previous operations continue.  
RAS  
CAS  
WE  
Pulse Active  
Low  
When sampled at the positive rising edge of the clock,  
CAS, RAS, and WE define the command to be executed by  
the SDRAM.  
A0 - A11 Input  
Level  
During a Bank Activate command cycle, A0 - A11 define  
the row address (RA0 - RA11) when sampled at the rising  
clock edge.  
During a Read or Write command cycle, A0-An define the  
column address (CA0 - CAn) when sampled at the rising  
clock edge.CAn depends upon the SDRAM organization:  
32M x4 SDRAM CA0 - CA9, CA11  
(Page Length = 2048 bits)  
16M x8 SDRAM CA0 - CA9  
(Page Length = 1024 bits)  
8M x16 SDRAM CA0 = CA8 (Page Length = 512 bits)  
In addition to the column address, A10(= AP) is used to  
invoke the autoprecharge operation at the end of the burst  
read or write cycle. If A10 is high, autoprecharge is  
selected and BA0, BA1 defines the bank to be precharged.  
If A10 is low, autoprecharge is disabled.  
During a Precharge command cycle, A10 (= AP) is used in  
conjunction with BA0 and BA1 to control which bank(s) to  
precharge. If A10 is high, all four banks will be precharged  
regardless of the state of BA0 and BA1. If A10 is low, then  
BA0 and BA1 are used to define which bank to precharge.  
BA0, BA1 Input  
Level  
Level  
Bank Select Inputs. Selects which bank is to be active.  
DQx  
Input  
Data Input/Output pins operate in the same manner as on  
conventional DRAMs.  
Output  
INFINEON Technologies  
7
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
Signal Pin Description (contd)  
Pin  
Type Signal Polarity Function  
DQM  
LDQM  
UDQM  
Input  
Pulse Active  
High  
The Data Input/Output mask places the DQ buffers in a  
high impedance state when sampled high. In Read mode,  
DQM has a latency of two clock cycles and controls the  
output buffers like an output enable. In Write mode, DQM  
has a latency of zero and operates as a word mask by  
allowing input data to be written if it is low but blocks the  
write operation if DQM is high.  
One DQM input is present in x4 and x8 SDRAMs, LDQM  
and UDQM controls the lower and upper bytes in x16  
SDRAMs.  
VDD  
VSS  
Supply –  
Supply –  
Power and ground for the input buffers and the core logic.  
VDDQ  
VSSQ  
Isolated power supply and ground for the output buffers to  
provide improved noise immunity.  
INFINEON Technologies  
8
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
Operation Definition  
All of SDRAM operations are defined by states of control signals CS, RAS, CAS, WE, and DQM at  
the positive edge of the clock. The following list shows the truth table for the operation commands.  
Operation  
Device  
State  
CKE CKE DQM BA0 AP= Addr CS  
RAS CAS WE  
n-1  
n
BA1 A10 A11,  
A9-0  
Bank Active  
Bank Precharge  
Precharge All  
Write  
Idle3  
Any  
H
H
H
H
H
H
H
H
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
V
V
X
V
V
V
V
V
X
X
X
X
X
V
L
V
X
X
V
V
V
V
V
X
X
X
X
X
L
L
L
L
L
L
L
L
L
L
H
L
L
H
L
L
L
H
H
H
L
H
L
Any  
H
L
L
L
Active3  
H
H
H
H
L
L
Write with Autoprecharge Active3  
Read  
Active3  
Read with Autoprecharge Active3  
H
L
L
L
L
H
H
L
H
V
X
X
X
X
X
L
Mode Register Set  
No Operation  
Idle  
L
Any  
Active  
Any  
Idle  
H
H
X
L
H
H
X
L
H
L
Burst Stop  
Device Deselect  
Auto Refresh  
X
H
H
X
X
Self Refresh Entry  
Self Refresh Exit  
Idle  
L
L
Idle  
(Self  
Refr.)  
X
H
X
H
L
H
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
Power Down Entry  
(Precharge or active  
standby)  
Idle  
H
L
X
H
X
H
X
H
Active4  
Power Down Exit  
Any  
(Power  
Down)  
H
L
X
H
X
H
X
L
H
Data Write/Output Enable Active  
Data Write/Output Disable Active  
Notes:  
H
H
X
X
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
1. V = Valid, x = Dont Care, L = Low Level, H = High Level.  
2. CKEn signal is input level when commands are provided, CKEn-1 signal is input level one clock  
before the commands are provided.  
3. This is the state of the banks designated by BA0, BA1 signals.  
4. Power Down Mode can not entry in the burst cycle. When this command is asserted in the burst  
mode cycle than the device is in clock suspend mode.  
INFINEON Technologies  
9
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
BA1 BA0 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address Bus (Ax)  
Operation Mode  
CAS Latency  
BT  
Burst Length Mode Register (Mx)  
Operation Mode  
BA1 BA0 M11 M10 M9 M8 M7  
Burst Type  
M3  
Mode  
Type  
Burst Read/  
Burst Write  
0
1
Sequential  
Interleave  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
Burst Read/  
Single Write  
CAS Latency  
M6 M5 M4  
Burst Length  
M2 M1 M0  
Latency  
Length  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Sequential  
Interleave  
Reserved  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
4
8
1
2
4
8
2
3
Reserved  
Reserved  
Full Page  
Reserved  
SPD04125_FP  
Address Inputs for Mode Register Set Operation  
INFINEON Technologies  
10  
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
Power On and Initialization  
The default power on state of the mode register is supplier specific and may be undefined. The  
following power on and initialization sequence guarantees the device is preconditioned to each  
users specific needs. Like a conventional DRAM, the Synchronous DRAM must be powered up and  
initialized in a predefined manner. During power on, all VDD and VDDQ pins must be built up  
simultaneously to the specified voltage when the input signals are held in the NOPstate. The  
power on voltage must not exceed VDD + 0.3 V on any of the input pins or VDD supplies. The CLK  
signal must be started at the same time. After power on, an initial pause of 200 µs is required  
followed by a precharge of all banks using the precharge command. To prevent data contention on  
the DQ bus during power on, it is required that the DQM and CKE pins be held high during the initial  
pause period. Once all banks have been precharged, the Mode Register Set Command must be  
issued to initialize the Mode Register. A minimum of eight Auto Refresh cycles (CBR) are also  
required.These may be done before or after programming the Mode Register. Failure to follow these  
steps may lead to unpredictable start-up modes.  
Programming the Mode Register  
The Mode register designates the operation mode at the read or write cycle. This register is divided  
into 4 fields. A Burst Length Field to set the length of the burst, an Addressing Selection bit to  
program the column access sequence in a burst cycle (interleaved or sequential), a CAS Latency  
Field to set the access time at clock cycle and a Operation mode field to differentiate between  
normal operation (Burst read and burst Write) and a special Burst Read and Single Write mode.  
After the initial power up, the mode set operation must be done before any activate command . Any  
content of the mode register can be altered by re-executing the mode set command. All banks must  
be in precharged state and CKE must be high at least one clock before the mode set operation. After  
the mode register is set, a Standby or NOP command is required. Low signals of RAS, CAS, and  
WE at the positive edge of the clock activate the mode set operation. Address input data at this  
timing defines parameters to be set as shown in the previous table.  
Read and Write Operation  
When RAS is low and both CAS and WE are high at the positive edge of the clock, a RAS cycle  
starts. According to address data, a word line of the selected bank is activated and all of sense  
amplifiers associated to the wordline are set. A CAS cycle is triggered by setting RAS high and CAS  
low at a clock timing after a necessary delay, tRCD, from the RAS timing. WE is used to define either  
a read (WE = H) or a write (WE = L) at this stage.  
SDRAM provides a wide variety of fast access modes. In a single CAS cycle, serial data read or  
write operations are allowed at up to a 143 MHz data rate. The numbers of serial data bits are the  
burst length programmed at the mode set operation, i.e., one of 1, 2, 4, 8 and full page. Column  
addresses are segmented by the burst length and serial data accesses are done within this  
boundary. The first column address to be accessed is supplied at the CAS timing and the  
subsequent addresses are generated automatically by the programmed burst length and its  
sequence. For example, in a burst length of 8 with interleave sequence, if the first address is 2,  
then the rest of the burst sequence is 3, 0, 1, 6, 7, 4, and 5.  
Full page burst operation is only possible using sequential burst type and page length is a function  
of the I/O organisation and column addressing. Full page burst operation does not self terminate  
INFINEON Technologies  
11  
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
once the burst length has been reached. In other words, unlike burst length of 2, 4, and 8, full page  
burst continues until it is terminated using another command.  
Similar to the page mode of conventional DRAMs, burst read or write accesses on any column  
address are possible once the RAS cycle latches the sense amplifiers. The maximum tRAS or the  
refresh interval time limits the number of random column accesses. A new burst access can be  
done even before the previous burst ends. The interrupt operation at every clock cycle is supported.  
When the previous burst is interrupted, the remaining addresses are overridden by the new address  
with the full burst length. An interrupt which accompanies an operation change from a read to a write  
is possible by exploiting DQM to avoid bus contention.  
When two or more banks are activated sequentially, interleaved bank read or write operations are  
possible. With the programmed burst length, alternate access and precharge operations on two or  
more banks can realize fast serial data access modes among many different pages. Once two or  
more banks are activated, column to column interleave operation can be performed between  
different pages.  
Burst Length and Sequence  
Burst  
Length  
Starting  
Address  
(A2 A1 A0)  
Sequential Burst  
Addressing  
(decimal)  
Interleave Burst  
Addressing  
(decimal)  
2
4
xx0  
xx1  
0, 1  
1, 0  
0, 1  
1, 0  
x00  
x01  
x10  
x11  
0, 1, 2, 3  
1, 2, 3, 0  
2, 3, 0, 1  
3, 0, 1, 2  
0, 1, 2, 3  
1, 0, 3, 2  
2, 3, 0, 1  
3, 2, 1, 0  
8
000  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
6
7
0
1
2
3
4
5
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
1
0
3
2
5
4
7
6
2
3
0
1
6
7
4
5
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
4
5
2
3
0
1
7
6
5
4
3
2
1
0
Full Page  
nnn  
Cn, Cn+1, Cn+2 .....  
not supported  
Refresh Mode  
SDRAM has two refresh modes, Auto Refresh and Self Refresh. Auto Refresh is similar to the CAS  
-before-RAS refresh of conventional DRAMs. All of banks must be precharged before applying any  
refresh mode. An on-chip address counter increments the word and the bank addresses and no  
bank information is required for both refresh modes.  
The chip enters the Auto Refresh mode, when RAS and CAS are held low and CKE and WE are  
held high at a clock timing. The mode restores word line after the refresh and no external precharge  
INFINEON Technologies  
12  
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
command is necessary. A minimum tRC time is required between two automatic refreshes in a burst  
refresh mode. The same rule applies to any access command after the automatic refresh operation.  
The chip has an on-chip timer and the Self Refresh mode is available. It enters the mode when RAS,  
CAS, and CKE are low and WE is high at a clock timing. All of external control signals including the  
clock are disabled. Returning CKE to high enables the clock and initiates the refresh exit operation.  
After the exit command, at least one tRC delay is required prior to any access command.  
DQM Function  
DQM has two functions for data I/O read and write operations. During reads, when it turns to high”  
at a clock timing, data outputs are disabled and become high impedance after two clock delay (DQM  
Data Disable Latency tDQZ). It also provides a data mask function for writes. When DQM is activated,  
the write operation at the next clock is prohibited (DQM Write Mask Latency tDQW = zero clocks).  
Suspend Mode  
During normal access mode, CKE is held high enabling the clock. When CKE is low, it freezes the  
internal clock and extends data read and write operations. One clock delay is required for mode  
entry and exit (Clock Suspend Latency tCSL).  
Power Down  
In order to reduce standby power consumption, a power down mode is available. All banks must be  
precharged and the necessary Precharge delay (tRP) must occur before the SDRAM can enter the  
Power Down mode. Once the Power Down mode is initiated by holding CKE low, all of the receiver  
circuits except CLK and CKE are gated off. The Power Down mode does not perform any refresh  
operations, therefore the device cant remain in Power Down mode longer than the Refresh period  
(tREF) of the device. Exit from this mode is performed by taking CKE high. One clock delay is  
required for power down mode entry and exit.  
Auto Precharge  
Two methods are available to precharge SDRAMs. In an automatic precharge mode, the CAS  
timing accepts one extra address, CA10, to determine whether the chip restores or not after the  
operation. If CA10 is high when a Read Command is issued, the Read with Auto-Precharge function  
is initiated. If CA10 is high when a Write Command is issued, the Write with Auto-Precharge function  
is initiated. The SDRAM automatically enters the precharge operation a time delay equal to tWR  
(Write recovery time) after the last data in.  
Precharge Command  
There is also a separate precharge command available. When RAS and WE are low and CAS is  
high at a clock timing, it triggers the precharge operation. Three address bits, BA0, BA1 and A10 are  
used to define banks as shown in the following list. The precharge command can be imposed one  
clock before the last data out for CAS latency = 2, two clocks before the last data out for CAS  
latency = 3 and three clocks before the last data out for CAS latency = 4. Writes require a time delay  
tWR from the last data out to apply the precharge command.  
INFINEON Technologies  
13  
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
Bank Selection by Address Bits  
A10  
0
BA0 BA1  
0
0
1
1
x
0
1
0
1
x
Bank 0  
Bank 1  
Bank 2  
Bank 3  
all Banks  
0
0
0
1
Burst Termination  
Once a burst read or write operation has been initiated, there are several methods in which to  
terminate the burst operation prematurely. These methods include using another Read or Write  
Command to interrupt an existing burst operation, use a Precharge Command to interrupt a burst  
cycle and close the active bank, or using the Burst Stop Command to terminate the existing burst  
operation but leave the bank open for future Read or Write Commands to the same page of the  
active bank. When interrupting a burst with another Read or Write Command care must be taken to  
avoid DQ contention. The Burst Stop Command, however, has the fewest restrictions making it the  
easiest method to use when terminating a burst operation before it has been completed. If a Burst  
Stop command is issued during a burst write operation, then any residual data from the burst write  
cycle will be ignored. Data that is presented on the DQ pins before the Burst Stop Command is  
registered will be written to the memory.  
Capacitance  
TA = 0 to 70 °C; VDD = 3.3 V ± 0.3 V, f = 1 MHz  
Parameter  
Symbol  
Values  
min. max.  
Unit  
Input Capacitance (CLK)  
CI1  
CI2  
2.5  
2.5  
3.5  
3.8  
pF  
pF  
Input Capacitance  
(A0 - A11, BA0, BA1, RAS, CAS, WE, CS, CKE, DQM)  
Input/Output Capacitance (DQ)  
CIO  
4.0  
6.0  
pF  
INFINEON Technologies  
14  
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limit Values  
max.  
Unit  
min.  
Input / Output voltage relative to VSS  
Power supply voltage  
VIN, VOUT  
VDD,VDDQ  
TA  
1.0  
4.6  
4.6  
+70  
+150  
1
V
1.0  
0
V
Operating Temperature  
oC  
oC  
W
mA  
Storage temperature range  
TSTG  
-55  
Power dissipation per SDRAM component  
Data out current (short circuit)  
PD  
IOS  
50  
Permanent device damage may occur if Absolute Maximum Ratingsare exceeded.  
Functional operation should be restricted to recommended operation conditions.  
Exposure to higher than recommended voltage for extended periods of time affect device reliability  
Recommended Operation Conditions and DC Eletrical Characteristics  
TA = 0 to 70 oC;  
Parameter  
Symbol  
Limit Values  
Unit Notes  
min.  
3.0  
2.0  
0.3  
2.4  
typ.  
max.  
Supply Voltage  
Input high voltage  
Input low voltage  
VDD,VDDQ  
VIH  
3.3  
3.6  
V
V
1
3.0  
0
VDDQ+0.3  
1, 2  
1, 2  
1
VIL  
0.8  
V
Output high voltage (IOUT = 4.0 mA) VOH  
V
Output low voltage (IOUT = 4.0 mA)  
VOL  
IIL  
0.4  
5
V
1
Input leakage current, any input  
5  
mA  
(0 V < VIN < VDD, all other inputs = 0 V)  
Output leakage current  
IOL  
5  
5
mA  
(DQs are disabled, 0 V < VOUT < VDDQ  
)
.
Notes:  
1. All voltages are referenced to VSS  
2. Vih may overshoot to VDDQ + 2.0 V for pulse width of < 4ns with 3.3V. Vil may undershoot to -2.0 V for pulse  
width < 4.0 ns with 3.3V. Pulse width measured at 50% points with amplitude measured peak to DC  
reference.  
INFINEON Technologies  
15  
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
Operating Currents  
TA = 0 to 70 °C, VDD = 3.3 V ± 0.3 V  
(Recommended Operating Conditions unless otherwise noted)  
Parameter & Test Condition  
Symb. -6  
-7/-7.5 -8  
max.  
Unit Note  
Operating current  
ICC1  
t
CK = tCK(MIN.)  
3
All banks operated in random  
140  
130  
120  
mA  
access,  
all banks operated in ping-pong  
manner  
3
Precharge standby current  
in Power Down Mode  
tCK = min  
ICC2P  
1
mA  
CS = VIH (MIN.), CKE VIL(MAX.)  
3
Precharge standby current  
in Non Power Down Mode  
CS = VIH (MIN.), CKE VIH(MIN.)  
t
CK = min  
ICC2N  
45  
40  
40  
35  
30  
mA  
3
CKE VIH(MIN.)  
CKE VIL(MAX.)  
No operating current  
ICC3N  
ICC3P  
35  
8
mA  
tCK = min., CS = VIH (MIN.),  
3
mA  
active state (max. 4 banks)  
Burst Operating Current  
ICC4  
ICC5  
ICC6  
3, 4  
tCK = min  
100  
140  
90  
80  
mA  
Read command cycling  
3
Auto Refresh Current  
130  
120  
mA  
tCK = min, trc = trcmin.  
Auto Refresh command cycling  
Self Refresh Current  
Self Refresh Mode  
CKE = 0.2 V, tck=infinity  
standard  
version  
1.0  
0.5  
mA  
mA  
L-version  
Notes  
3. These parameters depend on the cycle rate. These values are measured at 166 Mhz for -6, at 133 MHz for -  
7 & -7.5 and at 100 MHz for -8 parts with the outputs open. Input signals are changed once during tCK  
.
3. These parameters are measured with continuous data stream during read access and all DQ toggling. CL = 3  
and BL = 4 is assumed and the VDDQ current is excluded.  
INFINEON Technologies  
16  
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
1, 2  
AC Characteristics  
TA = 0 to 70 °C; VSS = 0 V; VDD,  
V
DDQ = 3.3 V ± 0.3 V, tT = 1 ns  
Note  
Parameter  
Symb.  
Limit Values  
-7 -7.5  
min. max min. max min. max min. max  
Unit  
-6  
-8  
.
.
.
Clock and Clock Enable  
Clock Cycle Time  
CAS Latency = 3  
CAS Latency = 2  
6
7.5  
7
7.5  
7.5  
10  
8
10  
ns  
ns  
tCK  
Clock frequency  
CAS Latency = 3 tCK  
CAS Latency = 2  
166  
133  
143  
133  
133  
100  
125 MHz  
100 MHz  
2, 3, 6  
Access Time from Clock  
CAS Latency = 3  
CAS Latency = 2  
5
5.4  
5.4  
5.4  
5.4  
6
6
6
ns  
ns  
tAC  
Clock High Pulse Width  
tCH  
tCL  
tT  
2
2
2.5  
2.5  
2.5  
2.5  
3
3
ns  
ns  
ns  
Clock Low Pulse Width  
Transition Time  
0.3 1.2 0.3 1.2 0.3 1.2 0.5 10  
Setup and Hold Times  
Input Setup Time  
Input Hold Time  
4
4
4
4
TBD  
tIS  
6
1.5  
0.8  
1.5  
0.8  
2
7
1.5  
0.8  
1.5  
0.8  
2
2
1
2
1
2
0
8
ns  
tIH  
TBD  
TBD  
TBD  
TBD  
0
ns  
CKE Setup Time  
CKE Hold Time  
tCKS  
tCKH  
ns  
ns  
Mode Register Set-up Time tRSC  
CLK  
ns  
Power Down Mode Entry  
Time  
tSB  
0
0
7.5  
Common Parameters  
5
5
5
5
5
Row to Column Delay Time tRCD  
15  
15  
36  
60  
60  
15  
15  
37  
63  
63  
20  
20  
45  
67  
67  
20  
20  
ns  
ns  
Row Precharge Time  
Row Active Time  
Row Cycle Time  
tRP  
100k  
tRAS  
tRC  
100k 48  
100k ns  
70  
70  
ns  
ns  
Row Cycle Time during Auto tRCF  
Refresh  
INFINEON Technologies  
17  
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
AC Characteristics (contd)1, 2  
TA = 0 to 70 °C; VSS = 0 V; VDD,  
V
DDQ = 3.3 V ± 0.3 V, tT = 1 ns  
Symb. Limit Values  
-7 -7.5  
min. max min. max min. max min. max  
Note  
Parameter  
Unit  
-6  
-8  
.
.
.
5
Activate(a) to Activate(b)  
Command Period  
tRRD  
12  
1
14  
1
15  
1
16  
1
ns  
CAS(a) to CAS(b) Command tCCD  
CLK  
Period  
Refresh Cycle  
Refresh Period  
(4096 cycles)  
tREF  
64  
64  
64  
64  
ms  
Self Refresh Exit Time  
tSREX  
1
1
1
1
CLK  
Read Cycle  
2, 5, 6  
Data Out Hold Time  
tOH  
TB  
D
6
2
3
0
3
7
2
3
0
3
7
2
3
0
3
8
2
ns  
Data Out to Low Impedance tLZ  
Time  
0
3
ns  
Data Out to High Impedance tHZ  
Time  
ns  
DQM Data Out Disable  
Latency  
tDQZ  
CLK  
Write Cycle  
7
8
Write Recovery Time  
tWRK  
12  
12  
12  
12  
0
ns  
Auto precharge write  
recovery + precharge time  
tDAL,min  
(twr/tck) + (trp/tck)  
CLK  
DQM Write Mask Latency  
tDQW  
0
0
CLK  
INFINEON Technologies  
18  
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
Notes  
1. For proper power-up see the operation section of this data sheet.  
2. AC timing tests have VIL = 0.4 V and VIH = 2.4 V with the timing referenced to the 1.4 V crossover  
point. The transition time is measured between VIH and VIL. All AC measurements assume  
tT = 1 ns with the AC output load circuit shown in figure below. Specified tAC and tOH parameters  
are measured with a 50 pF only, without any resistive termination and with a input signal of 1V /  
ns edge rate between 0.8 V and 2.0 V.  
tCH  
2.4 V  
0.4 V  
1.4 V  
CLOCK  
tT  
tCL  
tIH  
tIS  
INPUT  
1.4 V  
tAC  
tAC  
tLZ  
tOH  
OUTPUT  
1.4 V  
I/O  
50 pF  
tHZ  
Measurement conditions for  
AC and tOH  
IO.vsd  
t
3. If clock rising time is longer than 1 ns, a time (tT/2 0.5) ns has to be added to this parameter.  
4. If tT is longer than 1 ns, a time (tT 1) ns has to be added to this parameter.  
5. These parameter account for the number of clock cycles and depend on the operating frequency  
of the clock, as follows:  
the number of clock cycles = specified value of timing period (counted in fractions as a whole  
number)  
6. Access time from clock tac is 4.6 ns for PC133 components with no termination and 0 pF load,  
Data out hold time toh is 1.8 ns for PC133 components with no termination and 0 pF load.  
7. The write recovery time twr = 12 ns allows to use one clock cycle between the last data-in and  
the precharge command for frequencies equal or lower than 83 MHz. For operation frequencies  
higher than 83 MHz two clock cycles are neccessary between the last data-in and the precharge  
command.  
8. When a Write command with Auto Precharge has been issued a time of tdal(min) has be fullfilled  
before the next Activate command can be applied. For each of the terms, if not allready an  
integer, round up to the next highest integer. tck is equal to the actual system clock time.  
INFINEON Technologies  
19  
10.01  
HYB 39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
Package Outlines  
Plastic Package, P-TSOPII-54  
400 mil, 0.8 mm lead pitch  
(
)
Thin Small Outline Package, SMD  
15˚±5˚  
15˚±5˚  
2)  
10.16±0.13  
0.8  
0.5±0.1  
11.76±0.2  
0.1 54x  
26x 0.8 = 20.8  
3)  
+0.1  
M
0.2  
54x  
0.35  
-0.05  
54  
28  
27  
1
2.5 max  
1)  
22.22±0.13  
GPX09039  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max per side  
2) Does not include plastic protrusion of 0.25 max per side  
3) Does not include dambar protrusion of 0.13 max per side  
INFINEON Technologies  
20  
10.01  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
Timing Diagrams  
1. Bank Activate Command Cycle  
2. Burst Read Operation  
3. Read Interrupted by a Read  
4. Read to Write Interval  
4.1 Read to Write Interval  
4.2 Minimum Read to Write Interval  
4.3 Non-Minimum Read to Write Interval  
5. Burst Write Operation  
6. Write and Read Interrupt  
6.1 Write Interrupted by a Write  
6.2 Write Interrupted by Read  
7. Burst Write & Read with Auto-Precharge  
7.1 Burst Write with Auto-Precharge  
7.2 Burst Read with Auto-Precharge  
8. AC- Parameters  
8.1 AC Parameters for a Write Timing  
8.2 AC Parameters for a Read Timing  
9. Mode Register Set  
10. Power on Sequence and Auto Refresh (CBR)  
11. Clock Suspension (using CKE)  
11. 1 Clock Suspension During Burst Read CAS Latency = 2  
11. 2 Clock Suspension During Burst Read CAS Latency = 3  
11. 3 Clock Suspension During Burst Write CAS Latency = 2  
11. 4 Clock Suspension During Burst Write CAS Latency = 3  
12. Power Down Mode and Clock Suspend  
13. Self Refresh ( Entry and Exit )  
14. Auto Refresh ( CBR )  
15. Random Column Read ( Page within same Bank)  
15.1 CAS Latency = 2  
15.2 CAS Latency = 3  
16. Random Column Write ( Page within same Bank)  
16.1 CAS Latency = 2  
16.2 CAS Latency = 3  
17. Random Row Read ( Interleaving Banks) with Precharge  
17.1 CAS Latency = 2  
17.2 CAS Latency = 3  
18. Random Row Write ( Interleaving Banks) with Precharge  
18.1 CAS Latency = 2  
18.2 CAS Latency = 3  
19. Precharge Termination of a Burst  
20. Full Page Burst Operation  
20.1 Full Page Burst Read, CAS Latency = 2  
18.2 Full Page Burst Write, CAS Latency = 3  
INFINEON Technologies  
21  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
1. Bank Activate Command Cycle  
(CAS latency = 3)  
T0  
T1  
T
T
T
T
T
CLK  
Bank B  
Row Addr.  
Bank B  
Col. Addr.  
Bank A  
Row Addr.  
Bank B  
Row Addr.  
Address  
tRCD  
NOP  
tRRD  
Write B  
with Auto  
Precharge  
Bank B  
Activate  
Bank A  
Activate  
Bank B  
Activate  
Command  
NOP  
NOP  
tRC  
"H" or "L"  
SPT03784  
2. Burst Read Operation  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
Read A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
CAS  
latency = 2  
tCK2, DQ’s  
DOUT A0 DOUT A1 DOUT A2 DOUT A3  
CAS  
latency = 3  
tCK3, DQ’s  
DOUT A0 DOUT A1 DOUT A2 DOUT A3  
SPT03712  
INFINEON Technologies  
22  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
3. Read Interrupted by a Read  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
Read A  
Read B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
CAS  
latency = 2  
DOUT A0 DOUT B0 DOUT B1 DOUT B2 DOUT B3  
t
CK2, DQ’s  
CAS  
latency = 3  
tCK3, DQ’s  
DOUT A0 DOUT B0 DOUT B1 DOUT B2 DOUT B3  
SPT03713  
4. Read to Write Interval  
4.1 Read to Write Interval  
(Burst Length = 4, CAS latency = 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Minimum delay between the Read and Write  
Commands = 4 + 1 = 5 cycles  
Write latency tDQW of DQMx  
DQMx  
tDQZ  
Command  
DQ’s  
NOP  
Read A  
NOP  
NOP  
NOP  
NOP  
Write B  
DIN B0  
NOP  
NOP  
DOUT A0  
DIN B1  
DIN B2  
Must be Hi-Z before  
the Write Command  
"H" or "L"  
SPT03787  
INFINEON Technologies  
23  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
4 2. Minimum Read to Write Interval  
(Burst Length = 4, CAS latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
tDQW  
DQM  
tDQZ  
1 Clk Interval  
Bank A  
Activate  
Command  
NOP  
NOP  
NOP  
Read A  
Write A  
NOP  
NOP  
NOP  
Must be Hi-Z before  
the Write Command  
CAS  
latency = 2  
tCK2, DQ’s  
DIN A0  
DIN A1  
DIN A2  
DIN A3  
"H" or "L"  
SPT03939  
4. 3. Non-Minimum Read to Write Interval  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
tDQW  
DQM  
tDQZ  
Command  
NOP  
Read A  
NOP  
NOP  
Read A  
NOP  
Write B  
NOP  
NOP  
Must be Hi-Z before  
the Write Command  
CAS  
latency = 2  
tCK2, DQ’s  
DOUT A0 DOUT A1  
DOUT A0  
DIN B0  
DIN B0  
DIN B1  
DIN B1  
DIN B2  
DIN B2  
CAS  
latency = 3  
tCK3, DQ’s  
"H" or "L"  
SPT03940  
INFINEON Technologies  
24  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
5. Burst Write Operation  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
DQ’s  
NOP  
Write A  
DIN A0  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
don’t care  
DIN A1  
DIN A2  
DIN A3  
The first data element and the Write  
are registered on the same clock edge.  
Extra data is ignored after  
termination of a Burst.  
SPT03790  
INFINEON Technologies  
25  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
6. Write and Read Interrupt  
6.1 Write Interrupted by a Write  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Write A  
Command  
DQ’s  
NOP  
Write B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
1 Clk Interval  
DIN A0  
DIN B0  
DIN B1  
DIN B2  
DIN B3  
SPT03791  
6.2 Write Interrupted by a Read  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Command  
NOP  
Write A  
DIN A0  
DIN A0  
Read B  
don’t care  
don’t care  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
CAS  
latency = 2  
DOUT B0 DOUT B1 DOUT B2 DOUT B3  
t
CK2, DQ’s  
CAS  
latency = 3  
tCK3, DQ’s  
don’t care  
DOUT B0 DOUT B1 DOUT B2 DOUT B3  
Input data must be removed from the DQ’s  
at least one clock cycle before the Read data  
appears on the outputs to avoid data contention.  
Input data for the Write is ignored.  
SPT03719  
INFINEON Technologies  
26  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
7. Burst Write and Read with Auto Precharge  
7.1 Burst Write with Auto-Precharge  
(Burst Length = 2, CAS latency = 2, 3 )  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
CAS Latency = 2:  
Command  
Bank A  
Active  
Write A  
Activate  
NOP  
NOP  
tWR  
NOP  
NOP  
tRP  
NOP  
NOP  
Auto Precharge  
*
DIN A0  
NOP  
DIN A1  
DQ’s  
CAS Latency = 3:  
Command  
Bank A  
Active  
Write A  
Auto Precharge  
Activate  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tWR  
tRP  
*
DIN A0 DIN A1  
DQ’s  
Begin Auto Precharge  
*
Bank can be reactivated after trp  
7.2 Burst Read with Auto-Precharge  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Read A  
with AP  
Command  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
tRP  
*
CAS  
latency = 2  
DOUT A0 DOUT A1  
DOUT A0  
DOUT A2  
DOUT A3  
DQ’s  
tRP  
*
CAS  
latency = 3  
DOUT A1  
DOUT A2  
DOUT A3  
DQ’s  
Begin Auto Precharge  
*
SPT03721_2  
Bank can be reactivated after trp  
INFINEON Technologies  
27  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
8. AC Parameters  
8.1 AC Parameters for a Write Timing  
Burst Length = 4, CAS Latency = 2  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
t
CH  
t
CK2  
t
CL  
t
Begin Auto  
Precharge  
Bank B  
CKH  
t
Begin Auto  
Precharge  
Bank A  
CKS  
t
t
CS  
CH  
CS  
RAS  
CAS  
WE  
BS  
t
AH  
RBy  
RBy  
RAz  
RAz  
RBx  
RBx  
RAy  
RAy  
RAx  
RAx  
AP  
t
AS  
RAy  
CAx  
CBx  
WR  
Addr.  
DQM  
t
DS  
t
t
RP  
t
t
WR  
RCD  
t
t
DH  
t
RRD  
RP  
t
RC  
Hi-Z  
Ay0 Ay1 Ay2 Ay3  
Ax0 Ax1 Ax2 Ax3 Bx0 Bx1 Bx2 Bx3  
DQ  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Activate  
Command  
Bank B  
Precharge Activate  
Command Command Command  
Activate  
Bank A  
Bank A  
Bank B  
Write with  
Write with  
Auto Precharge  
Command  
Bank B  
Auto Precharge  
Command  
Bank A  
SPT03910_2  
INFINEON Technologies  
28  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
8.2 AC Parameters for a Read Timing  
Burst Length = 2, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
CLK  
CKE  
tCH  
tCK2  
tCL  
tCKH  
tCS  
Begin Auto  
Precharge  
Bank B  
tCKS  
tCH  
CS  
RAS  
CAS  
WE  
BS  
tAH  
AP  
RAx  
RBx  
RBx  
RAy  
RAy  
tAS  
Addr.  
RAx  
CAx  
tRRD  
RBx  
tRAS  
tRC  
DQM  
DQ  
tAC2  
tLZ  
tHZ  
tRP  
tAC2  
tOH  
Ax0  
tRCD  
tHZ  
Bx1  
Hi-Z  
Ax1  
Bx0  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Read with  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Auto Precharge  
Command  
Bank B  
SPT03911_2  
INFINEON Technologies  
29  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
9. Mode Register Set  
CAS Latency = 2  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
t
RSC  
CS  
RAS  
CAS  
WE  
BS  
AP  
Address Key  
Addr.  
Precharge  
Command  
All Banks  
Any  
Command  
Mode Register  
Set Command  
SPT03912_2  
INFINEON Technologies  
30  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
10. Power on Sequence and Auto Refresh (CBR)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
High Level  
is required  
2 Clock min.  
Minimum of 8 Refresh Cycles are required  
CS  
RAS  
CAS  
WE  
BS  
AP  
Address Key  
Addr.  
DQM  
t RP  
t RC  
Hi-Z  
DQ  
Precharge  
Command  
All Banks  
8th Auto Refresh  
Command  
Mode Register  
Set Command  
Any  
Command  
Inputs must be  
stable for 200  
1st Auto Refresh  
Command  
µ
s
SPT03913  
INFINEON Technologies  
31  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
11. Clock Suspension ( Using CKE)  
11.1 Clock Suspension During Burst Read CAS Latency = 2  
Burst Length = 4, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK2  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAx  
Addr.  
DQM  
RAx  
CAx  
tCSL  
tHZ  
tCSL  
tCSL  
Hi-Z  
DQ  
Ax0  
Ax1  
Ax2  
Ax3  
Activate  
Command Command  
Bank A Bank A  
Read  
Clock  
Suspend  
1 Cycle  
Clock  
Suspend  
2 Cycles  
Clock  
Suspend  
3 Cycles  
SPT03914  
INFINEON Technologies  
32  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
11.2 Clock Suspension During Burst Read CAS Latency = 3  
Burst Length = 4, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK3  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAx  
Addr.  
DQM  
RAx  
CAx  
tCSL  
tCSL  
tCSL  
tHZ  
Hi-Z  
DQ  
Ax0  
Ax1  
Ax2  
Ax3  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Clock  
Suspend  
1 Cycle  
Clock  
Suspend  
2 Cycles  
Clock  
Suspend  
3 Cycles  
SPT03915  
INFINEON Technologies  
33  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
11.3 Clock Suspension During Burst Write CAS Latency = 2  
Burst Length = 4, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK2  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAx  
Addr.  
DQM  
DQ  
RAx  
CAx  
Hi-Z  
DAx0  
DAx1  
DAx2  
DAx3  
Activate  
Command  
Bank A  
Clock  
Suspend  
1 Cycle  
Clock  
Suspend  
2 Cycles  
Clock  
Suspend  
3 Cycles  
Write  
Command  
Bank A  
SPT03916  
INFINEON Technologies  
34  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
11.4 Clock Suspension During Burst Write CAS Latency = 3  
Burst Length = 4, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK3  
CKE  
CS  
RAS  
CAS  
WE  
BA  
A8/AP  
Addr.  
DQMx  
DQ  
RAx  
RAx  
CAx  
Hi-Z  
DAx0  
DAx1  
DAx2  
DAx3  
Activate  
Command  
Bank A  
Clock  
Suspend  
1 Cycle  
Clock  
Suspend  
2 Cycles  
Clock  
Suspend  
3 Cycles  
Write  
Command  
Bank A  
SPT03917  
INFINEON Technologies  
35  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
12. Power Down Mode and Clock Suspend  
Burst Length = 4, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CKS  
t CKS  
t CK2  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAx  
Addr.  
DQM  
RAx  
CAx  
tHZ  
Hi-Z  
DQ  
Ax0 Ax1  
Ax2  
Ax3  
Activate  
Command  
Bank A  
Active  
Standby  
Read  
Command  
Bank A  
Clock Mask  
Start  
Clock Mask  
End  
Precharge  
Command  
Bank A  
Precharge  
Standby  
Any  
Command  
Clock Suspend  
Mode Entry  
Clock Suspend  
Mode Exit  
Power Down  
Mode Entry  
Power Down  
Mode Exit  
SPT03918  
INFINEON Technologies  
36  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
13. Self Refresh (Entry and Exit)  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
CKE  
t
t
CKS  
CKS  
CS  
RAS  
CAS  
WE  
BS  
AP  
Addr.  
t
SREX  
RC*)  
t
DQM  
DQ  
Hi-Z  
All Banks  
must be idle  
Self Refresh  
Entry  
Begin Self Refresh  
Exit Command  
Any  
Command  
Self Refresh Exit  
Command issued  
Self Refresh  
Exit  
*) minimum RAS cycle  
time depends on CAS  
Latency and trc  
SPT03919-2  
INFINEON Technologies  
37  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
14. Auto Refresh (CBR)  
Burst Length = 4, CAS Latency = 2  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t
CK2  
CKE  
CS  
RAS  
CAS  
WE  
BS  
RAx  
AP  
RAx  
CAx  
Addr.  
t
t
RC  
RC  
t
(Minimum Interval)  
RP  
DQM  
DQ  
Hi-Z  
Ax0 Ax1 Ax2 Ax3  
Auto Refresh  
Command  
Precharge Auto Refresh  
Command Command  
All Banks  
Activate  
Command Command  
Bank A Bank A  
Read  
SPT03920_2  
INFINEON Technologies  
38  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
15. Random Column Read (Page within same Bank)  
15.1 CAS Latency = 2  
Burst Length = 4, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK2  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAw  
RAz  
Addr.  
DQM  
DQ  
RAw  
CAw  
CAx  
CAy  
RAz  
CAz  
Hi Z  
Aw0 Aw1 Aw2 Aw3 Ax0 Ax1 Ay0 Ay1 Ay2 Ay3  
Az0 Az1 Az2 Az3  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command Command Command  
Bank A Bank A Bank A  
Activate  
Read  
SPT03921  
INFINEON Technologies  
39  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
15.2 CAS Latency = 3  
Burst Length = 4, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK3  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAw  
RAz  
Addr.  
DQM  
RAw  
CAw  
CAx  
CAy  
RAz  
CAz  
Hi Z  
DQ  
Aw0 Aw1 Aw2 Aw3 Ax0 Ax1 Ay0 Ay1 Ay2 Ay3  
Activate  
Command  
Bank A  
Read  
Command  
Bank A  
Read  
Read  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Read  
Command  
Bank A SPT03922  
Command Command  
Bank A  
Bank A  
INFINEON Technologies  
40  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
16. Random Column write (Page within same Bank)  
16.1 CAS Latency = 2  
Burst Length = 4, CAS Latency = 2  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t
CK2  
CKE  
CS  
RAS  
CAS  
WE  
BS  
RBw  
RBw  
RBz  
RBz  
AP  
CBy  
CBw  
CBx  
CBz  
Addr.  
DQM  
DQ  
Hi Z  
DBw0 DBw1 DBw2 DBw3 DBx0 DBx1 DBy0 DBy1 DBy2 DBy3  
DBz0 DBz1 DBz2 DBz3  
Activate  
Command Command  
Bank B Bank B  
Write  
Write  
Command Command  
Bank B Bank B  
Write  
Precharge Activate  
Command Command Command  
Bank B Bank B Bank B  
Read  
SPT03923_2  
INFINEON Technologies  
41  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
16.2. CAS Latency = 3  
Burst Length = 4, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK3  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RBz  
RBz  
Addr.  
DQM  
DQ  
RBz  
CBz  
CBx  
CBy  
RBz  
CBz  
Hi Z  
DBw0 DBw1 DBw2 DBw3 DBx0  
DBx1 DBy0  
Write  
DBy1 DBy2 DBy3  
DBz0  
DBz1  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Write  
Command  
Bank B  
Precharge  
Command  
Bank B  
Activate  
Command  
Bank B  
Write  
Command  
Bank BSPT03924  
Command  
Bank B  
INFINEON Technologies  
42  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
17. Random Row Read (Interleaving Banks) with Precharge  
17.1 CAS Latency = 2  
Burst Length = 8, CAS Latency = 2  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t
CK2  
High  
CKE  
CS  
RAS  
CAS  
WE  
BS  
RBx  
RBx  
RAx  
RAx  
RBy  
RBy  
AP  
CBx  
CAx  
CBy  
Addr.  
t
t
RP  
RCD  
DQM  
DQ  
t
AC2  
Hi-Z  
Bx0 Bx1 Bx2 Bx3 Bx4 Bx5 Bx6 Bx7 Ax0 Ax1 Ax2 Ax3 Ax4 Ax5 Ax6 Ax7  
By0 By1  
Activate  
Command Command  
Bank B Bank B  
Read  
Activate  
Command  
Bank A  
Precharge Activate  
CommandCommand  
Read  
Command  
Bank B  
Bank B  
Bank B  
Read  
Command  
Bank A  
SPT03925_2  
INFINEON Technologies  
43  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
17.2 CAS Latency = 3  
Burst Length = 8, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK3  
CKE  
CS  
High  
RAS  
CAS  
WE  
BS  
AP  
RBx  
RBx  
RAx  
RAx  
RBy  
Addr.  
CBx  
CAx  
RBy  
CBy  
tAC3  
tRCD  
t RP  
DQM  
DQ  
Hi-Z  
Bx0 Bx1 Bx2 Bx3 Bx4 Bx5 Bx6 Bx7 Ax0 Ax1 Ax2 Ax3 Ax4 Ax5 Ax6 Ax7 By0  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Activate  
Command  
Bank A  
Read  
Command Command  
Bank A Bank B  
Precharge  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Precharge  
Command  
Bank A  
SPT03926  
INFINEON Technologies  
44  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
18. Random Row Write (Interleaving Banks) with Precharge  
18.1 CAS Latency = 2  
Burst Length = 8, CAS Latency = 2  
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t
CK2  
High  
CKE  
CS  
RAS  
CAS  
WE  
BS  
RAx  
RBx  
RBx  
RAy  
RAy  
AP  
RAx  
CAx  
CBx  
WR  
CAy  
Addr.  
t
t
WR  
t
t
RP  
RCD  
DQM  
DQ  
Hi-Z  
DAx0 DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0 DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 DAy0 DAy1 DAy2 DAy3 DAy4  
Activate  
Command Command  
Bank A Bank A  
Write  
Activate  
Command Command  
Bank B Bank B  
Write  
Activate  
Command  
Bank A  
Precharge  
Command  
Bank B  
Precharge  
Write  
Command  
Bank A  
Command  
Bank A  
SPT03927_2  
INFINEON Technologies  
45  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
18.2 CAS Latency = 3  
Burst Length = 8, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK3  
CKE  
CS  
High  
RAS  
CAS  
WE  
BS  
AP  
RAx  
RAx  
RBx  
RBx  
RAy  
Addr.  
CAx  
CBx  
RAy  
CAy  
tRCD  
tWR  
t RP  
tWR  
DQM  
DQ  
Hi-Z  
DAx0  
DAx1 DAx2 DAx3 DAx4 DAx5 DAx6 DAx7 DBx0  
DBx1 DBx2 DBx3 DBx4 DBx5 DBx6 DBx7 DAy0  
DAy1 DAy2 DAy3  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Activate  
Command  
Bank B  
Write  
Command  
Bank B  
Precharge  
Command  
Bank A  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Precharge  
Command  
Bank B  
SPT03928  
INFINEON Technologies  
46  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
19. Precharge termination of a Burst  
19.1 CAS Latency = 2  
Burst Length = 8 or Full Page, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK2  
CKE  
CS  
High  
RAS  
CAS  
WE  
BS  
AP  
RAx  
RAx  
RAy  
RAy  
RAz  
Addr.  
CAx  
CAy  
RAz  
CAz  
t RP  
t RP  
t RP  
DQM  
DQ  
Hi Z  
DAx0  
DAx1 DAx2 DAx3  
Ay0 Ay1 Ay2  
Az0 Az1 Az2  
Activate  
Command  
Bank A  
Write  
Command  
Bank A  
Precharge  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command  
Bank A  
Read  
Command  
Bank A  
Precharge  
Command  
Bank A  
Precharge Termination  
of a Write Burst.  
Write Data is masked.  
Activate  
Command  
Bank A  
Activate  
Command  
Bank A  
Precharge Termination  
of a Read Burst.  
SPT03933  
INFINEON Technologies  
47  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
20. Full Page Burst Operation  
20.1 Full Page Burst Read, CAS Latency = 2  
Burst Length = Full Page, CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK2  
High  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAx  
RAx  
RBx  
RBx  
RBy  
Addr.  
CAx  
CBx  
RBy  
t RP  
DQM  
DQ  
Hi-Z  
Ax  
Ax +1 Ax + 2 Ax -2  
Ax -1  
Ax  
Ax +1  
Bx  
Bx +1 Bx +2 Bx +3 Bx+4 Bx+5 Bx +6  
Activate  
Command Command Command  
Bank A Bank A Bank B  
Read  
Activate  
Read  
Command  
Bank B  
Burst Stop Precharge  
Command Command  
Bank B  
The burst counter wraps  
from the highest order  
page address back to zero  
during this time interval.  
Full Page burst operation does not  
Activate  
Command  
Bank B  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address.  
SPT03929  
INFINEON Technologies  
48  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
20. Full Page Burst Operation  
20.2 Full Page Burst Write, CAS Latency = 3  
Burst Length = Full Page, CAS Latency = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22  
CLK  
t CK3  
High  
CKE  
CS  
RAS  
CAS  
WE  
BS  
AP  
RAx  
RAx  
RBx  
RBx  
RBy  
Addr.  
CAx  
CBx  
RBy  
tRRD  
DQM  
DQ  
Hi-Z  
Ax  
Ax +1 Ax +2 Ax -2  
Ax -1  
Ax  
Ax +1  
Bx  
Bx +1 Bx+2 Bx+3 Bx+4 Bx+5  
Activate  
Command  
Bank A  
Activate  
Command  
Bank B  
Read  
Command  
Bank B  
Burst Stop Precharge  
Command Command  
Bank B  
Activate  
Command  
Bank B  
Read  
Command  
Bank A  
The burst counter wraps  
from the highest order  
page address back to zero  
during this time interval.  
Full Page burst operation does not  
terminate when the burst length is satisfied;  
the burst counter increments and continues  
bursting beginning with the starting address.  
SPT03930  
INFINEON Technologies  
49  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
TABLE OF CONTENTS  
128-MBit Synchronous DRAM  
Ordering Information  
page 1  
page 2  
Pin Definitions and Functions  
Pin Configuration for x4, x8 & x16 Organized 128M-DRAMs  
Functional Block Diagrams  
Block Diagram: 32M x4 SDRAM (12 / 11 / 2 addressing  
Block Diagram: 16M x8 SDRAM (12 / 10 / 2 addressing)  
Block Diagram: 8M x16 SDRAM (12 / 9 / 2 addressing)  
Signal Pin Description  
page 2  
page 3  
page 4  
page 4  
page 5  
page 6  
page 7  
Operation Definition  
page 9  
Address Inputs for Mode Register Set Operation  
Power On and Initialization  
Programming the Mode Register  
Read and Write Operation  
Refresh Mode  
page 10  
page 11  
page 11  
page 11  
page 12  
page 13  
page 13  
page 13  
page 13  
page 13  
page 14  
page 14  
page 15  
page 15  
page 15  
page 15  
page 16  
page 17  
page 20  
page 21  
page 22  
Burst Length and Sequence  
DQM Function  
Power Down  
Auto Precharge  
Precharge Command  
Burst Termination.  
Bank Selection by Address Bits  
Electrical Characteristics  
Absolute Maximum Ratings  
Recommended Operation and DC Characteristics  
Capacitance  
Operating Currents  
AC Characteristics  
Package Outlines  
Table of Content  
Timing DIagrams  
INFINEON Technologies  
50  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
Attention please !  
As far as patents or other rights of third parties are concerned, liability is only  
assumed for components, not for applications, processes and circuits  
implemented within components or assemblies. This infomation describes  
the type of components and shall not be considered as assured  
characteristics. Terms of delivery and rights to change design reserved.  
For questions on technology, delivery and prices please contact INFINEON  
Technologies Offices in Munich or the INFINEON Technologies Sales Offices  
and Representatives worldwide.  
Due to technical requirements components may contain dangerous  
substances. For information on the types in question please contact your  
nearest INFINEON Technologies office or representative.  
Packing  
Please use the recycling operators known to you. We can help you - get in  
touch with your nearest sales office. By agreement we will take packing  
material back, if it is sorted. You must bear the costs of transport. For packing  
material that is returned to us unsorted or which we are not obliged to accept,  
we shall have to invoice you for any costs incurred.  
Components used in life-support devices or systems must be expressly  
authorized for such purpose!  
1
Ciritcal components of INFINEON Technologies, may only be used in life-  
2
support devices or systems with the express written approval of INFINEON  
Technologies.  
1. A critical component is a component used in a life-support device or system  
whose failure can reasonably be expected to cause the failure of that life-  
support device or system, or to affect the safety or effectiveness of that device  
or system.  
2. Life support devices or systems are intended (a) to be implanted in the  
human body, or (b) to support and/or maintain and sustain human life. If they  
fail, it is reasonable to assume that the health of the user may be endangered.  
INFINEON Technologies  
51  
HYB39S128400/800/160DT(L)  
128-MBit Synchronous DRAM  
INFINEON Technologies  
52  

相关型号:

HYB39S128800DT-7.5

Synchronous DRAM, 16MX8, 5.4ns, CMOS, PDSO54, 0.400 X 0.875 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54
INFINEON

HYB39S128800FE-7

128-MBit Synchronous DRAM
QIMONDA

HYB39S128800FEL-7

128-MBit Synchronous DRAM
QIMONDA

HYB39S128800FT-7

128-MBit Synchronous DRAM
QIMONDA

HYB39S128800FTL-7

128-MBit Synchronous DRAM
QIMONDA

HYB39S128800TC-3

MEMORY SPECTRUM
INFINEON

HYB39S128800TC-37

MEMORY SPECTRUM
INFINEON

HYB39S128800TC-5

MEMORY SPECTRUM
INFINEON

HYB39S128800TC-6

MEMORY SPECTRUM
INFINEON

HYB39S128800TC-7

MEMORY SPECTRUM
INFINEON

HYB39S128800TC-75

MEMORY SPECTRUM
INFINEON

HYB39S128800TC-7F

MEMORY SPECTRUM
INFINEON