C517 [INFINEON]

8-bit CMOS MICROCONTROLLER; 8位CMOS微控制器
C517
型号: C517
厂家: Infineon    Infineon
描述:

8-bit CMOS MICROCONTROLLER
8位CMOS微控制器

微控制器
文件: 总72页 (文件大小:803K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
0LFURFRPSXWHUꢀ&RPSRQHQWV  
ꢅꢆ%LWꢀ&026ꢀ0LFURFRQWUROOHU  
&ꢇꢂꢈ$  
'DWDꢀ6KHHWꢀꢁꢂꢃꢄꢄ  
C517A Data Sheet  
Revision History :  
01.99  
Previous Releases :  
08.97 (Original Version)  
Subjects (changes since last revision)  
Page  
Page  
(previous  
version)  
(new  
version)  
All sections All sections VCC is changed to VDD and ICC is changed to IDD.  
2
2
2
2
2
"with wake-up capability through INT0 pin" is removed.  
P-LCC-84 package is added under the feature list.  
Table 1; deleted and replaced by “Ordering Information” paragraph  
“Additional Literature”;deleted.  
2 to 3  
5
5
Figure 4; added.  
5
6
Table 1; modified, column “P-LCC-84” is added.  
"or by a short low pulse at pin P3.2/INT0" is removed.  
"Short low pulse at pin P3.2/INT0" is removed.  
“Absolute Maximum Ratings” is changed to tabular form.  
Fifth line; “During overload conditions ...” changed to “During absolute  
maximum rating conditons ...”.  
47  
48  
49  
49  
50  
50  
52  
52  
49  
50  
51  
53  
55  
62  
-
52  
53  
54  
56  
58  
65  
69  
“Operating Conditions” is added.  
VCC = 5 V + 10% ... “ is replaced by “(Operating Conditions apply)”.  
Notes (7); modified.  
VCC = 5 V + 10% ... “ is replaced by “(Operating Conditions apply)”.  
VCC = 5 V + 10% ... “ is replaced by “(Operating Conditions apply)”.  
First line; “C517A-1RM” is replaced by “C517A-4RM/4RN”  
Figure 38; added.  
Edition 01.99  
This edition was realized using the software system FrameMaker .  
Published by : Siemens AG, Semiconductor Group, Product Definition 8-Bit Microcontroller Components,  
Balanstraße 73, D-81541 München .  
©
Siemens AG 01.99,. All Rights Reserved.  
“Enhanced Hooks Technology“ is a trademark and patent of Metalink Corporation, licensed to Siemens.  
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for  
applications, processes and circuits implemented within components or assemblies.  
The information describes the type of component and shall not be considered as assured characteristics.  
Terms of delivery and rights to change design reserved.  
For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or  
the Siemens Companies and Representatives worldwide.  
Due to technical requirements components may contain dangerous substances. For information on the type in  
question please contact your nearest Siemens Office, Components Group.  
Siemens AG is an approved CECC manufacturer.  
Packing  
Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales  
office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.  
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have ti invoice  
you for any costs incurred.  
C517A  
8-Bit CMOS Microcontroller  
Advance Information  
Full upward compatibility with SAB 80C517A/83C517A-5  
Up to 24 MHz external operating frequency  
– 500 ns instruction cycle at 24 MHz operation  
Superset of the 8051 architecture with 8 datapointers  
On-chip emulation support logic (Enhanced Hooks Technology TM  
32K byte on-chip ROM (with optional ROM protection)  
– alternatively up to 64K byte external program memory  
Up to 64K byte external data memory  
)
256 byte on-chip RAM  
Additional 2K byte on-chip RAM (XRAM)  
Seven 8-bit parallel I/O ports  
Two input ports for analog/digital input  
(further features are on next page)  
Oscillator  
Watchdog  
Watchdog  
Timer  
XRAM  
2K x 8  
RAM  
256 x 8  
Port 0  
Port 1  
Port 2  
Port 3  
I/O  
I/O  
I/O  
I/O  
I/O  
T0  
T1  
Compare  
Timer  
CPU  
(8 Datapointer)  
CCU  
T2  
MDU  
Power  
Saving  
Modes  
10-Bit  
A/D Converter  
ROM  
32k x 8  
8 Bit  
USART  
8 Bit  
UART  
Port 8 Port 7 Port 6 Port 5 Port 4  
Analog/ Analog/  
Digital Digital  
I/O  
I/O  
Input  
Input  
MCA03317  
Figure 1  
C517A Functional Units  
Semiconductor Group  
1
C517A  
Features (continued) :  
Two full duplex serial interfaces (USART)  
– 4 operating modes, fixed or variabie baud rates  
– programmable baud rate generators  
Four 16-bit timer/counters  
– Timer 0 / 1 (C501 compatible)  
– Timer 2 for 16-bit reload, compare, or capture functions  
– Compare timer for compare/capture functions  
Powerful 16-bit compare/capture unt (CCU) with up to 21 high-speed or PWM output channels  
and 5 capture inputs  
10-bit A/D converter  
– 12 multiplexed analog inputs  
– Built-in self calibration  
Extended watchdog facilities  
– 15-bit programmable watchdog timer  
– Oscillator watchdog  
Power saving modes  
– Slow down mode  
– Idle mode (can be combined with slow down mode)  
– Software power-down mode  
– Hardware power-down mode  
17 interrupt sources (7 external, 10 internal) selectable at 4 priority levels  
P-MQFP-100 and P-LCC-84 packages  
Temperature Ranges : SAB-C517A  
SAF-C517A  
TA = 0 to 70 °C  
TA = -40 to 85 °C  
TA = -40 to 110 °C  
SAH-C517A  
Ordering Information  
The ordering code for Siemens microcontrollers provides an exact reference to the required  
product. This ordering code identifies:  
the derivative itself, i.e. its function set  
the specified temperature range  
the package and the type of delivery.  
For the available ordering codes for the C517A please refer to the  
Product Information Microcontrollers“, which summarizes all available microcontroller variants.  
Note: The ordering codes for the Mask-ROM versions are defined for each product after  
verification of the respective ROM code.  
Semiconductor Group  
2
C517A  
VDD VSS  
Port 7  
8-bit Analog/  
Digital Input  
Port 0  
8-Bit Digital I/O  
Port 8  
4-bit Analog/  
Digital Input  
Port 1  
8-Bit Digital I/O  
XTAL1  
XTAL2  
ALE  
Port 2  
8-Bit Digital I/O  
PSEN  
EA  
Port 3  
8-Bit Digital I/O  
C517A  
RESET  
PE/SWD  
OWE  
Port 4  
8-Bit Digital I/O  
Port 5  
8-Bit Digital I/O  
RO  
HWPD  
Port 6  
8-Bit Digital I/O  
VAREF  
VAGND  
MCL03318  
Figure 2  
Logic Symbol  
Semiconductor Group  
3
C517A  
1
CC4/INT2/P1.4  
N.C.  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P7.7/AIN7  
2
VAGND  
3
N.C.  
VAREF  
4
N.C.  
N.C.  
5
N.C.  
N.C.  
6
CC3/INT6/P1.3  
CC2/INT5/P1.2  
CC1/INT4/P1.1  
CC0/INT3/P1.0  
VSS  
N.C.  
7
N.C.  
8
RESET  
P4.7/CM7  
P4.6/CM6  
P4.5/CM5  
P4.4/CM4  
P4.3/CM3  
PE/SWD  
P4.2/CM2  
P4.1/CM1  
P4.0/CM0  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
XTAL2  
XTAL1  
P2.0/A8  
P2.1/A9  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
P2.7/A15  
PSEN  
C517A  
V
DD  
VSS  
RO  
P8.3/AIN11  
P8.2/AIN10  
P8.1/AIN9  
P8.0/AIN8  
P6.7  
ALE  
EA  
N.C.  
P0.0/AD0  
P0.1/AD1  
N.C.  
P6.6  
P6.5  
N.C.  
N.C.  
N.C.  
P0.2/AD2  
N.C.  
MCP03319  
Figure 3  
Pin Configuration P-MQFP-100 Package (Top View)  
Semiconductor Group  
4
C517A  
VAGND  
P7.7/AIN7  
P7.6/AIN6  
P7.5/AIN5  
P7.4/AIN4  
P7.3/AIN3  
P7.2/AIN2  
P7.1/AIN1  
P7.0/AIN0  
P3.0/RxD0  
P3.1/TxD0  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
P6.4  
P6.3  
P6.2/TxD1  
P6.1/RxD1  
P6.0/ADST  
OWE  
P5.0/CCM0  
P5.1/CCM1  
P5.2/CCM2  
P5.3/CCM3  
P5.4/CCM4  
P5.5/CCM5  
P5.6/CCM6  
P5.7/CCM7  
HWPD  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
&ꢁꢂꢃ$  
P3.5/T1  
P3.6/WR  
P3.7/RD  
P1.7/T2  
P1.6/CLKOUT  
P1.5/T2EX  
P1.4/INT2/CC4  
Figure 4  
Pin Configuration P-LCC-84 Package (Top View)  
Semiconductor Group  
5
C517A  
Table 1  
Pin Definitions and Functions  
6\PERO  
3LQꢀ1XPEHU  
,ꢄ2ꢅꢆ )XQFWLRQ  
3ꢇ04)3ꢇꢂꢈꢈ  
3ꢇ/&&ꢇꢉꢊ  
36 - 29  
P1.0 - P1.7  
9 - 6, 1,  
100 - 98  
I/O  
Port 1  
is an 8-bit quasi-bidirectional I/O port with  
internal pullup resistors. Port 1 pins that  
have 1’s written to them are pulled high by  
the internal pullup resistors, and in that state  
can be used as inputs. As inputs, port 1 pins  
being externally pulled low will source  
current (I IL, in the DC characteristics)  
because of the internal pullup resistors. The  
port is used for the low-order address byte  
during program verification. Port 1 also  
contains the interrupt, timer, clock, capture  
and compare pins that are used by various  
options. The output latch corresponding to a  
secondary function must be programmed to  
a one (1) for that function to operate (except  
when used for the compare functions). The  
secondary functions are assigned to the port  
1 pins as follows :  
9
36  
35  
34  
33  
32  
31  
P1.0 / INT3 / CC0 Interrupt 3 input /  
compare 0 output /  
capture 0 input  
P1.1 / INT4 / CC1 Interrupt 4 input /  
compare 1 output /  
capture 1 input  
P1.2 / INT5 / CC2 Interrupt 5 input /  
compare 2 output /  
capture 2 input  
P1.3 / INT6 / CC3 Interrupt 6 input /  
compare 3 output /  
8
7
6
capture 3 input  
P1.4 / INT2 / CC4 Interrupt 2 input /  
compare 4 output /  
1
capture 4 input  
100  
P1.5 / T2EX  
Timer 2 external  
reload / trigger input  
System clock output  
Counter 2 input  
99  
98  
30  
29  
P1.6 / CLKOUT  
P1.7 / T2  
*) I = Input,  
O = Output  
Semiconductor Group  
6
C517A  
Table 1  
Pin Definitions and Functions (cont’d)  
6\PERO  
3LQꢀ1XPEHU  
3ꢇ04)3ꢇꢂꢈꢈ 3ꢇ/&&ꢇꢉꢊ  
,ꢄ2ꢅꢆ )XQFWLRQ  
VSS  
10, 62  
37, 83  
Ground (0V)  
during normal, idle, and power down  
operation.  
VDD  
11, 63  
12  
38, 84  
39  
Supply voltage  
during normal, idle, and power down mode.  
XTAL2  
XTAL2  
is the input to the inverting oscillator  
amplifier and input to the internal clock  
generator circuits.  
To drive the device from an external clock  
source, XTAL2 should be driven, while  
XTAL1 is left unconnected. Minimum and  
maximum high and low times as well as rise/  
fall times specified in the AC characteristics  
must be observed.  
XTAL1  
13  
40  
XTAL1  
is the output of the inverting oscillator  
amplifier. This pin is used for the oscillator  
operation with crystal or ceramic resonator.  
P2.0 - P2.7  
14 - 21  
41 - 48  
I/O  
Port 2  
is an 8-bit quasi-bidirectional I/O port with  
internal pullup resistors. Port 2 pins that  
have 1's written to them are pulled high by  
the internal pullup resistors, and in that state  
can be used as inputs. As inputs, port 2 pins  
being externally pulled low will source  
current (I IL, in the DC characteristics)  
because of the internal pullup resistors.  
Port 2 emits the high-order address byte  
during fetches from external program  
memory and during accesses to external  
data memory that use 16-bit addresses  
(MOVX @DPTR). In this application it uses  
strong internal pullup resistors when issuing  
1's. During accesses to external data  
memory that use 8-bit addresses  
(MOVX @Ri), port 2 issues the contents of  
the P2 special function register.  
*) I = Input  
O = Output  
Semiconductor Group  
7
C517A  
Table 1  
Pin Definitions and Functions (cont’d)  
6\PERO  
3LQꢀ1XPEHU  
3ꢇ04)3ꢇꢂꢈꢈ 3ꢇ/&&ꢇꢉꢊ  
,ꢄ2ꢅꢆ )XQFWLRQ  
PSEN  
22  
49  
O
The Program Store Enable  
output is a control signal that enables the  
external program memory to the bus during  
external fetch operations. It is activated  
every six oscillator periods except during  
external data memory accesses. The signal  
remains high during internal program  
execution.  
ALE  
EA  
23  
24  
50  
51  
O
The Address Latch enable  
output is used for latching the address into  
external memory during normal operation. It  
is activated every six oscillator periods  
except during an external data memory  
access.  
I
External Access Enable  
When held high, the C517A executes  
instructions from the internal ROM as long  
as the PC is less than 8000 . When held  
H
low, the C517A fetches all instructions from  
external program memory. For the C517A-L  
this pin must be tied low. For the C517A-4R,  
if the device is protected (see section 4.6 in  
the User Manual) then this pin is only  
latched during reset.  
P0.0 - P0.7  
26, 27,  
30 - 35  
52 - 59  
I/O  
Port 0  
is an 8-bit open-drain bidirectional I/O port.  
Port 0 pins that have 1’s written to them  
float, and in that state can be used as high-  
impedance inputs. Port 0 is also the  
multiplexed low-order address and data bus  
during accesses to external program and  
data memory. In this application it uses  
strong internal pullup resistors when issuing  
1’s. Port 0 also outputs the code bytes  
during program verification in the C517A-  
4R. External pullup resistors are required  
during program verification.  
*) I = Input  
O = Output  
Semiconductor Group  
8
C517A  
Table 1  
Pin Definitions and Functions (cont’d)  
6\PERO  
3LQꢀ1XPEHU  
3ꢇ04)3ꢇꢂꢈꢈ 3ꢇ/&&ꢇꢉꢊ  
,ꢄ2ꢅꢆ )XQFWLRQ  
HWPD  
36  
60  
I
Hardware Power Down  
A low level on this pin for the duration of one  
machine cycle while the oscillator is running  
resets the C517A. A low level for a longer  
period will force the part into hardware  
power down mode with the pins floating.  
There is no internal pullup resistor  
connected to this pin.  
P5.0 - P5.7  
44 - 37  
68 - 61  
I/O  
Port 5  
is a quasi-bidirectional I/O port with internal  
pull-up resistors. Port 5 pins that have 1 s  
written to them are pulled high by the  
internal pull-up resistors, and in that state  
can be used as inputs. As inputs, port 5 pins  
being externally pulled low will source  
current (IIL, in the DC characteristics)  
because of the internal pull-up resistors.  
This port also serves the alternate function  
"Concurrent Compare" and "Set/Reset  
Compare". The secondary functions are  
assigned to the port 5 pins as follows:  
CCM0 to CCM7 P5.0 to P5.7 :  
concurrent compare or  
Set/Reset lines  
OWE  
45  
69  
I
Oscillator Watchdog Enable  
A high level on this pin enables the oscillator  
watchdog. When left unconnected this pin is  
pulled high by a weak internal pull-up  
resisitor. The logic level at OWE should not  
be changed during normal operation. When  
held at low level the oscillator watchdog  
function is turned off. During hardware  
power down the pullup resistor is switched  
off.  
*) I = Input  
O = Output  
Semiconductor Group  
9
C517A  
Table 1  
Pin Definitions and Functions (cont’d)  
6\PERO  
3LQꢀ1XPEHU  
3ꢇ04)3ꢇꢂꢈꢈ 3ꢇ/&&ꢇꢉꢊ  
,ꢄ2ꢅꢆ )XQFWLRQ  
P6.0 - P6.7  
46 - 50,  
54 - 56  
70 - 77  
I/O  
Port 6  
is a quasi-bidirectional I/O port with internal  
pull-up resistors. Port 6 pins that have 1 s  
written to them are pulled high by the  
internal pull-up resistors, and in that state  
can be used as inputs. As inputs, port 6 pins  
being externally pulled low will source  
current (I IL, in the DC characteristics)  
because of the internal pull-up resistors.  
Port 6 also contains the external A/D  
converter start control pin and the transmit  
and receive pins for the serial interface 1.  
The output latch corresponding to a  
secondary function must be programmed to  
a one (1) for that function to operate.  
The secondary functions are assigned to the  
pins of port 6, as follows :  
46  
47  
48  
70  
71  
72  
P6.0 ADST  
P6.1 RxD1  
P6.2 TxD1  
external A/D converter  
start pin  
receiver data input of serial  
interface 1  
transmitter data input of  
serial interface 1  
P8.0 - P8.3  
57 - 60  
78 - 81  
I
Port 8  
is a 4-bit unidirectional input port. Port pins  
can be used for digital input, if voltage levels  
meet the specified input high/low voltages,  
and for the higher 4-bit of the multiplexed  
analog inputs of the A/D converter,  
simultaneously.  
P8.0 - P8.3  
AIN8 - AIN11 analog  
input 8 - 11  
RO  
61  
82  
O
Reset Output  
This pin outputs the internally synchronized  
reset request signal. This signal may be  
generated by an external hardware reset, a  
watchdog timer reset or an oscillator  
watchdog reset. The RO output signal is  
active low.  
*) I = Input  
O = Output  
Semiconductor Group  
10  
C517A  
Table 1  
Pin Definitions and Functions (cont’d)  
6\PERO  
3LQꢀ1XPEHU  
3ꢇ04)3ꢇꢂꢈꢈ 3ꢇ/&&ꢇꢉꢊ  
,ꢄ2ꢅꢆ )XQFWLRQ  
P4.0 - P4.7  
64 - 66,  
68 - 72  
1 - 3,  
5 - 9  
I/O  
Port 4  
is an 8-bit quasi-bidirectional I/O port with  
internal pull-up resistors. Port 4 pins that  
have 1’s written to them are pulled high by  
the internal pull-up resistors, and in that  
state can be used as inputs. As inputs, port  
4 pins being externally pulled low will source  
current (I IL, in the DC characteristics)  
because of the internal pull-up resistors.  
Port 4 also serves as alternate compare  
functions. The output latch corresponding to  
a secondary function must be programmed  
to a one (1) for that function to operate. The  
secondary functions are assigned to the  
pins of port 4 as follows :  
P4.0 - P4.7 CM0 - CM7 Compare  
channel 0 - 7  
PE/SWD  
67  
4
I
Power saving mode enable / Start  
watchdog timer  
A low level at this pin allows the software to  
enter the power saving modes (idle mode,  
slow down mode, and power down mode).  
In case the low level is also seen during  
reset, the watchdog timer function is off on  
default.  
Usage of the software controlled power  
saving modes is blocked, when this pin is  
held at high level. A high level during reset  
performs an automatic start of the watchdog  
timer immediately after reset.  
When left unconnected this pin is pulled  
high by a weak internal pull-up resistor.  
During hardware power down the pullup  
resisitor is switched off.  
*) I = Input  
O = Output  
Semiconductor Group  
11  
C517A  
Table 1  
Pin Definitions and Functions (cont’d)  
6\PERO  
3LQꢀ1XPEHU  
3ꢇ04)3ꢇꢂꢈꢈ 3ꢇ/&&ꢇꢉꢊ  
,ꢄ2ꢅꢆ )XQFWLRQ  
P3.0 - P3.7  
90 - 97  
21 - 28  
I/O  
Port 3  
is an 8-bit quasi-bidirectional I/O port with  
internal pullup resistors. Port 3 pins that  
have 1’s written to them are pulled high by  
the internal pullup resistors, and in that state  
can be used as inputs. As inputs, port 3 pins  
being externally pulled low will source  
current (I IL, in the DC characteristics)  
because of the internal pullup resistors. Port  
3 also contains the interrupt, timer, serial  
port and external memory strobe pins that  
are used by various options. The output  
latch corresponding to a secondary function  
must be programmed to a one (1) for that  
function to operate. The secondary  
functions are assigned to the pins of port 3,  
as follows:  
90  
91  
21  
22  
P3.0 / RxD0  
Receiver data input  
(asynch.) or data  
input/output (synch.)of  
serial interface 0  
Transmitter data output  
(asynch.) or clock output  
(synch.) of serial interface  
0
P3.1 / TxD0  
92  
93  
23  
24  
P3.2 / INT0  
P3.3 / INT1  
External interrupt 0 input /  
timer 0 gate control input  
External interrupt 1 input /  
timer 1 gate control input  
Timer 0 counter input  
Timer 1 counter input  
WR control output; latches  
the data byte from port 0  
into the external data  
memory  
94  
95  
96  
25  
26  
27  
P3.4 / T0  
P3.5 / T1  
P3.6 / WR  
97  
28  
P3.7 / RD  
RD control output; enables  
the external data memory  
*) I = Input  
O = Output  
Semiconductor Group  
12  
C517A  
Table 1  
Pin Definitions and Functions (cont’d)  
6\PERO  
3LQꢀ1XPEHU  
3ꢇ04)3ꢇꢂꢈꢈ 3ꢇ/&&ꢇꢉꢊ  
,ꢄ2ꢅꢆ )XQFWLRQ  
RESET  
73  
10  
I
RESET  
A low level on this pin for the duration of two  
machine cycles while the oscillator is  
running resets the C517A. A small internal  
pullup resistor permits power-on reset using  
only a capacitor connected to VSS  
.
VAREF  
78  
11  
I
Reference voltage for the A/D converter  
Reference ground for the A/D converter  
VAGND  
79  
12  
P7.0 - P7.7  
87 - 80  
20-13  
Port 7  
is an 8-bit unidirectional input port. Port pins  
can be used for digital input, if voltage levels  
meet the specified input high/low voltages,  
and for the lower 8-bit of the multiplexed  
analog inputs of the A/D converter,  
simultaneously.  
P7.0 - P7.7  
AIN0 - AIN7  
analog  
input0 - 7  
N.C.  
2 - 5, 25,  
28, 29,  
51 - 53,  
74 - 77  
88, 89  
Not connected  
These pins of the P-MQFP-100 package  
must not be connected.  
*) I = Input  
O = Output  
Semiconductor Group  
13  
C517A  
Oscillator Watchdog  
OSC & Timing  
RAM  
256 x 8  
XRAM  
2k x 8  
ROM  
32k x 8  
XTAL1  
XTAL2  
ALE  
PSEN  
CPU  
8 Datapointer  
EA  
Emulation  
Support  
Logic  
PE/SWD  
RESET  
HWPD  
Programmable  
Watchdog Timer  
Port 0  
8-Bit Digital I/O  
Timer 0  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
Port 7  
Port 8  
RO  
OWE  
Timer 1  
Timer 2  
Port 1  
8-Bit Digital I/O  
Port 2  
8-Bit Digital I/O  
Capture  
Compare Unit  
Compare Timer  
Port 3  
8-Bit Digital I/O  
Serial Channel 0  
Programmable  
Baud Rate Generator  
Port 4  
8-Bit Digital I/O  
Serial Channel 1  
Port 5  
8-Bit Digital I/O  
Programmable  
Baud Rate Generator  
Port 6  
8-Bit Digital I/O  
Interrupt Unit  
Port 7  
8-Bit Analog/  
Digital Input  
VAREF  
VAGND  
A/D Converter  
10 Bit  
Port 8  
4-Bit Analog/  
Digital Input  
Analog  
MUX  
S & H  
C517A  
MCB03320  
Figure 5  
Block Diagram of the C517A  
Semiconductor Group  
14  
C517A  
CPU  
The C517A is efficient both as a controller and as an arithmetic processor. It has extensive facilities  
for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program  
memory results from an instruction set consisting of 44 % one-byte, 41 % two-byte, and 15% three-  
byte instructions. With a 12 MHz crystal, 58% of the instructions are executed in 1µs (24 MHz : 500  
ns).  
Special Function Register PSW (Address D0 )  
H
Reset Value : 00  
H
Bit No. MSB  
LSB  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
H
H
H
H
H
H
H
H
D0  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
PSW  
H
Bit  
Function  
CY  
Carry Flag  
Used by arithmetic instruction.  
AC  
F0  
Auxiliary Carry Flag  
Used by instructions which execute BCD operations.  
General Purpose Flag  
RS1  
RS0  
Register Bank select control bits  
These bits are used to select one of the four register banks.  
RS1  
RS0  
Function  
Bank 0 selected, data address 00 -07  
0
0
1
1
0
1
0
1
H
H
Bank 1 selected, data address 08 -0F  
H
H
Bank 2 selected, data address 10 -17  
H
H
Bank 3 selected, data address 18 -1F  
H
H
OV  
Overflow Flag  
Used by arithmetic instruction.  
General Purpose Flag  
Parity Flag  
F1  
P
Set/cleared by hardware after each instruction to indicate an odd/even  
number of "one" bits in the accumulator, i.e. even parity.  
Semiconductor Group  
15  
C517A  
Memory Organization  
The C517A CPU manipulates operands in the following five address spaces:  
– up to 64 Kbyte of program memory (32K on-chip program memory for C517A-4R)  
– up to 64 Kbyte of external data memory  
– 256 bytes of internal data memory  
– 2K bytes of internal XRAM data memory  
– a 128 byte special function register area  
Figure 6 illustrates the memory address spaces of the C517A.  
FFFF  
H
FFFF  
H
H
int.  
(XMAP0 = 0)  
ext.  
(XMAP0 = 1)  
ext.  
Indirect  
Address  
Direct  
Address  
F800  
H
8000  
F7FF  
FF  
80  
FF  
80  
H
H
H
H
H
Special  
Function  
Regs.  
Internal  
RAM  
7FFF  
0000  
H
H
int.  
(EA = 1)  
ext.  
(EA = 0)  
ext.  
7F  
H
H
Internal  
RAM  
0000  
00  
H
"Code Space"  
"Data Space"  
"Internal Data Space"  
MCB03321  
Figure 6  
C517A Memory Map  
Semiconductor Group  
16  
 
C517A  
Reset and System Clock  
The reset input is an active low input at pin RESET. Since the reset is synchronized internally, the  
RESET pin must be held low for at least two machine cycles (24 oscillator periods) while the  
oscillator is running. A pullup resistor is internally connected to VDD to allow a power-up reset with  
an external capacitor only. An automatic reset can be obtained when VDD is applied by connecting  
the RESET pin to VSS via a capacitor. Figure 7 shows the possible reset circuitries.  
a)  
b)  
&
RESET  
RESET  
+
C517A  
C517A  
c)  
RESET  
+
C517A  
MCS03323  
Figure 7  
Reset Circuitries  
Semiconductor Group  
17  
 
C517A  
Figure 8 shows the recommended oscillator circiutries for crystal and external clock operation.  
Crystal Oscillator Mode  
C
Driving from External Source  
N.C.  
XTAL1  
XTAL2  
XTAL1  
3.5 - 24  
MHz  
External Oscillator  
Signal  
XTAL2  
C
Crystal Mode:  
C = 20 pF 10 pF  
(Incl. Stray Capacitance)  
MCS03245  
Figure 8  
Recommended Oscillator Circuitries  
Semiconductor Group  
18  
 
C517A  
Enhanced Hooks Emulation Concept  
The Enhanced Hooks Emulation Concept of the C500 microcontroller family is a new, innovative  
way to control the execution of C500 MCUs and to gain extensive information on the internal  
operation of the controllers. Emulation of on-chip ROM based programs is possible, too.  
Each production chip has built-in logic for the supprt of the Enhanced Hooks Emulation Concept.  
Therefore, no costly bond-out chips are necessary for emulation. This also ensure that emulation  
and production chips are identical.  
The Enhanced Hooks TechnologyTM 1), which requires embedded logic in the C500 allows the C500  
together with an EH-IC to function similar to a bond-out chip. This simplifies the design and reduces  
costs of an ICE-system. ICE-systems using an EH-IC and a compatible C500 are able to emulate  
all operating modes of the different versions of the C500 microcontrollers. This includes emulation  
of ROM, ROM with code rollover and ROMless modes of operation. It is also able to operate in  
single step mode and to read the SFRs after a break.  
ICE-System interface  
to emulation hardware  
RESET  
SYSCON  
PCON  
RSYSCON  
RPCON  
EA  
ALE  
PSEN  
EH-IC  
TCON  
RTCON  
C500  
MCU  
Enhanced Hooks  
Interface Circuit  
Port 0  
Port 2  
Port 1  
opt.  
I/O Ports  
RPORT RPORT  
Port 3  
2
0
TEA TALE TPSEN  
Target System Interface  
MCS03254  
Figure 9  
Basic C500 MCU Enhanced Hooks Concept Configuration  
Port 0, port 2 and some of the control lines of the C500 based MCU are used by Enhanced Hooks  
Emulation Concept to control the operation of the device during emulation and to transfer  
informations about the programm execution and data transfer between the external emulation  
hardware (ICE-system) and the C500 MCU.  
1 “Enhanced Hooks Technology“ is a trademark and patent of Metalink Corporation licensed to Siemens.  
Semiconductor Group  
19  
C517A  
Special Function Registers  
The registers, except the program counter and the four general purpose register banks, reside in  
the special function register area.  
The 94 special function registers (SFRs) in the standard and mapped SFR area include pointers  
and registers that provide an interface between the CPU and the other on-chip peripherals. All SFRs  
with addresses where address bits 0-2 are 0 (e  
.g. 80 , 88 , 90 , 98 , ..., F8 , FF ) are bitaddressable. The SFRs of the C517A are listed in  
H
H
H
H
H
H
table 2 and table 3. In table 2 they are organized in groups which refer to the functional blocks of  
the C517A. Table 3 illustrates the contents of the SFRs in numeric order of their addresses.  
Semiconductor Group  
20  
C517A  
Table 2  
Special Function Registers - Functional Blocks  
Block  
Symbol  
Name  
Address Contents after  
Reset  
1)  
CPU  
ACC  
B
Accumulator  
B-Register  
E0  
F0  
83  
82  
92  
00  
00  
00  
00  
H
H
H
H
H
1)  
H
H
H
H
DPH  
DPL  
DPSEL  
PSW  
SP  
Data Pointer, High Byte  
Data Pointer, Low Byte  
Data Pointer Select Register  
Program Status Word Register  
Stack Pointer  
3)  
XXXX X000  
00  
07  
H
B
1)  
1)  
D0  
H
H
81  
H
A/D-  
ADCON0 2) A/D Converter Control Register 0  
D8  
DC  
D9  
DA  
00  
H
0XXX 0000  
00  
H
3)  
Converter ADCON1 A/D Converter Control Register 1  
H
H
B
ADDATH  
ADDATL  
A/D Converter Data Register, High Byte  
A/D Converter Data Register, Low Byte  
H
3
00XX XXXX  
H
B
1)  
1)  
Interrupt  
System  
IEN02)  
IEN12)  
IEN2  
IP0 2)  
IP1  
Interrupt Enable Register 0  
Interrupt Enable Register 1  
Interrupt Enable Register 2  
Interrupt Priority Register 0  
Interrupt Priority Register 1  
A8  
B8  
00  
H
H
H
00  
H
3)  
9A  
A9  
B9  
XX00 00X0  
H
H
H
B
00  
H
3)  
XX00 0000  
B
1)  
IRCON02) Interrupt Request Control Register 0  
C0  
D1  
88  
00  
H
H
H
IRCON1  
TCON  
T2CON  
S0CON  
CTCON  
Interrupt Request Control Register 1  
Timer 0/1 Control Register  
Timer 2 Control Register  
Serial Channel 0 Control Register  
Compare Timer Control Register  
00  
H
2)  
1)  
00  
H
H
2)  
2)  
1)  
C8  
00  
H
H
H
H
1)  
98  
E1  
00  
H
2)  
3)  
0X00 0000  
B
3)  
MUL/DIV ARCON  
Arithmetic Control Register  
EF  
E9  
EA  
0XXXXXXX  
H
H
H
H
H
H
B
3)  
3)  
3)  
3)  
3)  
3)  
Unit  
MD0  
MD1  
MD2  
MD3  
MD4  
MD5  
Multiplication/Division Register 0  
Multiplication/Division Register 1  
Multiplication/Division Register 2  
Multiplication/Division Register 3  
Multiplication/Division Register 4  
Multiplication/Division Register 5  
XX  
XX  
XX  
XX  
XX  
XX  
H
H
H
H
H
H
EB  
EC  
ED  
EE  
H
1)  
2)  
Timer 0 / TCON  
Timer 0/1 Control Register  
Timer 0, High Byte  
Timer 1, High Byte  
Timer 0, Low Byte  
Timer 1, Low Byte  
Timer Mode Register  
88  
00  
H
H
Timer 1  
TH0  
TH1  
TL0  
8C  
8D  
8A  
00  
00  
00  
00  
00  
H
H
H
H
H
H
H
H
H
H
TL1  
TMOD  
8B  
89  
1) Bit-addressable special function registers  
2) This special function register is listed repeatedly since some bits of it also belong to other functional blocks.  
3) “X“ means that the value is undefined and the location is reserved  
Semiconductor Group  
21  
C517A  
Table 2  
Special Function Registers - Functional Blocks (cont’d)  
Block  
Symbol  
Name  
Address Contents after  
Reset  
Compare/ CCEN  
Compare/Capture Enable Register  
Compare/Capture 4 Enable Register  
Compare/Capture Register 1, High Byte  
Compare/Capture Register 2, High Byte  
Compare/Capture Register 3, High Byte  
Compare/Capture Register 4, High Byte  
Compare/Capture Register 1, Low Byte  
Compare/Capture Register 2, Low Byte  
Compare/Capture Register 3, Low Byte  
Compare/Capture Register 4, Low Byte  
Compare Enable Register  
Compare Register 0, High Byte  
Compare Register 1, High Byte  
Compare Register 2, High Byte  
Compare Register 3, High Byte  
Compare Register 4, High Byte  
Compare Register 5, High Byte  
Compare Register 6, High Byte  
Compare Register 7, High Byte  
Compare Register 0, Low Byte  
Compare Register 1, Low Byte  
Compare Register 2, Low Byte  
Compare Register 3, Low Byte  
Compare Register 4, Low Byte  
Compare Register 5, Low Byte  
Compare Register 6, Low Byte  
Compare Register 7, Low Byte  
Compare Input Select  
C1  
C9  
C3  
C5  
C7  
CF  
C2  
C4  
C6  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
Capture  
Unit  
(CCU)  
Timer 2  
CC4EN  
CCH1  
CCH2  
CCH3  
CCH4  
CCL1  
CCL2  
CCL3  
CCL4  
CMEN  
CMH0  
CMH1  
CMH2  
CMH3  
CMH4  
CMH5  
CMH6  
CMH7  
CML0  
CML1  
CML2  
CML3  
CML4  
CML5  
CML6  
CML7  
CMSEL  
CRCH  
CRCL  
H
H
H
H
CE  
F6  
H
H
D3  
D5  
D7  
E3  
H
H
H
H
H
H
H
H
E5  
E7  
F3  
F5  
D2  
D4  
D6  
E2  
H
H
H
H
H
H
H
H
H
E4  
E6  
F2  
F4  
F7  
Comp./Rel./Capt. Register High Byte  
Comp./Rel./Capt. Register Low Byte  
CB  
CA  
A1  
H
H
COMSETL Compare Set Register Low Byte  
COMSETH Compare Set Register, High Byte  
COMCLRL Compare Clear Register, Low Byte  
COMCLRH Compare Clear Register, High Byte  
H
H
H
H
H
H
H
A2  
A3  
A4  
A5  
A6  
E1  
SETMSK  
Compare Set Mask Register  
CLRMSK Compare Clear Mask Register  
CTCON 2) Compare Timer Control Register  
0X00 0000  
00  
)
3
B
CTRELH  
CTRELL  
TH2  
TL2  
T2CON  
Compare Timer Rel. Register, High Byte  
Compare Timer Rel. Register, Low Byte  
Timer 2, High Byte  
Timer 2, Low Byte  
Timer 2 Control Register  
DF  
H
H
H
H
H
H
H
DE  
00  
H
CD  
CC  
C8  
00  
H
00  
H
2)  
1)  
00  
H
2)  
1)  
IRCON0  
Interrupt Request Control Register 0  
C0  
00  
H
1) Bit-addressable special function registers  
2) This special function register is listed repeatedly since some bits of it also belong to other functional blocks.  
3) “X“ means that the value is undefined and the location is reserved  
Semiconductor Group  
22  
C517A  
Table 2  
Special Function Registers - Functional Blocks (cont’d)  
Block  
Symbol  
Name  
Address Contents after  
Reset  
1)  
Ports  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
80  
90  
A0  
B0  
E8  
F8  
FA  
DB  
DD  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
H
H
H
H
H
H
H
H
H
1)  
1)  
H
H
1)  
1)  
1)  
H
H
H
H
H
Port 7, Analog/Digital Input  
Port 8, Analog/Digital Input, 4-bit  
XRAM  
Serial  
XPAGE  
Page Address Register for Extended  
On-Chip RAM  
91  
00  
H
H
SYSCON 2) System/XRAM Control Register  
B1  
XXXX XX01  
3)  
H
B
ADCON0 2) A/D Converter Control Register  
Channels PCON 2)  
S0BUF  
D8  
00  
H
00  
XX  
00  
1)  
H
Power Control Register  
87  
99  
98  
H
H
H
H
H
H
H
3
Serial Channel 0 Buffer Register  
Serial Channel 0 Control Register  
Serial Channel 0 Reload Reg., Low Byte  
Serial Channel 0 Reload Reg., High Byte  
Serial Channel 1 Buffer Register  
Serial Channel 1 Control Register  
Serial Channel 1 Reload Reg., Low Byte  
Serial Channel 1 Reload Reg., High Byte  
)
1)  
S0CON  
S0RELL  
S0RELH  
S1BUF  
S1CON  
AA  
BA  
9C  
9B  
9D  
D9  
H
H
H
H
H
H
3)  
XXXXXX11  
XX  
0X00 0000  
00  
B
B
3
)
H
3)  
B
S1RELL  
S1RELH  
H
3)  
BB  
XXXX XX11  
1)  
Watchdog IEN0 2)  
IEN1 2)  
Interrupt Enable Register 0  
Interrupt Enable Register 1  
Interrupt Priority Register 0  
A8  
B8  
00  
H
H
1)  
00  
H
H
IP0 2)  
A9  
00  
H
00  
H
H
H
WDTREL Watchdog Timer Reload Register  
Pow.Sav. PCON 2)  
Power Control Register  
Modes  
86  
87  
00  
H
H
1) Bit-addressable special function registers  
2) This special function register is listed repeatedly since some bits of it also belong to other functional blocks.  
3) “X“ means that the value is undefined and the location is reserved.  
Semiconductor Group  
23  
C517A  
Table 3  
Contents of the SFRs, SFRs in numeric order of their addresses  
Addr Register Content Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
after  
Reset1)  
2)  
80  
81  
82  
83  
83  
P0  
FF  
07  
.7  
.7  
.7  
.7  
.6  
.6  
.6  
.6  
.6  
.5  
.5  
.5  
.5  
.5  
.4  
.4  
.4  
.4  
.4  
.3  
.3  
.3  
.3  
.3  
.2  
.2  
.2  
.2  
.2  
.1  
.1  
.1  
.1  
.1  
.0  
.0  
.0  
.0  
.0  
H
H
H
H
H
H
SP  
H
H
H
H
DPL  
DPH  
00  
00  
WDT-  
PSEL  
WDTREL 00  
87  
88  
89  
PCON  
TCON  
TMOD  
TL0  
00  
00  
00  
00  
00  
00  
00  
SMOD PDS  
TF1 TR1  
GATE C/T  
IDLS  
TF0  
M1  
.5  
SD  
TR0  
M0  
.4  
GF1  
IE1  
GF0  
IT1  
PDE  
IE0  
M1  
.1  
IDLE  
IT0  
M0  
.0  
H
H
H
H
H
H
H
H
H
H
2)  
GATE C/T  
8A  
.7  
.7  
.7  
.7  
T2  
.6  
.6  
.6  
.6  
.3  
.2  
H
H
8B  
TL1  
.5  
.4  
.3  
.2  
.1  
.0  
8C  
8D  
90  
TH0  
.5  
.4  
.3  
.2  
.1  
.0  
H
TH1  
.5  
.4  
.3  
.2  
.1  
.0  
H
2)  
P1  
FF  
CLK-  
OUT  
T2EX INT2  
INT6  
INT5  
INT4  
INT3  
H
H
91  
92  
XPAGE  
DPSEL  
00  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
H
XXXX-  
X000  
.2  
.1  
.0  
B
2)  
98  
99  
S0CON  
S0BUF  
IEN2  
00  
H
SM0  
.7  
SM1  
.6  
SM20 REN0 TB80  
RB80 TI0  
.2 .1  
RI0  
.0  
H
XX  
H
.5  
.4  
.3  
H
9A  
XX00-  
00X0  
ECR  
ECS  
ECT  
ECMP –  
ES1  
H
H
B
9B  
S1CON  
S1BUF  
0X00-  
0000  
SM  
SM21 REN1 TB81  
RB81 TI1  
RI1  
B
9C  
9D  
A0  
XX  
H
.7  
.7  
.7  
.7  
.7  
.7  
.6  
.6  
.6  
.6  
.6  
.6  
.5  
.5  
.5  
.5  
.5  
.5  
.4  
.4  
.4  
.4  
.4  
.4  
.3  
.3  
.3  
.3  
.3  
.3  
.2  
.2  
.2  
.2  
.2  
.2  
.1  
.1  
.1  
.1  
.1  
.1  
.0  
.0  
.0  
.0  
.0  
.0  
H
S1RELL 00  
H
2)  
H
P2  
FF  
H
H
H
H
H
H
H
H
COMSETL  
COMSETH  
COMCLRL  
A1  
A2  
A3  
00  
00  
00  
1) X means that the value is undefined and the location is reserved  
2) Shaded registers are bit-addressable special function registers  
Semiconductor Group  
24  
C517A  
Table 3  
Contents of the SFRs, SFRs in numeric order of their addresses (cont’d)  
Addr Register Content Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
after  
Reset1)  
COMCLRH  
A4  
A5  
A6  
A8  
A9  
00  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
H
H
H
H
H
H
H
H
SETMSK 00  
CLRMSK 00  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
2)  
IEN0  
IP0  
00  
00  
EAL  
WDT  
ET2  
ES0  
.4  
ET1  
.3  
EX1  
.2  
ET0  
.1  
EX0  
.0  
OWDS WDTS .5  
AA  
B0  
S0RELL D9  
.7  
.6  
.5  
T1  
.4  
.3  
.2  
.1  
.0  
H
H
2)  
P3  
FF  
RD  
WR  
T0  
INT1  
INT0  
TxD0  
RxD0  
H
H
XMAP1 XMAP0  
B1  
SYSCON XXXX-  
H
XX01  
B
2)  
B8  
B9  
IEN1  
IP1  
00  
EXEN2 SWDT EX6  
EX5  
.4  
EX4  
.3  
EX3  
.2  
EX2  
.1  
EADC  
.0  
H
H
H
XX00-  
0000  
.5  
B
BA  
BB  
C0  
S0RELH XXXX-  
.1  
.0  
H
XX11  
B
S1RELH XXXX-  
.1  
.0  
H
XX11  
B
IRCON0 00  
H
EXF2 TF2  
IEX6  
IEX5  
IEX4  
IEX3  
IEX2  
IADC  
H
2)  
C1  
CCEN  
00  
COCA COCA COCA COCA COCA COCA COCA COCA  
H
H
H3  
.7  
.7  
.7  
.7  
.7  
.7  
L3  
.6  
.6  
.6  
.6  
.6  
.6  
H2  
L2  
.4  
.4  
.4  
.4  
.4  
.4  
H1  
.3  
.3  
.3  
.3  
.3  
.3  
L1  
.2  
.2  
.2  
.2  
.2  
.2  
H0  
.1  
.1  
.1  
.1  
.1  
.1  
L0  
C2  
C3  
C4  
C5  
C6  
C7  
CCL1  
CCH1  
CCL2  
CCH2  
CCL3  
CCH3  
T2CON  
00  
00  
00  
00  
00  
00  
00  
.5  
.0  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
.5  
.0  
.5  
.0  
.5  
.0  
.5  
.0  
.5  
.0  
C8  
T2PS I3FR  
I2FR  
T2R1 T2R0 T2CM T2I1  
T2I0  
2)  
C9  
CC4EN  
00  
COCO COCO COCO COCO COCO COCA COCA COMO  
EN1 N2 N1 N0 EN0 H4 L4  
H
H
1) X means that the value is undefined and the location is reserved  
2) Shaded registers are bit-addressable special function registers  
Semiconductor Group  
25  
C517A  
Table 3  
Contents of the SFRs, SFRs in numeric order of their addresses (cont’d)  
Addr Register Content Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
after  
Reset1)  
CA  
CB  
CRCL  
CRCH  
TL2  
00  
00  
00  
00  
00  
00  
00  
.7  
.7  
.7  
.7  
.7  
.7  
CY  
.6  
.6  
.6  
.6  
.6  
.6  
AC  
.5  
.5  
.5  
.5  
.5  
.5  
F0  
.4  
.3  
.2  
.1  
.1  
.1  
.1  
.1  
.1  
F1  
.0  
.0  
.0  
.0  
.0  
.0  
P
H
H
H
H
H
H
H
H
.4  
.3  
.2  
H
CC  
CD  
CE  
.4  
.3  
.2  
H
H
TH2  
.4  
.3  
.2  
CCL4  
CCH4  
PSW  
.4  
.3  
.2  
H
H
CF  
.4  
.3  
.2  
D0  
2)  
RS1  
RS0  
OV  
H
D1  
D2  
D3  
D4  
D5  
D6  
D7  
IRCON1 00  
ICMP7 ICMP6 ICMP5 ICMP4 ICMP3 ICMP2 ICMP1 ICMP0  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
CML0  
CMH0  
CML1  
CMH1  
CML2  
CMH2  
00  
00  
00  
00  
00  
00  
.7  
.7  
.7  
.7  
.7  
.7  
BD  
.6  
.5  
.5  
.5  
.5  
.5  
.5  
.4  
.4  
.4  
.4  
.4  
.4  
.3  
.2  
.1  
.0  
.6  
.3  
.2  
.1  
.0  
.6  
.3  
.2  
.1  
.0  
.6  
.3  
.2  
.1  
.0  
.6  
.3  
.2  
.1  
.0  
.6  
.3  
.2  
.1  
.0  
D8  
2)  
ADCON0 00  
CLK  
ADEX BSY  
ADM  
MX2  
MX1  
MX0  
D9  
ADDATH 00  
.9  
.1  
.8  
.0  
.7  
.6  
.5  
.4  
.3  
.2  
H
H
DA  
ADDATL 00XX-  
XXXX  
H
B
DB  
P7  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
DC  
ADCON1 0XXX- ADCL  
MX3  
MX2  
MX1  
MX0  
H
0000  
B
DD  
DE  
P8  
.3  
.2  
.2  
.2  
.2  
.1  
.1  
.1  
.1  
.0  
.0  
.0  
.0  
H
CTRELL 00  
CTRELH 00  
.7  
.7  
.7  
.6  
.6  
.6  
.5  
.4  
.3  
H
H
H
H
H
DF  
E0  
.5  
.4  
.3  
2)  
ACC  
00  
.5  
.4  
.3  
H
E1  
CTCON 0X00.  
0000  
T2PS1 –  
ICR  
ICS  
CTF  
CLK2 CLK1 CLK0  
H
B
E2  
CML3  
00  
.7 .6  
.5  
.4  
.3  
.2 .1 .0  
H
H
1) X means that the value is undefined and the location is reserved  
2) Shaded registers are bit-addressable special function registers  
Semiconductor Group  
26  
C517A  
Table 3  
Contents of the SFRs, SFRs in numeric order of their addresses (cont’d)  
Addr Register Content Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
after  
Reset1)  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
CMH3  
CML4  
CMH4  
CML5  
CMH5  
P4  
00  
00  
00  
00  
00  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
H
H
H
H
H
H
H
H
H
H
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
2)  
FF  
CM7  
.7  
CM6  
.6  
CM5  
.5  
CM4  
.4  
CM3  
.3  
CM2  
.2  
CM1  
.1  
CM0  
.0  
H
MD0  
MD1  
MD2  
MD3  
MD4  
MD5  
XX  
XX  
XX  
XX  
XX  
XX  
H
H
H
H
H
H
EA  
EB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
EC  
ED  
EE  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
EF  
ARCON 0XXX.  
XXXX  
MDEF MDOV SLR  
SC.4  
SC.3  
SC.2  
SC.1  
SC.0  
B
2)  
F0  
B
00  
00  
00  
00  
00  
00  
00  
.7  
.7  
.7  
.7  
.7  
.7  
.7  
.6  
.6  
.6  
.6  
.6  
.6  
.6  
.5  
.5  
.5  
.5  
.5  
.5  
.5  
.4  
.4  
.4  
.4  
.4  
.4  
.4  
.3  
.3  
.3  
.3  
.3  
.3  
.3  
.2  
.2  
.2  
.2  
.2  
.2  
.2  
.1  
.1  
.1  
.1  
.1  
.1  
.1  
.0  
.0  
.0  
.0  
.0  
.0  
.0  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
F2  
F3  
F4  
F5  
F6  
F7  
F8  
CML6  
CMH6  
CML7  
CMH7  
CMEN  
CMSEL  
P5  
2)  
FF  
CCM7 CCM6 CCM5 CCM4 CCM3 CCM2 CCM1 CCM0  
.7 .6 .5 .4 .3 TxD1 RxD1 ADST  
H
H
FA  
P6  
FF  
H
1) X means that the value is undefined and the location is reserved  
2) Shaded registers are bit-addressable special function registers  
Semiconductor Group  
27  
C517A  
Digital I/O Ports  
The C517A allows for digital I/O on 56 lines grouped into 7 bidirectional 8-bit ports. Each port bit  
consists of a latch, an output driver and an input buffer. Read and write accesses to the I/O ports P0  
through P6 are performed via their corresponding special function registers P0 to P6.  
The output drivers of port 0 and 2 and the input buffers of port 0 are also used for accessing external  
memory. In this application, port 0 outputs the low byte of the external memory address, time-  
multiplexed with the byte being written or read. Port 2 outputs the high byte of the external memory  
address when the address is 16 bits wide. Otherwise, the port 2 pins continue emitting the P2 SFR  
contents.  
Analog Input Ports  
Ports 7 (8-bit) and 8 (4-bit) are input ports only and provide two functions. When used as digital  
inputs, the corresponding SFR P7 and P8 contains the digital value applied to the port 7/8 lines.  
When used for analog inputs the desired analog channel is selected by a four-bit field in SFR  
ADCON1. Of course, it makes no sense to output a value to these input-only ports by writing to the  
SFR P7 or P8. This will have no effect.  
lf a digital value is to be read, the voltage levels are to be held within the input voltage specifications  
(VIL/VIH). Since P7 and P8 are not bit-addressable, all input lines of P7 and P8 are read at the same  
time by byte instructions.  
Nevertheless, it is possible to use port 7 and 8 simultaneously for analog and digital input. However,  
care must be taken that all bits of P7 and P8 that have an undetermined value caused by their  
analog function are masked.  
Semiconductor Group  
28  
C517A  
Timer / Counter 0 and 1  
Timer/Counter 0 and 1 can be used in four operating modes as listed in table 4 :  
Table 4  
Timer/Counter 0 and 1 Operating Modes  
Mode Description  
TMOD  
Input Clock  
external (max)  
OSC/24x32  
M1  
M0  
internal  
0
8-bit timer/counter with a  
0
0
f
OSC/12x32  
f
divide-by-32 prescaler  
1
2
16-bit timer/counter  
1
1
1
0
8-bit timer/counter with  
8-bit autoreload  
f
OSC/12  
fOSC/24  
3
Timer/counter 0 used as one  
8-bit timer/counter and one  
8-bit timer  
1
1
Timer 1 stops  
In the “timer” function (C/T = ‘0’) the register is incremented every machine cycle. Therefore the  
count rate is fOSC/12.  
In the “counter” function the register is incremented in response to a 1-to-0 transition at its  
corresponding external input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a  
falling edge the max. count rate is fOSC/24. External inputs INT0 and INT1 (P3.2, P3.3) can be  
programmed to function as a gate to facilitate pulse width measurements. Figure 10 illustrates the  
input clock logic.  
f OSC  
f OSC/12  
÷
12  
C/T  
TMOD  
0
1
P3.4/T0  
P3.5/T1  
max f OSC/24  
Timer 0/1  
Input Clock  
TR 0/1  
TCON  
Control  
&
Gate  
=1  
TMOD  
_
<
1
P3.2/INT0  
P3.3/INT1  
MCS01768  
Figure 10  
Timer/Counter 0 and 1 Input Clock Logic  
Semiconductor Group  
29  
 
 
C517A  
Cpmpare / Capture Unit (CCU)  
The compare/capture unit is one of the C517A’s most powerful peripheral units for use in all kinds  
of digital signal generation and event capturing like pulse generation, pulse width modulation, pulse  
width measuring etc. The CCU consists of two 16-bit timer/counters with automatic reload feature  
and an array of 13 compare or compare/capture registers. A set of six control registers is used for  
flexible adapting of the CCU to a wide variety of user’s applications.  
The block diagram in figure 11 shows the general configuration of the CCU. All CC1 to CC4  
registers and the CRC register are exclusively assigned to timer 2. Each of the eight compare  
registers CM0 through CM7 can either be assigned to timer 2 or to the faster compare timer, e.g. to  
provide up to 8 PWM output channels. The assignment of the CMx registers - which can be done  
individually for every single register - is combined with an automatic selection of one of the two  
possible compare modes.  
(CTREL)  
"Internal Bus"  
16-bit Reload  
(CM0)  
Port  
Control  
Logik  
P4-  
I/O-  
Latch  
Compare Timer  
8x  
16-bit  
Max.Clock =  
f
OSC/2  
Compare  
P5-  
I/O-  
Latch  
Shadow  
Latch  
CC4EN  
(CM7)  
Timer 2  
Capt./Comp. 4 (CC4)  
Max.Clock = fOSC /12  
Capt./Comp. 3 (CC3)  
Capt./Comp. 2 (CC2)  
Port  
Control  
Logik  
P1-  
I/O-  
Latch  
Capt./Comp.1 (CC1)  
16-bit Rel.Capt.(CRC)  
Comp.  
MCB01577  
Figure 11  
Timer 2 Block Diagram  
Semiconductor Group  
30  
 
C517A  
The main functional blocks of the CCU are :  
– Timer 2 with fOSC/12 input clock, 2-bit prescaler, 16-bit reload, counter/gated timer mode and  
overflow interrupt request.  
– Compare timer with fOSC/2 input clock, 3-bit prescaler, 16-bit reload and overflow interrupt  
request.  
– Compare/(reload/)capture register array consisting of four different kinds of registers:  
one 16-bit compare/reload/capture register,  
three 16-bit compare/capture registers,  
one 16-bit compare/capture register with additional "concurrent compare" feature,  
eight 16-bit compare registers with timer-overflow controlled loading.  
Table 5 shows the possible configurations of the CCU and the corresponding compare modes  
which can be selected. The following sections describe the function of these configurations.  
Table 5  
CCU Configurations  
Assigned  
Timer  
Compare  
Register  
Compare Output at Possible Modes  
Timer 2  
CRCH/CRCL  
CCH1/CCL1  
CCH2/CCL2  
CCH3/CCL3  
CCH4/CCL4  
P1.0/INT3/CC0  
P1.1/INT4/CC1  
P1.2/INT5/CC2  
P1.3/INT6/CC3  
P1.4/INT2/CC4  
Compare mode 0, 1 + Reload  
Compare mode 0, 1 / capture  
Compare mode 0, 1 / capture  
Compare mode 0, 1 / capture  
Compare mode 0, 1 / capture  
CCH4/CCL4  
P1.4/INT2/CC4  
P5.0/CCM0  
to  
Compare mode 1  
“Concurrent compare“  
P5.7/CCM7  
CMH0/CML0  
to  
CMH7/CML7  
P4.0/CM0  
to  
P4.7/CM7  
Compare mode 0  
Compare mode 2  
Compare mode 1  
COMSET  
COMCLR  
P5.0/CCM0  
to  
P5.7/CCM7  
Compare  
Timer  
CMH0/CML0  
to  
P4.0/CM0  
to  
CMH7/CML7  
P4.7/CM7  
Semiconductor Group  
31  
 
C517A  
Timer 2 Operation  
Timer Mode : In timer function, the count rate is derived from the oscillator frequency. A prescaler  
offers the possibility of selecting a count rate of 1/12 or 1/24 of the oscillator frequency.  
Gated Timer Mode : In gated timer function, the external input pin P1.7/T2 operates as a gate to the  
input of timer 2. lf T2 is high, the internal clock input is gated to the timer. T2 = 0 stops the counting  
procedure. The external gate signal is sampled once every machine cycle.  
Event Counter Mode : In the event counter function. the timer 2 is incremented in response to a 1-  
to-0 transition at its corresponding external input pin P1.7/T2. In this function, the external input is  
sampled every machine cycle. The maximum count rate is 1/24 of the oscillator frequency.Reload  
of Timer 2 : Two reload modes are selectable:  
In mode 0, when timer 2 rolls over from all 1’s to all 0’s, it not only sets TF2 but also causes the timer  
2 registers to be loaded with the 16-bit value in the CRC register, which is preset by software.  
In mode 1, a 16-bit reload from the CRC register is caused by a negative transition at the correspon-  
ding input pin P1.5/T2EX.  
Programmable  
Prescaler  
OSC  
T2PS T2PS1  
SFR T2CON  
T2I1  
T2I0  
No input selected  
0
0
1
1
0
1
0
1
Timer stop  
Timer function  
Counter function  
via ext. input P1.7/T2  
P1.7/T2  
Timer 2  
Input Clock  
Gated timer function  
by ext. input P1.7/T2  
TL2  
(8 Bits)  
TH2  
(8 Bits)  
TF2  
_
<
1
Interrupt  
Sync  
P1.5/T2EX  
EXF2  
EXEN2  
_
<
1
Reload  
MCB03328  
Figure 12  
Block Diagram of Timer 2  
Semiconductor Group  
32  
C517A  
Compare Timer Operation  
The compare timer receives its input clock from a programmable prescaler which provides input  
frequencies, ranging from fOSC/2 up to fOSC/256. The compare timer is, once started, a free-running  
16-bit timer, which on overflow is automatically reloaded by the contents of a 16-bit reload register.  
The compare timer has - as any other timer in the C517A - their own interrupt request flags CTF.  
These flags are set when the timer count rolls over from all ones to the reload value. Figure 13  
shows the block diagram of compare timer and compare timer 1.  
f OSC /2  
3-Bit Prescaler  
Compare Timer  
/2  
/4  
/8  
/16  
/32  
/64  
/128  
Control (CTCON)  
16  
To Compare  
Circuitry  
To Interrupt  
Circuitry  
16-Bit Compare Timer  
16-Bit Reload (CTREL)  
CTF  
Overflow  
MCB00783  
Figure 13  
Compare Timer Block Diagram  
Semiconductor Group  
33  
 
C517A  
Compare Modes  
The compare function of a timer/register combination operates as follows : the 16-bit value stored  
in a compare or compare/capture register is compared with the contents of the timer register; if the  
count value in the timer register matches the stored value, an appropriate output signal is generated  
at a corresponding port pin and an interrupt can be generated.  
Compare Mode 0  
In compare mode 0, upon matching the timer and compare register contents, the output signal  
changes from low to high. lt goes back to a low level on timer overflow. As long as compare mode  
0 is enabled, the appropriate output pin is controlled by the timer circuit only and writing to the port  
will have no effect. Figure 14 shows a functional diagram of a port circuit when used in compare  
mode 0. The port latch is directly controlled by the timer overflow and compare match signals. The  
input line from the internal bus and the write-to-latch line of the port latch are disconnected when  
compare mode 0 is enabled.  
Port Circuit  
Read Latch  
VDD  
VCC  
Compare Register  
Circuit  
Compare Reg.  
S
Q
Q
Port  
Pin  
Internal  
Bus  
16 Bit  
Comparator  
D
Port  
Latch  
Write to  
Latch  
Compare  
Match  
CLK  
16 Bit  
Timer Register  
Timer Circuit  
R
Timer  
Overflow  
Read Pin  
MCS02661  
Figure 14  
Port Latch in Compare Mode 0  
Compare Mode 1  
If compare mode 1 is enabled and the software writes to the appropriate output latch at the port, the  
new value will not appear at the output pin until the next compare match occurs. Thus, it can be  
choosen whether the output signal has to make a new transition (1-to-0 or 0-to-1, depending on the  
actual pin-level) or should keep its old value at the time when the timer value matches the stored  
compare value.  
In compare mode 1 (see figure 15) the port circuit consists of two separate latches. One latch  
(which acts as a "shadow latch") can be written under software control, but its value will only be  
transferred to the port latch (and thus to the port pin) when a compare match occurs.  
Semiconductor Group  
34  
 
C517A  
Port Circuit  
Read Latch  
V
DD  
Compare Register  
Circuit  
Compare Reg.  
Internal  
Bus  
D
Q
D
Q
Q
Port  
Pin  
16 Bit  
Comparator  
16 Bit  
Shadow  
Latch  
Port  
Latch  
Compare  
Match  
Write to  
Latch  
CLK  
CLK  
Timer Register  
Timer Circuit  
Read Pin  
MCS02662  
Figure 15  
Compare Function in Compare Mode 1  
Compare Mode 2  
In the compare mode 2 the port 5 pins are under control of compare/capture register CC4, but under  
control of the compare registers COMSET and COMCLR. When a compare match occurs with  
register COMSET, a high level appears at the pins of port 5 when the corresponding bits in the mask  
register SETMSK are set. When a compare match occurs with register COMCLR, a low level  
appears at the pins of port 5 when the corresponding bits in the mask register CLRMSK are set.  
Port Circuit  
Read Latch  
COMSET  
16 Bit  
Comparator  
V
DD  
Compare  
Signal  
SETMSK  
Bits  
16 Bit  
S
D
Q
Q
Port  
Pin  
Internal  
Bus  
Port  
Latch  
TH2  
TL2  
Write to  
Latch  
Timer 2  
CLK  
R
16 Bit  
Comparator  
16 Bit  
COMCLR  
Compare  
Signal  
CLRMSK  
Bits  
Read Pin  
MCS02663  
Figure 16  
Compare Function of Compare Mode 2  
Semiconductor Group  
35  
C517A  
Multiplication / Division Unit (MDU)  
This on-chip arithmetic unit of the C517A provides fast 32-bit division, 16-bit multiplication as well  
as shift and normalize features. All operations are unsigned integer operations. Table 6 describes  
the five general operations the MDU is able to perform.  
Table 6  
MDU Operation Characteristics  
Operation  
Result  
Remainder  
Execution Time  
1)  
32bit/16bit  
16bit/16bit  
16bit x 16bit  
32-bit normalize  
32-bit shift L/R  
32bit  
16bit  
32bit  
16bit  
16bit  
6 tCY  
4 tCY  
4 tCY  
6 tCY  
1)  
1)  
2)  
2)  
6 tCY  
1) 1 tCY = 12 tCLCL= 1 machine cycle = 500 ns at 24 MHz oscillator frequency  
2) The maximal shift speed is 6 shifts per machine cycle  
The MDU consists of seven special function registers (MD0-MD5, ARCON) which are used as  
operand, result, and control registers. The three operation phases are shown in figure 17.  
Figure 17  
Operating Phases of the MDU  
Semiconductor Group  
36  
 
 
C517A  
For starting an operation, registers MD0 to MD5 and ARCON must be written to in a certain  
sequence according table 7 and 8. The order the registers are accessed determines the type of the  
operation. A shift operation is started by a final write operation to SFR ARCON.  
Table 7  
Programming the MDU for Multiplication and Division  
Operation  
32Bit/16Bit  
16Bit/16Bit  
16Bit x 16Bit  
First Write  
MD0 D’endL  
MD1 D’end  
MD2 D’end  
MD3 D’endH  
MD4 D’orL  
MD5 D’orH  
MD0 D’endL  
MD1 D’endH  
MD0 M’andL  
MD4 M’orL  
MD4 D’orL  
MD5 D’orH  
MD1 M’andH  
MD5 M’orH  
Last Write  
First Read  
MD0 QuoL  
MD1 Quo  
MD2 Quo  
MD3 QuoH  
MD4 RemL  
MD5 RemH  
MD0 QuoL  
MD1 QuoH  
MD0 PrL  
MD1  
MD4 RemL  
MD5 RemH  
MD2  
Last Read  
MD3 PrH  
Abbrevations :  
D’end  
D’or  
M’and  
M’or  
Pr  
Rem  
Quo  
...L  
: Dividend, 1st operand of division  
: Divisor, 2nd operand of division  
: Multiplicand, 1st operand of multiplication  
: Multiplicator, 2nd operand of multiplication  
: Product, result of multiplication  
: Remainder  
: Quotient, result of division  
: means, that this byte is the least significant of the 16-bit or 32-bit operand  
: means, that this byte is the most significant of the 16-bit or 32-bit operand  
...H  
Table 8  
Programming athe MDU for a Shift or Normalize Operation  
Operation  
Normalize, Shift Left, Shift Right  
First write  
MD0  
least significant byte  
MD1  
.
MD2  
.
MD3  
ARCON  
most significant byte  
start of conversion  
Last write  
First read  
MD0  
MD1  
MD2  
MD3  
least significant byte  
.
.
Last read  
most significant byte  
Semiconductor Group  
37  
 
 
C517A  
Serial Interfaces 0 and 1  
The C517A has two serial interfaces which are functionally nearly identical concerning the  
asynchronous modes of operation. The two channels are full-duplex, meaning they can transmit  
and receive simultaneously. The serial channel 0 is completely compatible with the serial channel  
of the C501 (one synchronous mode, three asynchronous modes). Serial channel 1 has the same  
functionality in its asynchronous modes, but the synchronous mode and the fixed baud rate UART  
mode is missing.  
The operating modes of the serial interfaces is illustrated in table 9. The possible baudrates can be  
calculated using the formulas given in table 10.  
Table 9  
Operating Modes of Serial Interface 0 and 1  
Mode  
S0CON  
S1CON Description  
SM  
Serial  
Interface  
SM0  
SM1  
0
0
0
0
Shift register mode  
Serial data enters and exits through R×D0;  
T×D0 outputs the shift clock; 8-bit are  
transmitted/received (LSB first); fixed baud rate  
1
2
0
1
1
0
8-bit UART, variable baud rate  
10 bits are transmitted (through T×D0) or  
received (at R×D0)  
9-bit UART, fixed baud rate  
11 bits are transmitted (through T×D0) or  
received (at R×D0)  
3
1
1
0
9-bit UART, variable baud rate  
Like mode 2  
1
A
9-bit UART; variable baud rate  
11 bits are transmitted (through T×D1) or  
received (at R×D1)  
B
1
8-bit UART; variable baud rate  
10 bits are transmitted (through T×D1) or  
received (at R×D1)  
Semiconductor Group  
38  
 
C517A  
For clarification some terms regarding the difference between "baud rate clock" and "baud rate"  
should be mentioned. In the asynchronous modes the serial interfaces require a clock rate which is  
16 times the baud rate for internal synchronization. Therefore, the baud rate generators/timers have  
to provide a "baud rate clock" (output signal in figure 18 and figure 19) to the serial interface  
which - there divided by 16 - results in the actual "baud rate". Further, the abrevation fOSC refers to  
the oscillator frequency (crystal or external clock operation).  
The variable baud rates for modes 1 and 3 of the serial interface 0 can be derived from either timer  
1 or a decdicated baud rate generator (see figure 18). The variable baud rates for modes A and B  
of the serial interface 1 are derived from a decdicated baud rate generator as shown in figure 19.  
Timer 1 Overflow  
S0CON.7  
S0CON.6  
(SM0/  
ADCON0.7  
PCON.7  
(SMOD)  
(BD)  
Baud  
Mode 1  
Mode 3  
SM1)  
0
1
0
Rate  
÷ 2  
Baud  
Rate  
Clock  
f OSC /2  
Generator  
Mode 2  
1
(S0RELH  
S0RELL)  
Mode 0  
Only one mode  
can be selected  
÷ 6  
Note : The switch configuration shows the reset state.  
MCS03329  
Figure 18  
Serial Interface 0 : Baud Rate Generation Configuration  
Baud Rate Generator  
S1RELL  
S1RELH  
.1 .0  
Baud  
Rate  
Clock  
f
OSC /2  
Input Clock  
Owerflow  
10-Bit Timer  
MCS03331  
Figure 19  
Serial Interface 1 : Baud Rate Generator Configuration  
The baud rate generator block in figure 18 has the same structure (10-bit auto-reload timer) as the  
baud rate generator block which is shown in detail in figure 19.  
Semiconductor Group  
39  
 
 
C517A  
Table 10 below lists the values/formulas for the baud rate calculation of serial interface 0 and 1 with  
its dependencies of the control bits BD and SMOD.  
Table 10  
Serial Interfaces - Baud Rate Dependencies  
Serial Interface  
Operating Modes  
Active Control  
Bits  
Baud Rates  
SMOD BD  
Mode 0 (Shift Register)  
0
Fixed baud rate clock fosc/12  
Mode 1 (8-bit UART)  
Mode 3 (9-bit UART)  
X
Timer 1 overflow is used for baud rate  
generation; SMOD controls a divide-by-2 option.  
Baud rate = 2SMOD x timer 1 overflow rate / 32  
1
Baud rate generator is used for baud rate  
generation; SMOD controls a divide-by-2 option  
Baud rate = 2SMOD x oscillator frequency /  
64 x (baud rate gen. overflow rate)  
Mode 2 (9-bit UART)  
X
Fixed baud rate clock fosc/32 (SMOD=1) or fosc/  
64 (SMOD=0)  
Mode A (9-bit UART)  
Mode B (8-bit UART)  
Baud rate generator is used for baud rate  
generation; SMOD controls a divide-by-2 option  
Baud rate = oscillator frequency /  
32 x (baud rate gen. overflow rate)  
Semiconductor Group  
40  
 
C517A  
10-Bit A/D Converter  
The C517A provides an A/D converter with the following features:  
– 12 multiplexed input channels (port 7, 8), which can also be used as digital inputs  
– 10-bit resolution  
– Single or continuous conversion mode  
– Internal or external start-of-conversion trigger capability  
– Interrupt request generation after each conversion  
– Using successive approximation conversion technique via a capacitor array  
– Built-in hidden calibration of offset and linearity errors  
The A/D converter operates with a successive approximation technique and uses self calibration  
mechanisms for reduction and compensation of offset and linearity errors. The externally applied  
reference voltage range has to be held on a fixed value within the specifications. The main  
functional blocks of the A/D converter are shown in figure 20.  
Semiconductor Group  
41  
C517A  
internal  
Bus  
IEN1 (B8  
)
H
EXEN2 SWDT  
EX6  
EX5  
EX4  
IEX4  
P8.3  
P7.3  
MX3  
ADM  
EX3  
IEX3  
P8.2  
P7.2  
MX2  
MX2  
EX2  
IEX2  
P8.1  
P7.1  
MX1  
MX1  
EADC  
IADC  
P8.0  
P7.0  
MX0  
MX0  
IRCON0 (C0  
EXF2  
)
H
TF2  
IEX6  
_
IEX5  
_
P8 (DD  
_
)
H
H
_
P7 (DB  
P7.7  
)
P7.6  
P7.5  
_
P7.4  
_
ADCON1 (DC  
ADCL  
)
H
_
ADCON0 (D8  
)
H
BD  
CLK  
ADEX  
BSY  
ADDATH ADDATL  
(D9 (DA  
Single/  
Continuous Mode  
)
)
H
H
Port 7  
Port 8  
_
.2  
_
_
_
_
_
MUX  
.3  
.4  
.5  
.6  
.7  
.8  
S&H  
A/D  
Converter  
Clock  
Prescaler  
÷8, ÷4  
fOSC /2  
Conversion  
Clock fADC  
Input  
LSB  
.1  
V
Clock fIN  
AREF  
MSB  
V
AGND  
Start of  
Conversion  
P6.0/ADST  
Write to ADDATL  
internal  
Bus  
Shaded bit locations are not used in ADC-functions  
MCB03332  
Figure 20  
A/D Converter Block Diagram  
Semiconductor Group  
42  
C517A  
Interrupt System  
The C517A provides 17 interrupt sources with four priority levels. Ten interrupts can be generated  
by the on-chip peripherals (timer 0, timer 1, timer 2, compare timer, compare match/set/clear, A/D  
converter, and serial interface 0 and 1) and seven interrupts may be triggered externally (P3.2/INT0,  
P3.3/INT1, P1.4/INT2, P1.0/INT3, P1.1/INT4, P1.2/INT5, P1.3/INT6).  
This chapter shows the interrupt structure, the interrupt vectors and the interrupt related special  
function registers. Figure 21 to 23 give a general overview of the interrupt sources and illustrate the  
request and the control flags which are described in the next sections.  
Semiconductor Group  
43  
C517A  
Highest  
Priority Level  
P3.2/  
INT0  
IE0  
0003  
0083  
0043  
EX0  
H
H
H
TCON.1  
IT0  
Lowest  
Priority Level  
IEN0.0  
TCON.0  
RI1  
_
<
1
S1CON.0  
UART 1  
ES1  
TI1  
IEN2.0  
S1CON.1  
A/D Converter  
IADC  
EADC  
IRCON0.0  
IEN1.0  
IP1.0  
IP0.0  
Timer 0  
Overflow  
TF0  
000B  
004B  
ET0  
H
H
TCON.5  
IEN0.1  
P1.4/  
INT2/  
CC4  
IEX2  
EX2  
IRCON0.1  
I2FR  
T2CON.5  
IEN1.1  
EAL  
IP1.1  
IP0.1  
MCS03333  
IEN0.7  
Bit addressable  
Request Flag is  
cleared by hardware  
Figure 21  
Interrupt Structure, Overview (Part 1)  
Semiconductor Group  
44  
C517A  
Highest  
Priority Level  
P3.3/  
INT1  
IE1  
0013  
0093  
0053  
EX1  
H
H
H
TCON.3  
IT1  
Lowest  
Priority Level  
IEN0.2  
TCON.2  
Match in CM0-CM7  
ICMP0-7  
ECMP  
IEN2.2  
IRCON1.0-7  
P1.0/  
INT3/  
CC0  
IEX3  
EX3  
IRCON0.2  
I3FR  
IEN1.2  
T2CON.5  
IP1.2  
IP0.2  
Timer 1  
Overflow  
TF1  
001B  
009B  
005B  
ET1  
H
H
H
TCON.7  
IEN0.3  
Compare Timer  
Overflow  
CTF  
ECT  
CTCON.3  
IEN2.3  
P1.1/  
INT4/  
CC1  
IEX4  
EX4  
IRCON0.3  
IEN1.3  
EAL  
IP1.3  
IP0.3  
IEN0.7  
MCS03334  
Bit addressable  
Request Flag is  
cleared by hardware  
Figure 22  
Interrupt Structure, Overview (Part 2)  
Semiconductor Group  
45  
C517A  
Highest  
Priority Level  
RI0  
_
<
1
S0CON.0  
USART 0  
0023  
00A3  
0063  
ES0  
H
H
H
TI0  
Lowest  
Priority Level  
IEN0.4  
S0CON.1  
Match in COMSET  
ICS  
ECS  
CTCON.4  
IEN2.4  
P1.2/  
INT5/  
CC2  
IEX5  
EX5  
IRCON0.4  
IEN1.4  
IP1.4  
IP0.4  
Timer 2  
Overflow  
TF2  
_
<
1
IRCON0.6  
002B  
00AB  
006B  
P1.5/  
T2EX  
ET2  
H
H
H
EXF2  
IEN0.5  
EXEN2  
IEN1.7  
IRCON0.7  
ICR  
Match in COMCLR  
ECR  
CTCON.5  
IEN2.5  
P1.3/  
INT6/  
CC3  
IEX6  
EX6  
IRCON0.5  
IEN1.5  
EAL  
IP1.5  
IP0.5  
MCS03335  
IEN0.7  
Bit addressable  
Request Flag is  
cleared by hardware  
Figure 23  
Interrupt Structure, Overview (Part 3)  
Semiconductor Group  
46  
C517A  
Table 11  
Interrupt Source and Vectors  
Interrupt Source  
External Interrupt 0  
Timer 0 Overflow  
External Interrupt 1  
Timer 1 Overflow  
Serial Channel 0  
Interrupt Vector Address  
Interrupt Request Flags  
0003  
H
IE0  
000B  
H
TF0  
0013  
H
IE1  
001B  
H
TF1  
0023  
H
RI0 / TI0  
TF2 / EXF2  
IADC  
Timer 2 Overflow / Ext. Reload  
A/D Converter  
002B  
H
0043  
H
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
External Interrupt 5  
External Interrupt 6  
Serial Channel 1  
004B  
H
IEX2  
0053  
H
IEX3  
005B  
H
IEX4  
0063  
H
IEX5  
006B  
H
IEX6  
0083  
H
RI1 / TI1  
ICMP0 - ICMP7  
Compare Match Interupt of  
Compare Registers CM0-CM7  
assigned to Timer 2  
0093  
H
Compare Timer Overflow  
009B  
H
CTF  
ICS  
Compare Match Interupt of  
Compare Register COMSET  
00A3  
H
Compare Match Interupt of  
Compare Register COMCLR  
00AB  
H
ICR  
Semiconductor Group  
47  
C517A  
Fail Save Mechanisms  
The C517A offers enhanced fail safe mechanisms, which allow an automatic recovery from  
software upset or hardware failure :  
– a programmable watchdog timer (WDT), with variable time-out period from 512 µs up to  
approx. 1.1 s at 12 MHz. (256 µs up to approx. 0.65 s at 24 MHz)  
– an oscillator watchdog (OWD) which monitors the on-chip oscillator and forces the  
microcontroller into reset state in case the on-chip oscillator fails; it also provides the clock for  
a fast internal reset after power-on.  
The watchdog timer in the C517A is a 15-bit timer, which is incremented by a count rate of fOSC/24  
up to fOSC/384. The system clock of the C517A is divided by two prescalers, a divide-by-two and a  
divide-by-16 prescaler. For programming of the watchdog timer overflow rate, the upper 7 bit of the  
watchdog timer can be written. Figure 24 shows the block diagram of the watchdog timer unit.  
0
7
8
f
/12  
OSC  
2
16  
WDTL  
14  
WDT Reset-Request  
WDTH  
IP0 (A9  
)
H
WDTPSEL  
-
-
-
-
-
-
-
WDTS  
External HW Reset  
External HW Power-Down  
PE/SWD  
7
6
0
WDTREL (86  
)
H
Control Logic  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IEN0 (A8 )  
WDT  
H
H
IEN1 (B8 )  
SWDT  
MCB03250  
Figure 24  
Block Diagram of the Watchdog Timer  
The watchdog timer can be started by software (bit SWDT) or by hardware through pin PE/SWD,  
but it cannot be stopped during active mode of the C517A. If the software fails to refresh the running  
watchdog timer an internal reset will be initiated on watchdog timer overflow. For refreshing of the  
watchdog timer the content of the SFR WDTREL is transfered to the upper 7-bit of the watchdog  
timer. The refresh sequence consists of two consequtive instructions which set the bits WDT and  
SWDT each. The reset cause (external reset or reset caused by the watchdog) can be examined  
by software (flag WDTS). It must be noted, however, that the watchdog timer is halted during the  
idle mode and power down mode of the processor.  
Semiconductor Group  
48  
 
C517A  
Oscillator Watchdog  
The oscillator watchdog unit serves for four functions:  
Monitoring of the on-chip oscillator’s function  
The watchdog supervises the on-chip oscillator's frequency; if it is lower than the frequency of  
the auxiliary RC oscillator in the watchdog unit, the internal clock is supplied by the RC  
oscillator and the device is brought into reset; if the failure condition disappears (i.e. the on-  
chip oscillator has a higher frequency than the RC oscillator), the part executes a final reset  
phase of typ. 1 ms in order to allow the oscillator to stabilize; then the oscillator watchdog reset  
is released and the part starts program execution again.  
Fast internal reset after power-on  
The oscillator watchdog unit provides a clock supply for the reset before the on-chip oscillator  
has started. The oscillator watchdog unit also works identically to the monitoring function.  
Restart from the hardware power down mode.  
If the hardware power down mode is terminated the oscillator watchdog has to control the  
correct start-up of the on-chip oscillator and to restart the program. The oscillator watchdog  
function is only part of the complete hardware power down sequence; however, the watchdog  
works identically to the monitoring function.  
RC  
Oscillator  
f RC  
f 1  
÷ 5  
3MHz  
f 2 < f 1  
Frequency  
Comparator  
Delay  
_
Internal Reset  
<
1
f 2  
XTAL1  
XTAL2  
IP0 (A9  
)
H
On-Chip  
Oscillator  
OWDS  
÷ 2  
Internal Clock  
MCB03337  
Figure 25  
Block Diagram of the Oscillator Watchdog  
Semiconductor Group  
49  
C517A  
Power Saving Modes  
The C517A provides two basic power saving modes, the idle mode and the power down mode.  
Additionally, a slow down mode is available. This power saving mode reduces the internal clock  
rate in normal operating mode and it can be also used for further power reduction in idle mode.  
Idle mode  
The CPU is gated off from the oscillator. All peripherals are still provided with the clock and  
are able to work. Idle mode is entered by software and can be left by an interrupt or reset.  
Slow down mode  
The controller keeps up the full operating functionality, but its normal clock frequency is  
internally divided by 8. This slows down all parts of the controller, the CPU and all peripherals,  
to 1/8th of their normal operating frequency and also reduces power consumption.  
Software power down mode  
The operation of the C517A is completely stopped and the oscillator is turned off. This mode  
is used to save the contents of the internal RAM with a very low standby current. This power  
down mode is entered by software and can be left by reset.  
Hardware Power down mode  
If pin HWPD gets active (low level) the part enters the hardware power down mode and starts  
a complete internal reset sequence. Thereafter, both oscillators of the chip are stopped and  
the port pins and several control lines enter a floating state.  
In the power down mode of operation, VDD can be reduced to minimize power consumption. It must  
be ensured, however, that VDD is not reduced before the power down mode is invoked, and that VDD  
is restored to its normal operating level, before the power down mode is terminated. Table 12 gives  
a general overview of the entry and exit procedures of the power saving modes.  
Semiconductor Group  
50  
C517A  
Table 12  
Power Saving Modes Overview  
Mode  
Entering  
Leaving by  
Remarks  
2-Instruction  
Example  
Idle mode  
ORL PCON, #01H Ocurrence of an  
ORL PCON, #20H interrupt from a  
peripheral unit  
CPU clock is stopped;  
CPU maintains their data;  
peripheral units are active (if  
enabled) and provided with  
clock  
Hardware Reset  
Slow Down Mode  
In normal mode :  
ORL PCON,#10H  
ANL PCON,#0EFH  
or  
Internal clock rate is reduced  
to 1/8 of its nominal frequency  
Hardware Reset  
With idle mode :  
ORL PCON,#01H  
ORL PCON, #30H peripheral unit  
Ocurrence of an  
interrupt from a  
CPU clock is stopped;  
CPU maintains their data;  
peripheral units are active (if  
enabled) and provided with 1/8  
of its nominal frequency  
Hardware reset  
Software  
ORL PCON, #02H Hardware Reset  
Oscillator is stopped;  
Power Down Mode ORL PCON, #40H  
contents of on-chip RAM and  
SFR’s are maintained;  
Rising edge at  
PE/SWD  
Hardware  
Power Down Mode  
HWPD = 0  
HWPD = 1  
Oscillator is stopped; internal  
reset is executed;  
Semiconductor Group  
51  
C517A  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limit Values  
max.  
Unit Notes  
min.  
– 65  
–0.5  
Storage temperature  
TST  
150  
°C  
V
Voltage on VDD pins with respect VDD  
to ground (VSS)  
6.5  
Voltage on any pin with respect VIN  
to ground (VSS)  
–0.5  
10  
V
V
DD + 0.5  
Input current on any pin during  
overload condition  
mA  
mA  
10  
Absolute sum of all input  
currents during overload  
condition  
| 100 |  
Power dissipation  
TBD  
W
PDISS  
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent  
damage of the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for longer  
periods may affect device reliability. During absolute maximum rating overload conditions  
(VIN > VDD or VIN < VSS) the voltage on VDD pins with respect to ground (VSS) must not exceed  
the values defined by the absolute maximum ratings.  
Operating Conditions  
Parameter  
Symbol  
Limit Values  
Unit Notes  
min.  
max.  
5.5  
Supply voltage  
Ground voltage  
VDD  
VSS  
4.25  
V
V
0
Ambient temperature  
SAB-C517A  
0
–40  
–40  
70  
85  
110  
°C  
°C  
°C  
18 and 24 MHz  
18 and 24 MHz  
18 MHz  
TA  
TA  
TA  
SAF-C517A  
SAH-C517A  
Analog reference voltage  
Analog ground voltage  
Analog input voltage  
CPU clock  
4
V
DD + 0.1  
V
V
V
VAREF  
VAGND  
VAIN  
VSS - 0.1  
VAGND  
3.5  
VSS + 0.2  
VAREF  
24  
MHz –  
fCPU  
Semiconductor Group  
52  
C517A  
DC Characteristics  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
max.  
Unit Test Condition  
min.  
Input low voltage  
Pins except EA,RESET,HWPD VIL  
– 0.5  
– 0.5  
– 0.5  
0.2 VDD – 0.1 V  
0.2 VDD – 0.3 V  
0.2 VDD + 0.1 V  
EA pin  
VIL1  
VIL2  
HWPD and RESET pins  
Input high voltage  
pins except RESET, XTAL2 and  
HWPD  
XTAL2 pin  
RESET and HWPD pin  
VIH  
VIH1  
VIH2  
0.2 VDD + 0.9 VDD + 0.5  
V
V
V
0.7 VDD  
0.6 VDD  
V
V
DD + 0.5  
DD + 0.5  
Output low voltage  
Ports 1, 2, 3, 4, 5, 6  
Port 0, ALE, PSEN, RO  
VOL  
VOL1  
0.45  
0.45  
V
V
I OL = 1.6 mA 1)  
I OL = 3.2 mA 1)  
Output high voltage  
Ports 1, 2, 3, 4, 5, 6  
VOH  
2.4  
0.9 VDD  
2.4  
V
V
V
V
IOH = – 80 µA  
IOH = – 10 µA  
IOH = – 800 µA2)  
IOH = – 80 µA 2)  
Port 0 in external bus mode,  
ALE, PSEN, RO  
VOH1  
0.9 VDD  
Logic 0 input current  
Ports 1, 2, 3, 4, 5, 6  
I LI  
I TL  
I LI  
– 10  
– 65  
– 70  
– 650  
± 1  
µA  
µA  
µA  
VI N = 2 V  
Logical 0-to-1 transition current,  
Ports 1, 2, 3, 4, 5, 6  
VI N = 2 V  
Input leakage current  
Port 0, 7 and 8, EA, HWPD  
0.45 < VI N < VDD  
Input low current  
to RESET for reset  
XTAL2  
I IL2  
I IL3  
I IL4  
– 10  
– 100  
– 15  
– 20  
µA  
µA  
µA  
VIN = 0.45 V  
VI N = 0.45 V  
VI N = 0.45 V  
PE/SWD, OWE  
Pin capacitance  
C IO  
10  
pF  
fC = 1 MHz,  
TA = 25°C  
7) 8)  
Overload current  
Notes see next page  
IOV  
± 5  
mA  
Semiconductor Group  
53  
C517A  
Power Supply Current  
Parameter  
Symbol  
Limit Values  
typ. 9) max. 10)  
Unit Test Condition  
4)  
5)  
6)  
Active mode  
Idle mode  
18 MHz  
24 MHz  
IDD  
IDD  
21.3  
27.3  
29.2  
37.6  
mA  
mA  
18 MHz  
24 MHz  
IDD  
IDD  
11.6  
14.6  
16.2  
20.4  
mA  
mA  
Active mode with  
18 MHz  
24 MHz  
IDD  
IDD  
9.5  
10.7  
13.1  
14.9  
mA  
mA  
slow-down enabled  
Power-down mode  
IPD  
15  
50  
µA  
V
DD = 25.5 V 3)  
Notes:  
1) Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOL of ALE  
and port 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these  
pins make 1-to-0 transitions during bus operation. In the worst case (capacitive loading > 100 pF), the noise  
pulse on ALE line may exceed 0.8 V. In such cases it may be desirable to qualify ALE with a schmitt-trigger,  
or use an address latch with a schmitt-trigger strobe input.  
2) Capacitive loading on ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall below the 0.9 VDD  
specification when the address lines are stabilizing.  
3) IPD (power-down mode) is measured under following conditions:  
EA = RESET = Port 0 = Port 7 = Port 8 = VDD ; XTAL1 = N.C.; XTAL2 = VSS ; PE/SWD = OWE = VSS  
HWPD = VDD for software power-down mode; VAGND = VSS ; VAREF = VDD ; all other pins are disconnected.  
;
I
PD (hardware power-down mode) is independent of any particular pin connection.  
4) IDD (active mode) is measured with:  
XTAL2 driven with tCLCH , tCHCL = 5 ns , VIL = VSS + 0.5 V, VIH = VDD – 0.5 V; XTAL1 = N.C.;  
EA = PE/SWD == VSS ; Port 0 = Port 7 = Port 8 = VDD ; HWPD = VDD ; RESET = VDD ; all other pins are  
disconnected.  
5) IDD (idle mode) is measured with all output pins disconnected and with all peripherals disabled;  
XTAL2 driven with tCLCH , tCHCL = 5 ns, VIL = VSS + 0.5 V, VIH = VDD – 0.5 V; XTAL1 = N.C.;  
RESET = VDD ; HWPD = Port 0 = Port 7 = Port 8 = VDD ; EA = PE/SWD = VSS  
;
all other pins are disconnected;  
6) IDD (active mode with slow-down mode) is measured with all output pins disconnected and with all peripherals  
disabled; XTAL2 driven with tCLCH , tCHCL = 5 ns , VIL = VSS + 0.5 V, VIH = VDD – 0.5 V; XTAL1 = N.C.;  
HWPD = VDD ; RESET = VDD ; Port 7 = Port 8 = VDD ;; EA = PE/SWD == VSS ; all other pins are disconnected.  
7) Overload conditions under operating conditions occur if the voltage on the respective pin exceeds the specified  
operating range (i.e. VOV > VDD + 0.5 V or VOV < VSS - 0.5 V). The absolute sum of input currents on all port  
pins may not exceed 50 mA. The supply voltage VDD and VSS must remain within the specified limits.  
8) Not 100% tested, guaranteed by design characterization  
9) The typical IDD values are periodically measured at TA = +25 °C and VDD = 5 V but not 100% tested.  
10)The maximum IDD values are measured under worst case conditions (TA = 0 °C or -40 °C and VDD = 5.5 V)  
Semiconductor Group  
54  
C517A  
MCD03338  
40  
I
DD  
max  
I
Ι
mA  
DD  
CC typ  
I
DD  
30  
20  
10  
0
Active + Slow Down Mode  
0
3.5  
8
12  
16  
20  
MHz  
24  
fOSC  
Figure 26  
IDD Diagram  
Table 13  
Power Supply Current Calculation Formulas  
Parameter  
Symbol  
Formula  
1 fOSC + 3.3  
Active mode  
IDD typ  
*
IDD max  
1.4 fOSC + 4.0  
*
Idle mode  
IDD typ  
0.5 fOSC + 2.6  
*
IDD max  
0.7 fOSC + 3.6  
*
Active mode with  
IDD typ  
0.25 fOSC + 4.95  
*
slow-down enabled  
IDD max  
0.3 fOSC + 7.7  
*
Note : fosc is the oscillator frequency in MHz. IDD values are given in mA.  
Semiconductor Group  
55  
C517A  
A/D Converter Characteristics  
(Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
1)  
Analog input voltage  
Sample time  
VAIN  
tS  
VAGND  
VAREF  
V
16 x tIN  
8 x tIN  
ns  
Prescaler ÷ 8  
Prescaler ÷ 4  
2)  
3)  
Conversion cycle time  
Total unadjusted error  
tADCC  
96 x tIN  
48 x tIN  
ns  
Prescaler ÷ 8  
Prescaler ÷ 4  
TUE  
± 2  
LSB VSS+0.5V VIN VDD-0.5V 4)  
5) 6)  
tADC in [ns]  
Internal resistance of  
RAREF  
tADC / 250 kΩ  
reference voltage source  
- 0.25  
2) 6)  
tS in [ns]  
Internal resistance of  
analog source  
RASRC  
CAIN  
tS / 500  
- 0.25  
kΩ  
6)  
ADC input capacitance  
50  
pF  
Notes see next page.  
Clock calculation table :  
ClockPrescaler ADCL  
Ratio  
t
t
t
ADC  
S
ADCC  
÷ 8  
÷ 4  
1
0
8 x t  
4 x t  
16 x t  
8 x t  
96 x t  
48 x t  
IN  
IN  
IN  
IN  
IN  
IN  
Further timing conditions : t  
t
min = 500 ns  
ADC  
IN  
= 2 / f  
= 2 t  
OSC  
CLCL  
Semiconductor Group  
56  
C517A  
Notes:  
1) V  
may exeed V  
or V up to the absolute maximum ratings. However, the conversion result in  
AREF  
AIN  
AGND  
these cases will be X000 or X3FF , respectively.  
H
H
2) During the sample time the input capacitance C  
can be charged/discharged by the external source. The  
AIN  
internal resistance of the analog source must allow the capacitance to reach their final voltage level within t .  
After the end of the sample time t , changes of the analog input voltage have no effect on the conversion result.  
S
S
3) This parameter includes the sample time t , the time for determining the digital result and the time for the  
S
calibration. Values for the conversion clock t  
the previous page.  
depend on programming and can be taken from the table on  
ADC  
4) T  
is tested at V  
= 5.0 V, V  
= 0 V, V  
= 4.9 V. It is guaranteed by design characterization for all  
DD  
UE  
AREF  
AGND  
other voltages within the defined voltage range.  
If an overload condition occurs on maximum 2 not selected analog input pins and the absolute sum of input  
overload currents on all analog input pins does not exceed 10 mA, an additional conversion error of 1/2 LSB  
is permissible.  
5) During the conversion the ADC’s capacitance must be repeatedly charged or discharged. The internal  
resistance of the reference source must allow the capacitance to reach their final voltage level within the  
indicated time. The maximum internal resistance results from the programmed conversion timing.  
6) Not 100% tested, but guaranteed by design characterization.  
Semiconductor Group  
57  
C517A  
AC Characteristics (18 MHz)  
(Operating Conditions apply)  
(CL for port 0, ALE and PSEN outputs = 100 pF; CL for all other outputs = 80 pF)  
Program Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 18 MHz  
Unit  
18 MHz  
Clock  
min. max. min.  
max.  
ALE pulse width  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
71  
26  
26  
2 tCLCL – 40  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
ALE low to valid instruction in  
ALE to PSEN  
t
t
CLCL – 30  
CLCL – 30  
122  
4 tCLCL – 100 ns  
tLLPL  
tPLPH  
tPLIV  
31  
132  
t
CLCL – 25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PSEN pulse width  
3 tCLCL – 35  
PSEN to valid instruction in  
92  
0
3 tCLCL – 75  
Input instruction hold after PSEN tPXIX  
0
*)  
Input instruction float after PSEN tPXIZ  
46  
tCLCL – 10  
*)  
Address valid after PSEN  
Address to valid instr in  
Address float to PSEN  
tPXAV  
tAVIV  
tAZPL  
48  
t
CLCL – 8  
180  
0
5 tCLCL – 98  
0
*)  
Interfacing the C517A to devices with float times up to 45 ns is permissible. This limited bus contention will not  
cause any damage to port 0 drivers.  
CLKOUT Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 18 MHz  
Unit  
18 MHz  
Clock  
min. max. min.  
max.  
ALE to CLKOUT  
tLLSH  
tSHSL  
tSLSH  
tSLLH  
349  
71  
7 tCLCL – 40  
2 tCLCL – 40  
10 tCLCL – 40  
ns  
ns  
ns  
ns  
CLKOUT high time  
CLKOUT low time  
CLKOUT low to ALE high  
516  
16  
96  
t
CLCL – 40  
tCLCL + 40  
Semiconductor Group  
58  
C517A  
AC Characteristics (18 MHz, cont’d)  
External Data Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 18 MHz  
Unit  
18 MHz  
Clock  
min. max. min.  
max.  
RD pulse width  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
233  
233  
81  
6 tCLCL – 100  
ns  
ns  
ns  
WR pulse width  
6 tCLCL – 100  
Address hold after ALE  
RD to valid data in  
2 tCLCL – 30  
128  
5 tCLCL – 150 ns  
Data hold after RD  
0
0
ns  
ns  
Data float after RD  
51  
294  
335  
217  
2 tCLCL – 60  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
8 tCLCL – 150 ns  
9 tCLCL – 165 ns  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
117  
92  
16  
11  
239  
16  
3 tCLCL – 50  
4 tCLCL – 130  
3 tCLCL + 50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
96  
t
t
CLCL – 40  
CLCL – 45  
tCLCL + 40  
0
7 tCLCL – 150  
CLCL – 40  
t
0
External Clock Drive Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
Unit  
Freq. = 3.5 MHz to 18 MHz  
min.  
55.6  
15  
15  
max.  
Oscillator period  
High time  
tCLCL  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
285.7  
ns  
ns  
ns  
ns  
ns  
t
t
CLCL tCLCX  
CLCL tCHCX  
Low time  
Rise time  
15  
15  
Fall time  
Semiconductor Group  
59  
C517A  
AC Characteristics (24 MHz)  
(Operating Conditions apply)  
(CL for port 0, ALE and PSEN outputs = 100 pF; CL for all other outputs = 80 pF)  
Program Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 24 MHz  
Unit  
24 MHz  
Clock  
min. max. min.  
max.  
ALE pulse width  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
43  
17  
17  
2 tCLCL – 40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
ALE low to valid instruction in  
ALE to PSEN  
t
t
CLCL – 25  
CLCL – 25  
80  
4 tCLCL – 87  
tLLPL  
tPLPH  
tPLIV  
22  
95  
t
CLCL – 20  
PSEN pulse width  
3tCLCL – 30  
PSEN to valid instruction in  
60  
0
3 tCLCL – 65  
Input instruction hold after PSEN tPXIX  
0
*)  
Input instruction float after PSEN tPXIZ  
32  
tCLCL – 10  
*)  
Address valid after PSEN  
Address to valid instr in  
Address float to PSEN  
tPXAV  
tAVIV  
tAZPL  
37  
t
CLCL – 5  
148  
0
5 tCLCL – 60  
0
*)  
Interfacing the C517A to devices with float times up to 37 ns is permissible. This limited bus contention will not  
cause any damage to port 0 drivers.  
CLKOUT Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 24 MHz  
Unit  
24 MHz  
Clock  
min. max. min.  
max.  
ALE to CLKOUT  
tLLSH  
tSHSL  
tSLSH  
tSLLH  
252  
43  
7 tCLCL – 40  
2 tCLCL – 40  
10 tCLCL – 40  
ns  
ns  
ns  
ns  
CLKOUT high time  
CLKOUT low time  
CLKOUT low to ALE high  
377  
2
82  
t
CLCL – 40  
tCLCL + 40  
Semiconductor Group  
60  
C517A  
AC Characteristics (24 MHz, cont’d)  
External Data Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
1/tCLCL = 3.5 MHz to 24 MHz  
Unit  
24 MHz  
Clock  
min. max. min.  
max.  
RD pulse width  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
180  
180  
53  
6 tCLCL – 70  
ns  
ns  
ns  
ns  
ns  
ns  
WR pulse width  
6 tCLCL – 70  
Address hold after ALE  
RD to valid data in  
2 tCLCL – 30  
118  
5 tCLCL – 90  
Data hold after RD  
0
0
Data float after RD  
63  
200  
220  
175  
2 tCLCL – 20  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
8 tCLCL – 133 ns  
9 tCLCL – 155 ns  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
75  
67  
17  
5
3 tCLCL – 50  
4 tCLCL – 97  
3 tCLCL + 50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
67  
t
t
CLCL – 25  
CLCL – 37  
tCLCL + 25  
0
170  
15  
7 tCLCL – 122  
CLCL – 27  
t
0
External Clock Drive Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
Unit  
Freq. = 3.5 MHz to 24 MHz  
min.  
41.7  
12  
12  
max.  
Oscillator period  
High time  
tCLCL  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
285.7  
ns  
ns  
ns  
ns  
ns  
t
t
CLCL tCLCX  
CLCL tCHCX  
Low time  
Rise time  
12  
12  
Fall time  
Semiconductor Group  
61  
C517A  
t LHLL  
ALE  
PSEN  
Port 0  
t AVLL  
t PLPH  
t LLPL  
t
LLIV  
t
PLIV  
t AZPL  
t LLAX  
t
PXAV  
PXIZ  
t
t PXIX  
A0 - A7  
Instr.IN  
A0 - A7  
t
AVIV  
Port 2  
A8 - A15  
A8 - A15  
MCT00096  
Figure 27  
Program Memory Read Cycle  
Semiconductor Group  
62  
C517A  
tWHLH  
ALE  
PSEN  
RD  
t LLDV  
t LLWL  
t RLRH  
t RLDV  
t AVLL  
tRHDZ  
t LLAX2  
t RLAZ  
tRHDX  
A0 - A7 from  
Ri or DPL  
A0 - A7  
from PCL  
Instr.  
IN  
Port 0  
Data IN  
tAVWL  
t AVDV  
Port 2  
P2.0 - P2.7 or A8 - A15 from DPH  
A8 - A15 from PCH  
MCT00097  
Figure 28  
Data Memory Read Cycle  
Figure 29  
CLKOUT Timing  
Semiconductor Group  
63  
C517A  
tWHLH  
ALE  
PSEN  
WR  
t LLWL  
t WLWH  
tQVWX  
t AVLL  
tWHQX  
t LLAX2  
tQVWH  
A0 - A7 from  
Ri or DPL  
A0 - A7  
from PCL  
Instr.IN  
Port 0  
Port 2  
Data OUT  
tAVWL  
P2.0 - P2.7 or A8 - A15 from DPH  
A8 - A15 from PCH  
MCT00098  
Figure 30  
Data Memory Write Cycle  
tCLCL  
V
0.5V  
DD  
0.7 VCC  
0.2 VCC- 0.1  
0.45V  
tCLCX  
tCHCX  
MCT00033  
tCHCL  
tCLCH  
Figure 31  
External Clock Drive on XTAL2  
Semiconductor Group  
64  
C517A  
ROM Verification Characteristics for the C517A-4RM/4RN  
ROM Verification Mode 1  
Parameter  
Symbol  
Limit Values  
max.  
Unit  
min.  
tAVQV  
Address to valid data  
10 tCLCL  
ns  
P1.0-P1.7  
P2.0-P2.6  
Address  
Data Out  
New Address  
t
AVQV  
Port 0  
New Data Out  
Data:  
Addresses:  
P0.0-P0.7 = D0-D7  
P1.0-P1.7 = A0-A7  
P2.0-P2.6 = A8-A14  
Inputs:  
PSEN  
ALE, EA = V  
RESET = V  
= V  
SS  
IH  
IL2  
MCS03253  
Figure 32  
ROM Verification Mode 1  
Semiconductor Group  
65  
C517A  
ROM Verification Mode 2  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
typ  
2 tCLCL  
12 tCLCL  
max.  
tAWD  
tACY  
ALE pulse width  
ns  
ALE period  
ns  
tDVA  
Data valid after ALE  
Data stable after ALE  
P3.5 setup to ALE low  
Oscillator frequency  
4 tCLCL  
ns  
tDSA  
8 tCLCL  
ns  
tAS  
tCLCL  
ns  
1/ tCLCL  
3.5  
24  
MHz  
t ACY  
t AWD  
ALE  
t DSA  
t DVA  
Port 0  
P3.5  
Data Valid  
t AS  
MCT02613  
Figure 33  
ROM Verification Mode 2  
Semiconductor Group  
66  
C517A  
0.2 VCC+0.9  
0.2 VCC -0.1  
VDD  
Test Points  
V
DD  
0.45 V  
MCT00039  
V
DD  
AC Inputs during testing are driven at VDD - 0.5 V for a logic ’1’ and 0.45 V for a logic ’0’.  
Timing measurements are made at VIHmin for a logic ’1’ and VILmax for a logic ’0’.  
Figure 34  
AC Testing: Input, Output Waveforms  
Timing Reference  
Points  
VLoad  
-0.1 V  
VLoad  
VOL +0.1 V  
MCT00038  
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage  
occurs and begins to float when a 100 mV change from the loaded VOH/VOL level occurs.  
IOL/IOH ≥ ± 20 mA  
Figure 35  
AC Testing : Float Waveforms  
Crystal Oscillator Mode  
Driving from External Source  
C
N.C.  
XTAL1  
XTAL1  
XTAL2  
3.5-24 MHz  
C
External Oscillator  
Signal  
XTAL2  
±
Crystal Mode : C = 20 pF 10 pF  
(incl. stray capacitance)  
MCS03339  
Figure 36  
Recommended Oscillator Circuits for Crystal Oscillator  
Semiconductor Group  
67  
C517A  
Plastic Package, P-MQFP-100-2 (SMD)  
(Plastic Metric Quad Flat Package)  
Figure 37  
P-LCC-100-2 Package Outlines  
Semiconductor Group  
68  
C517A  
Plastic Package, P-LCC-84-2 (SMD)  
(Plastic Leaded Chip-Carrier)  
1.27 x 45˚  
1.27  
2)  
±0.5  
28.2  
±0.1  
0.43  
0.1  
M
0.18  
84x  
25.4  
Index Marking  
84  
1
1.14 x 45˚  
1)  
±0.076  
±0.13  
29.31  
30.23  
1) Does not include plastic or metal protrusions of 0.25 max. per side  
2) Dimension from center to center  
Figure 38  
P-LCC-84-2 Package Outline  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”  
Dimensions in mm  
SMD = Surface Mounted Device  
Semiconductor Group  
69  
C517A  
Semiconductor Group  
70  

相关型号:

ETC

C5174G

5000 WATTS (AC) DC/D CSINGLE OUTPUT
POWERBOX

C5174K

5000 WATTS (AC) DC/D CSINGLE OUTPUT
POWERBOX

C5174V

5000 WATTS (AC) DC/D CSINGLE OUTPUT
POWERBOX

C5175G

5000 WATTS (AC) DC/D CSINGLE OUTPUT
POWERBOX

C5175K

5000 WATTS (AC) DC/D CSINGLE OUTPUT
POWERBOX

C5175V

5000 WATTS (AC) DC/D CSINGLE OUTPUT
POWERBOX

C5176G

5000 WATTS (AC) DC/D CSINGLE OUTPUT
POWERBOX

C5176K

5000 WATTS (AC) DC/D CSINGLE OUTPUT
POWERBOX

C5176V

5000 WATTS (AC) DC/D CSINGLE OUTPUT
POWERBOX

C5177G

5000 WATTS (AC) DC/D CSINGLE OUTPUT
POWERBOX

C5177GJ

5000 WATTS (AC) DC/D CSINGLE OUTPUT
POWERBOX