AUIRF7665S2TR [INFINEON]

DirectFETPower MOSFET; ??的DirectFET功率MOSFET
AUIRF7665S2TR
型号: AUIRF7665S2TR
厂家: Infineon    Infineon
描述:

DirectFETPower MOSFET
??的DirectFET功率MOSFET

晶体 晶体管 功率场效应晶体管 脉冲 放大器
文件: 总11页 (文件大小:344K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96286  
AUIRF7665S2TR  
AUIRF7665S2TR1  
DirectFET™ Power MOSFET ‚  
AUTOMOTIVE GRADE  
Advanced Process Technology  
V(BR)DSS  
100V  
Optimized for Class D Audio Amplifier Applications  
Low Rds(on) for Improved Efficiency  
Low Qg for Better THD and Improved Efficiency  
Low Qrr for Better THD and Lower EMI  
Low Parasitic Inductance for Reduced Ringing and Lower EMI  
Delivers up to 100W per Channel into 8with No Heatsink  
Dual Sided Cooling  
RDS(on) typ.  
51m  
62m  
max.  
RG (typical)  
Qg (typical)  
3.5  
8.3nC  
175°C Operating Temperature  
Repetitive Avalanche Capability for Robustness and Reliability  
Lead free, RoHS and Halogen free  
DirectFET™ ISOMETRIC  
SB  
Applicable DirectFET Outline and Substrate Outline   
SB  
SC  
M2  
M4  
L4  
L6  
L8  
Description  
The AUIRF7665S2TR/TR1 combines the latest Automotive HEXFET® Power MOSFET Silicon technology with the advanced DirectFET  
packaging platform to produce a best in class part for Automotive Class D audio amplifier applications. The DirectFET package is compatible  
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering  
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package  
allows dual sided cooling to maximize thermal transfer in automotive power systems.  
This HEXFET Power MOSFET optimizes gate charge, body diode reverse recovery and internal gate resistance to improve key Class D  
audio amplifier performance factors such as efficiency, THD and EMI. Moreover the DirectFET packaging platform offers low parasitic  
inductance and resistance when compared to conventional wire bonded SOIC packages which improves EMI performance by reducing the  
voltage ringing that accompanies current transients.  
These features combine to make this MOSFET a highly desirable component in Automotive Class D audio amplifier systems.  
Absolute Maximum Ratings  
Parameter  
Drain-to-Source Voltage  
Max.  
100  
Units  
VDS  
VGS  
V
Gate-to-Source Voltage  
± 20  
(Silicon Limited)  
(Silicon Limited)  
(Silicon Limited)  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
I
I
I
@ TC = 25°C  
14.4  
10.2  
4.1  
D
D
D
D
@ TC = 100°C  
@ TA = 25°C  
@ TC = 25°C  
A
Continuous Drain Current, VGS @ 10V (Package Limited)  
I
I
77  
58  
Pulsed Drain Current  
DM  
Power Dissipation  
P
P
EAS  
@TC = 25°C  
@TA = 25°C  
30  
D
D
W
Power Dissipation  
2.4  
37  
56  
Single Pulse Avalanche Energy (Thermally Limited)  
Single Pulse Avalanche Energy (Tested Value)  
Avalanche Current  
mJ  
EAS(tested)  
IAR  
A
See Fig. 18a,18b,16,17  
EAR  
T
P
Repetitive Avalanche Energy  
Peak Soldering Temperature  
Operating Junction and  
mJ  
270  
T
J
-55 to + 175  
°C  
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
Max.  
Units  
°C/W  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Can  
–––  
12.5  
20  
63  
RθJA  
–––  
–––  
5.0  
RθJA  
RθJ-Can  
RθJ-PCB  
–––  
1.4  
Junction-to-PCB Mounted  
–––  
Linear Derating Factor  
0.2  
W/°C  
HEXFET® is a registered trademark of International Rectifier.  
www.irf.com  
1
01/05/10  
AUIRF7665S2TR/TR1  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250µA  
Parameter  
Min.  
100  
–––  
–––  
3.0  
Typ.  
–––  
0.10  
51  
Max.  
–––  
–––  
62  
Units  
V
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Reference to 25°C, ID = 1mA  
VGS = 10V, ID = 8.9A  
V(BR)DSS/ TJ  
V/°C  
mΩ  
V
RDS(on)  
VGS(th)  
VGS(th)/TJ  
gfs  
4.0  
5.0  
VDS = VGS, ID = 25µA  
Gate Threshold Voltage Coefficient  
Forward Transconductance  
–––  
8.8  
-13  
–––  
–––  
5.0  
mV/°C  
S
V
DS = 25V, ID = 8.9A  
–––  
3.5  
RG(int)  
Internal Gate Resistance  
–––  
–––  
–––  
–––  
–––  
µA  
V
DS = 100V, VGS = 0V  
IDSS  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
20  
VDS = 80V, VGS = 0V, TJ = 125°C  
GS = 20V  
250  
100  
-100  
V
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
nA  
VGS = -20V  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Conditions  
Parameter  
Total Gate Charge  
Min.  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Typ.  
8.3  
1.9  
0.77  
3.2  
2.4  
4.0  
4.7  
3.8  
6.4  
7.1  
3.6  
515  
110  
30  
Max.  
13  
Units  
Qg  
Qgs1  
VDS = 50V  
VGS = 10V  
ID = 8.9A  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs2  
Qgd  
nC  
See Fig. 11  
Qgodr  
Qsw  
V
V
DS = 16V, VGS = 0V  
DD = 50V  
Qoss  
td(on)  
tr  
nC  
ns  
Turn-On Delay Time  
Rise Time  
ID = 8.9A  
td(off)  
tf  
RG = 6.8  
Turn-Off Delay Time  
Fall Time  
VGS = 10V  
VGS = 0V  
Ciss  
Coss  
Crss  
Coss  
Coss  
Input Capacitance  
VDS = 25V  
Output Capacitance  
Reverse Transfer Capacitance  
Output Capacitance  
Output Capacitance  
Effective Output Capacitance  
ƒ = 1.0MHz  
pF  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 80V, ƒ = 1.0MHz  
530  
70  
V
GS = 0V, VDS = 0V to 80V  
Coss eff.  
115  
Diode Characteristics  
Conditions  
Parameter  
Min.  
Typ.  
Max.  
Units  
MOSFET symbol  
Continuous Source Current  
I
I
S
–––  
–––  
14.4  
showing the  
(Body Diode)  
A
integral reverse  
Pulsed Source Current  
(Body Diode)  
SM  
–––  
–––  
58  
p-n junction diode.  
T = 25°C, I = 8.9A, V = 0V  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
33  
1.3  
–––  
–––  
V
V
t
J
S
GS  
SD  
T = 25°C, I = 8.9A, VDD = 25V  
ns  
nC  
J
F
rr  
di/dt = 100A/µs  
38  
Q
rr  
‰ Mounted on minimum footprint full size  
board with metalized back and with small  
clip heatsink (still air)  
‰ Mounted to a PCB with small  
clip heatsink (still air)  
ƒ Surface mounted on 1 in. square Cu  
(still air).  
Notes  through Šare on page 11  
2
www.irf.com  
AUIRF7665S2TR/TR1  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Qualification Level  
Comments: This part number(s) passed Automotive qualification.  
IR’s Industrial and Consumer qualification level is granted by  
extension of the higher Automotive level.  
Moisture Sensitivity Level  
DFET2  
MSL1  
Machine Model  
Class B  
AEC-Q101-002  
Class 2  
Human Body Model  
ESD  
AEC-Q101-001  
Class IV  
Charged Device Model  
AEC-Q101-005  
Yes  
RoHS Compliant  
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com  
†† Exceptions to AEC-Q101 requirements are noted in the qualification report.  
www.irf.com  
3
AUIRF7665S2TR/TR1  
100  
100  
10  
1
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
VGS  
15V  
TOP  
TOP  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
10  
1
BOTTOM  
BOTTOM  
0.1  
5.0V  
60µs  
0.01  
0.001  
5.0V  
60µs  
PULSE WIDTH  
Tj = 175°C  
PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
140  
320  
280  
240  
200  
160  
120  
80  
Vgs = 10V  
I
= 8.9A  
D
120  
100  
80  
T
= 125°C  
J
T
= 125°C  
J
60  
T
= 25°C  
T
= 25°C  
J
J
40  
40  
6
7
8
9
10 11 12 13 14 15  
0
10  
20  
30  
40  
I , Drain Current (A)  
V
Gate -to -Source Voltage (V)  
Fig 4. TypicalDOn-Resistance vs. Drain Current  
GS,  
Fig 3. Typical On-Resistance vs. Gate Voltage  
100  
2.5  
I
= 8.9A  
D
V
= 10V  
GS  
10  
2.0  
1.5  
1.0  
0.5  
1
0.1  
T
= -40°C  
J
TJ = 25°C  
TJ = 175°C  
V
= 25V  
DS  
60µs PULSE WIDTH  
0.01  
2
4
6
8
10 12 14 16  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
4
www.irf.com  
AUIRF7665S2TR/TR1  
100  
10  
T
= -40°C  
J
6.5  
5.5  
4.5  
3.5  
2.5  
1.5  
TJ = 25°C  
TJ = 175°C  
1
I
= 25µA  
D
0.1  
0.01  
ID = 250µA  
ID = 1.0mA  
D = 1.0A  
V
= 0V  
GS  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2  
, Source-to-Drain Voltage (V)  
-75 -50 -25  
0
25 50 75 100 125 150 175  
V
T
, Temperature ( °C )  
SD  
J
Fig 7. Typical Threshold Voltage vs. Junction Temperature  
Fig 8. Typical Source-Drain Diode Forward Voltage  
20  
18  
10000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
C
C
C
+ C , C  
SHORTED  
ds  
T
= 25°C  
iss  
gs  
gd  
J
= C  
rss  
oss  
gd  
= C + C  
16  
14  
12  
10  
8
ds  
gd  
1000  
100  
10  
C
iss  
T
= 175°C  
J
C
oss  
6
4
C
V
= 10V  
rss  
DS  
2
380µs PULSE WIDTH  
0
0
2
4
6
8 10 12 14 16 18  
1
10  
, Drain-to-Source Voltage (V)  
100  
I ,Drain-to-Source Current (A)  
V
D
DS  
Fig 10. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 9. Typical Forward Transconductance Vs. Drain Current  
14.0  
16  
I
= 8.9A  
D
14  
12  
10  
8
12.0  
10.0  
8.0  
V
= 80V  
= 50V  
DS  
DS  
V
VDS= 20V  
6.0  
6
4.0  
4
2.0  
2
0.0  
0
0
2
4
6
8
10  
12  
25  
50  
75  
100  
125  
150  
175  
Q , Total Gate Charge (nC)  
T
, Case Temperature (°C)  
G
C
Fig.11 Typical Gate Charge vs.Gate-to-Source Voltage  
Fig 12. Maximum Drain Current vs. Case Temperature  
www.irf.com  
5
AUIRF7665S2TR/TR1  
1000  
160  
140  
120  
100  
80  
OPERATION IN THIS AREA  
I
D
LIMITED BY R  
(on)  
DS  
TOP  
1.64A  
3.04A  
100  
10  
BOTTOM 8.90A  
100µsec  
1msec  
10msec  
1
60  
40  
DC  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
0.1  
0.01  
20  
0
0
1
10  
100  
1000  
25  
50  
75  
100  
125  
150  
175  
V
, Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
DS  
Fig 13. Maximum Safe Operating Area  
Fig 14. MaximumJAvalanche Energy vs. Temperature  
10  
D = 0.50  
1
0.1  
0.20  
0.10  
0.05  
0.02  
0.01  
Ri (°C/W) τi (sec)  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
0.49687 0.000119  
0.00517 8.231486  
2.55852 0.018926  
1.94004 0.002741  
τ
τ
J τJ  
τ
C
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.01  
Notes:  
SINGLE PULSE  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
0.1  
Allowed avalanche Current vs avalanche  
∆Τ  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
0.01  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 16. Typical Avalanche Current Vs.Pulsewidth  
6
www.irf.com  
AUIRF7665S2TR/TR1  
Notes on Repetitive Avalanche Curves , Figures 16, 17:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 18a, 18b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
40  
35  
30  
25  
20  
15  
10  
5
TOP  
BOTTOM 1.0% Duty Cycle  
= 8.9A  
Single Pulse  
I
D
Tjmax (assumed as 25°C in Figure 16, 17).  
t
av = Average time in avalanche.  
0
D = Duty cycle in avalanche = tav ·f  
25  
50  
75  
100  
125  
150  
175  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 17. Maximum Avalanche Energy Vs. Temperature  
V
15V  
(BR)DSS  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
VGS  
20V  
0.01  
t
p
I
AS  
Fig 18a. Unclamped Inductive Test Circuit  
Fig 18b. Unclamped Inductive Waveforms  
Id  
Vds  
L
Vgs  
VCC  
DUT  
0
20K  
Vgs(th)  
Fig 19a. Gate Charge Test Circuit  
Qgs1  
Qgs2  
Qgodr  
Qgd  
RD  
VDS  
Fig 19b. Gate Charge Waveform  
VGS  
D.U.T.  
V
DS  
RG  
+
-
90%  
VDD  
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 20a. Switching Time Test Circuit  
Fig 20b. Switching Time Waveforms  
www.irf.com  
7
AUIRF7665S2TR/TR1  
Automotive DirectFET™ Board Footprint, SB (Small Size Can).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
CL  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
G
S
8
www.irf.com  
AUIRF7665S2TR/TR1  
Automotive DirectFET™ Outline Dimension, SB Outline (Small Size Can).  
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations  
Automotive DirectFET™ Part Marking  
www.irf.com  
9
AUIRF7665S2TR/TR1  
Automotive DirectFET™ Tape & Reel Dimension (Showing component orientation).  
10  
www.irf.com  
AUIRF7665S2TR/TR1  
Notes:  
† Starting TJ = 25°C, L = 0.944mH, RG = 25, IAS = 8.9A.  
‡ Pulse width 400µs; duty cycle 2%.  
ˆ Used double sided cooling, mounting pad with large heatsink.  
‰ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET Website.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
„ TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
Š R is measured at TJ of approximately 90°C.  
θ
IMPORTANT NOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the  
right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time  
and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow automotive industry  
and / or customer specific requirements with regards to product discontinuance and process change notification. All products are  
sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s standard  
warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except  
where mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using IR components. To minimize the risks with customer products and applications, customers should provide ad-  
equate design and operating safeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is  
an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties  
may be subject to additional restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service  
voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business  
practice. IR is not responsible or liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could  
create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or  
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
IR was negligent regarding the design or manufacture of the product.  
IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are  
specifically designated by IR as military-grade or “enhanced plastic.” Only products designated by IR as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is  
solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection  
with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are  
designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”. Buyers  
acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any  
failure to meet such requirements  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
233 Kansas St., El Segundo, California 90245  
Tel: (310) 252-7105  
www.irf.com  
11  

相关型号:

AUIRF7665S2TR1

DirectFETPower MOSFET
INFINEON

AUIRF7665S2_15

Automotive DirectFET Power MOSFET
INFINEON

AUIRF7669L2

Advanced Process Technology
INFINEON

AUIRF7669L2TR

Automotive DirectFET Power MOSFET
INFINEON

AUIRF7669L2TR1

Automotive DirectFET Power MOSFET
INFINEON

AUIRF7669L2TR_15

Automotive DirectFET Power MOSFET
INFINEON

AUIRF7675M2

Advanced Process Technology
INFINEON

AUIRF7675M2TR

Advanced Process Technology
INFINEON

AUIRF7675M2TR1

DirectFETPower MOSFET
INFINEON

AUIRF7675M2TR_15

Automotive DirectFET Power MOSFET
INFINEON

AUIRF7732S2

DirectFET Power MOSFET
INFINEON

AUIRF7732S2TR

Power Field-Effect Transistor, 14A I(D), 40V, 0.00695ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET,
INFINEON