AUIRF3305 [INFINEON]

Advanced Planar Technology; 高级平面技术
AUIRF3305
型号: AUIRF3305
厂家: Infineon    Infineon
描述:

Advanced Planar Technology
高级平面技术

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总12页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96336  
AUTOMOTIVE MOSFET  
AUIRF3305  
HEXFET® Power MOSFET  
Features  
D
S
V(BR)DSS  
55V  
8m  
l
l
l
l
l
l
l
AdvancedPlanarTechnology  
LowOn-Resistance  
Dynamic dV/dT Rating  
175°COperatingTemperature  
Fast Switching  
RDS(on) max.  
ID  
G
140A  
Fully Avalanche Rated  
Repetitive Avalanche Allowed up to Tjmax  
l
l
Lead-Free,RoHSCompliant  
Automotive Qualified *  
Description  
SpecificallydesignedforAutomotiveapplications,thiscellular  
design of HEXFET® Power MOSFETs utilizes the latest  
processing techniques to achieve low on-resistance per  
silicon area. This benefit combined with the fast switching  
speed and ruggedized device design that HEXFET power  
MOSFETs are well known for, provides the designer with an  
extremely efficient and reliable device for use in Automotive  
and a wide variety of other applications.  
TO-220AB  
G
Gate  
D
Drain  
S
Source  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are  
stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the  
specifications is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.  
Ambient temperature (TA) is 25°C, unless otherwise specified.  
Max.  
140  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
99  
A
560  
PD @TC = 25°C  
330  
Power Dissipation  
W
W/°C  
V
2.2  
Linear Derating Factor  
VGS  
± 20  
Gate-to-Source Voltage  
EAS  
470  
860  
Single Pulse Avalanche Energy(Thermally limited)  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
mJ  
EAS (Tested )  
IAR  
See Fig.12a, 12b, 15, 16  
A
EAR  
TJ  
Repetitive Avalanche Energy  
mJ  
-55 to + 175  
Operating Junction and  
TSTG  
°C  
Storage Temperature Range  
300  
Soldering Temperature, for 10 seconds(1.6mm from case )  
Mounting Torque, 6-32 or M3 screw  
10 lbf in (1.1N m)  
Thermal Resistance  
Parameter  
Typ.  
Max.  
0.45  
–––  
62  
Units  
RθJC  
RθCS  
RθJA  
Junction-to-Case  
–––  
0.50  
–––  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
°C/W  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
www.irf.com  
1
11/02/10  
AUIRF3305  
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min.  
55  
Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
V/°C Reference to 25°C, ID = 1mA  
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
0.055  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
8.0  
V
–––  
–––  
2.0  
m
VGS = 10V, ID = 75A  
VDS = VGS, ID = 250µA  
VDS = 25V, ID = 75A  
VGS(th)  
4.0  
V
gfs  
IDSS  
Forward Transconductance  
41  
–––  
25  
S
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
µA  
VDS = 55V, VGS = 0V  
250  
200  
-200  
VDS = 55V, VGS = 0V, TJ = 125°C  
VGS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
nA  
VGS = -20V  
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Qg  
Qgs  
Qgd  
td(on)  
tr  
Total Gate Charge  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
100  
21  
45  
16  
88  
43  
34  
4.5  
150  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
ID = 75A  
nC  
VDS = 44V  
VGS = 10V  
VDD = 28V  
ID = 75A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
ns  
RG = 2.6 Ω  
VGS = 10V  
Between lead,  
LD  
Internal Drain Inductance  
nH  
6mm (0.25in.)  
from package  
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
VGS = 0V  
Ciss  
Coss  
Crss  
Coss  
Coss  
Input Capacitance  
–––  
–––  
–––  
–––  
–––  
–––  
3650  
1230  
450  
–––  
–––  
–––  
–––  
–––  
–––  
Output Capacitance  
VDS = 25V  
Reverse Transfer Capacitance  
Output Capacitance  
pF  
ƒ = 1.0MHz  
4720  
930  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 44V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 44V  
Output Capacitance  
Coss eff.  
Effective Output Capacitance  
1490  
Diode Characteristics  
Parameter  
Min.  
Typ. Max. Units  
Conditions  
I
I
Continuous Source Current  
–––  
–––  
75  
MOSFET symbol  
S
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
–––  
–––  
560  
SM  
(Body Diode)  
p-n junction diode.  
V
t
Diode Forward Voltage  
–––  
–––  
–––  
–––  
57  
1.3  
86  
V
T = 25°C, I = 75A , V = 0V  
SD  
J
S
GS  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns  
nC  
T = 25°C, I = 75A , VDD = 28V  
J F  
di/dt = 100A/µs  
rr  
Q
t
130  
190  
rr  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
on  
Notes:  
† This value determined from sample failure population. 100% tested to this  
 Repetitive rating; pulse width limited by max. junction temperature.  
(See fig. 11).  
value in production.  
‡ Rθ is measured at TJ of approximately 90°C.  
ˆ All AC and DC test conditions based on former package limited  
current of 75A.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.17mH RG = 25, IAS = 75A,  
VGS =10V. Part not recommended for use above this value.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
„ Coss eff. is a fixed capacitance that gives the same charging time as  
Coss while VDS is rising from 0 to 80% VDSS  
.
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
2
www.irf.com  
AUIRF3305  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Qualification Level  
Comments: This part number(s) passed Automotive qualification. IR’s  
Industrial and Consumer qualification level is granted by extension of  
the higher Automotive level.  
Moisture Sensitivity Level  
3L-TO-220  
N/A  
Class M4(425V)  
Machine Model  
(per AEC-Q101-002)  
Class H2 (4000V)  
(per AEC-Q101-001)  
Class C5 (1125V)  
(per AEC-Q101-005)  
Yes  
ESD  
Human Body Model  
Charged Device Model  
RoHS Compliant  
†
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
†† Exceptions to AEC-Q101 requirements are noted in the qualification report.  
www.irf.com  
3
AUIRF3305  
1000  
100  
10  
1000  
TOP  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
TOP  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
BOTTOM  
BOTTOM  
100  
4.5V  
4.5V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 175°C  
Tj = 25°C  
10  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
80  
60  
40  
20  
0
1000.0  
T
= 25°C  
J
100.0  
10.0  
1.0  
T
= 175°C  
T
= 175°C  
J
J
T
= 25°C  
J
V
= 25V  
DS  
60µs PULSE WIDTH  
V
= 10V  
DS  
380µs PULSE WIDTH  
0.1  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0
20  
40  
60  
80 100 120 140  
V
, Gate-to-Source Voltage (V)  
GS  
I
Drain-to-Source Current (A)  
D,  
Fig 4. Typical Forward Transconductance  
Fig 3. Typical Transfer Characteristics  
Vs. Drain Current  
4
www.irf.com  
AUIRF3305  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
20  
16  
12  
8
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 75A  
= C + C , C SHORTED  
D
V
= 44V  
iss  
gs  
gd ds  
DS  
VDS= 28V  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
Ciss  
Coss  
Crss  
4
0
0
40  
80  
120  
160  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
100.0  
10.0  
1.0  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100µsec  
1msec  
T
J
= 25°C  
1
Tc = 25°C  
10msec  
DC  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
1
10  
100  
1000  
0.0  
0.4  
V
0.8  
1.2  
1.6  
2.0  
2.4  
V
, Drain-toSource Voltage (V)  
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 7. Typical Source-Drain Diode  
Fig 8. Maximum Safe Operating Area  
Forward Voltage  
www.irf.com  
5
AUIRF3305  
2.5  
2.0  
1.5  
1.0  
0.5  
160  
140  
120  
100  
80  
I
= 75A  
D
V
= 10V  
GS  
60  
40  
20  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
T
, Junction Temperature (°C)  
J
Fig 9. Maximum Drain Current Vs.  
Fig 10. Normalized On-Resistance  
Case Temperature  
Vs. Temperature  
1
D = 0.50  
0.1  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
0.01  
Ri (°C/W) τi (sec)  
0.1758 0.00045  
R3  
0.02  
0.01  
τ
J τJ  
τ
Cτ  
τ
τ
1τ1  
τ
2 τ2  
3τ3  
0.228  
0.004565  
0.0457 0.01858  
Ci= τi/Ri  
0.001  
/
Notes:  
SINGLE PULSE  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
( THERMAL RESPONSE )  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
6
www.irf.com  
AUIRF3305  
2000  
1600  
1200  
800  
400  
0
I
D
15V  
TOP  
18A  
26A  
BOTTOM 75A  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
25  
50  
75  
100  
125  
150  
175  
V
(BR)DSS  
Starting T , Junction Temperature (°C)  
t
p
J
Fig 12c. Maximum Avalanche Energy  
Vs. Drain Current  
I
AS  
Fig 12b. Unclamped Inductive Waveforms  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
I
I
I
= 5.0A  
= 1.0A  
D
D
D
Q
G
= 250µA  
10 V  
Q
Q
GD  
GS  
V
G
Charge  
Fig 13a. Basic Gate Charge Waveform  
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
T
L
Fig 14. Threshold Voltage Vs. Temperature  
VCC  
DUT  
0
1K  
Fig 13b. Gate Charge Test Circuit  
www.irf.com  
7
AUIRF3305  
10000  
Duty Cycle = Single Pulse  
1000  
100  
10  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.01  
0.05  
0.10  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
500  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
TOP  
BOTTOM 1% Duty Cycle  
= 75A  
Single Pulse  
I
400  
300  
200  
100  
0
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 16. Maximum Avalanche Energy  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
8
www.irf.com  
AUIRF3305  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
V
=10V  
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
Reverse  
Recovery  
Current  
‚
Body Diode Forward  
„
Current  
di/dt  
-
+
-
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
dv/dt controlled by RG  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Re-Applied  
Voltage  
RG  
+
-
Body Diode  
Forward Drop  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
www.irf.com  
9
AUIRF3305  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
Part Number  
AUF3305  
Date Code  
Y= Year  
WW= Work Week  
A= Automotive, Lead Free  
IR Logo  
YWWA  
XX or XX  
Lot Code  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
AUIRF3305  
Ordering Information  
Base part  
Package Type  
Standard Pack  
Form  
Complete Part Number  
Quantity  
AUIRF3305  
TO-220  
Tube  
50  
AUIRF3305  
www.irf.com  
11  
AUIRF3305  
IMPORTANT NOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the  
righttomakecorrections, modifications, enhancements, improvements, andotherchangestoitsproductsandservicesatanytime  
and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow automotive industry  
and / or customer specific requirements with regards to product discontinuance and process change notification. All products are  
sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment.  
IRwarrantsperformanceofitshardwareproductstothespecificationsapplicableatthetimeofsaleinaccordancewithIR’sstandard  
warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except  
where mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using IR components. To minimize the risks with customer products and applications, customers should provide  
adequate design and operating safeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is  
anunfairanddeceptivebusinesspractice. IRisnotresponsibleorliableforsuchaltereddocumentation. Informationofthirdparties  
may be subject to additional restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service  
voidsallexpressandanyimpliedwarrantiesfortheassociatedIRproductorserviceandisanunfairanddeceptivebusinesspractice.  
IR is not responsible or liable for any such statements.  
IRproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody,  
orinotherapplicationsintendedtosupportorsustainlife,orinanyotherapplicationinwhichthefailureoftheIRproductcouldcreate  
a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly  
or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges  
that IR was negligent regarding the design or manufacture of the product.  
IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products  
are specifically designated by IR as military-grade or “enhanced plastic.” Only products designated by IR as military-grade meet  
military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-  
grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products  
aredesignatedbyIRascompliantwithISO/TS16949requirementsandbearapartnumberincludingthedesignationAU”. Buyers  
acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any  
failure to meet such requirements  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
233 Kansas St., El Segundo, California 90245  
Tel: (310) 252-7105  
12  
www.irf.com  

相关型号:

AUIRF3315S

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRF3315STRL

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRF3315STRR

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRF3415

ADVANCED PLANAR TECHNOLOGY, LOW ON-RESISTANCE
INFINEON

AUIRF3504

Power Field-Effect Transistor, 87A I(D), 40V, 0.0092ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, TO-220AB, ROHS COMPLIANT, PLASTIC PACKAGE-3
INFINEON

AUIRF3710Z

HEXFET® Power MOSFET
INFINEON

AUIRF3710ZS

HEXFET® Power MOSFET
INFINEON

AUIRF3710ZSTRL

HEXFET® Power MOSFET
INFINEON

AUIRF3710ZSTRR

HEXFET® Power MOSFET
INFINEON

AUIRF3805

HEXFET? Power MOSFET
INFINEON

AUIRF3805L

HEXFET? Power MOSFET
INFINEON

AUIRF3805L-7P

HEXFET® Power MOSFET
INFINEON