IDT72V3612L20PF [IDT]

3.3 VOLT CMOS SyncBiFIFO-TM 64 x 36 x 2; 3.3伏的CMOS SyncBiFIFO -TM 64 ×36× 2
IDT72V3612L20PF
型号: IDT72V3612L20PF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

3.3 VOLT CMOS SyncBiFIFO-TM 64 x 36 x 2
3.3伏的CMOS SyncBiFIFO -TM 64 ×36× 2

存储 内存集成电路 先进先出芯片 时钟
文件: 总25页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3 VOLT CMOS SyncBiFIFOTM  
64 x 36 x 2  
IDT72V3612  
Passive parity checking on each port  
FEATURES:  
Parity generation can be selected for each port  
Available in 132-pin plastic quad flat package (PQF), or space  
saving 120-pin thin quad flat package (TQFP)  
Pin and functionally compatible version of the 5V operating  
IDT723612  
Two independent clocked FIFOs (64 x 36 storage capacity each)  
buffering data in opposite directions  
Supports clock frequencies up to 83 MHz  
Fast access times of 8ns  
Free-running CLKA and CLKB can be asynchronous or  
coincident (simultaneous reading and writing of data on a  
single clock edge is permitted)  
Mailbox bypass Register for each FIFO  
Programmable Almost-Full and Almost-Empty Flags  
Microprocessor interface control logic  
Industrial temperature range (–40°C +85°C) is available  
DESCRIPTION:  
The IDT72V3612 is a pin and functionally compatible version of the  
IDT723612, designed to run off a 3.3V supply for exceptionally low-power  
consumption. This device is a monolithichigh-speed, low-powerCMOSbi-  
directionalclockedFIFOmemory. Itsupportsclockfrequenciesupto83MHz  
EFA , FFA , AEA , and AFA flags synchronized by CLKA  
EFB , FFB , AEB , and AFB flags synchronized by CLKB  
FUNCTIONAL BLOCK DIAGRAM  
CLKA  
CSA  
W/RA  
ENA  
Port-A  
Control  
Logic  
MBF1  
PEFB  
MBA  
Parity  
Gen/Check  
Mail 1  
Register  
PGB  
RAM  
ARRAY  
64 x 36  
36  
RST  
Device  
Control  
ODD/  
EVEN  
Read  
Pointer  
Write  
Pointer  
EFB  
AEB  
Status Flag  
Logic  
FFA  
AFA  
FIFO1  
36  
FS0  
FS1  
Programmable Flag  
Offset Register  
B0 - B36  
A
0
- A35  
FIFO2  
FFB  
AFB  
EFA  
AEA  
Status Flag  
Logic  
Write  
Pointer  
Read  
Pointer  
36  
RAM  
ARRAY  
64 x 36  
PGA  
Mail 2  
Register  
Parity  
Gen/Check  
PEFA  
MBF2  
CLKB  
Port-B  
Control  
Logic  
CSB  
W/RB  
ENB  
MBB  
4659 drw 01  
IDTandtheIDTlogoareregisteredtrademarksofIntegratedDeviceTechnology,Inc.SyncBiFIFOisatrademarkofIntegratedDeviceTechnology,Inc.  
COMMERCIAL TEMPERATURE RANGE  
MAY 2003  
1
2003 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-4659/1  
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
andhasreadaccesstimesasfastas8ns. TheFIFOoperatesinIDTStandard each port are independent of one another and can be asynchronous or  
mode. Two independent 64 x 36 dual-port SRAM FIFOs on board the chip coincident. The enables for each port are arranged to provide a simple bi-  
bufferdatainoppositedirections. EachFIFOhasflagstoindicateemptyand directional interface between microprocessors and/or buses with synchro-  
fullconditionsandtwoprogrammableflags(Almost-FullandAlmost-Empty)to nous control.  
indicatewhenaselectednumberofwordsisstoredinmemory. Communication  
The Full Flag (FFA, FFB) and Almost-Full (AFA, AFB) flag of a FIFO  
betweeneachportcanbypasstheFIFOsviatwo36-bitmailboxregisters. Each are two-stage synchronizedtothe portclockthatwrites data toits array.  
mailboxregisterhasaflagtosignalwhennewmailhasbeenstored. Parityis The Empty Flag (EFA, EFB) and Almost-Empty (AEA, AEB) flag of a  
checked passively on each port and may be ignored if not desired. Parity FIFO are two stage synchronized to the port clock that reads data from  
generationcanbeselectedfordatareadfromeachport. Twoormoredevices its array.  
can be used in parallel to create wider data paths.  
The IDT72V3612 is characterized for operation from 0  
°C to 70°C.  
This device is a clocked FIFO, which means each port employs a Industrialtemperaturerange(–40  
°
Cto+85 C)isavailablebyspecialorder.  
°
synchronous interface. All data transfers through a port are gated to the This device is fabricated using IDT's high speed, submicron CMOS  
LOW-to-HIGH transition of a port clock by enable signals. The clocks for technology.  
PIN CONFIGURATIONS  
GND  
AEA  
EFA  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
GND  
AEB  
EFB  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
A0  
B0  
*
A
1
B
1
A
2
B
2
GND  
GND  
A
3
B
3
A
4
B
4
A
5
B
5
A
6
CC  
B
6
V
VCC  
A
7
B
7
A
8
B
8
A
9
B
9
GND  
GND  
A
10  
11  
B
B
V
B
B
B
10  
11  
CC  
12  
13  
14  
A
V
CC  
98  
A
12  
13  
14  
97  
A
96  
A
GND  
95  
GND  
94  
A
A
A
A
A
A
15  
16  
17  
18  
19  
20  
B
B
B
B
B
B
15  
16  
17  
18  
19  
20  
93  
92  
91  
90  
89  
88  
GND  
GND  
87  
A21  
A22  
A23  
B21  
B22  
B23  
86  
85  
84  
4659 drw 02  
*
Electricalpin1incenterofbevelededge.Pin1identifierincorner.  
NOTES:  
1. NC - No internal connection  
2. Uses Yamaichi socket IC51-1324-828  
PQFP(2) (PQ132-1, order code: PQF)  
TOP VIEW  
2
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
PINCONFIGURATIONS(CONTINUED)  
A23  
A22  
A21  
GND  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
GND  
A9  
B22  
90  
1
B21  
89  
2
GND  
88  
3
B20  
87  
4
B19  
86  
5
B18  
85  
6
B17  
84  
7
B16  
83  
8
B15  
82  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
B14  
81  
B13  
B12  
B11  
B10  
GND  
B9  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
B8  
A8  
B7  
A7  
VCC  
B6  
VCC  
A6  
B5  
A5  
B4  
A4  
B3  
A3  
GND  
B2  
GND  
A2  
B1  
B0  
A1  
A0  
EFB  
AEB  
AFB  
EFA  
AEA  
4659 drw 03  
NOTE:  
1. NC - No internal connection  
TQFP (PN120-1, order code: PF)  
TOP VIEW  
3
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
PIN DESCRIPTION  
Symbol  
A0-A35  
AEA  
Name  
PortAData  
I/O  
I/O  
O
Description  
36-bitbidirectionaldataportforsideA.  
PortAAlmost-Empty  
Flag  
ProgrammableAlmost-EmptyflagsynchronizedtoCLKA. ItisLOWwhenthenumberofwordsin  
(Port A) the FIFO2is less thanorequaltothe value inthe offsetregister, X.  
ProgrammableAlmost-EmptyflagsynchronizedtoCLKB. ItisLOWwhenthenumberofwordsin  
(PortB) FIFO1 is less than or equal to the value in the offset register, X.  
Programmable Almost-Full flag synchronized to CLKA. It is LOW when the number of empty  
(Port A) locations in FIFO1 is less than or equal to the value in the offset register, X.  
Programmable Almost-Full flag synchronized to CLKB. It is LOW when the number of empty  
(Port B) locations in FIFO2 is less than or equal to the value in the offset register, X.  
AEB  
AFA  
AFB  
PortBAlmost-Empty  
Flag  
O
Port A Almost-Full  
Flag  
O
Port B Almost-Full  
Flag  
O
B0-B35  
CLKA  
Port B Data.  
Port A Clock  
I/O  
I
36-bit bidirectional data port for side B.  
CLKA is a continuous clock that synchronizes all data transfers through port A and can be  
asynchronous or coincident to CLKB. EFA, FFA, AFA, and AEA are synchronized to the LOW-to-  
HIGH transition of CLKA.  
CLKB  
Port B Clock  
I
CLKB is a continuous clock that synchronizes all data transfers through port B and can be  
asynchronous or coincident to CLKA. EFB, FFB, AFB, and AEB are synchronized to the LOW-to-  
HIGH transition of CLKB.  
CSA  
CSB  
EFA  
Port A Chip Select  
Port B Chip Select  
Port A Empty Flag  
I
I
CSA must be LOW to enable a LOW-to-HIGH transition of CLKA to read or write data on port A.  
The A0-A35 outputs are in the high-impedance state when CSA is HIGH.  
CSB must be LOW to enable a LOW-to-HIGH transition of CLKB to read or write data on port B.  
The B0-B35 outputs are in the high-impedance state when CSB is HIGH.  
O
EFA is synchronized to the LOW-to-HIGH transition of CLKA. When EFA is LOW, FIFO2 is empty,  
(Port A) and reads from its memory are disabled. Data can be read from FIFO2 to the output register  
when EFA is HIGH. EFA is forced LOW when the device is reset and is set HIGH by the second  
LOW-to-HIGH transition of CLKA after data is loaded into empty FIFO2 memory.  
EFB  
Port B Empty Flag  
O
EFB is synchronized to the LOW-to-HIGH transition of CLKB. When EFB is LOW, the FIFO1 is  
(Port B) empty, and reads from its memory are disabled. Data can be read from FIFO1 to the output  
register when EFB is HIGH. EFB is forced LOW when the device is reset and is set HIGH by the  
second LOW-to-HIGH transition of CLKB after data is loaded into empty FIFO1 memory.  
ENA  
ENB  
FFA  
Port A Enable  
Port B Enable  
Port A Full Flag  
I
I
ENA must be HIGH to enable a LOW-to-HIGH transition of CLKA to read or write data on port A.  
ENB must be HIGH to enable a LOW-to-HIGH transition of CLKB to read or write data on port B.  
FFA is synchronized to the LOW-to-HIGH transition of CLKA. When FFA is LOW, FIFO1 is full,  
O
(Port A) and writes to its memory are disabled. FFA is forced LOW when the device is reset and is set  
HIGH by the second LOW-to-HIGH transition of CLKA after reset.  
FFB  
Port B Full Flag  
O
FFB is synchronized to the LOW-to-HIGH transition of CLKB. When FFB is LOW, FIFO2 is full,  
(Port B) and writes to its memory are disabled. FFB is forced LOW when the device is reset and is set  
HIGH by the second LOW-to-HIGH transition of CLKB after reset.  
FS1, FS0 Flag Offset Selects  
I
I
The LOW-to-HIGH transition of RST latches the values of FS0 and FS1, which selects one of four  
preset values for the Almost-Full flag and Almost-Empty flag.  
MBA  
MBB  
MBF1  
Port A Mailbox  
Select  
A HIGH level on MBA chooses a mailbox register for a port A read or write operation. When the  
A0-A35 outputs are active, a HIGH level on MBA selects data from the mail2 register for output,  
and a LOW level selects FIFO2 output register data for output.  
Port B Mailbox  
Select  
I
A HIGH level on MBB chooses a mailbox register for a port B read or write operation. When the  
B0-B35 outputs are active, a HIGH level on MBB selects data from the mail1 register for output,  
and a LOW level selects FIFO1 output register data for output.  
Mail1 Register Flag  
O
MBF1 is set LOW by a LOW-to-HIGH transition of CLKA that writes data to the mail1 register.  
Writes to the mail1 register are inhibited while MBF1 is set LOW. MBF1 is set HIGH by a LOW-to-  
HIGH transition of CLKB when a port B read is selected and MBB is HIGH. MBF1 is set HIGH  
when the device is reset.  
4
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
PINDESCRIPTION(CONTINUED)  
Symbol  
Name  
I/O  
Description  
MBF2  
Mail2 Register Flag  
O
MBF2 is set LOW by a LOW-to-HIGH transition of CLKB that writes data to the mail2 register.  
Writes to the mail2 register are inhibited while MBF2 is set LOW. MBF2 is set HIGH by a LOW-to-  
HIGH transition of CLKA when a port A read is selected and MBA is HIGH. MBF2 is set HIGH  
when the device is reset.  
ODD/  
EVEN  
Odd/Even Parity  
Select  
I
Odd parity is checked on each port when ODD/EVEN is HIGH, and even parity is checked when  
ODD/EVEN is LOW. ODD/EVEN also selects the type of parity generated for each port if parity  
generation is enabled for a read operation.  
PEFA  
Port A Parity Error  
Flag  
O
When any byte applied to terminals A0-A35 fails parity, PEFA is LOW. Bytes are organized as  
(Port A) A0-A8, A9-A17, A18-A26, and A27-A35, with the most significant bit of each byte serving as the  
parity bit. The type of parity checked is determined by the state of the ODD/EVEN input. The  
parity trees used to check the A0-A35 inputs are shared by the mail2 register to generate parity if  
parity generation is selected by PGA. Therefore, if a mail2 read with parity generation is setup by  
having W/RA LOW, MBA HIGH, and PGA HIGH, the PEFA flag is forced HIGH regardless of the  
A0-A35 inputs.  
PEFB  
Port B Parity Error  
Flag  
O
When any byte applied to terminals B0-B35 fails parity, PEFB is LOW. Bytes are organized as  
(Port B) B0-B8, B9-B17, B18-B26, B27-B35 with the most significant bit of each byte serving as the parity  
bit. The type of parity checked is determined by the state of the ODD/EVEN input. The parity trees  
used to check the B0-B35 inputs are shared by the mail1 register to generate parity if parity  
generation is selected by PGB. Therefore, if a mail1 read with parity generation is setup by having  
W/RB LOW, MBB HIGH, and PGB HIGH, the PEFB flag is forced HIGH regardless of the state of  
the B0-B35 inputs.  
PGA  
PGB  
RST  
Port A Parity  
Generation  
I
I
I
Parity is generated for data reads from port A when PGA is HIGH. The type of parity generated is  
selected by the state of the ODD/EVEN input. Bytes are organized as A0-A8, A9-A17, A18-A26,  
and A27-A35. The generated parity bits are output in the most significant bit of each byte.  
Port B Parity  
Generation  
Parity is generated for data reads from port B when PGB is HIGH. The type of parity generated is  
selected by the state of the ODD/EVEN input. Bytes are organized as B0-B8, B9-B17, B18-B26,  
and B27-B35. The generated parity bits are output in the most significant bit of each byte.  
Reset  
To reset the device, four LOW-to-HIGH transitions of CLKA and four LOW-to-HIGH transitions of  
CLKB must occur while RST is LOW. This sets the AFA, AFB, MBF1, and MBF2 flags HIGH and  
the EFA, EFB, AEA, AEB, FFA, and FFB flags LOW. The LOW-to-HIGH transition of RST latches  
the status of the FS1 and FS0 inputs to select Almost-Full and Almost-Empty flag offset.  
W/RA  
W/RB  
Port A Write/Read  
Select  
I
I
A HIGH selects a write operation and a LOW selects a read operation on port A for a LOW-to-  
HIGH transition of CLKA. The A0-A35 outputs are in the high-impedance state when W/RA is  
HIGH.  
Port B Write/Read  
Select  
A HIGH selects a write operation and a LOW selects a read operation on port B for a LOW-to-  
HIGH transition of CLKB. The B0-B35 outputs are in the high-impedance state when W/RB is  
HIGH.  
5
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR  
TEMPERATURE RANGE (Unless otherwise noted)(2)  
Symbol  
Rating  
Commercial  
–0.5 to +4.6  
–0.5 to VCC+0.5  
–0.5 to VCC+0.5  
±20  
Unit  
V
VCC  
Supply Voltage Range  
Input Voltage Range  
Output Voltage Range  
(2)  
VI  
V
(2)  
VO  
V
IIK  
Input Clamp Current, (VI < 0 or VI > VCC)  
Output Clamp Current, (VO < 0 or VO > VCC)  
Continuous Output Current, (VO = 0 to VCC)  
Continuous Current Through VCC or GND  
Storage Temperature Range  
mA  
mA  
mA  
mA  
IOK  
±50  
IOUT  
ICC  
±50  
±500  
TSTG  
–65 to 150  
°C  
NOTES:  
1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at  
these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended  
periods may affect device reliability.  
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.  
RECOMMENDED OPERATING  
CONDITIONS  
Symbol  
Parameter  
SupplyVoltage  
Min. Typ.  
Max.  
3.6  
Unit  
V
(1)  
VCC  
3.0 3.3  
VIH  
VIL  
IOH  
IOL  
TA  
HIGH Level Input Voltage  
LOW-LevelInputVoltage  
HIGH-LevelOutputCurrent  
LOW-LevelOutputCurrent  
2
VCC+0.5  
0.8  
V
0
V
–4  
mA  
mA  
8
OperatingFree-air  
Temperature  
70  
°C  
NOTE:  
1. For 12ns (83MHz operation), Vcc=3.3V +/-0.15V, JEDEC JESD8-A compliant  
ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-  
AIR TEMPERATURE RANGE (Unless otherwise noted)  
IDT72V3612  
Commercial  
tCLK = 12, 15, 20 ns  
Symbol  
VOH  
VOL  
Parameter  
OutputLogic"1"Voltage  
Test Conditions  
IOH = –4 mA  
IOL = 8 mA  
Min. Typ.(1) Max. Unit  
VCC = 3.0V,  
VCC = 3.0V,  
VCC = 3.6V,  
VCC = 3.6V,  
VCC = 3.6V,  
VI = 0,  
2.4  
4
0.5  
±5  
V
V
OutputLogic"0"Voltage  
Input Leakage Current (Any Input)  
OutputLeakageCurrent  
StandbyCurrent  
ILI  
VI = VCC or 0  
VO = VCC or 0  
µA  
µA  
µA  
pF  
pF  
ILO  
ICC(2)  
±5  
VI = VCC - 0.2V or 0  
500  
CIN  
InputCapacitance  
f = 1 MHz  
f = 1 MHZ  
COUT  
OutputCapacitance  
VO = 0,  
8
NOTES:  
1. All typical values are at VCC = 3.3V, TA = 25  
2. For additional ICC information, see Figure 1, Typical Characteristics: Supply Current (ICC) vs. Clock Frequency (fS).  
°
C.  
6
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
DETERMINING ACTIVE CURRENT CONSUMPTION AND POWER DISSIPATION  
The ICC(f) current for the graph in Figure 1 was taken while simultaneously reading and writing the FIFO on the IDT72V3612 with CLKA and CLKB set to  
S. All data inputs and data outputs change state during each clock cycle to consume the highest supply current. Data outputs were disconnected to normalize  
f
the graph to a zero-capacitance load. Once the capacitance load per data-output channel is known, the power dissipation can be calculated with the equation  
below.  
CALCULATING POWER DISSIPATION  
With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of the IDT72V3612 may be calculated by:  
PT = VCC x ICC(f) + Σ(CL x (VOH - VOL)2 x fO)  
N
where:  
N
=
=
=
=
=
number of outputs = 36  
CL  
fo  
output capacitance load  
switching frequency of an output  
output HIGH level voltage  
output LOW level voltage  
VOH  
VOL  
Whennoreadsorwritesareoccurringonthisdevice,thepowerdissipatedbyasingleclock(CLKAorCLKB)inputrunningatfrequencyfS iscalculated  
PT = VCC x fS x 0.025 mA/MHz  
by:  
175  
150  
fdata = 1/2 fS  
T
A
= 25°C  
125  
100  
75  
C
L
= 0 pF  
VCC = 3.6V  
VCC = 3.3V  
VCC = 3.0V  
50  
25  
0
0
10  
40  
50  
60  
70  
20  
30  
80  
90  
4663 drw 04  
fS  
Clock Frequency MHz  
Figure 1. Typical Characteristics: Supply Current (ICC) vs. Clock Frequency (fS)  
7
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
DC ELECTRICAL CHARACTERISTICS OVER RECOMMENDED RANGES OF  
SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE  
Commercial: Vcc=3.3V± 0.30V; for 12ns (83MHz) operation, Vcc=3.3V ±0.15V; TA = 0° C to +70°C; JEDEC JESD8-A compliant  
IDT72V3612L12 IDT72V3612L15 IDT72V3612L20  
Symbol  
fS  
Parameter  
Clock Frequency, CLKA or CLKB  
Clock Cycle Time, CLKA or CLKB  
Pulse Duration, CLKA and CLKB HIGH  
PulseDuration, CLKAandCLKBLOW  
Min.  
Max.  
83  
Min.  
Max.  
66.7  
Min.  
Max.  
50  
Unit  
MHz  
ns  
tCLK  
tCLKH  
tCLKL  
tDS  
12  
5
15  
6
20  
8
ns  
5
6
8
ns  
SetupTime, A0-A35before CLKAandB0-B35before  
CLKB↑  
4
4
5
ns  
tENS1  
SetupTime,CSA,W/RAbeforeCLKA;CSB,W/RB  
beforeCLKB↑  
3.5  
6
6
ns  
tENS2  
tENS3  
tPGS  
SetupTime,ENA,beforeCLKA;ENBbeforeCLKB↑  
SetupTime,MBAbeforeCLKA:MBBbeforeCLKB↑  
SetupTime,ODD/EVENandPGAbeforeCLKA;  
3.5  
3.5  
3
4
4
4
5
5
5
ns  
ns  
ns  
(1)  
ODD/EVENandPGBbeforeCLKB↑  
tRSTS  
tFSS  
SetupTime, RST LOWbefore CLKAorCLKB(2)  
4
4
5
5
1
1
6
6
1
1
ns  
ns  
ns  
ns  
Setup Time, FS0/FS1 before RST HIGH  
tDH  
HoldTime,A0-A35afterCLKAandB0-B35afterCLKB↑  
0.5  
0.5  
tENH1  
HoldTime,CSAW/RAafterCLKA;CSB,W/RBafter  
CLKB↑  
tENH2  
tENH3  
tPGH  
HoldTime,ENA,afterCLKA;ENBafterCLKB↑  
HoldTime,MBAafterCLKA;MBBafterCLKB↑  
HoldTime,ODD/EVENandPGAafterCLKA;  
1
1
0
1
1
1
1
1
1
ns  
ns  
ns  
(1)  
ODD/EVENandPGBafterCLKB↑  
(2)  
tRSTH  
tFSH  
tSKEW1(3)  
HoldTime, RST LOWafterCLKAorCLKB↑  
4
4
5
4
8
6
4
8
ns  
ns  
ns  
Hold Time, FS0 and FS1 after RST HIGH  
SkewTime, betweenCLKAandCLKBforEFA, EFB,  
FFA, and FFB  
5.5  
tSKEW2(3,4)  
SkewTime,betweenCLKAandCLKBforAEA, AEB,  
AFA, and AFB  
14  
14  
16  
ns  
NOTES:  
1. Only applies for a clock edge that does a FIFO read.  
2. Requirement to count the clock edge as one of at least four needed to reset a FIFO.  
3. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.  
4. Design simulated, not tested.  
8
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF  
SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL = 30pF  
Commercial: Vcc=3.3V± 0.30V; for 12ns (83MHz) operation, Vcc=3.3V ±0.15V; TA = 0°C to +70°C; JEDEC JESD8-A compliant  
IDT72V3612L12 IDT72V3612L15 IDT72V3612L20  
Symbol  
tA  
Parameter  
Min.  
1
Max.  
Min.  
2
Max.  
10  
10  
10  
10  
10  
9
Min.  
2
Max.  
12  
Unit  
ns  
Access Time, CLKAtoA0-A35andCLKBtoB0-B35  
Propagation Delay Time, CLKAto FFA and CLKBto FFB  
Propagation Delay Time, CLKAto EFA and CLKBto EFB  
Propagation Delay Time, CLKAto AEA and CLKBtoAEB  
Propagation Delay Time, CLKAto AFA and CLKBto AFB  
8
8
8
8
8
8
tWFF  
tREF  
tPAE  
tPAF  
tPMF  
1
2
2
12  
ns  
1
2
2
12  
ns  
1
2
2
12  
ns  
1
2
2
12  
ns  
Propagation Delay Time, CLKAto MBF1 LOW orMBF2  
HIGH and CLKBto MBF2 LOW or MBF1 HIGH  
1
1
1
12  
ns  
tPMR  
tMDV  
tPDPE  
tPOPE  
Propagation Delay Time, CLKAto B0-B35(1) and CLKB↑  
2
1
2
8
8
8
2
1
2
10  
10  
10  
2
1
2
12  
11.5  
11  
ns  
ns  
ns  
toA0-A35(2)  
Propagation Delay Time, MBA to A0-A35 valid and MBB to  
B0-B35 valid  
Propagation Delay Time, A0-A35 valid to PEFA valid; B0-B35  
valid to PEFB valid  
Propagation Delay Time, ODD/EVEN to PEFA and PEFB  
2
2
8
8
2
2
10  
10  
2
2
12  
12  
ns  
ns  
(3)  
tPOPB  
PropagationDelayTime, ODD/EVEN toparitybits (A8, A17,  
A26, A35) and (B8, B17, B26, B35)  
tPEPE  
Propagation Delay Time, W/RA, CSA, ENA, MBA or PGA to  
PEFA; W/RB, CSB, ENB. MBB, PGB toPEFB  
1
2
8
8
1
2
10  
10  
1
2
12  
12  
ns  
ns  
(3)  
tPEPB  
Propagation Delay Time, W/RA, CSA, ENA, MBA or PGA to  
parity bits (A8, A17, A26, A35); W/RB, CSB, ENB. MBB or PGB  
to parity bits (B8, B17, B26, B35)  
tRSF  
tEN  
tDIS  
Propagation Delay Time, RST to (AEA, AEB) LOW and  
(AFA, AFB, MBF1, MBF2) HIGH  
1
2
1
10  
6
1
2
1
15  
10  
8
1
2
1
20  
12  
9
ns  
ns  
ns  
Enable Time, CSA andW/RALOWtoA0-A35active and  
CSB LOW and W/RB HIGH to B0-B35 active  
Disable Time, CSA or W/RA HIGH to A0-A35 at high-  
impedance andCSB HIGHorW/RBLOWtoB0-B35at  
highimpedance  
6
NOTES:  
1. Writing data to the mail1 register when the B0-B35 outputs are active and MBB is HIGH.  
2. Writing data to the mail2 register when the A0-A35 outputs are active and MBA is HIGH.  
3. Only applies when reading data from a mail register.  
9
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
Table 1.FortherelevantResetandpresetvalueloadingtimingdiagram,see  
Figure 2.  
SIGNALDESCRIPTIONS  
RESET  
FIFO WRITE/READ OPERATION  
The IDT72V3612 is reset by taking the Reset (RST) input LOW for at  
least four port A Clock (CLKA) and four port B Clock (CLKB) LOW-to-HIGH  
transitions. The Reset input can switch asynchronously to the clocks. A  
device resetinitializes the internalreadandwrite pointers ofeachFIFOand  
forces the Full Flags (FFA, FFB) LOW, the Empty Flags (EFA, EFB) LOW,  
the Almost-Empty flags (AEA, AEB) LOW and the Almost-Full flags (AFA,  
AFB) HIGH. A reset also forces the Mailbox Flags (MBF1, MBF2) HIGH.  
After a reset, FFA is set HIGH after two LOW-to-HIGH transitions of CLKA  
and FFB is set HIGH after two LOW-to-HIGH transitions of CLKB. The  
device must be reset after power up before data is written to its memory.  
A LOW-to-HIGH transition on the RST input loads the Almost-Full and  
Almost-Emptyregisters(X)withthevaluesselectedbytheFlagSelect(FS0,  
FS1) inputs. The values that can be loaded into the registers are shown in  
The state of port A data A0-A35 outputs is controlled by the port A Chip  
Select(CSA)andtheportAWrite/Readselect(W/RA). TheA0-A35outputs  
areinthehigh-impedancestatewheneitherCSAorW/RAis HIGH.TheA0-  
A35 outputs are active when both CSA and W/RA are LOW.  
Data is loaded into FIFO1 from the A0-A35 inputs on a LOW-to-HIGH  
transition of CLKA when CSA is LOW, W/RA is HIGH, ENA is HIGH, MBA  
is LOW, and FFA is HIGH. Data is read from FIFO2 to the A0-A35 outputs  
by a LOW-to-HIGH transition of CLKA when CSA is LOW, W/RA is LOW,  
ENAis HIGH,MBAis LOW,andEFA is HIGH(seeTable2). RelevantWrite  
and Read timing diagrams for Port A can be found in Figure 3 and Figure  
6.  
The port B control signals are identical to those of port A. The state of  
the port B data (B0-B35) outputs is controlled by the port B Chip Select  
(CSB) and the port B Write/Read select (W/RB). The B0-B35 outputs are  
in the high-impedance state when either CSB or W/RB is HIGH. The B0-  
B35 outputs are active when both CSB and W/RB are LOW.  
Data is loaded into FIFO2 from the B0-B35 inputs on a LOW-to-HIGH  
transition of CLKB when CSB is LOW, W/RB is HIGH, ENB is HIGH, MBB  
is LOW, and FFB is HIGH. Data is read from FIFO1 to the B0-B35 outputs  
byaLOW-to-HIGHtransitionofCLKBwhenCSBisLOW,W/RBisLOW,ENB  
is HIGH, MBB is LOW, and EFB is HIGH (see Table 3). Relevant Write and  
Read timing diagrams for Port B can be found in Figure 4 and Figure 5.  
ThesetupandholdtimeconstraintstotheportclocksfortheportChipSelects  
(CSA,CSB)andWrite/Readselects(W/RA,W/RB)areonlyforenablingwrite  
TABLE 1 – FLAG PROGRAMMING  
ALMOST-FULL AND  
ALMOST-EMPTY FLAG  
OFFSET REGISTER (X)  
FS1  
FS0  
RST  
H
H
L
L
H
L
H
L
16  
12  
8
4
TABLE 2 – PORT-A ENABLE FUNCTION TABLE  
CSA  
H
L
W/RA  
X
ENA  
X
MBA  
X
CLKA  
X
Data A (A0-A35) I/O  
Input  
Port Functions  
None  
None  
H
L
X
X
Input  
L
H
H
L
Input  
FIFO1 Write  
Mail1 Write  
L
H
H
H
Input  
L
L
L
L
X
Output  
None  
L
L
H
L
Output  
FIFO2 Read  
None  
L
L
L
H
X
Output  
L
L
H
H
Output  
Mail2 Read (Set MBF2 HIGH)  
TABLE 3 – PORT-B ENABLE FUNCTION TABLE  
CSB  
H
L
W/RB  
X
ENB  
X
MBB  
X
CLKB  
X
Data B (B0-B35) I/O  
Input  
Port Functions  
None  
None  
H
L
X
X
Input  
L
H
H
L
Input  
FIFO2 Write  
Mail2 Write  
None  
L
H
H
H
Input  
L
L
L
L
X
Output  
L
L
H
L
Output  
FIFO1 read  
None  
L
L
L
H
X
Output  
L
L
H
H
Output  
Mail1 Read (Set MBF1 HIGH)  
10  
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
FromthetimeawordisreadfromaFIFO,thepreviousmemorylocationisready  
tobewritteninaminimumofthreecyclesoftheFullFlagsynchronizingclock.  
Therefore,aFullFlagisLOWiflessthantwocyclesoftheFullFlagsynchronizing  
clockhaveelapsedsincethenextmemorywritelocationhasbeenread. The  
secondLOW-to-HIGHtransitionontheFullFlagsynchronizationclockafterthe  
readsetstheFullFlagHIGHandthedatacanbewritteninthefollowingclock  
cycle.  
ALOW-to-HIGHtransitionona FullFlagsynchronizingclockbegins the  
first synchronization cycle of a read if the clock transition occurs at time  
tSKEW1 orgreateraftertheread. Otherwise,thesubsequentclockcyclecan  
be the first synchronization cycle (see Figure 9 and Figure 10).  
andreadoperationsandarenotrelatedtohigh-impedancecontrolofthedata  
outputs. IfaportenableisLOWduringaclockcycle,theportchipselectand  
write/readselectmaychangestatesduringthesetupandholdtimewindowof  
thecycle.  
SYNCHRONIZED FIFO FLAGS  
Each FIFO is synchronized to its port clock through two flip-flop stages.  
This is done to improve flag reliability by reducing the probability of  
metastable events on the output when CLKA and CLKB operate asynchro-  
nously to one another. EFA, AEA, FFA, and AFA are synchronized by  
CLKA. EFB, AEB, FFB, andAFB are synchronized to CLKB. Tables 4 and  
5 show the relationship of each port flag to FIFO1 and FIFO2.  
ALMOST EMPTY FLAGS (AEA, AEB)  
The Almost-Empty flag of a FIFO is synchronized to the port clock that  
reads datafromits array. Thestatemachinethatcontrols anAlmost-Empty  
flag monitors a write-pointer comparator that indicates when the FIFO  
memorystatus is almost-empty, almost-empty+1, oralmost-empty+2. The  
almost-empty state is defined by the value of the Almost-Full and Almost-  
Empty Offset register (X). This register is loaded with one of four preset  
values during a device reset (see Reset section). An Almost-Empty flag is  
LOWwhenthe FIFOcontains Xorless words inmemoryandis HIGHwhen  
the FIFO contains (X+1) or more words.  
Two LOW-to-HIGH transitions of the Almost-Empty flag synchroniz-  
ingclocks arerequiredafteraFIFOwritefortheAlmost-Emptyflagtoreflect  
the new level of fill. Therefore, the Almost-Empty flag of a FIFO containing  
(X+1) or more words remains LOW if two cycles of the synchronizing clock  
have not elapsed since the write that filled the memory to the (X+1) level.  
An Almost-Empty flag is set HIGH by the second LOW-to-HIGH transition  
ofthe synchronizingclockafterthe FIFOwrite thatfills memorytothe (X+1)  
level. A LOW-to-HIGH transition of an Almost-Empty flag synchronizing  
clock begins the first synchronization cycle if it occurs at time tSKEW2 or  
greater after the write that fills the FIFO to (X+1) words. Otherwise, the  
subsequentsynchronizingclockcyclecanbethefirstsynchronizationcycle  
(see Figure 11 and 12).  
EMPTY FLAGS (EFA, EFB)  
The Empty Flag of a FIFO is synchronized to the port clock that reads  
data from its array. When the Empty Flag is HIGH, new data can be read  
totheFIFOoutputregister. WhentheEmptyFlagisLOW,theFIFOisempty  
and attempted FIFO reads are ignored.  
The read pointer of a FIFO is incremented each time a new word is  
clocked to the output register. The state machine that controls an Empty  
Flag monitors a write-pointer and read-pointer comparator that indicates  
when the FIFO memory status is empty, empty+1, or empty+2. A word  
written to a FIFO can be read to the FIFO output register in a minimum of  
three cycles of the Empty Flag synchronizing clock. Therefore, an Empty  
FlagisLOWifawordinmemoryisthenextdatatobesenttotheFIFOoutput  
register and two cycles of the port clock that reads data from the FIFO have  
notelapsedsincethetimethewordwaswritten. TheEmptyFlagoftheFIFO  
is set HIGH by the second LOW-to-HIGH transition of the synchronizing  
clock, and the new data word can be read to the FIFO output register in the  
following cycle.  
ALOW-to-HIGHtransitiononanEmptyFlagsynchronizingclockbegins  
the first synchronization cycle of a write if the clock transition occurs at time  
tSKEW1orgreaterafterthewrite. Otherwise,thesubsequentclockcyclecan  
be the first synchronization cycle (see Figure 7 and Figure 8).  
ALMOST FULL FLAGS (AFA, AFB)  
FULL FLAG (FFA, FFB)  
The Almost-Full flag of a FIFO is synchronized to the port clock that  
writes data to its array. The state machine that controls an Almost-Full flag  
monitorsawrite-pointerandread-pointercomparatorthatindicateswhenthe  
FIFOmemorystatusisalmost-full,almost-full-1,oralmost-full-2. Thealmost-full  
stateisdefinedbythevalueoftheAlmost-FullandAlmost-EmptyOffsetregister  
(X). Thisregisterisloadedwithoneoffourpresetvaluesduringadevicereset  
(seeResetsection). AnAlmost-FullflagisLOWwhentheFIFOcontains(64-  
The Full Flag of a FIFO is synchronized to the port clock that writes data  
to its array. When the Full Flag is HIGH, a memory location is free in the  
FIFOtoreceive newdata. Nomemorylocations are free whenthe FullFlag  
isLOWandattemptedwritestotheFIFOareignored.  
EachtimeawordiswrittentoaFIFO,thewritepointerisincremented. The  
statemachinethatcontrolsaFullFlagmonitorsawrite-pointerandreadpointer  
comparatorthatindicateswhentheFIFOmemorystatusisfull,full-1,orfull-2.  
TABLE 4 – FIFO1 FLAG OPERATION  
TABLE 5 – FIFO2 FLAG OPERATION  
Synchronized  
to CLKB  
Synchronized  
to CLKA  
Synchronized  
to CLKB  
Synchronized  
to CLKA  
Number of Words  
in the FIFO1(1)  
0
Number of Words  
in the FIFO2(1)  
0
EFB  
L
AEB  
L
AFA  
H
FFA  
H
EFA  
L
AEA  
L
AFB  
H
FFB  
H
1 to X  
H
L
H
H
1 to X  
H
L
H
H
(X+1) to [64-(X+1)]  
(64-X) to 63  
64  
H
H
H
H
(X+1) to [64-(X+1)]  
(64-X) to 63  
64  
H
H
H
H
H
H
L
H
H
H
L
H
H
H
L
L
H
H
L
L
NOTE:  
1. X is the value in the Almost-Empty flag and Almost-Full flag offset register.  
11  
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
X)ormorewordsinmemoryandisHIGHwhentheFIFOcontains[64-(X+1)] A26,andA27-A35withthemostsignificantbitofeachbyteusedastheparity  
or less words. bit. PortBbytesarearrangedasB0-B8,B9-B17,B18-B26,andB27-B35,with  
Two LOW-to-HIGH transitions of the Almost-Full flag synchronizing themostsignificantbitofeachbyteusedastheparitybit. Whenodd/evenparity  
clockarerequiredafteraFIFOreadfortheAlmost-Fullflagtoreflectthenew is selected, a port Parity Error Flag (PEFA, PEFB) is LOW if any byte on the  
level of fill. Therefore, the Almost-Full flag of a FIFO containing [64-(X+1)] porthas anodd/evennumberofLOWlevels appliedtothe bits.  
orlesswordsremainsLOWiftwocyclesofthesynchronizingclockhavenot  
ThefourparitytreesusedtochecktheA0-A35inputsaresharedbythe  
elapsed since the read that reduced the number of words in memory to mail2registerwhenparitygenerationisselectedforportAreads(PGA=HIGH).  
[64-(X+1)]. An Almost-Full flag is set HIGH by the second LOW-to-HIGH WhenaportAreadfromthemail2registerwithparitygenerationisselectedwith  
transition of the synchronizing clock after the FIFO read that reduces the W/RALOW, CSA LOW, ENAHIGH, MBAHIGH, andPGAHIGH, the portA  
number of words in memory to [64-(X+1)]. A second LOW-to-HIGH ParityErrorFlag(PEFA)is heldHIGHregardless ofthelevels appliedtothe  
transitionofanAlmost-Fullflagsynchronizingclockbeginsthefirstsynchro- A0-A35inputs. Likewise,theparitytreesusedtochecktheB0-B35inputsare  
nizationcycleifitoccursattimetSKEW2orgreaterafterthereadthatreduces sharedbythemail1registerwhenparitygenerationisselectedforportBreads  
the number of words in memory to [64-(X+1)]. Otherwise, the subsequent (PGB=HIGH). WhenaportBreadfromthemail1registerwithparitygeneration  
synchronizingclockcycle canbe the firstsynchronizationcycle (see Figure isselectedwithW/RBLOW,CSBLOW,ENBHIGH,MBBHIGH,andPGBHIGH,  
13 and 14).  
theportBParityErrorFlag(PEFB)isheldHIGHregardlessofthelevelsapplied  
to the B0-B35 inputs (see Figure 17 and Figure 18).  
MAILBOX REGISTERS  
EachFIFOhas a 36-bitbypass registertopass commandandcontrol PARITY GENERATION  
information between port A and port B without putting it in queue. The  
A HIGH level on the port A Parity Generate select (PGA) or port B  
Mailbox select (MBA, MBB) inputs choose between a mail register and a Parity Generate select (PGB) enables the IDT72V3612 to generate parity  
FIFOforaportdatatransferoperation. ALOW-to-HIGHtransitiononCLKA bitsforportreadsfromaFIFOormailboxregister. PortAbytesarearranged  
writes A0-A35 data to the mail1 register when a port A write is selected by as A0-A8, A9-A17, A18-26, and A27-A35, with the most significant bit of  
CSA,W/RA,andENAandMBAHIGH. ALOW-to-HIGHtransitiononCLKB each byte used as the parity bit. Port B bytes are arranged as B0-B8, B9-  
writes B0-B35 data to the mail2 register when a port B write is selected by B17, B18-B26, and B27-B35, with the most significant bit of each byte used  
CSB, W/RB,andENBandMBBis HIGH. Writingdatatoamailregistersets as the parity bit. A write to a FIFO or mail register stores the levels applied  
the corresponding flag (MBF1 or MBF2) LOW. Attempted writes to a mail to all thirty-six inputs regardless of the state of the Parity Generate select  
register are ignored while the mail flag is LOW.  
(PGA, PGB) inputs. When data is read from a port with parity generation  
Whenaport's dataoutputs areactive,thedataonthebus comes from selected, the lower eight bits of each byte are used to generate a parity bit  
the FIFO output register when the port Mailbox select input (MBA, MBB) is according to the level on the ODD/EVEN select. The generated parity bits  
LOW and from the mail register when the port mailbox select input is HIGH. are substituted for the levels originally written to the most significant bits of  
The Mail1 register Flag (MBF1) is set HIGH by a LOW-to-HIGH transition each byte as the word is read to the data outputs.  
on CLKB when a port B read is selected by CSB, W/RB, and ENB and MBB  
Parity bits for FIFO data are generated after the data is read from  
is HIGH. The Mail2 register Flag (MBF2) is set HIGH by a LOW-to-HIGH SRAM and before the data is written to the output register. Therefore, the  
transition on CLKA when port A read is selected by CSA, W/RA, and ENA port A Parity Generate select (PGA) and Odd/Even parity select (ODD/  
and MBA is HIGH. The data in a mail register remains intact after it is read EVEN)havesetupandholdtimeconstraints totheportAClock(CLKA)and  
and changes only when new data is written to the register. Mail register and the port B Parity Generate select (PGB) and ODD/EVEN have setup and  
Mail Register Flag timing can be found in Figure 15 and Figure 16.  
hold-time constraints to the port B Clock (CLKB). These timing constraints  
onlyapplyforarisingclockedgeusedtoreadanewwordtotheFIFOoutput  
register.  
PARITY CHECKING  
The portAinputs (A0-A35)andportBinputs (B0-B35)eachhave four  
The circuit used to generate parity for the mail1 data is shared by the  
paritytreestochecktheparityofincoming(oroutgoing)data. Aparityfailure port B bus (B0-B35) to check parity and the circuit used to generate parity  
on one or more bytes of the input bus is reported by a LOW level on the port for the mail2 data is shared by the port A bus (A0-A35) to check parity. The  
Parity Error Flag (PEFA, PEFB). Odd or even parity checking can be shared parity trees of a port are used to generate parity bits for the data in  
selected, and the Parity Error Fags can be ignored if this feature is not amailregisterwhentheportWrite/Readselect(W/RA,W/RB)inputisLOW,  
desired.  
the port Mail select (MBA, MBB) input is HIGH, Chip Select (CSA, CSB) is  
Paritystatus is checkedoneachinputbus accordingtothelevelofthe LOW, Enable (ENA, ENB) is HIGH, and port Parity Generate select (PGA,  
Odd/Even parity (ODD/EVEN) select input. A parity error on one or more PGB)is HIGH. Generatingparityformailregisterdata does notchange the  
bytesofaportisreportedbyaLOWlevelonthecorrespondingportParityError contents of the register (see Figure 19 and Figure 20).  
Flag(PEFA,PEFB)output. PortAbytesarearrangedasA0-A8,A9-A17,A18-  
12  
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKA  
CLKB  
tRSTH  
t
RSTS  
t
FSS  
t
FSH  
RST  
0,1  
FS1,FS0  
t
WFF  
t
t
WFF  
REF  
t
FFA  
EFA  
FFB  
EFB  
t
WFF  
WFF  
t
REF  
t
t
PAE  
AEA  
AFA  
PAF  
t
RSF  
MBF1,  
MBF2  
t
PAE  
AEB  
AFB  
t
PAF  
4659 drw 05  
Figure 2. Device Reset and Loading the X Register with the Value of Eight  
13  
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKA  
FFA  
CSA  
HIGH  
t
ENS1  
t
ENH1  
tENS1  
t
ENH1  
W/RA  
t
ENS3  
t
ENH3  
ENH2  
MBA  
tENS2  
tENS2  
t
ENS2  
tENH2  
tENH2  
t
ENA  
tDS  
tDH  
(1)  
W1  
W2(1)  
A0 - A35  
No Operation  
ODD/  
EVEN  
tPDPE  
tPDPE  
Valid  
Valid  
PEFA  
4659 drw 06  
NOTE:  
1. Written to FIFO1.  
Figure 3. Port A Write Cycle Timing for FIFO1  
tCLK  
tCLKH  
tCLKL  
CLKB  
FFB  
CSB  
HIGH  
t
ENS1  
t
ENH1  
ENH1  
tENS1  
t
W/RB  
MBB  
t
ENS3  
ENS2  
t
ENH3  
tENS2  
t
t
ENH2  
tENH2  
tENS2  
tENH2  
ENB  
tDS  
tDH  
(1)  
W1  
W2(1)  
B0 - B35  
No Operation  
ODD/  
EVEN  
tPDPE  
tPDPE  
Valid  
Valid  
PEFB  
4659 drw 07  
NOTE:  
1. Written to FIFO2.  
Figure 4. Port B Write Cycle Timing for FIFO2  
14  
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKB  
EFB HIGH  
CSB  
W/RB  
MBB  
ENB  
t
ENS2  
t
ENH2  
tENH2  
tENH2  
t
ENS2  
t
ENS2  
No Operation  
Word 2(1)  
t
MDV  
EN  
t
A
tA  
tDIS  
t
(1)  
Previous Data (1)  
Word 1  
B0 - B35  
tPGH  
tPGH  
tPGS  
tPGS  
PGB,  
ODD/  
EVEN  
4659 drw 08  
NOTE:  
1. Read from FIFO1.  
Figure 5. Port B Read Cycle Timing for FIFO1  
tCLK  
tCLKH  
tCLKL  
CLKA  
EFA  
CSA  
HIGH  
W/RA  
tENS2  
MBA  
ENA  
t
ENH2  
tENH2  
t
ENH2  
t
ENS2  
tENS2  
No Operation  
Word 2(1)  
t
MDV  
t
A
tDIS  
t
A
tEN  
(1)  
Previous Data (1)  
Word 1  
A0 - A35  
tPGH  
tPGH  
tPGS  
tPGS  
PGA,  
ODD/  
EVEN  
4659 drw 09  
NOTE:  
1. Read from FIFO2.  
Figure 6. Port A Read Cycle Timing for FIFO2  
15  
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
t
CLK  
t
CLKL  
t
CLKH  
CLKA  
LOW  
HIGH  
CSA  
W/RA  
MBA  
ENA  
t
ENH3  
t
ENS3  
tENS2  
tENH2  
HIGH  
FFA  
tDS  
tDH  
W1  
A0 - A35  
t
CLK  
(1)  
SKEW1  
t
tCLKH  
tCLKL  
1
2
CLKB  
t
REF  
t
REF  
FIFO1 Empty  
EFB  
CSB  
LOW  
LOW  
LOW  
W/RB  
MBB  
tENS2  
tENH2  
ENB  
tA  
W1  
B0 -B35  
4659 drw 10  
NOTE:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for EFB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and  
rising CLKB edge is less than tSKEW1, then the transition of EFB HIGH may occur one CLKB cycle later than shown.  
Figure 7. EFB Flag Timing and First Data Read when FIFO1 is Empty  
16  
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
t
CLK  
t
CLKH  
tCLKL  
CLKB  
LOW  
CSB  
W/RB HIGH  
tENS3  
tENH3  
MBB  
tENS2  
tENH2  
ENB  
FFB  
HIGH  
tDS  
tDH  
W1  
B0 - B35  
t
CLK  
(1)  
SKEW1  
t
CLKH  
t
tCLKL  
1
2
CLKA  
t
REF  
t
REF  
EFA FIFO2 Empty  
CSA LOW  
W/RA LOW  
MBA LOW  
ENA  
tENS2  
tENH2  
tA  
A0 -A35  
W1  
4659 drw 11  
NOTE:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for EFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and  
rising CLKA edge is less than tSKEW1, then the transition of EFA HIGH may occur one CLKA cycle later than shown.  
Figure 8. EFA Flag Timing and First Data Read when FIFO2 is Empty  
17  
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKB  
CSB  
LOW  
LOW  
LOW  
W/RB  
MBB  
tENS2  
tENH2  
ENB  
EFB  
HIGH  
tA  
Previous Word in FIFO1 Output Register  
B0 - B35  
Next Word From FIFO1  
(1)  
t
CLK tCLKL  
tSKEW1  
tCLKH  
1
2
CLKA  
t
WFF  
t
WFF  
FIFO1 Full  
LOW  
FFA  
CSA  
W/RA HIGH  
tENS3  
tENH3  
MBA  
tENS2  
tENH2  
ENA  
tDH  
tDS  
A0 - A35  
To FIFO1  
4659 drw 12  
NOTE:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for FFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and  
rising CLKA edge is less than tSKEW1, then FFA may transition HIGH one CLKA cycle later than shown.  
Figure 9. FFA Flag Timing and First Available Write when FIFO1 is Full.  
18  
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKA  
CSA  
LOW  
LOW  
LOW  
W/RA  
MBA  
tENS2  
tENH2  
ENA  
EFA  
HIGH  
tA  
Previous Word in FIFO2 Output Register  
Next Word From FIFO2  
A0 - A35  
(1)  
t
CLKH CLK tCLKL  
tSKEW1  
t
1
2
CLKB  
t
WFF  
t
WFF  
FIFO2 Full  
LOW  
FFB  
CSB  
W/RB  
HIGH  
tENS3  
tENH3  
MBB  
tENS2  
tENH2  
ENB  
tDH  
tDS  
B0 - B35  
To FIFO2  
4659 drw 13  
NOTE:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for FFB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and  
rising CLKB edge is less than tSKEW1, then FFB may transition HIGH one CLKB cycle later than shown.  
Figure 10. FFB Flag Timing and First Available Write when FIFO2 is Full  
CLKA  
tENS2  
tENH2  
ENA  
(1)  
tSKEW2  
1
2
CLKB  
t
PAE  
tPAE  
X Words in FIFO1  
(X+1) Words in FIFO1  
AEB  
tENH2  
tENS2  
ENB  
4659 drw 14  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AEB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and  
rising CLKB edge is less than tSKEW2, then AEB may transition HIGH one CLKB cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = HIGH, MBA = LOW), FIFO1 read (CSB = LOW, W/RB = LOW, MBB = LOW).  
Figure 11. Timing for AEB when FIFO1 is Almost Empty  
19  
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKB  
tENS2  
tENH2  
ENB  
(1)  
tSKEW2  
1
2
CLKA  
t
PAE  
t
PAE  
AEA  
X Words in FIFO2  
(X+1) Words in FIFO2  
ENS2  
t
tENH2  
ENA  
4659 drw 15  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for AEA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and  
rising CLKA edge is less than tSKEW2, then AEA may transition HIGH one CLKA cycle later than shown.  
2. FIFO2 Write (CSB = LOW, W/RB = HIGH, MBB = LOW), FIFO2 read (CSA = LOW, W/RA = LOW, MBA = LOW).  
Figure 12. Timing for AEA when FIFO2 is Almost Empty  
(1)  
tSKEW2  
1
2
CLKA  
ENA  
tENH2  
tENS2  
t
PAF  
t
PAF  
(64-X) Words in FIFO1  
AFA  
CLKB  
ENB  
[64-(X+1)] Words in FIFO1  
tENS2  
tENH2  
4659 drw 16  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKA edge and  
rising CLKB edge is less than tSKEW2, then AFA may transition HIGH one CLKA cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = HIGH, MBA = LOW), FIFO1 read (CSB = LOW, W/RB = LOW, MBB = LOW).  
Figure 13. Timing for AFA when FIFO1 is Almost Full  
(1)  
tSKEW2  
1
2
CLKB  
ENB  
t
ENH2  
PAF  
tENS2  
t
PAF  
t
(64-X) Words in FIFO2  
AFB  
[64-(X+1)] Words in FIFO2  
CLKA  
tENS2  
tENH2  
ENA  
4659 drw 17  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for AFB to transition HIGH in the next CLKB cycle. If the time between the rising CLKB edge and  
rising CLKA edge is less than tSKEW2, then AFB may transition HIGH one CLKB cycle later than shown.  
2. FIFO2 Write (CSB = LOW, W/RB = HIGH, MBB = LOW), FIFO2 read (CSA = LOW, W/RA = LOW, MBA = LOW).  
Figure 14. Timing for AFB when FIFO2 is Almost Full  
20  
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKA  
tENS1  
tENH1  
CSA  
W/RA  
MBA  
tENS1  
tENS1  
tENS1  
tENH1  
tENH1  
tENH1  
ENA  
A0 - A35  
CLKB  
tDH  
t
DS  
W1  
t
PMF  
t
PMF  
MBF1  
CSB  
W/RB  
MBB  
ENB  
tENH2  
tENS2  
t
MDV  
tEN  
t
PMR  
tDIS  
FIFO1 Output Register  
W1 (Remains valid in Mail1 Register after read)  
B0 - B35  
4659 drw 18  
NOTE:  
1. Port B parity generation off (PGB = LOW).  
Figure 15. Timing for Mail1 Register and MBF1 Flag  
21  
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKB  
t
ENH1  
ENH1  
t
ENS1  
CSB  
W/RB  
t
t
ENS1  
ENS1  
ENS1  
t
ENH1  
ENH1  
t
t
MBB  
t
ENB  
tDH  
tDS  
W1  
B0 - B35  
CLKA  
t
PMF  
t
PMF  
MBF2  
CSA  
W/RA  
MBA  
ENA  
tENH2  
tENS2  
t
MDV  
tEN  
t
PMR  
tDIS  
FIFO2 Output Register  
W1 (Remains valid in Mail2 Register after read)  
A0 - A35  
4659 drw 19  
NOTE:  
1. Port A parity generation off (PGA = LOW).  
Figure 16. Timing for Mail2 Register and MBF2 Flag  
ODD/  
EVEN  
W/RA  
MBA  
PGA  
t
PEPE  
t
PEPE  
tPOPE  
tPOPE  
PEFA  
Valid  
Valid  
Valid  
Valid  
4659 drw 20  
NOTE:  
1. ENA is HIGH, and CSA is LOW.  
Figure 17. ODD/EVEN W/RA, MBA, and PGA to PEFA Timing  
22  
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
ODD/  
EVEN  
W/RB  
MBB  
PGB  
t
PEPE  
tPOPE  
tPEPE  
tPOPE  
PEFB  
Valid  
Valid  
Valid  
Valid  
4659 drw 21  
NOTE:  
1. ENB is HIGH, and CSB is LOW.  
Figure 18. ODD/EVEN W/RB, MBB, and PGB to PEFB Timing  
ODD/  
EVEN  
LOW  
CSA  
W/RA  
MBA  
PGA  
t
PEPB  
tEN  
tMDV  
t
POPB  
tPEPB  
A8, A17,  
A26, A35  
Generated Parity  
Generated Parity  
Mail2 Data  
4659 drw 22  
Mail2  
Data  
NOTE:  
1. ENA is HIGH.  
Figure 19. Parity Generation Timing when Reading from Mail2 Register  
ODD/  
EVEN  
LOW  
CSB  
W/RB  
MBB  
PGB  
t
PEPB  
t
MDV  
tPOPB  
tEN  
tPEPB  
B8, B17,  
B26, B35  
Generated Parity  
Generated Parity  
Mail1 Data  
Mail1  
Data  
4659 drw 23  
NOTE:  
1. ENB is HIGH.  
Figure 20. Parity Generation Timing when Reading from Mail1 Register  
23  
IDT72V36123.3V,CMOSSyncBiFIFOTM  
64 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
PARAMETER MEASUREMENT INFORMATION  
3.3V  
330Ω  
From Output  
Under Test  
30 pF (1)  
510Ω  
LOAD CIRCUIT  
3 V  
3 V  
1.5 V  
High-Level  
Timing  
Input  
1.5 V  
Input  
1.5 V  
1.5 V  
GND  
GND  
th  
tS  
tW  
3 V  
3 V  
Data,  
Enable  
Input  
1.5 V  
1.5 V  
Low-Level  
Input  
1.5 V  
GND  
GND  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VOLTAGE WAVEFORMS  
PULSE DURATIONS  
3 V  
Output  
Enable  
1.5 V  
1.5 V  
t
PZL  
GND  
tPLZ  
3 V  
3V  
Input  
1.5 V  
1.5 V  
1.5 V  
Low-Level  
Output  
GND  
V
OL  
tPD  
tPD  
t
PZH  
V
OH  
V
OH  
OV  
In-Phase  
Output  
1.5 V  
1.5 V  
High-Level  
Output  
1.5 V  
V
t
PHZ  
OL  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
4659 drw 24  
NOTE:  
1. Includes probe and jig capacitance  
Figure 21. Load Circuit and Voltage Waveforms  
24  
ORDERING INFORMATION  
IDT  
XXXXXX  
X
XX  
X
X
Device Type Power  
Speed  
Package  
Process/  
Temperature  
Range  
Commercial (0°C to +70°C)  
BLANK  
Thin Quad Flat Pack (TQFP, PN120-1)  
Plastic Quad Flat Pack (PQFP, PQ132-1)  
PF  
PQF  
12  
15  
20  
Clock Cycle Time (tCLK  
)
Commercial Only  
Low Power  
Speed in Nanoseconds  
L
72V3612 64 x 36 x 2 3.3V SyncBiFIFO  
4659 drw 25  
NOTE:  
1. Industrial temperature range is available by special order.  
DATASHEETDOCUMENTHISTORY  
07/10/2000  
05/27/2003  
pg. 1.  
pg. 6.  
CORPORATE HEADQUARTERS  
2975StenderWay  
for SALES:  
800-345-7015 or 408-727-6116  
for Tech Support:  
408-330-1753  
Santa Clara, CA 95054  
fax: 408-492-8674  
www.idt.com  
email:FIFOhelp@idt.com  
25  

相关型号:

IDT72V3612L20PF8

Bi-Directional FIFO, 64X36, 12ns, Synchronous, CMOS, PQFP120, TQFP-120
IDT

IDT72V3612L20PF9

FIFO, 64X36, 12ns, Synchronous, CMOS, PQFP120, TQFP-120
IDT

IDT72V3612L20PFG

暂无描述
IDT

IDT72V3612L20PQF

3.3 VOLT CMOS SyncBiFIFO-TM 64 x 36 x 2
IDT

IDT72V3612L20PQF9

FIFO, 64X36, 12ns, Synchronous, CMOS, PQFP132, PLASTIC, QFP-132
IDT

IDT72V3612L20PQFG

Bi-Directional FIFO, 64X36, 12ns, Synchronous, CMOS, PQFP132, GREEN, PLASTIC, QFP-132
IDT

IDT72V3613L12PF9

FIFO, 64X36, 8ns, Synchronous, CMOS, PQFP120, TQFP-120
IDT

IDT72V3613L12PQF9

FIFO, 64X36, 8ns, Synchronous, CMOS, PQFP132, PLASTIC, QFP-132
IDT

IDT72V3613L15PQF9

FIFO, 64X36, 10ns, Synchronous, CMOS, PQFP132, PLASTIC, QFP-132
IDT

IDT72V3613L15PQFG

Bi-Directional FIFO, 64X36, 10ns, Synchronous, CMOS, PQFP132, GREEN, PLASTIC, QFP-132
IDT

IDT72V3613L20PFG

Bi-Directional FIFO, 64X36, 12ns, Synchronous, CMOS, PQFP120, GREEN, TQFP-120
IDT

IDT72V3613L20PQF9

FIFO, 64X36, 12ns, Synchronous, CMOS, PQFP132, PLASTIC, QFP-132
IDT