IDT7018L20PFI8 [IDT]

Dual-Port SRAM, 64KX9, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100;
IDT7018L20PFI8
型号: IDT7018L20PFI8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 64KX9, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100

静态存储器 内存集成电路
文件: 总17页 (文件大小:144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
IDT7018L  
64K x 9 DUAL-PORT  
STATIC RAM  
Features  
M/S = VIH for BUSY output flag on Master,  
M/S = VIL for BUSY input on Slave  
Interrupt Flag  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
On-chip port arbitration logic  
– Commercial:15/20ns (max.)  
Low-power operation  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
TTL-compatible, single 5V (±10%) power supply  
Available in a 100-pin TQFP  
IDT7018L  
Active:1W(typ.)  
Standby: 1mW (typ.)  
Dual chip enables allow for depth expansion without  
external logic  
IDT7018 easily expands data bus width to 18 bits or  
more using the Master/Slave select when cascading more  
than one device  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
FunctionalBlockDiagram  
R/WL  
CE0L  
CE1L  
R/WR  
CE0R  
CE1R  
OEL  
OER  
I/O  
Control  
I/O  
Control  
I/O0-8L  
I/O0-8R  
(1,2)  
BUSYL  
(1,2)  
BUSYR  
64Kx9  
MEMORY  
ARRAY  
7018  
A15L  
A15R  
A0R  
Address  
Decoder  
Address  
Decoder  
A0L  
16  
16  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE0L  
CE0R  
1L  
CE  
1R  
CE  
OEL  
OER  
L
R/W  
R
R/W  
SEML  
INTL  
R
SEM  
INT  
(2)  
(2)  
R
M/S(1)  
4841 drw 01  
NOTES:  
1. BUSY is an input as a Slave (M/S = VIL) and an output when it is a Master (M/S = VIH).  
2. BUSY and INT are non-tri-state totem-pole outputs (push-pull).  
JANUARY 2001  
1
DSC-4841/2  
©2000IntegratedDeviceTechnology,Inc.  
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
The IDT7018 is a high-speed 64K x 9 Dual-Port Static RAM. The address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
IDT7018isdesignedtobeusedasastand-alone576K-bitDual-PortRAM reads or writes to any location in memory. An automatic power down  
orasacombinationMASTER/SLAVEDual-PortRAMfor18-bit-or-more featurecontrolledbythe chipenables(CE0andCE1)permittheon-chip  
wordsystems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproach circuitry of each port to enter a very low standby power mode.  
in18-bitorwidermemorysystemapplicationsresultsinfull-speed,error-  
freeoperationwithouttheneedforadditionaldiscretelogic.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typically operate on only 1W of power.  
This device provides two independent ports with separate control,  
TheIDT7018ispackagedina100-pinThinQuadFlatpack(TQFP).  
PinConfigurations(1,2,3)  
Index  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
NC  
NC  
A7L  
75  
NC  
NC  
A7R  
2
74  
3
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
4
A8L  
A9L  
A8R  
A9R  
5
A10L  
A11L  
A12L  
A13L  
A14L  
A15L  
NC  
Vcc  
NC  
NC  
NC  
NC  
CE0L  
CE1L  
SEML  
6
A10R  
A11R  
A12R  
A13R  
A14R  
A15R  
NC  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
IDT7018PF  
PN100-1  
(
4)  
100-Pin TQFP  
GND  
NC  
NC  
NC  
NC  
CE0R  
CE1R  
SEMR  
R/WR  
OER  
GND  
GND  
NC  
(
5)  
Top View  
WL  
R/  
OEL  
GND  
NC  
NC  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
4841 drw 02  
NOTES:  
1. All Vcc pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part marking.  
2
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
Names  
Chip Enables  
CE0L  
1L  
, CE  
CE0R 1R  
, CE  
WL  
R/  
WR  
R/  
Read/Write Enable  
Output Enable  
Address  
OEL  
A0L - A15L  
OER  
A0R - A15R  
0L  
8L  
0R  
8R  
I/O - I/O  
I/O - I/O  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
Busy Flag  
SEML  
INTL  
SEMR  
INTR  
BUSYR  
S
BUSYL  
M/  
Master or Slave Select  
Power  
CC  
V
GND  
Ground  
4841 tbl 01  
AbsoluteMaximumRatings(1)  
RecommendedDCOperating  
Conditions  
Symbol  
Rating  
Commercial  
& Industrial  
Military  
Unit  
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
(2)  
VTERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
-0.5 to +7.0  
V
VCC  
Supply Voltage  
4.5  
5.0  
5.5  
0
V
V
V
GND Ground  
0
0
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
50  
-65 to +135  
-65 to +150  
50  
oC  
oC  
TBIAS  
TSTG  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
____  
Storage  
Temperature  
-0.5(1)  
V
____  
4841 tbl 04  
IOUT  
DC Output Current  
mA  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
4841 tbl 02  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
Capacitance  
(TA = +25°C, f = 1.0MHz)  
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > Vcc + 10%.  
Symbol  
CIN  
Parameter(1)  
Input Capacitance  
Output Capacitance  
Conditions(2)  
VIN = 3dV  
Max. Unit  
9
pF  
MaximumOperatingTemperature  
andSupplyVoltage(1)  
Ambient  
COUT  
VOUT = 3dV  
10  
pF  
4841 tbl 05  
NOTES:  
Grade  
Temperature(2)  
-55OC to +125OC  
0OC to +70OC  
GND  
Vcc  
1. This parameter is determined by device characterization but is not production  
tested.  
2. 3dV represents the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
Military  
0V  
5.0V + 10%  
5.0V + 10%  
5.0V + 10%  
Commercial  
Industrial  
0V  
-40OC to +85OC  
0V  
4841 tbl 03  
NOTES:  
1. Industrial Temperature: for specific speeds, packages and powers contact your  
sales office.  
2. This is the parameter TA. This is the "instant on" case temperature.  
3
6.42  
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I: Chip Enable(1,2)  
1
CE  
CE  
CE0  
Mode  
VIL  
VIH  
Port Selected (TTL Active)  
L
< 0.2V  
VIH  
>VCC -0.2V  
X
Port Selected (CMOS Active)  
Port Deselected (TTL Inactive)  
Port Deselected (TTL Inactive)  
Port Deselected (CMOS Inactive)  
Port Deselected (CMOS Inactive)  
X
VIL  
H
>VCC -0.2V  
X
X
<0.2V  
4841 tbl 06  
NOTES:  
1. Chip Enable references are shown above with the actual CE0 and CE1 levels, CE is a reference only.  
2. 'H' = VIH and 'L' = VIL.  
3. CMOS standby requires 'X' to be either < 0.2V or > VCC - 0.2V.  
Truth Table II: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
CE(2)  
H
OE  
SEM  
H
R/W  
X
I/O0-8  
Mode  
X
X
L
High-Z  
DATAIN  
Deselected: Power-Down  
Write to memory  
L
L
H
L
H
H
DATAOUT Read memory  
High-Z Outputs Disabled  
X
X
H
X
4841 drw 07  
NOTES:  
1. A0L A15L A0R A15R.  
2. Refer to Chip Enable Truth Table.  
Truth Table III: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
(2)  
R/W  
I/O0-8  
Mode  
CE  
OE  
SEM  
H
H
L
L
DATAOUT Read Semaphore Flag Data Out  
IN  
0
H
L
X
X
L
L
DATA  
Write I/O into Semaphore Flag  
______  
X
Not Allowed  
4841 tbl 08  
NOTES:  
1. There are eight semaphore flags written to via I/O0 and read from all the I/Os (I/O0-I/O8). These eight semaphore flags are addressed by A0-A2.  
2. Refer to Chip Enable Truth Table.  
4
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(2) (VCC = 5.0V ± 10%)  
7018L  
Symbol  
|ILI|  
Parameter  
Test Conditions  
Min.  
Max.  
5
Unit  
µA  
µA  
V
(1)  
___  
Input Leakage Current  
VCC = 5.5V, VIN = 0V to VCC  
CE = VIH, VOUT = 0V to VCC  
IOL = 4mA  
___  
___  
|ILO|  
Output Leakage Current  
Output Low Voltage  
Output High Voltage  
5
VOL  
0.4  
___  
VOH  
IOH = -4mA  
2.4  
V
4841 tbl 09  
NOTES:  
1. At Vcc < 2.0V, input leakages are undefined.  
2. Refer to Chip Enable Truth Table.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1,6,7) (VCC = 5.0V ± 10%)  
7018L15  
7018L20  
Com'l Only  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(1) Max  
Typ.(1) Max  
Unit  
mA  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
L
L
L
L
L
L
L
L
220  
340  
200  
300  
CE = VIL, Outputs Disabled  
SEM = VIH  
(2)  
____  
____  
____  
____  
IND  
f = fMAX  
mA  
mA  
mA  
ISB1  
ISB2  
ISB3  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
IND  
65  
100  
50  
75  
CEL = CER = VIH  
SEMR = SEML = VIH  
(2)  
____  
____  
____  
____  
f = fMAX  
(4)  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
IND  
145  
225  
130  
195  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(2)  
____  
____  
____  
____  
f=fMAX , SEMR = SEML = VIH  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CEL and  
COM'L  
IND  
0.2  
3.0  
0.2  
3.0  
CER > VCC - 0.2V, VIN > VCC - 0.2V  
or VIN < 0.2V, f = 0(3)  
____  
____  
____  
____  
SEMR = SEML > VCC - 0.2V  
mA  
ISB4  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
IND  
L
L
135  
220  
120  
190  
CE"A" < 0.2V and  
(4)  
CE"B" > VCC - 0.2V ,  
SEMR = SEML > VCC - 0.2V,  
____  
____  
____  
____  
VIN > VCC - 0.2V or VIN < 0.2V, Active Port  
(2)  
Outputs Disabled, f = fMAX  
4841 tbl 10  
NOTES:  
1. VCC = 5V, TA = +25°C, and are not production tested. ICCDC = 120mA (Typ.)  
2. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/ tRC, and using AC Test Conditionsof input  
levels of GND to 3V.  
3. f = 0 means no address or control lines change.  
4. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
5. Refer to Chip Enable Truth Table.  
6. Industrial Temperature: for specific speeds, packages and powers contact your sales office.  
5
6.42  
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
5V  
5V  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
3ns Max.  
1.5V  
893  
893Ω  
Input Rise/Fall Times  
OUT  
DATA  
DATAOUT  
Input Timing Reference Levels  
Output Reference Levels  
BUSY  
INT  
1.5V  
30pF  
5pF*  
347Ω  
347  
Output Load  
Figures 1 and 2  
4841 tbl 11  
.
4841 drw 03  
4841 drw 04  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
Figure 1. AC Output Test Load  
* Including scope and jig.  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
tAA  
(4)  
tACE  
CE(6)  
(4)  
tAOE  
OE  
R/W  
(1)  
tOH  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
tHZ  
BUSYOUT  
(3,4)  
4841 drw 05  
tBDD  
Timing of Power-Up Power-Down  
CE(6)  
tPU  
tPD  
ICC  
50%  
50%  
ISB  
.
4841 drw 06  
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6. Refer to Chip Enable Truth Table.  
6
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(5)  
7018L15  
Com'l Only  
7018L20  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
tRC  
Read Cycle Time  
15  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
tAA  
tACE  
tAOE  
tOH  
tLZ  
Address Access Time  
15  
15  
20  
20  
Chip Enable Access Time(4)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
10  
12  
____  
____  
3
3
____  
____  
3
3
Output High-Z Time(1,2)  
10  
10  
____  
____  
tHZ  
tPU  
tPD  
tSOP  
tSAA  
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
0
0
____  
____  
____  
____  
15  
20  
____  
____  
Semaphore Flag Update Pulse (OE or SEM)  
10  
10  
____  
____  
Semaphore Address Access Time  
15  
20  
ns  
4841 tbl 12  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
7018L15  
Com'l Only  
7018L20  
Com'l Only  
Symbol  
Parameter  
Min. Max.  
Min. Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
tWP  
12  
0
15  
0
tWR  
tDW  
tHZ  
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
10  
15  
____  
____  
10  
10  
____  
____  
tDH  
0
0
(1,2)  
____  
____  
tWZ  
tOW  
tSWRD  
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
10  
____  
____  
0
5
5
0
5
5
____  
____  
____  
____  
tSPS  
ns  
4841 tbl 13  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranted by device characterization, but is not production tested.  
3. To access RAM, CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. Industrial Temperature: for specific speeds, packages and powers contact your sales office.  
7
6.42  
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM(9,10)  
(3)  
(2)  
(6)  
tWP  
tWR  
tAS  
R/W  
DATAOUT  
DATAIN  
(7)  
tWZ  
tOW  
(4)  
(4)  
tDW  
tDH  
4841 drw 07  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
tWC  
ADDRESS  
tAW  
(9,10)  
or  
CE SEM  
(3)  
(6)  
(2)  
tWR  
tEW  
tAS  
R/  
W
tDW  
tDH  
DATAIN  
4841 drw 08  
NOTES:  
1. R/W or CE = VIH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL and a R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure  
2).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
10. Refer to Chip Enable Truth Table.  
8
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
tOH  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tACE  
tAW  
tWR  
tEW  
SEM  
tSOP  
tDW  
DATAIN VALID  
DATAOUT  
VALID(2)  
DATA0  
tAS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
tSOP  
Write Cycle  
Read Cycle  
4841 drw 09  
NOTES:  
1. CE = VIH for the duration of the above timing (both write and read cycle) (Refer to Chip Enable Truth Table).  
2. "DATAOUT VALID" represents all I/O's (I/O0 - I/O8) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
(2)  
SIDE "A"  
R/W"A"  
SEM"A"  
SPS  
t
A0"B"-A2"B"  
MATCH  
(2)  
SIDE  
"B"  
R/W  
"B"  
SEM"B"  
4841 drw 10  
NOTES:  
1. DOR = DOL = VIL, CEL = CER = VIH (Refer to Chip Enable Truth Table).  
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.  
9
6.42  
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
7018L15  
Com'l Only  
7018L20  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S=VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
15  
15  
15  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
15  
17  
____  
____  
5
5
BUSY Disable to Valid Data(3)  
____  
____  
15  
17  
Write Hold After BUSY(5)  
12  
15  
____  
____  
BUSY TIMING (M/S=VIL)  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
PORT-TO-PORT DELAY TIMING  
tWDD  
Write Pulse to Data Delay(1)  
tDDD  
Write Data Valid to Read Data Delay(1)  
____  
____  
____  
____  
tWB  
0
0
ns  
ns  
tWH  
12  
15  
____  
____  
____  
____  
30  
25  
45  
30  
ns  
ns  
4841 tbl 14  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD tWP (actual) or tDDD tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
6. Industrial Temperature: for specific speeds, packages and powers contact your sales office.  
10  
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadand BUSY(M/S = VIH)(2,4,5)  
tWC  
ADDR"A"  
MATCH  
tWP  
R/  
W"A"  
tDH  
tDW  
DATAIN "A"  
VALID  
(1)  
tAPS  
ADDR"B"  
MATCH  
tBDA  
tBDD  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
NOTES:  
4841 drw 11  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL, refer to Chip Enable Truth Table.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (SLAVE), BUSY is an input. Then for this example BUSY "A" = VIH and BUSY "B" input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
tWP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
R/W"B"  
(2)  
4841 drw 12  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the 'Slave' version.  
11  
6.42  
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(M/S = VIH)(1,3)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
BUSY"B"  
4841 drw 13  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(M/S = VIH)(1)  
ADDR"A"  
ADDRESS "N"  
(2)  
tAPS  
"B"  
ADDR  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
"B"  
BUSY  
4841 drw 14  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from port A.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
3. Refer to Chip Enable Truth Table.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
7018L15  
Com'l Only  
7018L20  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min. Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
tAS  
Address Set-up Time  
0
0
ns  
ns  
ns  
tWR  
tINS  
tINR  
Write Recovery Time  
Interrupt Set Time  
0
0
____  
____  
15  
15  
20  
20  
____  
____  
Interrupt Reset Time  
ns  
4841 tbl 15  
NOTES:  
1. Industrial Temperature: for specific speeds, packages and powers contact your sales office.  
12  
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1,5)  
tWC  
INTERRUPT SET ADDRESS(2)  
ADDR"A"  
(3)  
(4)  
tAS  
tWR  
CE"A"  
R/W"A"  
INT"B"  
(3)  
tINS  
4841 drw 15  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
(3)  
tAS  
CE"B"  
"B"  
OE  
(3)  
tINR  
INT"B"  
4841 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from port A.  
2. See Interrupt Truth Table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
5. Refer to Chip Enable Truth Table.  
Truth Table IV — Interrupt Flag(1,4,5)  
Left Port  
Right Port  
WL  
R/  
WR  
R/  
A15L-A0L  
FFFF  
X
A15R-A0R  
X
Function  
CEL  
L
OEL  
X
INTL  
X
CER  
X
OER  
X
INT  
R
(2)  
L
X
X
X
X
X
L
L
Set Right INT Flag  
R
(3)  
X
X
X
L
L
FFFF  
FFFE  
X
H
Reset Right INT Flag  
R
(3)  
X
X
X
L
L
X
X
Set Left INT Flag  
L
(2)  
L
L
FFFE  
H
X
X
X
X
Reset Left INT Flag  
L
4841 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTL and INTR must be initialized at power-up.  
5. Refer to Chip Enable Truth Table.  
13  
6.42  
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table V —Address BUSY  
Arbitration(4)  
Inputs  
Outputs  
0L 15L  
A -A  
(1)  
0R 15R  
A -A  
Function  
Normal  
Normal  
Normal  
Write  
CEL CER  
BUSYL(1)  
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
MATCH  
H
H
MATCH  
(2)  
(2)  
(3)  
Inhibit  
4841 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT7018 are  
push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. Refer to Chip Enable Truth Table.  
Truth Table VI — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0 - D8 Left  
D0 - D8 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
NOTES:  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
4841 tbl 18  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7018.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O8). These eight semaphores are addressed by A0-A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
TheIDT7018providestwoportswithseparatecontrol,addressand (INTL) is asserted when the right port writes to memory location FFFE  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation (HEX), where a write is defined as CER = R/WR = VIL per Truth Table  
inmemory.TheIDT7018hasanautomaticpowerdownfeaturecontrolled IV. The leftportclears the interruptthroughaccess ofaddress location  
by CE. The CE0 and CE1 control the on-chip power down circuitry that FFFE when CEL = OEL = VIL, R/W is a "don't care". Likewise, the right  
permitstherespectiveporttogointoastandbymodewhennotselected portinterruptflag(INTR)isassertedwhentheleftportwritestomemory  
(CE=HIGH).Whenaportisenabled,accesstotheentirememoryarray locationFFFF(HEX)andtocleartheinterruptflag(INTR),therightport  
ispermitted.  
mustreadthememorylocationFFFF. Themessage(9bits)atFFFEor  
FFFF is user-defined since it is an addressable SRAM location. If the  
interruptfunctionisnotused,addresslocationsFFFEandFFFFarenot  
usedasmailboxes,butaspartoftherandomaccessmemory.Referto  
TableIVfortheinterruptoperation.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)is assignedtoeachport. Theleftportinterruptflag  
14  
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisbusy.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
anduse anyBUSYindicationas aninterruptsource toflagthe eventof  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
TheBUSYoutputsontheIDT7018RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate.Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
can result in a glitched internal write inhibit signal and corrupted data  
in the slave.  
Semaphores  
TheIDT7018isanextremelyfastDual-Port64Kx9CMOSStaticRAM  
withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesignerssoftware.Asanexample,thesemaphorecanbe  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
The Dual-PortRAMfeatures a fastaccess time, andbothports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslows theaccess timeoftherightport.Bothports are  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chippowerdowncircuitrythatpermits the respective porttogointo  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table II where CE and SEM are both HIGH.  
16  
A
CE0  
CE0  
MASTER  
SLAVE  
Dual Port RAM  
Dual Port RAM  
BUSYL  
BUSYR  
BUSYL  
BUSYR  
SystemswhichcanbestusetheIDT7018containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
software controlled or software intensive. These systems can benefit  
from a performance increase offered by the IDT7018s hardware  
semaphores, which provide a lockout mechanism without requiring  
complexprogramming.  
CE1  
CE1  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSYL BUSYR  
BUSYL  
BUSYR  
,
4841 drw 17  
Softwarehandshakingbetweenprocessors offers themaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7018doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT7018 RAMs.  
WidthExpansionBusyLogic  
Master/SlaveArrays  
WhenexpandinganIDT7018RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMsarraywill  
receivea BUSYindication,andtooutputthatindication.Anynumberof  
slaves to be addressed in the same address range as the master, use  
the BUSYsignalasawriteinhibitsignal.ThusontheIDT7018RAMthe  
BUSYpinisanoutputifthepartisusedasamaster(M/Spin=VIH),and  
theBUSYpinisaninputifthepartusedasaslave(M/Spin=VIL)as shown  
in Figure 3.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,is basedonthechipenableand  
address signals only. Itignores whetheranaccess is a readorwrite. In  
a master/slave array, both address and chip enable must be valid long  
enough for a BUSYflag to be output from the master before the actual  
writepulsecanbeinitiatedwiththeR/Wsignal.Failuretoobservethistiming  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
thatsemaphoresstatusorremoveitsrequestforthatsemaphoretoperform  
15  
6.42  
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
anothertaskandoccasionallyattemptagaintogaincontrolofthetokenvia side during subsequent read. Had a sequence of READ/WRITE been  
thesetandtestsequence.Oncetherightsidehasrelinquishedthetoken, usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
theleftsideshouldsucceedingainingcontrol.  
gap between the read and write cycles.  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites byeitherrepeatedreadsorbywritingaoneintothesamelocation.The  
aonetothatlatch. reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
The eightsemaphore flags reside withinthe IDT7018ina separate ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
memoryspacefromtheDual-PortRAM.Thisaddressspaceisaccessed into a semaphore flag. Whichever latch is first to present a zero to the  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
semaphore flags) and using the other control pins (Address, CE, and sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
R/W)as theywouldbeusedinaccessingastandardStaticRAM.Each semaphorerequestlatch.Shouldtheothersidessemaphorerequestlatch  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof  
theotheraddresspinshasanyeffect.  
L PORT  
R PORT  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
onthatsideandaoneontheotherside(seeTableVI).Thatsemaphore  
can now only be modified by the side showing the zero. When a one is  
writtenintothesamelocationfromthesameside,theflagwillbesettoa  
one for both sides (unless a semaphore request from the other side is  
pending)andthencanbewrittentobybothsides.Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTable  
VI). As anexample, assume a processorwrites a zerotothe leftportat  
afreesemaphorelocation.Onasubsequentread,theprocessorwillverify  
thatithaswrittensuccessfullytothatlocationandwillassumecontrolover  
the resource in question. Meanwhile, if a processor on the right side  
attempts towriteazerotothesamesemaphoreflagitwillfail,as willbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
D0  
D0  
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
4841 drw 18  
Figure 4. IDT7018 Semaphore Logic  
overtotheothersideassoonasaoneiswrittenintothefirstsidesrequest  
latch.ThesecondsidesflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requestedandthe processorwhichrequesteditnolongerneeds the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
The criticalcase ofsemaphore timingis whenbothsides requesta  
single token by attempting to write a zero into it at the same time. The  
semaphore logic is specially designed to resolve this problem. If  
simultaneousrequestsaremade,thelogicguaranteesthatonlyoneside  
receives the token. If one side is earlier than the other in making the  
request,thefirstsidetomaketherequestwillreceivethetoken.Ifboth  
requestsarriveatthesametime,theassignmentwillbearbitrarilymade  
to one port or the other.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
ormisinterpreted, a software errorcaneasilyhappen.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
16  
IDT7018L  
High-Speed 64K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
Commercial (0 C to +70 C)  
°
°
I(1)  
Industrial (-40 C to +85 C)  
°
°
PF  
100-pin TQFP (PN100-1)  
Commercial Only  
Commercial Only  
15  
20  
Speed in  
nanoseconds  
Low Power  
L
576K (64K x 9) Dual-Port RAM  
7018  
4841 drw 19  
NOTE:  
1. Industrial temperature range is available.  
For specific speeds, packages and powers contact your sales office.  
DatasheetDocumentHistory  
9/30/99:  
11/10/99:  
1/12/01:  
InitialPublicRelease  
Replaced IDT logo  
Page 3 Increasedstoragetemperatureparameter  
ClaraifiedTAparameter  
Page 5 DCElectricalparameterschangedwordingfrom"open"to"disabled"  
Page 14 Added IV to Truth Table in "Interrupts" paragraph  
Changed±200mVto0mVinnotes  
RemovedPreliminarystatus  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
17  
6.42  

相关型号:

IDT7019L15PF

x9 Dual-Port SRAM
ETC

IDT7019L15PF9

Dual-Port SRAM, 128KX9, 15ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT

IDT7019L20PF

Dual-Port SRAM, 128KX9, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT

IDT7019L20PF9

Dual-Port SRAM, 128KX9, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT

IDT7019L20PFI

Dual-Port SRAM, 128KX9, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT

IDT7019L20PFI8

Dual-Port SRAM, 128KX9, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT

IDT7024

HIGH-SPEED 4K x 16 DUAL-PORT STATIC RAM
IDT

IDT7024L

HIGH-SPEED 4K x 16 DUAL-PORT STATIC RAM
IDT

IDT7024L15F

HIGH-SPEED 4K x 16 DUAL-PORT STATIC RAM
IDT

IDT7024L15FB

HIGH-SPEED 4K x 16 DUAL-PORT STATIC RAM
IDT

IDT7024L15FG

Dual-Port SRAM, 4KX16, 15ns, CMOS, 1.170 X 1.170 INCH, 0.110 INCH HEIGHT, GREEN, QFP-84
IDT

IDT7024L15G

HIGH-SPEED 4K x 16 DUAL-PORT STATIC RAM
IDT