ICS8737-11T [IDT]

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20;
ICS8737-11T
型号: ICS8737-11T
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20

驱动 光电二极管 逻辑集成电路
文件: 总16页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, ÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
GENERAL DESCRIPTION  
FEATURES  
The ICS8737-11 is a low skew, high performance 2 divide by 1 differential 3.3V LVPECL outputs;  
ICS  
Differential-to-3.3V LVPECL Clock Generator/  
Divider and a member of the HiPerClockS™  
family of High Performance Clock Solutions from  
ICS. The ICS8737-11 has two selectable clock  
2 divide by 2 differential 3.3V LVPECL outputs  
HiPerClockS™  
Selectable differential CLK, nCLK or LVPECL clock inputs  
CLK, nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL  
inputs.The CLK, nCLK pair can accept most standard differ-  
ential input levels. The PCLK, nPCLK pair can accept  
LVPECL, CML, or SSTL input levels.The clock enable is  
internally synchronized to eliminate runt pulses on the  
outputs during asynchronous assertion/deassertion of the  
clock enable pin.  
PCLK, nPCLK supports the following input types:  
LVPECL, CML, SSTL  
Maximum output frequency: 650MHz  
Translates any single ended input signal (LVCMOS, LVTTL,  
GTL) to LVPECL levels with resistor bias on nCLK input  
Guaranteed output and part-to-part skew characteristics  
make the ICS8737-11 ideal for clock distribution applications  
demanding well defined performance and repeatability.  
Output skew: 60ps (maximum)  
Part-to-part skew: 200ps (maximum)  
Bank skew: Bank A - 20ps (maximum),  
Bank B - 35ps (maximum)  
Additive phase jitter, RMS: 0.04ps (typical)  
Propagation delay: 1.7ns (maximum)  
3.3V operating supply  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
QA0  
nQA0  
VEE  
CLK_EN  
CLK_SEL  
CLK  
nCLK  
PCLK  
nPCLK  
nc  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
QA0  
nQA0  
VCC  
QA1  
nQA1  
QB0  
nQB0  
VCC  
D
CLK_EN  
QA1  
nQA1  
Q
LE  
CLK  
nCLK  
PCLK  
÷1  
÷2  
0
1
nPCLK  
MR  
VCC  
9
10  
QB1  
nQB1  
QB0  
nQB0  
CLK_SEL  
MR  
ICS8737-11  
QB1  
nQB1  
20-LeadTSSOP  
6.50mm x 4.40mm x 0.92 package body  
G Package  
TopView  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
1
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, ÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1
VEE  
Power  
Power  
Negative supply pin.  
Synchronizing clock enable. When HIGH, clock outputs follow clock input.  
When LOW, Q outputs are forced low, nQ outputs are forced high.  
LVCMOS / LVTTL interface levels.  
Clock Select input. When HIGH, selects PCLK, nPCLK inputs.  
When LOW, selects CLK, nCLK inputs. LVCMOS / LVTTL interface levels.  
2
CLK_EN  
Pullup  
Pulldown  
3
CLK_SEL  
Input  
4
5
6
7
8
CLK  
nCLK  
PCLK  
nPCLK  
nc  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential LVPECL clock input.  
Input  
Input  
Pullup  
Inverting differential LVPECL clock input.  
No connect.  
Unused  
Active HIGH Master Reset. When logic HIGH, the internal dividers  
are reset causing the true outputs QXx to go low and the inverted outputs  
nQXx to go high. When logic LOW, the internal dividers and the outputs  
are enabled. LVCMOS / LVTTL interface levels.  
9
MR  
VCC  
Input  
Pulldown  
10, 13, 18  
11, 12  
Power  
Positive supply pins.  
nQB1, QB1 Output  
nQB0, QB0 Output  
nQA1, QA1 Output  
nQA0, QA0 Output  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
14, 15  
16, 17  
19, 20  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
CIN  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
K  
RPULLDOWN Input Pulldown Resistor  
KΩ  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
2
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, ÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
Outputs  
MR CLK_EN CLK_SEL Selected Source  
QA0, QA1  
LOW  
nQA0, nQA1  
HIGH  
QB0, QB1  
LOW  
nQB0, nQB1  
HIGH  
1
0
0
0
0
X
0
0
1
1
X
0
1
0
1
X
CLK, nCLK  
PCLK, nPCLK  
CLK, nCLK  
PCLK, nPCLK  
Disabled; LOW  
Disabled; LOW  
Enabled  
Disabled; HIGH  
Disabled; HIGH  
Enabled  
Disabled; LOW  
Disabled; LOW  
Enabled  
Disabled; HIGH  
Disabled; HIGH  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge  
as shown if Figure 1.  
In the active mode, the state of the outputs are a function of the CLK , nCLK and PCLK, nPCLK inputs as described  
in Table 3B.  
Enabled  
Disabled  
nCLK, nPCLK  
CLK, PCLK  
CLK_EN  
nQA0, nQA1,  
nQB0, nQB1  
QA0, QA1,  
QB0, QB1  
FIGURE 1. CLK_EN TIMING DIAGRAM  
TABLE 3B. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
Input to Output Mode  
Polarity  
CLK or PCLK  
nCLK or nPCLK  
QAx  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
nQAx  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
QBx  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
nQBx  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
0
0
Differential to Differential  
Differential to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
1
0
Biased; NOTE 1  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
Inverting  
NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels".  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
3
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, ÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
73.2°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Positive Supply Voltage  
Power Supply Current  
3.135  
3.3  
3.465  
50  
V
IEE  
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VIH  
VIL  
CLK_EN, CLK_SEL, MR  
CLK_EN, CLK_SEL, MR  
2
3.765  
0.8  
V
-0.3  
V
CLK_EN  
VIN = VCC = 3.465V  
VIN = VCC = 3.465V  
5
µA  
µA  
µA  
µA  
IIH  
Input High Current  
Input Low Current  
CLK_SEL, MR  
CLK_EN  
150  
VIN = 0V, VCC = 3.465V  
VIN = 0V, VCC = 3.465V  
-150  
-5  
IIL  
CLK_SEL,MR  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VIN = VCC = 3.465V  
VIN = VCC = 3.465V  
VIN = 0V, VCC = 3.465V  
Minimum Typical Maximum Units  
nCLK  
CLK  
5
µA  
µA  
µA  
µA  
V
150  
nCLK  
CLK  
-150  
-5  
IIL  
Input Low Current  
V
IN = 0V, VCC = 3.465V  
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
V
EE + 0.5  
VCC - 0.85  
V
NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is VCC + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
4
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW,  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
VIN = VCC = 3.465V  
VIN = VCC = 3.465V  
IN = 0V, VCC = 3.465V  
Minimum Typical  
Maximum Units  
150  
5
µA  
µA  
µA  
µA  
V
IIH Input High Current  
V
-5  
IIL  
Input Low Current  
VIN = 0V, VCC = 3.465V  
-150  
VPP  
Peak-to-Peak Input Voltage  
0.3  
1
VCMR  
VOH  
Common Mode Input Voltage; NOTE 1, 2  
Output High Voltage; NOTE 3  
VEE + 1.5  
VCC - 1.4  
VCC - 2.0  
0.65  
VCC  
V
VCC - 1.0  
VCC - 1.7  
0.9  
V
VOL  
Output Low Voltage; NOTE 3  
V
VSWING  
Peak-to-Peak Output Voltage Swing  
V
NOTE 1: Common mode voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for PCLK, nPCLK is VCC + 0.3V.  
NOTE 3: Outputs terminated with 50to VCC - 2V.  
TABLE 5. AC CHARACTERISTICS, VCC = 3.3V 5ꢀ, TA = 0°C TO 70°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fMAX  
Output Frequency  
650  
1.7  
1.6  
60  
MHz  
ns  
CLK, nCLK  
1.3  
1.2  
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
Bank Skew; NOTE 4  
ƒ650MHz  
PCLK, nPCLK  
ns  
tsk(o)  
tsk(b)  
ps  
Bank A  
Bank B  
20  
ps  
35  
ps  
tsk(pp)  
tjit  
Part-to-Part Skew; NOTE 3, 4  
200  
ps  
Buffer Additive Phase Jitter, RMS; refer to  
Additive Phase Jitter Section, NOTE 5  
0.04  
50  
ps  
tR  
Output Rise Time  
Output Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ @ 50MHz  
20ꢀ to 80ꢀ @ 50MHz  
300  
300  
48  
700  
700  
52  
ps  
ps  
tF  
odc  
All parameters measured at 500MHz unless noted otherwise.  
The cycle-to-cycle jitter on the input will equal the jitter on the output. The part does not add jitter.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 5: Driving only one input clock.  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
5
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, ÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
ADDITIVE PHASE JITTER  
the 1Hz band to the power in the fundamental. When the re-  
quired offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the funda-  
mental. By investigating jitter in the frequency domain, we get a  
better understanding of its effects on the desired application over  
the entire time record of the signal. It is mathematically possible  
to calculate an expected bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the funda-  
mental compared to the power of the fundamental is called the  
dBc Phase Noise. This value is normally expressed using a  
Phase noise plot and is most often the specified plot in many  
applications. Phase noise is defined as the ratio of the noise  
power present in a 1Hz band at a specified offset from the fun-  
damental frequency to the power value of the fundamental.This  
ratio is expressed in decibels (dBm) or a ratio of the power in  
0
Input/Output Additive  
Phase Jitter at 155.52MHz  
= 0.04ps typical  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
100  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measurements vice meets the noise floor of what is shown, but can actually be  
have issues.The primary issue relates to the limitations of the lower. The phase noise is dependant on the input source and  
equipment. Often the noise floor of the equipment is higher than measurement equipment.  
the noise floor of the device. This is illustrated above. The de-  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
6
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW,  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
PARAMETER MEASUREMENT INFORMATION  
2V  
VCC  
SCOPE  
VCC  
Qx  
nCLK,  
nPCLK  
VPP  
VCMR  
Cross Points  
LVPECL  
CLK,  
PCLK  
nQx  
VEE  
VEE  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
PART 1  
nQx  
nQx  
Qx  
Qx  
PART 2  
nQy  
nQy  
Qy  
Qy  
tsk(pp)  
tsk(o)  
PART-TO-PART SKEW  
OUTPUT SKEW  
nCLK,  
nPCLK  
CLK,  
PCLK  
80ꢀ  
tF  
80ꢀ  
VSWING  
Clock  
20ꢀ  
20ꢀ  
nQAx,  
nQBx  
Outputs  
tR  
QAx,  
QBx  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
nQAx,  
nQBx  
QAx,  
QBx  
Pulse Width  
tPERIOD  
tPW  
odc =  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
7
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, ÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF ~ VCC/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit should be located as close as possible to the input pin.The ratio of  
R1 and R2 might need to be adjusted to position theV_REF in the center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.  
VCC  
R1  
1K  
CLK_IN  
+
V_REF  
-
C1  
0.1uF  
R2  
1K  
FIGURE 2. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
50transmission lines. Matched impedance techniques should  
be used to maximize operating frequency and minimize signal  
distortion. Figures 3A and 3B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that gen-  
erate ECL/LVPECL compatible outputs.Therefore, terminating  
resistors (DC current path to ground) or current sources must  
be used for functionality. These outputs are designed to drive  
3.3V  
Zo = 50  
125  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
8
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW,  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL here are examples only. Please consult with the vendor of the  
and other differential signals.BothVSWING andVOH must meet the driver component to confirm the driver termination requirements.  
VPP and VCMR input requirements. Figures 4A to 4E show inter- For example in Figure 4A, the input termination applies for ICS  
face examples for the HiPerClockS CLK/nCLK input driven by HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver  
the most common driver types.The input interfaces suggested from another vendor, use their termination recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
Input  
LVPECL  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
R1  
50  
R2  
50  
LVHSTL Driver  
R3  
50  
FIGURE 4A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
ICS HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
3.3V  
R3  
125  
R4  
125  
LVDS_Driver  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
R1  
100  
nCLK  
Receiv er  
nCLK  
HiPerClockS  
Input  
Zo = 50 Ohm  
LVPECL  
R1  
84  
R2  
84  
FIGURE 4C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER  
FIGURE 4D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY  
3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
nCLK  
HiPerClockS  
Input  
R5  
100 - 200  
R6  
100 - 200  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 4E. HIPERCLOCKS CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
9
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW,  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
LVPECL CLOCK INPUT INTERFACE  
The PCLK /nPCLK accepts LVPECL, CML, SSTL and other here are examples only. If the driver is from another vendor,  
differential signals. Both VSWING and VOH must meet the VPP and use their termination recommendation. Please consult with the  
VCMR input requirements. Figures 5A to 5E show interface ex- vendor of the driver component to confirm the driver termina-  
amples for the HiPerClockS PCLK/nPCLK input driven by the tion requirements.  
most common driver types. The input interfaces suggested  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
3.3V  
R3  
120  
R4  
120  
R1  
50  
R2  
50  
SSTL  
Zo = 60 Ohm  
Zo = 60 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
PCLK  
nPCLK  
HiPerClockS  
nPCLK  
PCLK/nPCLK  
HiPerClockS  
PCLK/nPCLK  
R1  
120  
R2  
120  
FIGURE 5A. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A CML DRIVER  
FIGURE 5B. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY AN SSTL DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
Zo = 50 Ohm  
R3  
1K  
R4  
1K  
Zo = 50 Ohm  
Zo = 50 Ohm  
C1  
C2  
LVDS  
PCLK  
PCLK  
R5  
100  
nPCLK  
nPCLK  
Zo = 50 Ohm  
HiPerClockS  
PCLK/nPCLK  
HiPerClockS  
Input  
LVPECL  
R1  
1K  
R2  
1K  
R1  
84  
R2  
84  
FIGURE 5C. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER  
FIGURE 5D. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVDS DRIVER  
3.3V  
3.3V  
3.3V  
R3  
84  
R4  
84  
C1  
C2  
3.3V LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
PCLK  
nPCLK  
HiPerClockS  
PCLK/nPCLK  
R5  
100 - 200  
R6  
100 - 200  
R1  
125  
R2  
125  
FIGURE 5E. HIPERCLOCKS PCLK/nPCLK INPUT DRIVEN  
BY A 3.3V LVPECL DRIVER WITH AC COUPLE  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
10  
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, ÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8737-11.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8737-11 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * ICC_MAX = 3.465V * 50mA = 173.25mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 4 * 30.2mW = 120.8mW  
Total Power_MAX (3.465V, with all outputs switching) = 173.25mW + 120.8mW = 294.05mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.294W * 66.6°C/W = 89.58°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 20-PIN TSSOP, FORCED CONVECTION  
θ
by Velocity (Linear Feet per Minute)  
JA  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
11  
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW,  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
3. Calculations and Equations.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 1.0V  
OH_MAX  
CC_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
L
[(2V - 1V)/50] * 1V = 20.0mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
[(2V - 1.7V)/50] * 1.7V = 10.2mWL  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
12  
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, ÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE FOR 20 LEAD TSSOP  
θ
by Velocity (Linear Feet per Minute)  
JA  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8737-11 is: 510  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
13  
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW,  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
PACKAGE OUTLINE - G SUFFIX FOR 20 LEAD TSSOP  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
Minimum Maximum  
SYMBOL  
N
A
20  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
14  
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW,  
÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS8737AG-11  
Marking  
Package  
Count  
72  
Temperature  
0°C to 70°C  
0°C to 70°C  
ICS8737AG-11  
ICS8737AG-11  
20 lead TSSOP  
ICS8737AG-11T  
20 lead TSSOP on Tape and Reel  
2500  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
15  
ICS8737-11  
Integrated  
Circuit  
Systems, Inc.  
LOW SKEW, ÷1/÷2  
DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR  
REVISION HISTORY SHEET  
Rev  
A
Table  
Page  
Description of Change  
Date  
3
3
Updated Figure 1, CLK_EN Timing Diagram.  
Revised Figure 1, CLK_EN Timing Diagram.  
10/17/01  
10/31/01  
6/3/02  
A
A
8
2
6
Added Termination for LVPECL Outputs section.  
Pin Description Table - revised MR description.  
1
3.3V Output Load Test Circuit Diagram, revised VEE equation from  
"-1.3V 0.135V" to " -1.3V 0.165V".  
A
B
8/19/02  
7
2
2
4
5
Revised Output Rise/Fall Time Diagram.  
T1  
T2  
Pin Description Table - revised MR description.  
Pin Characteristics Table - changed CIN 4pF max. to 4pF typical.  
Absolute Maximum Ratings, updated Output rating.  
AC Characteristics Table - added Additive Phase Jitter.  
Added Additive Phase Jitter Section.  
T5  
6
2/3/04  
8
9
10  
Updated LVPECL Output Termination drawings.  
Added Differential Clock Input Interface section.  
Added LVPECL Clock Input Interface section.  
Updated format throughout the data sheet.  
8737AG-11  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 4, 2004  
16  

相关型号:

ICS8737-11T-LF

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS8737AG-11

LOW SKEW ±1/±2 DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR
ICSI

ICS8737AG-11LF

Low Skew Clock Driver, 8737 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, LEAD FREE, MO-153, TSSOP-20
IDT

ICS8737AG-11T

LOW SKEW ±1/±2 DIFFERENTIAL-TO- 3.3V LVPECL CLOCK GENERATOR
ICSI

ICS8737AGI-11

Low Skew Clock Driver, 8737 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS8737AGI-11LF

Low Skew Clock Driver, 8737 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

ICS8737AGI-11LFT

Low Skew Clock Driver, 8737 Series, 4 True Output(s), 0 Inverted Output(s), PDSO20, 6.50 X 4.40 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-20
IDT

ICS8737AGT-11

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), CMOS, PDSO20, MO-153, TSSOP-20
IDT

ICS8737AGT-11LF

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, MO-153, TSSOP-20
IDT

ICS873990

LOW VOLTAGE, LVCMOS/ CRYSTAL-TO-LVPECL/ECL CLOCK GENERATOR
ICSI

ICS873990AY

LOW VOLTAGE, LVCMOS/ CRYSTAL-TO-LVPECL/ECL CLOCK GENERATOR
ICSI

ICS873990AYLF

LOW VOLTAGE, LVCMOS/ CRYSTAL-TO-LVPECL/ECL CLOCK GENERATOR
ICSI