ICS8543BGILF [IDT]

Low Skew, 1-to-4, Differential-to-LVDS Fanout Buffer; 低偏移, 1至4 ,差分至LVDS扇出缓冲器
ICS8543BGILF
型号: ICS8543BGILF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew, 1-to-4, Differential-to-LVDS Fanout Buffer
低偏移, 1至4 ,差分至LVDS扇出缓冲器

时钟驱动器 逻辑集成电路 光电二极管
文件: 总18页 (文件大小:902K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8543  
Low Skew, 1-to-4,  
Differential-to-LVDS Fanout Buffer  
DATA SHEET  
General Description  
Features  
The ICS8543 is a low skew, high performance 1-to-4  
Four differential LVDS output pairs  
Differential-to-LVDS Clock Fanout Buffer. Utilizing Low Voltage  
Differential Signaling (LVDS) the ICS8543 provides a low power, low  
noise, solution for distributing clock signals over controlled  
impedances of 100. The ICS8543 has two selectable clock inputs.  
The CLK, nCLK pair can accept most standard differential input  
levels. The PCLK, nPCLK pair can accept LVPECL, CML, or SSTL  
input levels. The clock enable is internally synchronized to eliminate  
runt pulses on the outputs during asynchronous  
Selectable differential CLK, nCLK or LVPECL clock inputs  
CLK, nCLK pair can accept the following differential input levels:  
LVPECL, LVDS, LVHSTL, SSTL, HCSL  
PCLK, nPCLK pair can accept the following differential input  
levels: LVPECL, CML, SSTL  
Maximum output frequency: 800MHz  
Translates any single-ended input signals to LVDS levels with  
resistor bias on nCLK input  
assertion/deassertion of the clock enable pin.  
Additive phase jitter, RMS: 0.164ps (typical)  
Output skew: 40ps (maximum)  
Guaranteed output and part-to-part skew characteristics make the  
ICS8543 ideal for those applications demanding well defined  
performance and repeatability.  
Part-to-part skew: 500ps (maximum)  
Propagation delay: 2.6ns (maximum)  
Full 3.3V supply mode  
0°C to 70°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Pin Assignment  
Block Diagram  
GND  
CLK_EN  
CLK_SEL  
CLK  
1
2
20 Q0  
Pullup  
CLK_EN  
D
19  
nQ0  
Q
3
4
18  
17  
VDD  
Q1  
LE  
Pulldown  
Pullup  
CLK  
nCLK  
0
nCLK  
PCLK  
nPCLK  
5
6
7
8
9
16 nQ1  
Q0  
15  
14  
13  
Q2  
nQ2  
GND  
nQ0  
Pulldown  
Pullup  
PCLK  
nPCLK  
1
Q1  
nQ1  
OE  
GND  
VDD 10  
12 Q3  
11  
nQ3  
Pulldown  
CLK_SEL  
Q2  
nQ2  
ICS8543  
Q3  
20-Lead TSSOP  
6.5mm x 4.4mm x 0.925mm  
package body  
nQ3  
Pullup  
OE  
G Package  
Top View  
ICS8543BG REVISION E DECEMBER 17, 2010  
1
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1, 9, 13  
GND  
Power  
Input  
Power supply ground.  
Synchronizing clock enable. When HIGH, clock outputs follows clock input. When  
LOW, Qx outputs are forced low, nQx outputs are forced high.  
LVCMOS / LVTTL interface levels.  
2
CLK_EN  
Pullup  
Clock select input. When HIGH, selects PCLK, nPCLK inputs.  
When LOW, selects CLK, nCLK inputs. LVCMOS / LVTTL interface levels.  
3
4
CLK_SEL  
CLK  
Input  
Input  
Pulldown  
Pulldown  
Non-inverting differential clock input.  
5
6
7
nCLK  
PCLK  
Input  
Input  
Input  
Pullup  
Pulldown  
Pullup  
Inverting differential clock input.  
Non-inverting differential LVPECL clock input.  
Inverting differential LVPECL clock input.  
nPCLK  
Output enable. Controls enabling and disabling of outputs Q[0:3], nQ[0:3].  
LVCMOS/LVTTL interface levels.  
8
OE  
Input  
Pullup  
10, 18  
11, 12  
14, 15  
16, 17  
19, 20  
VDD  
Power  
Output  
Output  
Output  
Output  
Positive supply pins.  
nQ3, Q3  
nQ2, Q2  
nQ1, Q1  
nQ0, Q0  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
RPULLUP  
RPULLDOWN  
51  
51  
k  
kΩ  
ICS8543BG REVISION E DECEMBER 17, 2010  
2
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Function Tables  
Table 3A. Control Input Function Table  
Inputs  
Outputs  
OE  
0
CLK_EN  
CLK_SEL  
Selected Source  
Q[0:3]  
Hi-Z  
nQ[0:3]  
Hi-Z  
X
0
0
1
1
X
0
1
0
1
1
CLK, nCLK  
PCLK, nPCLK  
CLK, nCLK  
Disabled; Low  
Disabled; Low  
Enabled  
Disabled; High  
Disabled; High  
Enabled  
1
1
1
PCLK, nPCLK  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in Figure 1.  
In the active mode, the state of the outputs are a function of the CLK/nCLK and PCLK/nPCLK inputs as described in Table 3B.  
Enabled  
Disabled  
nCLK, nPCLK  
CLK, PCLK  
CLK_EN  
nQ0:nQ3  
Q0:Q3  
Figure 1. CLK_EN Timing Diagram  
Table 3B. Clock Input Function Table  
Inputs  
Outputs  
CLK or PCLK  
nCLK or nPCLK  
Q[0:3]  
nQ[0:3]  
HIGH  
LOW  
Input to Output Mode  
Differential to Differential  
Differential to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Single-Ended to Differential  
Polarity  
Non-Inverting  
Non-Inverting  
Non-Inverting  
Non-Inverting  
Inverting  
0
1
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
1
0
0
Biased; NOTE 1  
HIGH  
LOW  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
LOW  
HIGH  
Inverting  
NOTE 1: Please refer to the Application Information section, Wiring the Differential Input to Accept Single-Ended Levels.  
ICS8543BG REVISION E DECEMBER 17, 2010  
3
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
Outputs, IO  
Continuos Current  
Surge Current  
10mA  
15mA  
Package Thermal Impedance, θJA  
73.2°C/W (0 lfpm)  
-65°C to 150°C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol  
VDD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
3.465  
50  
Units  
V
Positive Supply Voltage  
Power Supply Current  
3.135  
3.3  
IDD  
mA  
Table 4B. LVCMOS/LVTTL DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol  
VIH  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
3.765  
0.8  
Units  
V
Input High Voltage  
Input Low Voltage  
2
VIL  
V
OE, CLK_EN  
CLK_SEL  
V
DD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
5
µA  
µA  
µA  
µA  
IIH  
Input High Current  
Input Low Current  
150  
OE, CLK_EN  
CLK_SEL  
V
-150  
-5  
IIL  
VDD = 3.465V, VIN = 0V  
ICS8543BG REVISION E DECEMBER 17, 2010  
4
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Table 4C. Differential DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
µA  
µA  
µA  
µA  
V
CLK  
V
DD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
150  
5
IIH Input High Current  
nCLK  
CLK  
V
-5  
IIL  
Input Low Current  
nCLK  
VDD = 3.465V, VIN = 0V  
-150  
0.15  
VPP  
Peak-to-Peak Voltage; NOTE 1  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
0.5  
VDD – 0.85  
V
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode input voltage is defined as VIH.  
Table 4D. LVPECL DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
VDD = VIN = 3.465V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
DD = 3.465V, VIN = 0V  
Minimum  
Typical  
Maximum  
Units  
µA  
µA  
µA  
µA  
V
PCLK  
150  
5
IIH Input High Current  
nPCLK  
PCLK  
V
V
-5  
IIL  
Input Low Current  
nPCLK  
-150  
0.3  
VPP  
Peak-to-Peak Voltage  
1.0  
Common Mode Input Voltage;  
NOTE 1  
VCMR  
1.5  
VDD  
V
NOTE 1: Common mode input voltage is defined as VIH.  
Table 4E. LVDS DC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol  
VOD  
Parameter  
Test Conditions  
Minimum  
Typical  
280  
0
Maximum  
360  
40  
Units  
mV  
mV  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
200  
VOD  
VOS  
1.125  
1.25  
5
1.375  
25  
VOS  
IOz  
VOS Magnitude Change  
High Impedance Leakage  
Power Off Leakage  
mV  
µA  
µA  
mA  
mA  
V
-10  
-20  
+10  
+20  
-5  
IOFF  
IOSD  
IOS  
1
Differential Output Short Circuit Current  
Output Short Circuit Current  
Output Voltage High  
-3.5  
-3.5  
1.34  
1.06  
-5  
VOH  
1.6  
VOL  
Output Voltage Low  
0.9  
V
ICS8543BG REVISION E DECEMBER 17, 2010  
5
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
AC Electrical Characteristics  
Table 5. AC Characteristics, VDD = 3.3V 5%, TA = 0°C to 70°C  
Symbol Parameter  
fMAX Maximum Output Frequency  
tPD  
Test Conditions  
Minimum  
Typical  
Maximum  
800  
Units  
MHz  
ns  
Propagation Delay; NOTE 1  
ƒ800MHz  
1.7  
2.6  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter Section  
153.6MHz, Integration Range:  
12kHz – 20MHz  
tjit  
0.164  
ps  
tsk(o)  
tsk(pp)  
tR / tF  
odc  
Output Skew; NOTE 2, 4  
Part-to-Part Skew; NOTE 3, 4  
Output Rise/Fall Time  
40  
500  
350  
55  
ps  
ps  
ps  
%
20% to 80% @ 50MHz  
150  
45  
Output Duty Cycle odc  
50  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE: All parameters measured at 500MHz unless noted otherwise.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential output  
cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and  
with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
ICS8543BG REVISION E DECEMBER 17, 2010  
6
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Additive Phase Jitter  
The spectral purity in a band at a specific offset from the fundamental  
compared to the power of the fundamental is called the dBc Phase  
Noise. This value is normally expressed using a Phase noise plot  
and is most often the specified plot in many applications. Phase noise  
is defined as the ratio of the noise power present in a 1Hz band at a  
specified offset from the fundamental frequency to the power value of  
the fundamental. This ratio is expressed in decibels (dBm) or a ratio  
of the power in the 1Hz band to the power in the fundamental. When  
the required offset is specified, the phase noise is called a dBc value,  
which simply means dBm at a specified offset from the fundamental.  
By investigating jitter in the frequency domain, we get a better  
understanding of its effects on the desired application over the entire  
time record of the signal. It is mathematically possible to calculate an  
expected bit error rate given a phase noise plot.  
Additive Phase Jitter @ 153.6MHz  
12kHz to 20MHz = 0.164ps (typical)  
Offset from Carrier Frequency (Hz)  
As with most timing specifications, phase noise measurements has  
issues relating to the limitations of the equipment. Often the noise  
floor of the equipment is higher than the noise floor of the device. This  
is illustrated above. The device meets the noise floor of what is  
shown, but can actually be lower. The phase noise is dependent on  
the input source and measurement equipment.  
ICS8543BG REVISION E DECEMBER 17, 2010  
7
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Parameter Measurement Information  
V
DD  
SCOPE  
Qx  
nCLK,  
nPCLK  
V
DD  
3.3V 5%  
POWER SUPPLY  
VPP  
VCMR  
Cross Points  
+
Float GND –  
LVDS  
CLK,  
PCLK  
nQx  
GND  
3.3V LVDS Output Load AC Test Circuit  
Differential Input Level  
V
DD  
nQx  
Qx  
nQ[0:3]  
VOD  
Cross Points  
nQy  
Q[0:3]  
GND  
Qy  
VOS  
tsk(o)  
Differential Output Level  
Output Skew  
Part 1  
nQx  
nCLK,  
nPCLK  
Qx  
CLK,  
PCLK  
Part 2  
nQy  
nQ[0:3]  
Qy  
Q[0:3]  
tsk(pp)  
tPD  
Part-to-Part Skew  
Propagation Delay  
ICS8543BG REVISION E DECEMBER 17, 2010  
8
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Parameter Measurement Information, continued  
nQ[0:3]  
Q[0:3]  
nQ[0:3]  
80%  
tF  
80%  
tR  
tPW  
VOD  
20%  
tPERIOD  
20%  
Q[0:3]  
tPW  
odc =  
x 100%  
tPERIOD  
Output Rise/Fall Time  
Output Duty Cycle/Pulse Width/Period  
VDD  
VDD  
out  
out  
out  
DC Input  
LVDS  
LVDS  
V
OD/VOD  
DC Input  
100  
out  
VOS/VOS  
Offset Voltage Setup  
Differential Output Voltage Setup  
VDD  
out  
out  
IOZ  
3.3V 5% POWER SUPPLY  
Float GND  
DC Inpu  
t
LVDS  
_
+
IOSD  
DC Input  
LVDS  
out  
out  
IOZ  
High Impedance Leakage Current Setup  
Differential Output Short Circuit Setup  
ICS8543BG REVISION E DECEMBER 17, 2010  
9
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Parameter Measurement Information, continued  
VDD  
out  
IOS  
DC Input  
LVDS  
LVDS  
VDD  
IOSB  
out  
IOFF  
Output Short Circuit Current Setup  
Power Off Leakage Setup  
Applications Information  
Wiring the Differential Input to Accept Single-Ended Levels  
Figure 2 shows how a differential input can be wired to accept single  
ended levels. The reference voltage VREF = VCC/2 is generated by  
the bias resistors R1 and R2. The bypass capacitor (C1) is used to  
help filter noise on the DC bias. This bias circuit should be located as  
close to the input pin as possible. The ratio of R1 and R2 might need  
to be adjusted to position the VREF in the center of the input voltage  
swing. For example, if the input clock swing is 2.5V and VDD = 3.3V,  
R1 and R2 value should be adjusted to set VREF at 1.25V. The values  
below are for when both the single ended swing and VDD are at the  
same voltage. This configuration requires that the sum of the output  
impedance of the driver (Ro) and the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination at  
the input will attenuate the signal in half. This can be done in one of  
two ways. First, R3 and R4 in parallel should equal the transmission  
line impedance. For most 50applications, R3 and R4 can be 100.  
The values of the resistors can be increased to reduce the loading for  
slower and weaker LVCMOS driver. When using single-ended  
signaling, the noise rejection benefits of differential signaling are  
reduced. Even though the differential input can handle full rail  
LVCMOS signaling, it is recommended that the amplitude be  
reduced. The datasheet specifies a lower differential amplitude,  
however this only applies to differential signals. For single-ended  
applications, the swing can be larger, however VIL cannot be less  
than -0.3V and VIH cannot be more than VDD + 0.3V. Though some  
of the recommended components might not be used, the pads  
should be placed in the layout. They can be utilized for debugging  
purposes. The datasheet specifications are characterized and  
guaranteed by using a differential signal.  
Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels  
ICS8543BG REVISION E DECEMBER 17, 2010  
10  
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
3.3V Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and  
other differential signals. Both VSWING and VOH must meet the VPP  
and VCMR input requirements. Figures 3A to 3F show interface  
examples for the CLK/nCLK input driven by the most common driver  
types. The input interfaces suggested here are examples only.  
Please consult with the vendor of the driver component to confirm the  
driver termination requirements. For example, in Figure 3A, the input  
termination applies for IDT open emitter LVHSTL drivers. If you are  
using an LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
Zo = 50Ω  
nCLK  
nCLK  
Differential  
Input  
LVPECL  
Differential  
Input  
LVHSTL  
R1  
50Ω  
R2  
50Ω  
R1  
50Ω  
R2  
50Ω  
IDT  
LVHSTL Driver  
R2  
50Ω  
Figure 3A. CLK/nCLK Input Driven by an  
IDT Open Emitter LVHSTL Driver  
Figure 3B. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
3.3V  
125Ω  
125Ω  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100Ω  
nCLK  
nCLK  
Differential  
Input  
Zo = 50Ω  
LVPECL  
Receiver  
LVDS  
R1  
84Ω  
R2  
84Ω  
Figure 3C. CLK/nCLK Input Driven by a  
3.3V LVPECL Driver  
Figure 3D. CLK/nCLK Input Driven by a 3.3V LVDS Driver  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120Ω  
120Ω  
Zo = 50Ω  
Zo = 60Ω  
Zo = 60Ω  
*R3  
*R4  
33Ω  
33Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
nCLK  
Differential  
Input  
Differential  
Input  
SSTL  
HCSL  
R1  
50Ω  
R2  
50Ω  
R1  
120Ω  
R2  
120Ω  
*Optional – R3 and R4 can be 0Ω  
Figure 3E. CLK/nCLK Input Driven by a  
3.3V HCSL Driver  
Figure 3F. CLK/nCLK Input Driven by a 2.5V SSTL Driver  
ICS8543BG REVISION E DECEMBER 17, 2010  
11  
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
3.3V LVPECL Clock Input Interface  
The PCLK/nPCLK accepts LVPECL, CML, SSTL and other  
The input interfaces suggested here are examples only. If the driver  
is from another vendor, use their termination recommendation.  
Please consult with the vendor of the driver component to confirm the  
driver termination requirements.  
differential signals. Both VSWING and VOH must meet the VPP and  
VCMR input requirements. Figures 4A to 4E show interface examples  
for the PCLK/nPCLK input driven by the most common driver types.  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50Ω  
3.3V  
R1  
R2  
50Ω  
50Ω  
PCLK  
Zo = 50Ω  
Zo = 50Ω  
R1  
100Ω  
PCLK  
nPCLK  
Zo = 50Ω  
LVPECL  
nPCLK  
CML Built-In Pullup  
Input  
LVPECL  
Input  
CML  
Figure 4B. PCLK/nPCLK Input Driven by a  
Built-In Pullup CML Driver  
Figure 4A. PCLK/nPCLK Input Driven by a CML Driver  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
C1  
C2  
Zo = 50Ω  
Zo = 50Ω  
125Ω  
125Ω  
3.3V LVPECL  
PCLK  
Zo = 50Ω  
Zo = 50Ω  
PCLK  
VBB  
nPCLK  
LVPECL  
Input  
nPCLK  
R5  
R6  
R1  
50Ω  
R2  
50Ω  
LVPECL  
Input  
100- 200100- 200Ω  
LVPECL  
R1  
R2  
84Ω  
84Ω  
Figure 4D. PCLK/nPCLK Input Driven by a  
3.3V LVPECL Driver with AC Couple  
Figure 4C. PCLK/nPCLK Input Driven by a  
3.3V LVPECL Driver  
2.5V  
3.3V  
2.5V  
R3  
R4  
120  
120  
Zo = 60Ω  
Zo = 60Ω  
PCLK  
nPCLK  
LVPECL  
Input  
SSTL  
R1  
120  
R2  
120  
Figure 4E. PCLK/nPCLK Input Driven by a  
2.5V SSTL Driver  
ICS8543BG REVISION E DECEMBER 17, 2010  
12  
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
CLK/nCLK INPUTS  
LVDS Outputs  
For applications not requiring the use of the differential input, both  
CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to ground.  
All unused LVDS outputs should be terminated with 100resistor  
between the differential pair.  
PCLK/nPCLK INPUTS  
For applications not requiring the use of the differential input, both  
PCLK and nPCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from PCLK to  
ground.  
LVCMOS Control Pins  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
LVDS Driver Termination  
A general LVDS interface is shown in Figure 5. Standard termination  
for LVDS type output structure requires both a 100parallel resistor  
at the receiver and a 100differential transmission line environment.  
In order to avoid any transmission line reflection issues, the 100Ω  
resistor must be placed as close to the receiver as possible. IDT  
offers a full line of LVDS compliant devices with two types of output  
structures: current source and voltage source. The standard  
termination schematic as shown in Figure 5 can be used with either  
type of output structure. If using a non-standard termination, it is  
recommended to contact IDT and confirm if the output is a current  
source or a voltage source type structure. In addition, since these  
outputs are LVDS compatible, the amplitude and common mode  
input range of the input receivers should be verified for compatibility  
with the output.  
+
LVDS  
Receiver  
LVDS Driver  
100  
100Differential Transmission Line  
Figure 5. Typical LVDS Driver Termination  
ICS8543BG REVISION E DECEMBER 17, 2010  
13  
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS8543.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8543 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.  
Power (core)MAX = VDD_MAX * IDD_MAX = 3.465V * 50mA = 173.25mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 73.2°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.173W * 73.2°C/W = 82.7°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 6. Thermal Resitance θJA for 20 Lead TSSOP, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
ICS8543BG REVISION E DECEMBER 17, 2010  
14  
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Reliability Information  
Table 7. θJA vs. Air Flow Table for a 20 Lead TSSOP  
θJA by Velocity  
0
Linear Feet per Minute  
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
98.0°C/W  
66.6°C/W  
88.0°C/W  
63.5°C/W  
Transistor Count  
The transistor count for ICS8543 is: 636  
Package Outline and Package Dimensions  
Package Outline - G Suffix for 20 Lead TSSOP  
Table 8. Package Dimensions  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
20  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
c
D
E
6.40 Basic  
E1  
e
4.30  
4.50  
0.65 Basic  
L
0.45  
0°  
0.75  
8°  
α
aaa  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
ICS8543BG REVISION E DECEMBER 17, 2010  
15  
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Ordering Information  
Table 9. Ordering Information  
Part/Order Number  
8543BG  
8543BGT  
8543BGLF  
8543BGLFT  
Marking  
ICS8543BG  
ICS8543BG  
ICS8543BGLF  
ICS8543BGLF  
Package  
20 Lead TSSOP  
20 Lead TSSOP  
Shipping Packaging  
Tube  
2500 Tape & Reel  
Tube  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
“Lead-Free” 20 Lead TSSOP  
“Lead-Free” 20 Lead TSSOP  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product  
for use in life support devices or critical medical instruments.  
ICS8543BG REVISION E DECEMBER 17, 2010  
16  
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
Revision History Sheet  
Rev  
A
Table  
Page  
Description of Change  
Date  
T4E  
5
3
3
In the VOL row, 1.06 has been moved to the Typical column from the maximum column.  
Updated Figure 1, CLK_EN Timing Diagram.  
9/18/01  
10/17/01  
11/2/01  
A
A
Updated Figure 1, CLK_EN Timing Diagram.  
1
Features section, Bullet 6 to read 3.3V LVDS levels instead of LVPECL.  
Updated Parameter Measurement Information figures.  
A
B
5/6/02  
6/5/02  
6 - 10  
T5  
5
1
AC Characteristics table - revised Output Frequency from 650MHz to 800MHz.  
Features - deleted bullet "Designed to meet or exceed the requirements of  
ANSI TIA/EIA-644".  
C
9/19/02  
4E  
T2  
5
LVDS Table - changed VOD typical value from 350mV to 280mV.  
2
4
Pin Characteristics - changed CIN 4pF max. to 4pF typical.  
Absolute Maximum Ratings - changed Output rating.  
Added Differential Clock Input Interface section.  
Added LVPECL Clock Input Interface section.  
Added LVDS Driver Termination section.  
9
D
12/31/03  
10  
11  
Updated format throughout data sheet.  
D
D
T1  
T8  
2
Pin Description table - added function description to the OE pin.  
4/7/04  
10  
13  
Updated LVPECL Clock Input Interface section.  
6/16/04  
Added Lead Free part number to Ordering Information table.  
3
Updated Figure 1, CLK_EN Timing Diagram.  
Updated Differential Clock Input Interface section.  
Updated LVPECL Clock Input Interface section.  
Added Recommendation for Unused Input and Output Pins section.  
Added Power Considerations section.  
10  
11  
12  
13  
D
2/27/08  
Updated format throughout the datasheet.  
1
Features section - added Additive Phase Jitter bullet.  
AC Characteristics Table - added Added Phase Jitter spec and thermal note.  
Added Additive Phase Jitter plot.  
T5  
T9  
6
7
10  
11  
12  
13  
16  
Updated Wiring the Differential Input to Accept Single-ended Levels section.  
Updated 3.3V Differential Clock Input Interface section.  
Updated 3.3V LVPECL Clock Input Interface section.  
Updated LVDS Driver Termination section.  
E
E
11/12/10  
12/17/10  
Ordering Information Table - deleted “ICS” prefix from Part/Order Number column.  
Updated datasheet header/footer style.  
1
Page 1, corrected Header Title.  
14  
Power Considerations - corrected typo for junction temperature from 827.7°C to 82.7°C.  
ICS8543BG REVISION E DECEMBER 17, 2010  
17  
©2010 Integrated Device Technology, Inc.  
ICS8543 Data Sheet  
LOW SKEW, 1-to-4, DIFFERENTIAL-TO-LVDS FANOUT BUFFER  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
San Jose, California 95138  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2010. All rights reserved.  

相关型号:

ICS8543BGIT

Low Skew Clock Driver, 4 True Output(s), 0 Inverted Output(s), PDSO20, 4.40 X 6.50 MM, 0.92 MM HEIGHT, MO-153, TSSOP-20
IDT

ICS8543BGT

LOW SKEW, 1-TO-4 LVDS FANOUT BUFFER
ICSI

ICS8545

LOW SKEW, 1-TO-4 LVCMOS/LVTTL-TO-LVDS FANOUT BUFFER
ICSI

ICS8545-02

LOW SKEW, 1-TO-4 LVCMOS/LVTTL-TO-LVDS FANOUT BUFFER
IDT

ICS85454-01

DIFFERENTIAL-TO-LVDS MULTIPLEXER
ICSI

ICS85454-01LF

Low Skew Clock Driver, 85454 Series, 3 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-32
IDT

ICS85454-01T

Low Skew Clock Driver, 85454 Series, 3 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, MO-220, VFQFN-32
IDT

ICS85454AK

Low Skew Clock Driver, 85454 Series, 3 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, MO-220, VFQFN-16
IDT

ICS85454AK-01

DIFFERENTIAL-TO-LVDS MULTIPLEXER
ICSI

ICS85454AK-01LF

DIFFERENTIAL-TO-LVDS MULTIPLEXER
ICSI

ICS85454AK-01LFT

DIFFERENTIAL-TO-LVDS MULTIPLEXER
ICSI

ICS85454AK-01T

DIFFERENTIAL-TO-LVDS MULTIPLEXER
ICSI