ICS84330CVILF [IDT]

Clock Generator, 720MHz, PQCC28, 11.60 X 11.40 MM, 4.10 MM HEIGHT, PLASTIC, MS-018, LCC-28;
ICS84330CVILF
型号: ICS84330CVILF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 720MHz, PQCC28, 11.60 X 11.40 MM, 4.10 MM HEIGHT, PLASTIC, MS-018, LCC-28

时钟 外围集成电路 晶体
文件: 总20页 (文件大小:821K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
720MHz, Low Jitter, Crystal-to-LVPECL  
Frequency Synthesizer  
ICS84330CI  
DATA SHEET  
General Description  
Features  
The ICS84330CI is a general purpose, single output high frequency  
synthesizer. The VCO operates at a frequency range of 250MHz to  
720MHz. The VCO and output frequency can be programmed using  
the serial or parallel interfaces to the configuration logic. The output  
can be configured to divide the VCO frequency by 1, 2, 4, and 8.  
Output frequency steps as small as 250kHz to 2MHz can be  
achieved using a 16MHz crystal depending on the output divider  
settings.  
Fully integrated PLL, no external loop filter requirements  
One differential 3.3V LVPECL output  
Crystal oscillator interface: 10MHz to 25MHz  
Output frequency range: 31.25MHz to 720MHz  
VCO range: 250MHz to 720MHz  
Parallel or serial interface for programming M and N dividers  
during power-up  
RMS period jitter: 6ps (maximum)  
Cycle-to-cycle jitter: 40ps (maximum)  
3.3V supply voltage  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS5) and lead-free (RoHS 6)  
packages  
Pin Assignments  
25 24 23 22 21 20 19  
26  
27  
28  
1
N1  
S_CLOCK  
18  
17  
16  
15  
N0  
M8  
M7  
M6  
S_DATA  
S_LOAD  
ICS84330CI  
28 Lead PLCC  
V Package  
VCCA  
11.6mm x 11.4mm x 4.1mm  
FREF_EXT  
14  
13  
2
3
4
package body  
Top View  
Block Diagram  
XTAL_SEL  
XTAL1  
M5  
M4  
12  
Pullup  
OE  
5
6
7
8
9
10 11  
XTAL1  
1
0
OSC  
XTAL2  
Pulldown  
FREF_EXT  
÷16  
Pullup  
XTAL_SEL  
32 31 30 29 28 27 26 25  
PLL  
1
S_CLOCK  
nc  
24  
23  
22  
21  
20  
÷2  
÷4  
÷8  
÷1  
PHASEDETECTOR  
÷M  
2
3
4
5
6
7
8
S_DATA  
S_LOAD  
N1  
N0  
M8  
M7  
ICS84330CI  
32 Lead LQFP  
Y Package  
1
0
FOUT  
nFOUT  
VCO  
÷2  
VCCA  
VCCA  
7mm x 7mm x 1.4mm  
package body  
Top View  
FREF_EXT  
XTAL_SEL  
XTAL1  
M6  
M5  
M4  
19  
18  
17  
Pulldown  
Pulldown  
Pulldown  
Pullup  
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
TEST  
9
10 11 12 13 14 15 16  
Pullup  
Pullup  
M0:M8  
N0:N1  
ICS84330CVI REVISION A JANUARY 7, 2011  
1
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Functional Description  
NOTE: The functional description that follows describes operation  
using a 16MHz crystal. Valid PLL loop divider values for different  
crystal or input frequencies are defined in the Input Frequency  
Characteristics, Table 6, NOTE 1.  
transition of the nP_LOAD input, the data is latched and the M divider  
remains loaded until the next LOW transition on nP_LOAD or until a  
serial event occurs. The TEST output is Mode 000 (shift register out)  
when operating in the parallel input mode. The relationship between  
the VCO frequency, the crystal frequency and the M divider is defined  
as follows:  
The ICS84330CI features a fully integrated PLL and therefore  
requires no external components for setting the loop bandwidth. A  
quartz crystal is used as the input to the on-chip oscillator. The output  
of the oscillator is divided by 16 prior to the phase detector. With a  
16MHz crystal, this provides a 1MHz reference frequency. The VCO  
of the PLL operates over a range of 250MHz to 720MHz. The output  
of the M divider is also applied to the phase detector.  
fVCO = fXTAL x 2M  
16  
The M value and the required values of M0 through M8 are shown in  
Table 3B, Programmable VCO Frequency Function Table. Valid M  
values for which the PLL will achieve lock are defined as 125 M ≤  
360. The frequency out is defined as follows:  
The phase detector and the M divider force the VCO output fre-  
quency to be 2M times the reference frequency by adjusting the VCO  
control voltage. Note that for some values of M (either too high or too  
low), the PLL will not achieve lock. The output of the VCO is scaled  
by a divider prior to being sent to each of the LVPECL output buffers.  
The divider provides a 50% output duty cycle.  
fout = fVCO = fXTAL x 2M  
N
16  
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD is  
LOW. The shift register is loaded by sampling the S_DATA bits with  
the rising edge of S_CLOCK. The contents of the shift register are  
loaded into the M divider when S_LOAD transitions from  
LOW-to-HIGH. The M divide and N output divide values are latched  
on the HIGH-to-LOW transition of S_LOAD. If S_LOAD is held HIGH,  
data at the S_DATA input is passed directly to the M divider on each  
rising edge of S_CLOCK. The serial mode can be used to program  
the M and N bits and test bits T2:T0. The internal registers T2:T0  
determine the state of the TEST output as follows in the table below:  
The programmable features of the ICS84330CI support two input  
modes to program the M divider and N output divider. The two input  
operational modes are parallel and serial. Figure 1 shows the timing  
diagram for each mode. In parallel mode the nP_LOAD input is LOW.  
The data on inputs M0 through M8 and N0 through N1 is passed  
directly to the M divider and N output divider. On the LOW-to-HIGH  
T2  
0
T1  
0
T0  
0
TEST Output  
fOUT  
fOUT  
fOUT  
fOUT  
fOUT  
fOUT  
fOUT  
Shift Register Out  
0
0
1
HIGH  
0
1
0
PLL Reference XTAL ÷16  
0
1
1
(VCO ÷ M)/2 (non 50% Duty Cycle M Divider)  
fOUT, LVCMOS Output Frequency < 200MHz  
LOW  
1
0
0
1
0
1
1
1
0
(S_CLOCK ÷ M)/2 (non 50% Duty Cycle M Divider)  
fOUT ÷ 4  
S_CLOCK ÷ N Divider  
fOUT  
1
1
1
SERIAL LOADING  
S_CLOCK  
T2 T1 T0 N1 N0 M8 M7 M6 M5 M4 M3 M2 M1 M0  
S_DATA  
S_LOAD  
t
t
S
H
t
nP_LOAD  
S
PARALLEL LOADING  
M, N  
M0:M8, N0:N1  
nP_LOAD  
t
t
H
S
nP_LOAD  
Time  
Figure 1. Parallel & Serial Load Operations  
ICS84330CVI REVISION A JANUARY 7, 2011  
2
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Table 1. Pin Descriptions  
Name  
VCCA  
Type  
Description  
Power  
Analog supply pin.  
XTAL1, XTAL2  
Crystal oscillator interface. XTAL1 is an oscillator input, XTAL2 is an oscillator output.  
Selects between the crystal oscillator or FREF_EXT inputs as the PLL reference source.  
Selects XTAL inputs when HIGH. Selects FREF_EXT when LOW.  
LVCMOS / LVTTL interface levels.  
XTAL_SEL  
OE  
Input  
Input  
Input  
Pullup  
Pullup  
Pullup  
Output enable. LVCMOS / LVTTL interface levels.  
Parallel load input. Determines when data present at M8:M0 is loaded into M divider, and  
when data present at N1:N0 sets the N output divide value.  
LVCMOS / LVTTL interface levels.  
nP_LOAD  
M0, M1, M2  
M3, M4, M5  
M6, M7, M8  
M divider inputs. Data latched on LOW-to-HIGH transition of nP_LOAD input. LVCMOS /  
LVTTL interface levels.  
Input  
Pullup  
Pullup  
Determines N output divider value as defined in Table 3C Function Table.  
LVCMOS / LVTTL interface levels.  
N0, N1  
Input  
Power  
Output  
Negative supply pins.  
VEE  
Test output which is used in the serial mode of operation.  
Single-ended LVPECL interface levels.  
TEST  
VCC  
nFOUT, FOUT  
nc  
Power  
Output  
Unused  
Input  
Core supply pins.  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
No connect.  
FREF_EXT  
Pulldown PLL reference input. LVCMOS / LVTTL interface levels.  
Clocks the serial data present at S_DATA input into the shift register on the  
Pulldown  
S_CLOCK  
S_DATA  
Input  
Input  
Input  
rising edge of S_CLOCK. LVCMOS / LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge of S_CLOCK.  
LVCMOS / LVTTL interface levels.  
Pulldown  
Controls transition of data from shift register into the M divider.  
LVCMOS / LVTTL interface levels.  
S_LOAD  
Pulldown  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
kΩ  
RPULLDOWN Input Pulldown Resistor  
kΩ  
ICS84330CVI REVISION A JANUARY 7, 2011  
3
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Function Tables  
Table 3A. Parallel and Serial Mode Function Table  
Inputs  
nP_LOAD  
M
N
S_LOAD  
S_CLOCK  
S_DATA Conditions  
X
X
X
X
X
X
Reset. M and N bits are all set HIGH.  
Data on M and N inputs passed directly to the M divider and  
N output divider. TEST mode 000.  
L
Data  
Data  
X
Data  
Data  
X
X
L
L
X
X
L
X
Data is latched into input registers and remains loaded until next  
LOW transition or until a serial event occurs.  
X
Serial input mode. Shift register is loaded with data on S_DATA on  
each rising edge of S_CLOCK.  
H
H
Data  
Data  
Contents of the shift register are passed to the M divider and  
N output divider.  
X
X
H
H
H
X
X
X
X
X
X
L
L
X
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don’t care  
= Rising edge transition  
= Falling edge transition  
Table 3B. Programmable VCO Frequency Function Table  
256  
M8  
0
128  
M7  
0
64  
M6  
1
32  
M5  
1
16  
M4  
1
8
M3  
1
4
M2  
1
2
M1  
0
1
M0  
1
VCO Frequency  
(MHz)  
M Divide  
125  
126  
127  
128  
250  
252  
254  
256  
0
0
1
1
1
1
1
1
0
0
0
1
1
1
1
1
0
1
0
1
0
0
0
0
0
1
0
718  
720  
359  
360  
1
0
1
1
0
0
1
1
1
1
0
1
1
0
1
0
0
0
NOTE 1: These M divide values and the resulting frequencies correspond to a crystal frequency of 16MHz.  
Table 3C. Programmable Output DividerFunction Table  
Inputs  
Output Frequency (MHz)  
Minimum Maximum  
125 360  
N1  
0
N0  
0
N Divider Value  
2
4
8
1
0
1
62.5  
31.25  
250  
180  
90  
1
0
1
1
720  
ICS84330CVI REVISION A JANUARY 7, 2011  
4
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC+ 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA  
28 Lead PLCC  
32 Lead LQFP  
37.8°C/W (0 lfpm)  
47.9°C/W (0 lfpm)  
Storage Temperature, TSTG  
-65°C to 150°C  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = 3.3V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
3.465  
160  
Units  
V
Core Supply Voltage  
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
VCCA  
ICC  
3.135  
3.3  
V
mA  
mA  
ICCA  
17  
Table 4B. LVCMOS/LVTTL DC Characteristics, VCC = 3.3V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
VIH  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VCC + 0.3  
0.8  
Units  
Input High Voltage  
Input Low Voltage  
2
V
V
VIL  
-0.3  
M0-M8, N0, N1, OE,  
nP_LOAD, XTAL_SEL  
VCC = VIN = 3.465V  
5
µA  
µA  
µA  
µA  
Input  
High Current  
IIH  
S_LOAD, S_CLOCK  
FREF_EXT, S_DATA  
VCC = VIN = 3.465V  
150  
M0-M8, N0, n1, OE,  
nP_LOAD, XTAL_SEL  
VCC = 3.465V, VIN = 0V  
VCC = 3.465V, VIN = 0V  
-150  
-5  
Input  
Low Current  
IIL  
S_LOAD, S_CLOCK  
FREF_EXT, S_DATA  
Table 4C. LVPECL DC Characteristics, VCC = 3.3V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCC -1.4  
VCC -2.0  
0.6  
Typical  
Maximum  
VCC -0.9  
VCC -1.7  
1.0  
Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50to VCC -2V.  
ICS84330CVI REVISION A JANUARY 7, 2011  
5
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Table 5. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Mode of Oscillation  
Fundamental  
Frequency  
10  
25  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
Table 6. Input Frequency Characteristics, VCC = 3V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
MHz  
MHz  
MHz  
XTAL; NOTE 1  
S_CLOCK  
10  
25  
50  
fIN Input Frequency  
FREF_EXT; NOTE 2  
10  
NOTE 1: For the crystal frequency range, the M value must be set to achieve the minimum or maximum VCO frequency range of 250MHz to  
720MHz. Using the minimum input frequency of 10MHz, valid values of M are 200 M 511. Using the maximum input frequency of 25MHz,  
valid values of M are 80 M 230.  
NOTE 2: Maximum frequency on FREF_EXT is dependent on the internal M counter limitations. See Application Information Section for  
recommendations on optimizing the performance using the FREF_EXT input.  
AC Electrical Characteristics  
Table 7. AC Characteristics, VCC = 3.3V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
fOUT  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
MHz  
ps  
Output Frequency  
Period Jitter, RMS; NOTE 1. 2  
720  
6
tjit(per)  
fOUT 43.75MHz  
fOUT < 43.75MHz  
20% to 80%  
40  
ps  
tjit(cc)  
Cycle-to-Cycle Jitter; NOTE 1, 2  
50  
ps  
tR / tF  
Output Rise/Fall Time  
200  
20  
20  
20  
20  
20  
600  
ps  
S_DATA to S_CLOCK  
ns  
tS  
Setup Time S_CLOCK to S_LOAD  
M, N to nP_LOAD  
ns  
ns  
S_DATA to S_CLOCK  
Hold Time  
ns  
tH  
M, N to nP_LOAD  
ns  
tL  
PLL Lock Time  
10  
55  
ms  
%
odc  
Output Duty Cycle  
45  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
See Parameter Measurement Information section.  
NOTE: Characterized using 16MHz XTAL.  
NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 2: See Applications section.  
ICS84330CVI REVISION A JANUARY 7, 2011  
6
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Parameter Measurement Information  
2V  
VOH  
VREF  
SCOPE  
V
CC,  
Qx  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
V
CCA  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
LVPECL  
nQx  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
VEE  
-1.3V 0.165V  
3.3/3.3V LVPECL Output Load AC Test Circuit  
Period Jitter  
nFOUT  
FOUT  
nFOUT  
FOUT  
tPW  
tcycle n  
tcycle n+1  
tPERIOD  
tjit(cc) = tcycle n – tcycle n+1  
|
|
tPW  
1000 Cycles  
odc =  
x 100%  
tPERIOD  
Cycle-to-Cycle Jitter  
Output Duty Cycle/Pulse Width/Period  
nFOUT  
80%  
tF  
80%  
VSWING  
20%  
20%  
FOUT  
tR  
Output Rise/Fall Time  
ICS84330CVI REVISION A JANUARY 7, 2011  
7
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Applications Information  
Power Supply Filtering Technique  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter performance,  
power supply isolation is required. The ICS84330CI provides  
separate power supplies to isolate any high switching noise from the  
outputs to the internal PLL. VCC and VCCA should be individually  
connected to the power supply plane through vias, and 0.01µF  
bypass capacitors should be used for each pin. Figure 2 illustrates  
this for a generic VCC pin and also shows that VCCA requires that an  
additional 10resistor along with a 10µF bypass capacitor be  
connected to the VCCA pin.  
3.3V  
VCC  
.01µF  
10  
VCCA  
.01µF  
10µF  
Figure 2. Power Supply Filtering  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
TEST Output  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
The unused TEST output can be left floating. There should be no  
trace attached.  
LVPECL Outputs  
The unused LVPECL output pair can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
50  
40  
30  
20  
10  
0
Spec Limit  
N = 1  
200  
300  
400  
500  
600  
700  
Output Frequency (MHz)  
Figure 3. Cycle-to-Cycle Jitter vs. fOUT (using a 16MHz crystal)  
ICS84330CVI REVISION A JANUARY 7, 2011  
8
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Overdriving the XTAL Interface  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 4A. The XTAL_OUT pin can be left floating. The  
maximum amplitude of the input signal should not exceed 2V and the  
input edge rate can be as slow as 10ns. This configuration requires  
that the output impedance of the driver (Ro) plus the series  
resistance (Rs) equals the transmission line impedance. In addition,  
matched termination at the crystal input will attenuate the signal in  
half. This can be done in one of two ways. First, R1 and R2 in parallel  
should equal the transmission line impedance. For most 50  
applications, R1 and R2 can be 100. This can also be  
accomplished by removing R1 and making R2 50. By overdriving  
the crystal oscillator, the device will be functional, but note, the device  
performance is guaranteed by using a quartz crystal.  
VCC  
XTAL_OUT  
R1  
100  
C1  
Rs  
Zo = 50 ohms  
Ro  
XTAL_IN  
.1uf  
R2  
100  
Zo = Ro + Rs  
LVCMOS Driver  
Figure 4A. General Diagram for LVCMOS Driver to XTAL Input Interface  
XTAL_OUT  
C2  
Zo = 50 ohms  
XTAL_I N  
.1uf  
Zo = 50 ohms  
R1  
50  
R2  
50  
LVPECL Driver  
R3  
50  
Figure 4B. General Diagram for LVPECL Driver to XTAL Input Interface  
ICS84330CVI REVISION A JANUARY 7, 2011  
9
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be used  
to maximize operating frequency and minimize signal distortion.  
Figures 5A and 5B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and clock  
component process variations.  
The differential outputs are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
R3  
125Ω  
R4  
125Ω  
3.3V  
3.3V  
3.3V  
Z
o = 50Ω  
3.3V  
+
_
Z
o = 50Ω  
+
_
Input  
LVPECL  
Zo = 50Ω  
LVPECL  
Input  
Zo = 50Ω  
R1  
R2  
50Ω  
50Ω  
R1  
84Ω  
R2  
84Ω  
VCC - 2V  
1
RTT =  
* Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
Figure 5A. 3.3V LVPECL Output Termination  
Figure 5B. 3.3V LVPECL Output Termination  
ICS84330CVI REVISION A JANUARY 7, 2011  
10  
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Layout Guideline  
The schematic of the ICS84330CI layout example used in this layout  
guideline is shown in Figure 6A. The ICS84330CI recommended  
PCB board layout for this example is shown in Figure 6B. This layout  
example is used as a general guideline. The layout in the actual  
system will depend on the selected component types, the density of  
the components, the density of the traces, and the stack up of the  
P.C. board.  
C1  
X1  
C2  
SP  
SP  
16MHz, 18pF  
VCC  
R7  
10  
M4  
M5  
M6  
M7  
M8  
N2  
N1  
12  
13  
14  
15  
16  
17  
18  
4
M4  
M5  
M6  
M7  
M8  
N0  
N1  
X_IN  
3
VCC=3.3V  
XTAL_SEL  
2
FREF_EXT  
VCCA  
VCCA  
1
28  
27  
26  
SP = Space (i.e. not intstalled)  
S_LOAD  
S_DATA  
S_CLOCK  
C11  
0.01u  
C16  
10u  
M[8:0]= 110010000 (400)  
N[1:0] =00 (Divide by 2)  
U1  
ICS84330  
C3  
VCC  
0.1uF  
Zo = 50 Ohm  
RU0  
SP  
RU1  
SP  
RU7  
1K  
RU8  
1K  
RU9  
SP  
RU10  
1K  
RU11  
SP  
RU12  
1K  
Fout = 200 MHz  
+
-
C4  
0.1u  
Zo = 50 Ohm  
R2  
50  
R1  
50  
RD0  
1K  
RD1  
1K  
RD7  
SP  
RD8  
SP  
RD9  
1K  
RD10  
SP  
RD6  
1K  
RD12  
SP  
R3  
50  
Figure 6A. ICS84330CI Schematic of Recommended Layout  
ICS84330CVI REVISION A JANUARY 7, 2011  
11  
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
The following component footprints are used in this layout example:  
All the resistors and capacitors are size 0603.  
• The differential 50output traces should have the same  
length.  
• Avoid sharp angles on the clock trace. Sharp angle turns  
cause the characteristic impedance to change on the  
transmission lines.  
Power and Grounding  
Place the decoupling capacitors C3 and C4, as close as possible to  
the power pins. If space allows, placement of the decoupling  
capacitor on the component side is preferred. This can reduce  
unwanted inductance between the decoupling capacitor and the  
power pin caused by the via.  
• Keep the clock traces on the same layer. Whenever possible,  
avoid placing vias on the clock traces. Placement of vias on the  
traces can affect the trace characteristic impedance and hence  
degrade signal integrity.  
Maximize the power and ground pad sizes and number of vias  
capacitors. This can reduce the inductance between the power and  
ground planes and the component power and ground pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace widths  
between the differential clock trace and the other signal trace.  
The RC filter consisting of R7, C11, and C16 should be placed as  
close to the VCCA pin as possible.  
• Make sure no other signal traces are routed between the clock  
trace pair.  
Clock Traces and Termination  
Poor signal integrity can degrade the system performance or cause  
system failure. In synchronous high-speed digital systems, the clock  
signal is less tolerant to poor signal integrity than other signals. Any  
ringing on the rising or falling edge or excessive ring back can cause  
system failure. The shape of the trace and the trace delay might be  
restricted by the available space on the board and the component  
location. While routing the traces, the clock signal traces should be  
routed first and should be locked prior to routing other signal traces.  
• The matching termination resistors should be located as close  
to the receiver input pins as possible.  
Crystal  
The crystal X1 should be located as close as possible to the pins 4  
(XTAL1) and 5 (XTAL2). The trace length between the X1 and U1  
should be kept to a minimum to avoid unwanted parasitic inductance  
and capacitance. Other signal traces should not be routed near the  
crystal traces.  
X1  
C1  
C2  
U1  
GND  
VCC  
PIN 2  
PIN 1  
C16  
C11  
R7  
VCCA  
VIA  
VCCA  
Signals  
Traces  
C3  
C4  
50 Ohm  
Traces  
Figure 6B. ICS84330CI PCB Board Layout for ICS84330CI  
ICS84330CVI REVISION A JANUARY 7, 2011  
12  
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS84330CI.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS84330CI is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 17mA = 58.9mW  
Power (outputs)MAX = 30mW/Loaded Output Pair  
Total Power_MAX (3.465V, with all outputs switching) = 58.9mW + 30mW = 88.9mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a moderate air  
flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 31.1°C/W per Table 8A below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
85°C + 0.89W * 31.1°C/W = 112.7°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 8A. Thermal Resistance θJA for 28 Lead PLCC, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.8°C/W  
31.1°C/W  
28.3°C/W  
Table 8B. Thermal Resistance θJA for 32 Lead LQFP, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
55.9°C/W  
42.1°C/W  
50.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
ICS84330CVI REVISION A JANUARY 7, 2011  
13  
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pair.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCC  
Q1  
VOUT  
RL  
50Ω  
VCC - 2V  
Figure 7. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage of  
VCC - 2V.  
For logic high, VOUT = VOH_MAX = VCC_MAX - 0.9V  
(VCC_MAX - VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCC_MAX - 1.7V  
(VCC_MAX - VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX - (VCC_MAX -2V))/RL] * (VCC_MAX - VOH_MAX) = [(2V - (VCC_MAX - VOH_MAX))/RL] * (VCC_MAX - VOH_MAX) =  
[(2V - 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX - (VCC_MAX -2V))/RL] * (VCC_MAX - VOL_MAX) = [(2V - (VCC_MAX - VOL_MAX))/RL] * (VCC_MAX - VOL_MAX) =  
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
ICS84330CVI REVISION A JANUARY 7, 2011  
14  
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Reliability Information  
Table 9A. θJA vs. Air Flow Table for a 28 Lead PLCC  
θJA vs. Air Flow  
Linear Feet per Minute  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.8°C/W  
31.1°C/W  
28.3°C/W  
Table 9B. θJA vs. Air Flow Table for a 32 Lead LQFP  
θJA vs. Air Flow  
0
Linear Feet per Minute  
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
55.9°C/W  
42.1°C/W  
50.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
Transistor Count  
The transistor count for ICS84330CI is: 4498  
ICS84330CVI REVISION A JANUARY 7, 2011  
15  
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Package Outline and Package Dimensions  
Package Outline - V Suffix for 28 Lead PLCC  
Table 10A. Package Dimensions for 28 Lead PLCC  
JEDEC Variation  
All Dimensions in Millimeters  
Symbol  
N
Minimum  
Maximum  
28  
A
A1  
4.19  
2.29  
1.57  
0.33  
0.19  
12.32  
11.43  
5.21  
4.57  
3.05  
2.11  
0.53  
0.32  
12.57  
11.58  
5.46  
A2  
b
c
D/E  
D1/E1  
D2/E2  
Reference Document: JEDEC Publication 95, MS-018  
ICS84330CVI REVISION A JANUARY 7, 2011  
16  
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Package Outline - Y Suffix for 32 Lead LQFP  
Table 10B. Package Dimensions for 32 Lead LQFP  
JEDEC Variation: BBA  
All Dimensions in Millimeters  
Symbol  
Minimum  
Nominal  
Maximum  
N
32  
A
A1  
1.60  
0.15  
1.45  
0.45  
0.20  
0.05  
1.35  
0.30  
0.09  
A2  
1.40  
0.37  
b
c
D & E  
D1 & E1  
D2 & E2  
e
9.00 Basic  
7.00 Basic  
5.60 Ref.  
0.80 Basic  
0.60  
L
0.45  
0°  
0.75  
7°  
θ
ccc  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
ICS84330CVI REVISION A JANUARY 7, 2011  
17  
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Ordering Information  
Table 11. Ordering Information  
Part/Order Number  
84330CVI  
84330CVIT  
84330CVILF  
84330CVILFT  
84330CYI  
84330CYIT  
84330CYILF  
84330CYILFT  
Marking  
Package  
28 Lead PLCC  
28 Lead PLCC  
Shipping Packaging  
Tube  
500 Tape & Reel  
Tube  
500 Tape & Reel  
Tube  
1000 Tape & Reel  
Tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS84330CVI  
ICS84330CVI  
ICS84330CVILF  
ICS84330CVILF  
ICS84330CYI  
ICS84330CYI  
ICS84330CYIL  
ICS84330CYIL  
Lead-Free, 28 Lead PLCC  
Lead-Free, 28 Lead PLCC  
32 Lead LQFP  
32 Lead LQFP  
Lead-Free, 32 Lead LQFP  
Lead-Free, 32 Lead LQFP  
1000 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without  
additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support  
devices or critical medical instruments.  
ICS84330CVI REVISION A JANUARY 7, 2011  
18  
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
A
1
Features Section - corrected Output Frequency Range from 25MHz to 31.25MHz.  
12/7/04  
8
Added Recommendations for Unused Input and Output Pins.  
T10A  
17  
Package Dimension Table - D2/E2 changed the min. from 4.85 to 5.21 and the max. from  
5.56 to 5.46.  
A
A
A
2/2/09  
Converted datasheet format.  
T11  
T7  
18  
6
Ordering Information - Added “Lead-Free” marking for the PLCC and LQFP packages.  
2/19/09  
1/7/11  
AC Characteristics Table - due to datasheet format conversion, corrected cycle-to-cycle  
test conditions back to original conditions.  
9
Updated Overdriving the XTAL Interface.  
Updated new Header/Footer format.  
ICS84330CVI REVISION A JANUARY 7, 2011  
19  
©2011 Integrated Device Technology, Inc.  
ICS84330CI Data Sheet  
720MHZ, CRYSTAL-TO-LVPECL FREQUENCY SYNTHESIZER  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
San Jose, California 95138  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2011. All rights reserved.  

相关型号:

ICS84330CVILFT

Clock Generator, 720MHz, PQCC28, 11.60 X 11.40 MM, 4.10 MM HEIGHT, PLASTIC, MS-018, LCC-28
IDT

ICS84330CVIT

720MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330CVLN

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330CVLNT

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330CVT

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330CVT-01

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330CY

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330CYI

720MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330CYILFT

Clock Generator, 720MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS84330CYIT

720MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330CYLN

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330CYLN

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026, LQFP-32
IDT