ICS84330CYI [ICSI]

720MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER; 720MHZ ,低抖动,水晶- TO- 3.3V的差分LVPECL频率合成器
ICS84330CYI
型号: ICS84330CYI
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

720MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
720MHZ ,低抖动,水晶- TO- 3.3V的差分LVPECL频率合成器

晶体 外围集成电路 时钟
文件: 总19页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH , LOW JITTER, CRYSTAL-TO-3.3V  
Z
D
IFFERENTIAL LVPECL FREQUENCY  
SYNTHESIZER  
GENERAL DESCRIPTION  
FEATURES  
The ICS84330CI is a general purpose, single out- Fully integrated PLL, no external loop filter requirements  
ICS  
put high frequency synthesizer and a member of  
the HiPerClockS™ family of High Performance  
Crystal oscillator interface: 10MHz to 25MHz  
Clock Solutions from ICS.The VCO operates at a  
1 differential 3.3V LVPECL output  
HiPerClockS™  
Output frequency range: 31.25MHz to 720MHz  
VCO range: 250MHz to 720MHz  
Parallel or serial interface for programming M and N dividers  
during power-up  
frequency range of 250MHz to 720MHz.TheVCO  
and output frequency can be programmed using the serial or  
parallel interfaces to the configuration logic.The output can be  
configured to divide theVCO frequency by 1, 2, 4, and 8.Output  
frequency steps from 250KHz to 2MHz can be achieved using  
a 16MHz crystal depending on the output divider setting.  
RMS Period jitter: 6ps (maximum)  
Cycle-to-cycle jitter: 40ps (maximum)  
3.3V supply voltage  
-40°C to 85°C ambient operating temperature  
Pin compatible with the MC12430  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
25 24 23 22 21 20 19  
OE  
XTAL1  
S_CLOCK  
26  
18  
N1  
N0  
M8  
M7  
M6  
M5  
M4  
1
0
OSC  
S_DATA  
S_LOAD  
27  
28  
1
17  
16  
15  
14  
13  
12  
XTAL2  
ICS84330CI  
28-Lead PLCC  
V Package  
11.6mm x 11.4mm x 4.1mm  
body package  
FREF_EXT  
VCCA  
FREF_EXT  
XTAL_SEL  
÷ 16  
2
XTAL_SEL  
3
TopView  
XTAL1  
4
PLL  
PHASE DETECTOR  
÷2  
÷4  
÷8  
÷1  
5
6
7
8
9 10 11  
1
0
FOUT  
VCO  
÷ 2  
nFOUT  
TEST  
÷ M  
S_LOAD  
S_DATA  
CONFIGURATION  
INTERFACE  
LOGIC  
S_CLOCK  
nP_LOAD  
32 31 30 29 28 27 26 25  
24  
1
2
3
4
5
6
7
8
S_CLOCK  
S_DATA  
S_LOAD  
VCCA  
n/c  
M0:M8  
N0:N1  
23  
22  
21  
20  
19  
18  
17  
N1  
N0  
M8  
M7  
M6  
M5  
M4  
ICS84330CI  
32-Lead LQFP  
Y package  
7mm x 7mm x 1.4mm  
body package  
TopView  
VCCA  
FREF_EXT  
XTAL_SEL  
XTAL1  
9
10 11 12 13 14 15 16  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
1
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
FUNCTIONAL DESCRIPTION  
N0 through N1 is passed directly to the M divider and N output  
divider. On the LOW-to-HIGH transition of the nP_LOAD input,  
the data is latched and the M divider remains loaded until the  
next LOW transition on nP_LOAD or until a serial event occurs.  
The TEST output is Mode 000 (shift register out) when operat-  
ing in the parallel input mode.The relationship between theVCO  
frequency, the crystal frequency and the M divider is defined as  
NOTE: The functional description that follows describes op-  
eration using a 16MHz crystal.Valid PLL loop divider values  
for different crystal or input frequencies are defined in the In-  
put Frequency Characteristics, Table 6, NOTE 1.  
The ICS84330CI features a fully integrated PLL and there-  
fore requires no external components for setting the loop band-  
width. A quartz crystal is used as the input to the on-chip  
oscillator.The output of the oscillator is divided by 16 prior to  
the phase detector.With a 16MHz crystal this provides a 1MHz  
reference frequency. The VCO of the PLL operates over a  
range of 250MHz to 720MHz. The output of the M divider is  
also applied to the phase detector.  
fxtal  
16  
follows:  
x
fVCO =  
2M  
The M value and the required values of M0 through M8 are  
shown in Table 3B, Programmable VCO Frequency Function  
Table. Valid M values for which the PLL will achieve lock are  
defined as 125 M 360. The frequency out is defined as  
fVCO fxtal 2M  
follows:  
fout  
x
=
=
N
N
16  
The phase detector and the M divider force the VCO output fre-  
quency to be 2M times the reference frequency by adjusting the  
VCO control voltage. Note that for some values of M (either too  
high or too low), the PLL will not achieve lock. The output of the  
VCO is scaled by a divider prior to being sent to each of the LVPECL  
output buffers.The divider provides a 50% output duty cycle.  
Serial operation occurs when nP_LOAD is HIGH and S_LOAD  
is LOW. The shift register is loaded by sampling the S_DATA  
bits with the rising edge of S_CLOCK. The contents of the  
shift register are loaded into the M divider when S_LOAD tran-  
sitions from LOW-to-HIGH.The M divide and N output divide  
values are latched on the HIGH-to-LOW transition of S_LOAD.  
If S_LOAD is held HIGH, data at the S_DATA input is passed  
directly to the M divider on each rising edge of S_CLOCK.  
The serial mode can be used to program the M and N bits and  
test bits T2:T0.The internal registers T2:T0 determine the state  
of the TEST output as follows in the table below:  
The programmable features of the ICS84330CI support two in-  
put modes to program the M divider and N output divider.The  
two input operational modes are parallel and serial. Figure 1  
shows the timing diagram for each mode. In parallel mode the  
nP_LOAD input is LOW.The data on inputs M0 through M8 and  
T2  
0
T1  
0
T0  
0
TEST Output  
fOUT  
fOUT  
Shift Register Out  
0
0
0
0
1
1
1
0
1
High  
fOUT  
fOUT  
fOUT  
PLL Reference Xtal ÷ 16  
(VCO ÷ M) /2 (non 50% Duty Cycle M divider)  
1
0
0
fOUT  
fOUT  
LVCMOS Output Frequency < 200MHz  
1
1
1
0
1
1
1
0
1
Low  
(S_CLOCK ÷ M) /2 (non 50% Duty Cycle M divider)  
fOUT ÷ 4  
fOUT  
S_CLOCK ÷ N divider  
fOUT  
S
ERIAL LOADING  
S_CLOCK  
S_DATA  
T2  
T1  
T0  
N1  
N0  
M8  
M7  
M6  
M5  
M4 M3  
M2  
M1  
M0  
t
t
H
S
S_LOAD  
nP_LOAD  
t
S
P
ARALLEL LOADING  
M, N  
M0:M8, N0:N1  
nP_LOAD  
t
t
H
Time  
S
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
www.icst.com/products/hiperclocks.html  
84330CVI  
REV. A DECEMBER 7, 2004  
2
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
TABLE 1. PIN DESCRIPTIONS  
Name  
Type  
Description  
Analog supply pin.  
VCCA  
Power  
Crystal oscillator interface. XTAL1 is an oscillator input.  
XTAL2 is an oscillator output.  
XTAL1, XTAL2  
Selects between the crystal oscillator or FREF_EXT inputs as the PLL reference  
source. Selects XTAL inputs when HIGH. Selects FREF_EXT when LOW.  
LVCMOS / LVTTL interface levels.  
XTAL_SEL  
OE  
Input  
Input  
Input  
Pullup  
Pullup  
Pullup  
Output enable. LVCMOS / LVTTL interface levels.  
Parallel load input. Determines when data present at M8:M0 is loaded into  
M divider, and when data present at N1:N0 sets the N output divide value.  
LVCMOS / LVTTL interface levels.  
nP_LOAD  
M0, M1, M2  
M3, M4, M5  
M6, M7, M8  
M divider inputs. Data latched on LOW-to-HIGH transition of nP_LOAD input.  
LVCMOS / LVTTL interface levels.  
Input  
Pullup  
Pullup  
Determines N output divider value as defined in Table 3C Function Table.  
LVCMOS / LVTTL interface levels.  
N0, N1  
VEE  
Input  
Power  
Output  
Negative supply pins.  
Test output which is used in the serial mode of operation.  
Single-ended LVPECL interface levels.  
TEST  
VCC  
nFOUT, FOUT  
nc  
Power  
Output  
Unused  
Input  
Core supply pins.  
Differential output for the synthesizer. 3.3V LVPECL interface levels.  
Do not connect.  
FREF_EXT  
Pulldown PLL reference input. LVCMOS / LVTTL interface levels.  
Clocks the serial data present at S_DATA input into the shift register on the  
rising edge of S_CLOCK. LVCMOS / LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge of S_CLOCK.  
LVCMOS / LVTTL interface levels.  
Controls transition of data from shift register into the M divider.  
LVCMOS / LVTTL interface levels.  
S_CLOCK  
S_DATA  
Input  
Input  
Input  
Pulldown  
Pulldown  
S_LOAD  
Pulldown  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CIN  
Input Capacitance  
Input Pullup Resistor  
4
pF  
KΩ  
KΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
3
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH , LOW JITTER, CRYSTAL-TO-3.3V  
Z
D
IFFERENTIAL LVPECL FREQUENCY  
SYNTHESIZER  
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
X
X
X
X
X
X
Reset. M and N bits are all set HIGH.  
Data on M and N inputs passed directly to M divider and  
N output divider. TEST mode 000.  
L
Data Data  
Data Data  
X
X
X
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the M divider  
and N output divider.  
X
L
X
L
X
H
H
X
X
X
X
Data  
Data  
H
H
H
X
X
X
X
X
X
L
L
X
Data  
X
M divide and N output divide values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE (NOTE 1)  
256  
M8  
0
128  
M7  
0
64  
M6  
1
32  
M5  
1
16  
M4  
1
8
M3  
1
4
M2  
1
2
M1  
0
1
M0  
1
VCO Frequency  
(MHz)  
M Divide  
250  
252  
254  
256  
125  
126  
127  
128  
0
0
1
1
1
1
1
1
0
0
0
1
1
1
1
1
0
1
0
1
0
0
0
0
0
1
0
718  
720  
359  
360  
1
0
1
1
0
0
1
1
1
1
0
1
1
0
1
0
0
0
NOTE 1: These M divide values and the resulting frequencies correspond to a crystal frequency of 16MHz.  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
Output Frequency (MHz)  
N Divider Value  
N1  
0
N0  
0
Minimum  
125  
Maximum  
360  
2
4
8
1
0
1
62.5  
180  
1
0
31.25  
250  
90  
1
1
720  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
4
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5 V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
37.8°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
VCCA  
ICC  
Core Supply Voltage  
3.465  
3.465  
160  
V
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
V
mA  
mA  
ICCA  
17  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VCC + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
M0-M8, N0, N1,  
OE, nP_LOAD,  
XTAL_SEL  
S_LOAD, S_CLOCK  
FREF_EXT, S_DATA  
M0-M8, N0, N1,  
OE, nP_LOAD,  
XTAL_SEL  
S_LOAD, S_CLOCK  
FREF_EXT, S_DATA  
VCC = VIN = 3.465V  
5
µA  
µA  
µA  
µA  
IIH  
Input High Current  
V
CC = VIN = 3.465V  
VCC = 3.465V, VIN = 0V  
CC = 3.465V, VIN = 0V  
150  
-150  
-5  
IIL  
Input Low Current  
V
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCC - 1.4  
VCC - 2.0  
0.6  
Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCC - 0.9  
VCC - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCC - 2V.  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
5
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH , LOW JITTER, CRYSTAL-TO-3.3V  
Z
D
IFFERENTIAL LVPECL FREQUENCY  
SYNTHESIZER  
TABLE 5. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Fundamental  
Units  
Mode of Oscillation  
Frequency  
10  
25  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
TABLE 6. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
fIN  
XTAL; NOTE 1  
10  
10  
25  
50  
MHz  
MHz  
MHz  
Input Frequency S_CLOCK  
FREF_EXT; NOTE 2  
NOTE 1: For the crystal frequency range the M value must be set to achieve the minimum or maximum VCO frequency  
range of 250MHz to 720MHz. Using the minimum frequency of 10MHz, valid values of M are 200 M 511.  
Using the maximum frequency of 25MHz, valid values of M are 80 M 230.  
NOTE 2: Maximum frequency on FREF_EXT is dependent on the internal M counter limitations. See Application  
Information Section for recommendations on optimizing the performance using the FREF_EXT input.  
TABLE 7. AC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FOUT  
Output Frequency  
720  
6
MHz  
ps  
ps  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
ms  
%
tjit(per)  
Period Jitter, RMS; NOTE 1, 2  
fOUT 43.75MHz  
fOUT < 43.75MHz  
20% to 80%  
40  
50  
600  
tjit(cc)  
tR / tF  
Cycle-to-Cycle Jitter; NOTE 1, 2  
Output Rise/Fall Time  
200  
20  
20  
20  
20  
20  
S_DATA to S_CLOCK  
tS  
Setup Time S_CLOCK to S_LOAD  
M, N to nP_LOAD  
S_DATA to S_CLOCK  
Hold Time  
tH  
M, N to nP_LOAD  
tL  
PLL Lock Time  
10  
55  
odc  
Output Duty Cycle  
45  
See Parameter Measurement Information section.  
Characterized using a XTAL input.  
NOTE 1: This parameter is defined in accordance with JEDEC Standard 65  
NOTE 2: See Applications section.  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
6
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH , LOW JITTER, CRYSTAL-TO-3.3V  
Z
D
IFFERENTIAL LVPECL FREQUENCY  
SYNTHESIZER  
PARAMETER MEASUREMENT INFORMATION  
2V  
VOH  
SCOPE  
VREF  
VCC,  
VCCA  
Qx  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
LVPECL  
VEE  
nQx  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
-1.3V 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
PERIOD JITTER  
nFOUT  
FOUT  
80%  
80%  
VSWING  
20%  
Clock  
20%  
tcycle n+1  
tcycle n  
Outputs  
tF  
tR  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
CYCLE-TO-CYCLE JITTER  
OUTPUT RISE/FALL TIME  
nFOUT  
FOUT  
Pulse Width  
tPERIOD  
tPW  
odc =  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
7
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS84330CI provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC and VCCA  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 10resistor along with a 10µF and a .01µF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01µF  
.01µF  
10Ω  
VCCA  
10µF  
FIGURE 2. POWER SUPPLY FILTERING  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs.The two different layouts mentioned  
are recommended only as guidelines.  
drive 50transmission lines. Matched impedance techniques  
should be used to maximize operating frequency and minimize  
signal distortion. Figures 3A and 3B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
layouts may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs.Therefore, terminat-  
ing resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
8
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
LVCMOS TO XTAL INTERFACE  
The XTAL1 input can accept single ended LVCMOS signal ance trace may be required. The input can function with half  
swing amplitude. Reducing amplitude from full swing of 3.3V  
through an AC couple capacitor. A general interface diagram  
is shown in Figure 4. The XTAL2 input can be left floating.The to half swing of about 1.65V can prevent signal interfere with  
edge rate can be as slow as 10ns. If the incoming signal has power rail and may reduce noise. Please refer to the LVCMOS  
driver data sheet and application note for amplitude reduction  
sharp edge rate and the signal path is a long trace, proper  
termination for the driver and controlled characteristic imped- and termination approach.  
VDD  
Q1  
C1  
XTAL1  
0.1uF  
LVCMOS_Driver  
XTAL2  
Crystal Input Interface  
Figure 4. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
50  
40  
30  
20  
10  
0
Spec Limit  
N ÷ 1  
250  
300  
400  
500  
600  
700  
720  
Output Frequency (MHz)  
FIGURE 5. CYCLE-TO-CYCLE JITTER VS. fOUT (using a 16MHz XTAL)  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
9
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
LAYOUT GUIDELINE  
The schematic of the ICS84330CI layout example used in line. The layout in the actual system will depend on the  
this layout guideline is shown in Figure 6A. The ICS84330CI selected component types, the density of the components,  
recommended PCB board layout for this example is shown  
in Figure 6B. This layout example is used as a general guide-  
the density of the traces, and the stack up of the P.C. board.  
C1  
X1  
C2  
SP  
SP  
16MHz, 18pF  
VCC  
U1  
R7  
10  
M4  
12  
13  
14  
15  
16  
17  
18  
4
M4  
M5  
M6  
M7  
M8  
N0  
N1  
XTAL1  
3
M5  
M6  
M7  
M8  
N2  
N1  
VCC=3.3V  
XTAL_SEL  
2
1
28  
27  
26  
FREF_EXT  
VCCA  
S_LOAD  
S_DATA  
S_CLOCK  
VCCA  
SP = Space (i.e. not intstalled)  
C11  
0.01u  
C16  
10u  
M[8:0]= 110010000 (400)  
N[1:0] =00 (Divide by 2)  
ICS84330  
C3  
VCC  
0.1uF  
Zo = 50 Ohm  
RU0  
SP  
RU1  
SP  
RU7  
1K  
RU8  
1K  
RU9  
SP  
RU10  
1K  
RU11  
SP  
RU12  
1K  
Fout = 200 MHz  
+
-
C4  
0.1u  
Zo = 50 Ohm  
R2  
50  
R1  
50  
RD0  
1K  
RD1  
1K  
RD7  
SP  
RD8  
SP  
RD9  
1K  
RD10  
SP  
RD6  
1K  
RD12  
SP  
R3  
50  
FIGURE 6A. SCHEMATIC OF RECOMMENDED LAYOUT  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
10  
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
• The differential 50output traces should have the  
same length.  
The following component footprints are used in this layout  
example:  
• Avoid sharp angles on the clock trace.Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
Place the decoupling capacitors C3 and C4, as close as pos-  
sible to the power pins. If space allows, placement of the  
decoupling capacitor on the component side is preferred. This  
can reduce unwanted inductance between the decoupling  
capacitor and the power pin caused by the via.  
• Keep the clock traces on the same layer.Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
Maximize the power and ground pad sizes and number of vias  
capacitors.This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
The RC filter consisting of R7, C11, and C16 should be placed  
as close to the VCCA pin as possible.  
• Make sure no other signal traces are routed between the  
clock trace pair.  
CLOCK TRACES AND TERMINATION  
• The matching termination resistors should be located as  
close to the receiver input pins as possible.  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
trace delay might be restricted by the available space on the board  
and the component location.While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
4 (XTAL1) and 5 (XTAL2).The trace length between the X1 and  
U1 should be kept to a minimum to avoid unwanted parasitic in-  
ductance and capacitance. Other signal traces should not be  
routed near the crystal traces.  
X1  
C1  
C2  
U1  
GND  
VCC  
PIN 2  
PIN 1  
C16  
C11  
R7  
VCCA  
VIA  
VCCA  
Signals  
Traces  
C3  
C4  
50 Ohm  
Traces  
FIGURE 6B. PCB BOARD LAYOUT FOR ICS84330CI  
www.icst.com/products/hiperclocks.html  
84330CVI  
REV. A DECEMBER 7, 2004  
11  
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
JITTER REDUCTION FOR FREF_EXT SINGLE END INPUT  
If the FREF_EXT input is driven by a 3.3V LVCMOS driver, the  
jitter performance can be improved by reducing the amplitude  
swing and slowing down the edge rate. Figure 7A shows an  
amplitude reduction approach for a long trace. The swing will  
be approximately 0.85V for logic low and 2.5V for logic high  
(instead of 0V to 3.3V). Figure 7B shows amplitude reduction  
approach for a short trace. The circuit shown in Figure 7C  
reduces amplitude swing and also slows down the edge rate  
by increasing the resistor value.  
VDD  
R1  
VDD  
100  
Zo = 50 Ohm  
Td  
Ro ~ 7 Ohm  
VDD  
GND  
RS  
43  
R2  
100  
FREF_EXT  
Driver_LVCMOS  
FIGURE 7A. AMPLITUDE REDUCTION FOR A LONG TRACE  
VDD  
VDD  
R1  
200  
Ro ~ 7 Ohm  
VDD  
GND  
RS  
100  
R2  
200  
FREF_EXT  
Driver_LVCMOS  
FIGURE 7B. AMPLITUDE REDUCTION FOR A SHORT TRACE  
VDD  
VDD  
R1  
400  
Ro ~ 7 Ohm  
VDD  
GND  
RS  
200  
R2  
400  
FREF_EXT  
Driver_LVCMOS  
FIGURE 7C. EDGE RATE REDUCTION BY INCREASING THE RESISTOR VALUE  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
12  
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS84330CI.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS84330CI is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 17mA = 58.9mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 1 * 30mW = 30mW  
Total Power_MAX (3.465V, with all outputs switching) = 58.9 + 30mW = 88.9mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 31.1°C/W perTable 9A below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.89W * 31.1°C/W = 112.7°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 9A. THERMAL RESISTANCE θJA FOR 28-PIN PLCC, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.8°C/W  
31.1°C/W  
28.3°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TABLE 9B. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
55.9°C/W  
50.1°C/W  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
13  
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in the Figure 8.  
VCC  
Q1  
VOUT  
RL  
50  
VCC - 2V  
FIGURE 8. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage ofV - 2V.  
CC  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CC_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CC_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CC_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CC_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CC_MAX  
CC_MAX  
OH_MAX  
_MAX  
OH_MAX  
CC_MAX  
OH_MAX  
L
CC  
L
[(2V - 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(V – (V - 2V))/R ] * (V  
))  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CC_MAX  
CC_MAX  
OL_MAX  
_MAX  
OL_MAX  
CC_MAX  
OL_MAX  
L
CC  
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
14  
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
RELIABILITY INFORMATION  
TABLE 10A. θJAVS. AIR FLOW 28 LEAD PLCC TABLE  
θJA byVelocity (Linear Feet per Minute)  
0
200  
500  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.8°C/W  
31.1°C/W  
28.3°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TABLE 10B. θJAVS. AIR FLOW 32 LEAD LQFP TABLE  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS84330CI is: 4498  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
15  
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
PACKAGE OUTLINE - V SUFFIX FOR 28 LEAD PLCC  
TABLE 11A. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
SYMBOL  
MINIMUM  
MAXIMUM  
N
A
28  
4.19  
2.29  
4.57  
3.05  
A1  
A2  
b
1.57  
2.11  
0.33  
0.53  
c
0.19  
0.32  
D
12.32  
11.43  
4.85  
12.57  
11.58  
5.56  
D1  
D2  
E
12.32  
11.43  
4.85  
12.57  
11.58  
5.56  
E1  
E2  
Reference Document: JEDEC Publication 95, MS-018  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
16  
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 11B. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
17  
ICS84330CI  
Integrated  
Circuit  
Systems, Inc.  
720MH  
Z
, LOW  
J
ITTER, CRYSTAL  
-TO-3.3V  
D
IFFERENTIAL LVPECL FREQUENCY YNTHESIZER  
S
TABLE 12. ORDERING INFORMATION  
Part/Order Number  
ICS84330CVI  
Marking  
Package  
Count  
38 per Tube  
500  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS84330CVI  
ICS84330CVI  
ICS84330CYI  
ICS84330CYI  
28 Lead PLCC  
ICS84330CVIT  
ICS84330CYI  
28 Lead PLCC on Tape and Reel  
32 Lead LQFP  
250 per Tray  
1000  
ICS84330CYIT  
32 Lead LQFP on Tape and Reel  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
18  
ICS84330CI  
720MHZ, LOW JITTER, CRYSTAL-TO-3.3V  
DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
Date  
Features Section - corrected Output Frequency Range from 25MHz to  
31.25MHz.  
B
1
12/7/04  
84330CVI  
www.icst.com/products/hiperclocks.html  
REV. A DECEMBER 7, 2004  
19  

相关型号:

ICS84330CYILFT

Clock Generator, 720MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS84330CYIT

720MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330CYLN

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330CYLN

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026, LQFP-32
IDT

ICS84330CYLNT

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330CYLNT

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026, LQFP-32
IDT

ICS84330CYT

700MHZ, LOW JITTER, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS84330CYT

Clock Generator, 700MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-32
IDT

ICS84334AY

Clock Generator, 700MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-48
IDT

ICS84334AYLF

Clock Generator, 700MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-48
IDT

ICS84334AYLFT

Clock Generator, 700MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-48
IDT

ICS84334AYT

Clock Generator, 700MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026, LQFP-48
IDT