8538BG-31T [IDT]

Clock Generator, PDSO28;
8538BG-31T
型号: 8538BG-31T
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, PDSO28

光电二极管 外围集成电路
文件: 总14页 (文件大小:1454K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/  
LVCMOS-TO-3.3V LVPECL FANOUT BUFFER  
ICS8538-31  
General Description  
Features  
The ICS8538-31 is a low skew, high performance  
Eight differential 3.3V LVPECL outputs  
S
IC  
1-to-8 Crystal Oscillator/LVCMOS-to-3.3V LVPECL  
Fanout Buffer and a member of the HiPerClockS™  
family of High Performance Clock Solutions from  
IDT. The ICS8538-31 has selectable single ended  
Selectable LVCMOS/LVTTL clock or crystal inputs  
CLK can accept the following input levels: LVCMOS, LVTTL  
Maximum output frequency: 266MHz  
HiPerClockS™  
clock or crystal inputs. The single ended clock input accepts  
LVCMOS or LVTTL input levels and translate them to 3.3V  
LVPECL levels. The output enable is internally synchronized to  
eliminate runt pulses on the outputs during asynchronous  
assertion/deassertion of the clock enable pin.  
Crystal frequency range: 14MHz - 40MHz  
Output skew: 50ps (maximum)  
Part-to-part skew: 250ps (maximum)  
Propagation delay: 2.2ns (maximum)  
3.3V operating supply mode  
Guaranteed output and part-to-part skew characteristics make the  
ICS8538-31 ideal for those applications demanding well defined  
performance and repeatability.  
0°C to 70°C ambient operating temperature  
Industrial temperature information available upon request  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Block Diagram  
Pin Assignment  
CLK  
CLK_SEL  
CLK_EN  
VEE  
1
2
3
4
5
6
7
8
28  
VCC  
Pullup  
CLK_EN  
D
27 XTAL_IN  
26 XTAL_OUT  
Q
LE  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
VEE  
Q0  
nQ0  
VCCO  
Q1  
nQ1  
Q2  
nQ2  
VCCO  
Q3  
Pulldown  
CLK  
0
1
nQ7  
Q7  
VCCO  
nQ6  
Q6  
nQ5  
Q5  
VEE  
nQ4  
Q0  
nQ0  
XTAL_IN  
Q1  
nQ1  
OSC  
9
XTAL_OUT  
CLK_SEL  
10  
11  
12  
13  
Q2  
nQ2  
Pulldown  
Q3  
nQ3  
Q4 14  
15 nQ3  
Q4  
nQ4  
28-Lead TSSOP, 173MIL  
4.4mm x 9.7mm x 0.925mm package body  
G Package  
Q5  
nQ5  
Top View  
Q6  
nQ6  
Q7  
nQ7  
IDT™ / ICS™ LVPECL FANOUT BUFFER  
1
ICS8538BG-31 REV. B FEBRUARY 5, 2008  
ICS8538-31  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER  
Table 1. Pin Descriptions  
Number  
Name  
CLK  
Type  
Description  
1
2
Input  
Input  
Pulldown Single-ended clock input. LVCMOS/LVTTL interface levels.  
CLK_SEL  
CLK_EN  
VEE  
Pulldown  
3
Input  
Pullup  
4, 12, 25  
5, 6  
Power  
Output  
Power  
Output  
Negative supply pins.  
Differential output pair. LVPECL interface levels.  
Output supply pins.  
nQ7, Q7  
VCCO  
7, 17, 22  
8, 9  
Differential output pair. LVPECL interface levels.  
nQ6, Q6  
nQ5, Q5  
nQ4, Q4  
nQ3, Q3  
nQ2, Q2  
nQ1, Q1  
nQ0, Q0  
10, 11  
13, 14  
15, 16  
18, 19  
20, 21  
23, 24  
Output  
Output  
Output  
Output  
Output  
Output  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
26,  
27  
XTAL_OUT  
XTAL_IN  
Input  
Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.  
Positive supply pin.  
28  
VCC  
Power  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
k  
RPULLDOWN Input Pulldown Resistor  
kΩ  
IDT™ / ICS™ LVPECL FANOUT BUFFER  
2
ICS8538BG-31 REV. B FEBRUARY 5, 2008  
ICS8538-31  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER  
Function Tables  
Table 3A. Control Input Function Table  
Inputs  
CLK_SEL  
Outputs  
CLK_EN  
Selected Source  
CLK  
Q0:Q7  
Disabled; Low  
Disabled; Low  
Enabled  
nQ0:nQ7  
Disabled; High  
Disabled; High  
Enabled  
0
0
1
1
0
1
0
1
XTAL_IN, XTAL_OUT  
CLK  
XTAL_IN, XTAL_OUT  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock or crystal oscillator edge as  
shown in Figure 1. In the active mode, the state of the outputs are a function of the CLK input as described in Table 3B.  
Enabled  
Disabled  
CLK  
CLK_EN  
nQ0:nQ7  
Q0:Q7  
Figure 1. CLK_EN Timing Diagram  
Table 3B. Clock Input Function Table  
Inputs  
Outputs  
nQ0:nQ7  
CLK  
Q0:Q7  
LOW  
0
1
HIGH  
LOW  
HIGH  
IDT™ / ICS™ LVPECL FANOUT BUFFER  
3
ICS8538BG-31 REV. B FEBRUARY 5, 2008  
ICS8538-31  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC+ 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA  
49.8°C/W (0 lfpm)  
-65°C to 150°C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
3.465  
110  
Units  
V
VCC  
VCCO  
IEE  
Positive Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Output Supply Current  
3.135  
3.3  
V
mA  
mA  
ICCO  
50  
Table 4B. LVCMOS/LVTTL DC Characteristics, VCC = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
V
VIH  
VIL  
Input High Voltage  
2
VCC + 0.3  
Input Low Voltage  
-0.3  
0.8  
150  
5
V
CLK, CLK_SEL  
CLK_EN  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
VCC = 3.465V, VIN = 0V  
µA  
µA  
µA  
µA  
Input  
High Current  
IIH  
CLK, CLK_SEL  
CLK_EN  
-5  
Input  
Low Current  
IIL  
V
CC = 3.465V, VIN = 0V  
-150  
Table 4C. LVPECL DC Characteristics, VCC = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCCO – 1.4  
VCCO– 2.0  
0.6  
Typical  
Maximum  
VCCO – 0.9  
VCCO – 1.7  
1.0  
Units  
µA  
Output High Current; NOTE 1  
Output Low Current; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VOL  
µA  
VSWING  
V
NOTE 1: Outputs terminated with 50to VCCO – 2V.  
IDT™ / ICS™ LVPECL FANOUT BUFFER  
4
ICS8538BG-31 REV. B FEBRUARY 5, 2008  
ICS8538-31  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER  
Table 5. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
14  
40  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
pF  
1
mW  
AC Electrical Characteristics  
Table 6. AC Characteristics, VCC = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Parameter Symbol  
fMAX Output Frequency  
tPD  
Test Conditions  
Minimum  
Typical  
Maximum  
266  
Units  
MHz  
ns  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
Part-to-Part Skew; NOTE 3, 4  
Output Rise/Fall Time  
2.2  
tsk(o)  
tsk(pp)  
tR / tF  
odc  
50  
ps  
250  
ps  
20% to 80%  
200  
45  
700  
ps  
Output Duty Cycle  
55  
%
All parameters measured at fMAX unless noted otherwise.  
NOTE 1: Measured from VCC/2 input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential  
cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions.  
Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
IDT™ / ICS™ LVPECL FANOUT BUFFER  
5
ICS8538BG-31 REV. B FEBRUARY 5, 2008  
ICS8538-31  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER  
Parameter Measurement Information  
2V  
Part 1  
nQx  
SCOPE  
V
CC,  
Qx  
Qx  
V
CCO  
Part 2  
nQy  
Qy  
LVPECL  
nQx  
VEE  
tsk(pp)  
-
-1.3V 0.165V  
3.3/3.3V LVPECL Output Load AC Test Circuit  
Part-to-Part Skew  
nQx  
Qx  
CLK  
nQy  
nQ0:nQ7  
Q0:Q7  
Qy  
tPD  
tsk(o)  
Output Skew  
Propagation Delay  
nQ0:nQ7  
Q0:Q7  
80%  
tF  
80%  
tR  
tPW  
tPERIOD  
VSWING  
20%  
Clock  
Outputs  
20%  
tPW  
odc =  
x 100%  
tPERIOD  
Output Rise/Fall Time  
Output Duty Cycle/Pulse Width/Period  
IDT™ / ICS™ LVPECL FANOUT BUFFER  
6
ICS8538BG-31 REV. B FEBRUARY 5, 2008  
ICS8538-31  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER  
Application Information  
Crystal Input Interface  
The ICS8538-31 has been characterized with 18pF parallel  
resonant crystals. The capacitor values, C1 and C2, shown in  
Figure 2 below were determined using an 18pF parallel resonant  
crystal and were chosen to minimize the ppm error. These same  
capacitor values will tune any 18pF parallel resonant crystal over  
the frequency range and other parameters specified in this data  
sheet. The optimum C1 and C2 values can be slightly adjusted for  
different board layouts.  
XTAL_IN  
C1  
18p  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
22p  
Figure 2. Crystal Input Interface  
LVCMOS to XTAL Interface  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 3. The XTAL_OUT pin can be left floating. The  
input edge rate can be as slow as 10ns. For LVCMOS inputs, it is  
recommended that the amplitude be reduced from full swing to half  
swing in order to prevent signal interference with the power rail and  
to reduce noise. This configuration requires that the output  
impedance of the driver (Ro) plus the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination  
at the crystal input will attenuate the signal in half. This can be  
done in one of two ways. First, R1 and R2 in parallel should equal  
the transmission line impedance. For most 50applications, R1  
and R2 can be 100. This can also be accomplished by removing  
R1 and making R2 50.  
VCC  
VCC  
R1  
0.1µf  
50  
Ro  
Rs  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OUT  
Figure 3. General Diagram for LVCMOS Driver to XTAL Input Interface  
IDT™ / ICS™ LVPECL FANOUT BUFFER  
7
ICS8538BG-31 REV. B FEBRUARY 5, 2008  
ICS8538-31  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
Crystal Inputs  
LVPECL Outputs  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kresistor can be tied  
from XTAL_IN to ground.  
CLK Input  
For applications not requiring the use of a clock input, it can be left  
floating. Though not required, but for additional protection, a 1kΩ  
resistor can be tied from the CLK input to ground.  
LVCMOS Control Pins  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kresistor can be used.  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal  
distortion. Figures 4A and 4B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and  
clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
Figure 4A. 3.3V LVPECL Output Termination  
Figure 4B. 3.3V LVPECL Output Termination  
IDT™ / ICS™ LVPECL FANOUT BUFFER  
8
ICS8538BG-31 REV. B FEBRUARY 5, 2008  
ICS8538-31  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS8538-31.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8538-31 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 110mA = 381.15mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 8 * 30mW = 240mW  
Total Power_MAX (3.3V, with all outputs switching) = 381.15mW + 240mW = 621.15mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device.  
The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow  
and a multi-layer board, the appropriate value is 49.8°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.621W * 49.8°C/W = 100.9°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type  
of board (single layer or multi-layer).  
Table 7. Thermal Resistance θJA for 28 Lead TSSOP, Forced Convection  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
82.9°C/W  
49.8°C/W  
68.7°C/W  
43.9°C/W  
60.5°C/W  
41.2°C/W  
NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.  
IDT™ / ICS™ LVPECL FANOUT BUFFER  
9
ICS8538BG-31 REV. B FEBRUARY 5, 2008  
ICS8538-31  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 5.  
VCCO  
Q1  
VOUT  
RL  
50Ω  
VCCO - 2V  
Figure 5. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage  
of VCCO – 2V.  
For logic high, VOUT = VOH_MAX = VCCO_MAX – 0.9V  
(VCCO_MAX – VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCO_MAX 1.7V  
(VCCO_MAX – VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOH_MAX) = [(2V – (VCCO_MAX – VOH_MAX))/RL] * (VCCO_MAX – VOH_MAX) =  
[(2V – 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOL_MAX) = [(2V – (VCCO_MAX – VOL_MAX))/RL] * (VCCO_MAX – VOL_MAX) =  
[(2V – 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT™ / ICS™ LVPECL FANOUT BUFFER  
10  
ICS8538BG-31 REV. B FEBRUARY 5, 2008  
ICS8538-31  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER  
Reliability Information  
Table 8. θJA vs. Air Flow Table for a 282 Lead TSSOP  
θJA by Velocity  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
82.9°C/W  
49.8°C/W  
68.7°C/W  
43.9°C/W  
60.5°C/W  
41.2°C/W  
NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.  
Transistor Count  
The transistor count for ICS8430-62 is: 4258  
Package Outline and Package Dimension  
Package Outline - G Suffix for 28 Lead TSSOP  
Table 9. Package Dimensions  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
28  
1.20  
0.15  
1.05  
0.30  
0.20  
9.80  
A1  
A2  
b
0.5  
0.80  
0.19  
0.09  
9.60  
c
D
E
6.40 Basic  
E1  
e
4.30  
4.50  
0.65 Basic  
L
0.45  
0°  
0.75  
8°  
α
aaa  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
IDT™ / ICS™ LVPECL FANOUT BUFFER  
11  
ICS8538BG-31 REV. B FEBRUARY 5, 2008  
ICS8538-31  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER  
Ordering Information  
Table 10. Ordering Information  
Part/Order Number  
ICS8538BG-31  
ICS8538BG-31T  
ICS8538BG-31LF  
ICS8538BG-31LFT  
Marking  
Package  
28 Lead TSSOP  
28 Lead TSSOP  
Shipping Packaging  
Tube  
1000 Tape & Reel  
Tube  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS8538BG-31  
ICS8538BG-31  
ICS8538BG-31LF  
ICS8538BG-31LF  
“Lead-Free” 28 Lead TSSOP  
“Lead-Free” 28 Lead TSSOP  
1000 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for  
the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements  
are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any  
IDT product for use in life support devices or critical medical instruments.  
IDT™ / ICS™ LVPECL FANOUT BUFFER  
12  
ICS8538BG-31 REV. B FEBRUARY 5, 2008  
ICS8538-31  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER  
Revision History Sheet  
Rev  
Table  
Page  
13  
Description of Change  
Date  
A
T10  
Ordering Information table - added Lead-Free marking.  
1/18/08  
5
AC Characteristics Table - changed Output Rise/Fall parameters from 500ps min. to  
200ps min., and 850ps max. to 700ps max.  
B
T6  
2/5/08  
9
Power Considerations - updated Junction Temperature equation with worst case  
thermal resistance of 0 lfpm at 49.8°C/W.  
IDT™ / ICS™ LVPECL FANOUT BUFFER  
13  
ICS8538BG-31 REV. B FEBRUARY 5, 2008  
ICS8538-31  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL FANOUT BUFFER  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters Asia  
Japan  
Europe  
Integrated Device Technology, Inc. Integrated Device Technology NIPPON IDT KK  
IDT Europe, Limited  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
United States  
IDT (S) Pte. Ltd.  
Sanbancho Tokyu, Bld. 7F,  
8-1 Sanbancho  
Chiyoda-ku, Tokyo 102-0075 KT22 7TU  
321 Kingston Road  
Leatherhead, Surrey  
1 Kallang Sector, #07-01/06  
Kolam Ayer Industrial Park  
Singapore 349276  
800 345 7015  
+81 3 3221 9822  
England  
+408 284 8200 (outside U.S.)  
+65 67443356  
Fax: +65 67441764  
Fax: +81 3 3221 9824  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 37885  
idteurope@idt.com  
© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
www.IDT.com  
Printed in USA  

相关型号:

8538BGI-26LF

Clock Generator, 266MHz, PDSO24, 4.40 X 7.80 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-24
IDT

8538BGI-26LFT

Clock Generator, 266MHz, PDSO24, 4.40 X 7.80 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-24
IDT

853A-00-12

PCB Terminal
WINCHESTER

853A-10-12

PCB Terminal,
WINCHESTER

853A-112-12

PCB Terminal
WINCHESTER

853A-113-12

PCB Terminal
WINCHESTER

853A-12-12

PCB Terminal
WINCHESTER

853A-16-12

PCB Terminal
WINCHESTER

853A-17-12

PCB Terminal
WINCHESTER

853A-18-12

PCB Terminal
WINCHESTER

853A-181-12

PCB Terminal
WINCHESTER

853A-2-12

PCB Terminal
WINCHESTER