8538BGI-26LF [IDT]

Clock Generator, 266MHz, PDSO24, 4.40 X 7.80 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-24;
8538BGI-26LF
型号: 8538BGI-26LF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 266MHz, PDSO24, 4.40 X 7.80 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-24

时钟 光电二极管 外围集成电路 晶体
文件: 总21页 (文件大小:345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-  
TO-3.3V, 2.5V LVPECL/LVCMOS FANOUT BUFFER  
ICS8538I-26  
GENERAL DESCRIPTION  
FEATURES  
The ICS8538I-26 is a low skew, high performance  
Two differential 3.3V or 2.5V LVPECL outputs and  
ICS  
HiPerClockS™  
1-to-8 Crystal Oscillator/LVCMOS-to-3.3V, 2.5V  
LVPECL/LVCMOS Fanout Buffer and a member of  
the HiPerClockS™family of High Performance Clock  
Solutions from IDT. The ICS8538I-26 has select-  
six single-ended 3.3V or 2.5V LVCMOS/LVTTL outputs  
Selectable LVCMOS/LVTTL CLK or crystal inputs  
CLK can accept the following input levels: LVCMOS, LVTTL  
Maximum output frequency: 266MHz  
able single ended clock or crystal inputs.The single ended clock  
input accepts LVCMOS or LVTTL input levels and translate  
them to 3.3V LVPECL levels. The output enable is internally  
synchronized to eliminate runt pulses on the outputs during  
asynchronous assertion/deassertion of the clock enable pin.  
Output skew: 60ps (maximum), LVPECL outputs  
Part-to-part skew: 800ps (maximum)  
Propagation delay: 2.05ns (maximum), LVPECL outputs  
Additive phase jitter, RMS: 0.19ps (typical)  
Guaranteed output and part-to-part skew characteristics make  
the ICS8538I-26 ideal for those applications demanding well  
defined performance and repeatability.  
Operating supply modes:  
LVPECL outputs:  
Core/Output  
3.3V/3.3V  
2.5V/2.5V  
LVCMOS outputs:  
Core/Output  
3.3V/3.3V  
2.5V/2.5V  
-40°C to 85°C ambient operating temperature  
Available in lead-free (RoHS 6) package  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
CLK_EN  
XTAL_IN  
XTAL_OUT  
VCC  
Q7  
1
2
3
4
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
Pullup  
CLK_EN  
D
VCCO_LVCMOS  
Q6  
LE  
VEE  
Q5  
VCCO_LVCMOS  
Q4  
CLK  
5
6
7
8
Pulldown  
CLK  
LVPECL  
Q0  
0
1
CLK_SEL  
VEE  
nQ0  
Q0  
VEE  
25MHz  
XTAL_IN  
9
nQ0  
VCCO_LVPECL  
Q1  
Q3  
Q1  
10  
11  
12  
VCCO_LVCMOS  
Q2  
OSC  
nQ1  
XTAL_OUT  
nQ1  
VEE  
Pullup  
ICS8538I-26  
24-Lead TSSOP  
CLK_SEL  
Q2  
4.40mm x 7.8mm x 0.925mm package body  
G Package  
Top View  
LVCMOS  
Q7  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
1
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Pullup  
Description  
Synchronizing clock enable. When HIGH, clock outputs follow clock  
input. When LOW, Q outputs are forced low, nQ outputs are forced high.  
See Table 3B. LVCMOS / LVTTL interface levels.  
Crystal oscillator interface. XTAL_IN is the input.  
XTAL_OUT is the output.  
1
CLK_EN  
Input  
Input  
2,  
3
XTAL_IN,  
XTAL_OUT  
4
5
VCC  
Power  
Input  
Positive supply pin.  
CLK  
Pulldown Clock input. LVCMOS / LVTTL interface levels.  
Clock select input. When HIGH, selects XTAL inputs.  
Pullup  
6
CLK_SEL  
VEE  
Input  
When LOW, selects CLK input. LVCMOS / LVTTL interface levels.  
7, 13,  
17, 21  
Power  
Negative supply pins.  
8, 9  
Q0, nQ0  
VCCO_LVPECL  
Q1, nQ1  
Output  
Power  
Output  
Differential clock outputs. LVPECL interface levels.  
Output power supply mode for LVPECL clock outputs.  
Differential clock outputs. LVPECL interface levels.  
10  
11, 12  
14, 16,  
18, 20,  
22, 24  
Q2, Q3,  
Q4, Q5,  
Q6, Q7  
Output  
Single ended clock outputs. LVCMOS / LVTTL interface levels.  
15, 19, 23  
VCCO_LVCMOS  
Power  
Output power supply mode for LVCMOS / LVTTL clock outputs.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
CIN  
Input Capacitance  
4
pF  
pF  
Power Dissipation  
Capacitance  
VCC, VCCO_LVCMOS = 3.465V  
VCC, VCCO_LVCMOS = 2.625V  
10  
CPD  
Q2:Q7  
Q2:Q7  
(per LVCMOS output)  
Input Pullup Resistor  
8
pF  
kΩ  
kΩ  
Ω
RPULLUP  
51  
51  
15  
20  
RPULLDOWN Input Pulldown Resistor  
VCCO_LVCMOS = 3.465V  
ROUT Output Impedance  
VCCO_LVCMOS = 2.625V  
Ω
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
2
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
TABLE 3A. CONTROL INPUT FUNCTION TABLE  
Inputs  
CLK_SEL  
Outputs  
nQ0, nQ1  
CLK_EN  
Selected Source  
CLK  
Q0, Q1  
Disabled; LOW  
Disabled; LOW  
Enabled  
Q2:Q7  
Disabled; LOW  
Disabled; LOW  
Enabled  
0
0
1
1
0
1
0
1
Disabled; HIGH  
Disabled; HIGH  
Enabled  
XTAL_IN, XTAL_OUT  
CLK  
XTAL_IN, XTAL_OUT  
Enabled  
Enabled  
Enabled  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock or  
crystal oscillator edge as shown in Figure 1.  
In the active mode, the state of the outputs are a function of the CLK input as described in Table 3B.  
Enabled  
Disabled  
CLK  
CLK_EN  
nQ0, nQ1  
Q0:Q7  
FIGURE 1. CLK_EN TIMING DIAGRAM  
TABLE 3B. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
nQ0, nQ1  
CLK  
Q0, Q1  
LOW  
Q2:Q7  
LOW  
0
1
HIGH  
LOW  
HIGH  
HIGH  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
3
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
CC  
Inputs, V (LVCMOS)  
-0.5V to VCC + 0.5 V  
I
Outputs, VO (LVCMOS)  
-0.5V to VCCO_LVCMOS + 0.5V  
-0.5V to VCC + 0.5V  
Inputs, V (LVPECL)  
I
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA 87.8°C/W (0 mps)  
Storage Temperature, T -65°C to 150°C  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCO_LVPECL = VCCO_LVCMOS = 3.3V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VCC  
Power Supply Voltage  
3.135  
3.3  
3.465  
V
VCCO_LVPECL,  
VCCO_LVCMOS  
Power Supply Voltage  
3.135  
3.3  
3.465  
V
IEE  
Power Supply Current  
Power Supply Current  
60  
12  
10  
mA  
mA  
mA  
ICCO_LVPECL  
ICCO_LVCMOS Power Supply Current  
TABLE 4B. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCO_LVPECL = VCCO_LVCMOS = 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VCC  
Power Supply Voltage  
2.375  
2.5  
2.625  
V
VCCO_LVPECL,  
VCCO_LVCMOS  
Power Supply Voltage  
2.375  
2.5  
2.625  
V
IEE  
Power Supply Current  
Power Supply Current  
60  
12  
10  
mA  
mA  
mA  
ICCO_LVPECL  
ICCO_LVCMOS Power Supply Current  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
4
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
TABLE 4C. LVCMOS / LVTTL DC CHARACTERISTICS, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
CC = 3.3V  
Minimum Typical Maximum Units  
V
2
VCC + 0.3  
VCC + 0.3  
0.8  
V
V
V
V
VIH  
Input High Voltage  
VCC = 2.5V  
VCC = 3.3V  
1.7  
-0.3  
-0.3  
VIL  
Input Low Voltage  
V
CC = 2.5V  
0.7  
Input  
Hysteresis  
CLK_EN,  
CLK_SEL  
VHYS  
100  
mV  
µA  
µA  
µA  
µA  
CLK  
VCC = VIN = 3.465V or 2.625V  
VCC = VIN = 3.465V or 2.625V  
VCC = 3.465V or 2.625V, VIN = 0V  
VCC = 3.465V or 2.625V, VIN = 0V  
150  
5
Input  
High Current  
IIH  
CLK_EN,  
CLK_SEL  
CLK  
-5  
Input  
Low Current  
IIL  
CLK_EN,  
CLK_SEL  
-150  
V
V
CCO_LVCMOS = 3.465V  
CCO_LVCMOS = 2.625V  
2.6  
1.8  
V
V
V
VOH  
VOL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
VCCO_LVCMOS = 3.465V or 2.625V  
0.5  
NOTE 1: Outputs terminated with 50Ω to VCCO_LVCMOS/2. See Parameter Measurement Information Section. "LVCMOS Output  
Load Test circuit" diagrams.  
TABLE 4D. LVPECL DC CHARACTERISTICS, VCC = VCCO_LVPECL = 3.3V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCCO_LVPECL - 1.4  
VCCO_LVPECL - 2.0  
0.6  
Typical  
Maximum  
VCCO_LVPECL - 0.9  
VCCO_LVPECL - 1.7  
1.0  
Units  
VOH  
Output High Voltage; NOTE 1  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50Ω to VCCO_LVPECL - 2V.  
TABLE 4E. LVPECL DC CHARACTERISTICS, VCC = VCCO_LVPECL = 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCCO_LVPECL - 1.4  
VCCO_LVPECL - 2.0  
0.4  
Typical  
Maximum  
VCCO_LVPECL - 0.9  
VCCO_LVPECL - 1.5  
1.0  
Units  
VOH  
Output High Voltage; NOTE 1  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50Ω to VCCO_LVPECL - 2V.  
TABLE 5. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Mode of Oscillation  
Frequency  
Fundamental  
12  
40  
50  
7
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
5
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
TABLE 6A. LVPECL AC CHARACTERISTICS, VCC = VCCO_LVPECL = 3.3V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
fOUT Output Frequency  
tPD  
Test Conditions  
Minimum Typical Maximum Units  
266  
MHz  
ns  
Propagation Delay; NOTE 1  
1.15  
2.05  
Buffer Additive Phase Jitter,  
RMS; refer to Additive Phase  
Jitter Section  
RMS Phase Jitter, Random;  
NOTE 2  
155.52MHz,  
(Integration Range: 12kHz - 20MHz)  
tjit  
0.19  
0.25  
ps  
25MHz Crystal,  
(Integration Range: 1kHz - 1MHz)  
tjit(Ø)  
tsk(o)  
tsk(pp)  
ps  
ps  
ps  
Output Skew; NOTE 3, 5  
60  
Part-to-Part Skew;  
NOTE 4, 5  
800  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
175  
45  
925  
55  
ps  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditions.  
NOTE: All parameters measured at ƒ266MHz unless noted otherwise.  
NOTE 1: Measured from the VCC/2 of the input to the differential output crossing point.  
NOTE 2: See phase jitter plot.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
TABLE 6B. LVPECL AC CHARACTERISTICS, VCC = VCCO_LVPECL = 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
fOUT Output Frequency  
tPD  
Test Conditions  
Minimum Typical Maximum Units  
266  
MHz  
ns  
Propagation Delay; NOTE 1  
1.15  
2.05  
Buffer Additive Phase Jitter,  
RMS; refer to Additive Phase  
Jitter Section  
RMS Phase Jitter, Random;  
NOTE 2  
155.52MHz,  
(Integration Range: 12kHz - 20MHz)  
tjit  
0.37  
0.27  
ps  
25MHz Crystal,  
(Integration Range: 1kHz - 1MHz)  
tjit(Ø)  
tsk(o)  
tsk(pp)  
ps  
ps  
ps  
Output Skew; NOTE 3, 5  
60  
Part-to-Part Skew;  
NOTE 4, 5  
800  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
175  
45  
815  
55  
ps  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditions.  
NOTE: All parameters measured at ƒ266MHz unless noted otherwise.  
NOTE 1: Measured from the VCC/2 of the input to the differential output crossing point.  
NOTE 2: See phase jitter plot.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
6
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
TABLE 6C. LVCMOS AC CHARACTERISTICS, VCC = VCCO_LVCMOS = 3.3V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
fOUT Output Frequency  
tPD  
Test Conditions  
Minimum Typical Maximum Units  
266  
MHz  
ns  
Propagation Delay; NOTE 1  
2.5  
3.75  
Buffer Additive Phase Jitter,  
RMS; refer to Additive Phase  
Jitter Section  
RMS Phase Jitter, Random;  
NOTE 2  
155.52MHz,  
(Integration Range: 12kHz - 20MHz)  
tjit  
0.24  
0.25  
ps  
25MHz Crystal,  
(Integration Range: 1kHz - 1MHz)  
tjit(Ø)  
tsk(o)  
tsk(pp)  
ps  
ps  
ps  
Output Skew; NOTE 3, 5  
112  
800  
Part-to-Part Skew;  
NOTE 4, 5  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
0.250  
45  
1.125  
55  
ns  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditions.  
NOTE: All parameters measured at ƒ266MHz unless noted otherwise.  
NOTE 1: Measured from the VCC/2 of the input to VCCO_LVCMOS/2 of the output.  
NOTE 2: See phase jitter plot.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at VCCO_LVCMOS/2.  
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at VCCO_LVCMOS/2.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
TABLE 6D. LVCMOS AC CHARACTERISTICS, VCC = VCCO_LVCMOS = 2.5V 5ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
fOUT Output Frequency  
tPD  
Test Conditions  
Minimum Typical Maximum Units  
266  
4.0  
MHz  
ns  
Propagation Delay; NOTE 1  
2.55  
Buffer Additive Phase Jitter,  
RMS; refer to Additive Phase  
Jitter Section  
RMS Phase Jitter, Random;  
NOTE 2  
155.52MHz,  
(Integration Range: 12kHz - 20MHz)  
tjit  
0.22  
0.27  
ps  
25MHz Crystal,  
(Integration Range: 1kHz - 1MHz)  
tjit(Ø)  
ps  
tsk(o)  
tsk(pp)  
tR / tF  
Output Skew; NOTE 3, 5  
Part-to-Part Skew; NOTE 4, 5  
Output Rise/Fall Time  
Output Duty Cycle  
112  
800  
1.45  
60  
ps  
ps  
ns  
20ꢀ to 80ꢀ  
0.225  
40  
odc  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditions.  
NOTE: All parameters measured at ƒ266MHz unless noted otherwise.  
NOTE 1: Measured from the VCC/2 of the input to VCCO_LVCMOS/2 of the output.  
NOTE 2: See phase jitter plot.  
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at VCCO_LVCMOS/2.  
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at VCCO_LVCMOS/2.  
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
7
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
TYPICAL PHASE NOISE AT 100MHZ @3.3V  
100MHz  
RMS Phase Jitter (Random)  
1kHz – 1MHz = 0.25ps (typical)  
OFFSET FREQUENCY (HZ)  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
8
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
2V  
SCOPE  
SCOPE  
VCC,  
VCC,  
Qx  
Qx  
VCCO_LVPECL  
VCCO_LVPECL  
LVPECL  
LVPECL  
nQx  
nQx  
VEE  
VEE  
-1.3V 0.165V  
-0.5V 0.125V  
3.3V CORE/3.3V LVPECL OUTPUT LOAD AC TEST CIRCUIT  
2.5V CORE/ 2.5V LVPECL OUTPUT LOAD AC TEST CIRCUIT  
1.25V 5ꢀ  
1.65V 5ꢀ  
SCOPE  
SCOPE  
VCC,  
VCCO_LVCMOS  
VCC,  
VCCO_LVCMOS  
Qx  
Qx  
LVCMOS  
LVCMOS  
VEE  
VEE  
-1.65V 5ꢀ  
-1.25V 5ꢀ  
3.3V CORE/3.3V LVCMOS OUTPUT LOAD AC TEST CIRCUIT  
2.5V CORE/ 2.5V LVCMOS OUTPUT LOAD AC TEST CIRCUIT  
VCC  
VCC  
2
CLK  
2
CLK  
nQ0, nQ1  
Q0, Q1  
VCCO_LVCMOS  
Q2:Q7  
2
t
tPD  
PD  
LVPECL PROPAGATION DELAY  
LVCMOS PROPAGATION DELAY  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
9
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION, CONTINUED  
nQx  
Qx  
Qx  
Qy  
nQy  
Qy  
tsk(o)  
tsk(o)  
LVPECL OUTPUT SKEW  
LVCMOS OUTPUT SKEW  
Part 1  
nQx  
Part 1  
VCCO_LVCMOS  
Qx  
Qy  
2
Qx  
Part 2  
nQy  
Part 2  
VCCO_LVCMOS  
2
Qy  
tsk(pp)  
tsk(pp)  
LVPECL PART-TO-PART SKEW  
LVCMOS PART-TO-PART SKEW  
nQ0, nQ1  
VCCO_LVCMOS  
2
Q0, Q1  
Q2:Q7  
tPW  
tPW  
tPERIOD  
tPERIOD  
tPW  
odc =  
x 100ꢀ  
tPW  
odc =  
x 100ꢀ  
tPERIOD  
tPERIOD  
LVPECL OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
LVCMOS OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
nQ0, nQ1  
80ꢀ  
tF  
80ꢀ  
tR  
80ꢀ  
tF  
80ꢀ  
tR  
VSWING  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
Q0, Q1  
Q2:Q7  
LVCMOS OUTPUT RISE/FALL TIME  
LVPECL OUTPUT RISE/FALL TIME  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
10  
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION, CONTINUED  
Phase Noise Plot  
Offset Frequency  
f1  
f2  
RMS Jitter = Area Under Offset Frequency Markers  
RMS PHASE JITTER  
APPLICATION INFORMATION  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
LVCMOS OUTPUTS  
CRYSTAL INPUTS  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kΩ resistor can be tied  
from XTAL_IN to ground.  
All unused LVCMOS output can be left floating. There should be  
no trace attached.  
LVPECL OUTPUTS  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
CLK INPUT  
For applications not requiring the use of a clock input, it can be  
left floating. Though not required, but for additional protection, a  
1kΩ resistor can be tied from the CLK input to ground.  
LVCMOS CONTROL PINS  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
11  
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
CRYSTAL INPUT INTERFACE  
The ICS8538I-26 has been characterized with 18pF parallel  
resonant crystals. The capacitor values, C1 and C2, shown in  
Figure 2 below were determined using an 18pF parallel resonant  
crystal and were chosen to minimize the ppm error.These same  
capacitor values will tune any 18pF parallel resonant crystal  
over the frequency range and other parameters specified in  
this data sheet. The optimum C1 and C2 values can be slightly  
adjusted for different board layouts.  
XTAL_OUT  
XTAL_IN  
C1  
27p  
X1  
18pF Parallel Crystal  
C2  
27p  
FIGURE 2. CRYSTAL INPUT INTERFACE  
LVCMOS TO XTAL INTERFACE  
impedance of the driver (Ro) plus the series resistance (Rs) equals  
the transmission line impedance.In addition, matched termination  
at the crystal input will attenuate the signal in half. This can be  
done in one of two ways. First, R1 and R2 in parallel should equal  
the transmission line impedance. For most 50Ω applications, R1  
and R2 can be 100Ω.This can also be accomplished by removing  
R1 and making R2 50Ω.  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 3. The XTAL_OUT pin can be left floating. The  
input edge rate can be as slow as 10ns. For LVCMOS signals, it  
is recommended that the amplitude be reduced from full swing to  
half swing in order to prevent signal interference with the power  
rail and to reduce noise.This configuration requires that the output  
VDD  
VDD  
R1  
.1uf  
Ro  
Rs  
Zo = 50  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OUT  
FIGURE 3. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
12  
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termination  
for LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
drive 50Ω transmission lines. Matched impedance techniques  
should be used to maximize operating frequency and minimize  
signal distortion. Figures 4A and 4B show two different layouts  
which are recommended only as guidelines. Other suitable  
clock layouts may exist and it would be recommended that the  
board designers simulate to guarantee compatibility across all  
printed circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, termi-  
nating resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 4A. LVPECL OUTPUT TERMINATION  
FIGURE 4B. LVPECL OUTPUT TERMINATION  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
13  
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
TERMINATION FOR 2.5V LVPECL OUTPUTS  
Figure 5A and Figure 5B show examples of termination for  
2.5V LVPECL driver. These terminations are equivalent to  
very close to _LVCMOSground level. The R3 in Figure 5B can  
be eliminated and the termination is shown in Figure 5C.  
terminating 50Ω to V – 2V. For V = 2.5V, the V  
– 2V is  
CC  
CCO  
CCO_LVCMOS  
2.5V  
2.5V  
2.5V  
VCCO=2.5V  
VCCO=2.5V  
R1  
R3  
250  
250  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
+
-
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 5A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 5B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 5C. 2.5V LVPECL TERMINATION EXAMPLE  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
14  
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8538I-26.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8538I-26 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Core and LVPECL Output Power Dissipation  
Power (core) = V  
* I  
= 3.465V * 60mA = 207.9mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
LVCMOS Output Power Dissipation  
Output Impedance R Power Dissipation due to Loading 50Ω to V  
/2  
CCO_LVCMOS  
OUT  
Output Current IOUT = VCCO_MAX / [2 * (50Ω + ROUT)] = 3.465V / [2 * (50Ω + 15Ω)] = 26.7mA  
Power Dissipation on the ROUT per LVCMOS output  
2
Power (ROUT) = ROUT * (IOUT  
)
= 15Ω * (26.7mA)2 = 10.7mW per output  
Total Power Dissipation on the ROUT  
Total Power (ROUT) = 10.7mW * 6 = 64.2mW  
Dynamic Power Dissipation at 25MHz  
2
Power (25MHz) = CPD * Frequency * (VCCO_LVCMOS  
)
= 10pF * 25MHz * (3.465V)2 = 3mW per output  
Total Power (25MHz) = 3mW * 6 = 18mW  
Total Power Dissipation  
Total Power  
= Power (core) + Power (LVPECL output) + Total Power (ROUT) + Total Power (25MHz)  
= 207.9mW + 60mW + 64.2mW + 18mW  
= 350.1mW  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
15  
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ must be used. Assuming no air  
JA  
flow and a multi-layer board, the appropriate value is 87.8°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.350W * 87.8°C/W = 115.7°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (multi-layer).  
TABLE 7. THERMAL RESISTANCE θ FOR 24-PIN TSSOP, FORCED CONVECTION  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
81.3°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
87.8°C/W  
83.5°C/W  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
16  
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 5.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 5. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V – 2V.  
CCO  
For logic high, V = V  
= V  
– 0.9V  
OUT  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
– V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
– V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
– 2V))/R ] * (V  
– V  
) = [(2V – (V  
– V  
– V  
/R ] * (V  
– V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
_MAX  
CCO  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V – 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
– 2V))/R ] * (V  
– V  
) = [(2V – (V  
/R ] * (V  
– V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
CCO  
L
[(2V – 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
17  
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 8. θ VS. AIR FLOW TABLE FOR 24 LEAD TSSOP  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
81.3°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
87.8°C/W  
83.5°C/W  
TRANSISTOR COUNT  
The transistor count for ICS8538I-26 is: 726  
PACKAGE OUTLINE AND PACKAGE DIMENSIONS  
TABLE 9. PACKAGE DIMENSIONS  
SYMBOL  
PACKAGE OUTLINE - G SUFFIX FOR 24 LEAD TSSOP  
Millimeters  
Minimum  
Maximum  
N
A
24  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
7.90  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
7.70  
c
D
E
6.40 BASIC  
0.65 BASIC  
E1  
e
4.30  
4.50  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
18  
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
8538BGI-26LF  
Marking  
Package  
Shipping Packaging  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
8538BGI26L  
8538BGI26L  
24 lead "Lead-Free" TSSOP  
24 lead "Lead-Free" TSSOP  
8538BGI-26LFT  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
19  
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
1
Features section - LVPECL operating supply modes, added full 2.5; for  
LVCMOS outputs, changed 3.3V/2.5V to full 2.5V mode.  
Pin Characteristics - updated table to accommodate 2.5V for CPD and ROUT and  
added specs.  
T2  
2
T4A - T4B  
T4C  
4
5
5
6
7
Power Supply Table - updated power supply tables to new supply mode.  
LVCMOS Table - updated table with new supply mode.  
Added 2.5V LVPECL DC Characteristics Table.  
Added 2.5V LVPECL AC Characteristics Table.  
Added 3.3V LVCMOS AC Characteristics Table.  
Changed LVCMOS AC Characteristics Table from 3.3V/2.5V to 2.5V/2.5V.  
Added RMS Phase Jitter Plot.  
T5E  
T6B  
T6C  
T6D  
B
4/14/09  
7
8
11  
Parameter Measurement Information Section - added RMS Phase JItter  
diagram.  
T7  
T8  
16  
18  
Recalucated junction temperature equation and updated Thermal Resistance  
table.  
Updated Thermal Resistance Table.  
IDT/ ICS3.3V LVPECL/ LVCMOS FANOUT BUFFER  
20  
ICS8538BGI-26 REV. B APRIL 14, 2009  
ICS8538I-26  
LOW SKEW, 1-TO-8, CRYSTAL OSCILLATOR/LVCMOS-TO-3.3V LVPECL/LVCMOS FANOUT BUFFER  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
For Tech Support  
netcom@idt.com  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
+480-763-2056  
www.IDT.com/go/contactIDT  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
© 2009 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

8538BGI-26LFT

Clock Generator, 266MHz, PDSO24, 4.40 X 7.80 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-24
IDT

853A-00-12

PCB Terminal
WINCHESTER

853A-10-12

PCB Terminal,
WINCHESTER

853A-112-12

PCB Terminal
WINCHESTER

853A-113-12

PCB Terminal
WINCHESTER

853A-12-12

PCB Terminal
WINCHESTER

853A-16-12

PCB Terminal
WINCHESTER

853A-17-12

PCB Terminal
WINCHESTER

853A-18-12

PCB Terminal
WINCHESTER

853A-181-12

PCB Terminal
WINCHESTER

853A-2-12

PCB Terminal
WINCHESTER

853A-3-12

PCB Terminal
WINCHESTER