85211AMI-03T [IDT]

Low Skew Clock Driver, PDSO8;
85211AMI-03T
型号: 85211AMI-03T
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Low Skew Clock Driver, PDSO8

驱动 光电二极管 逻辑集成电路
文件: 总13页 (文件大小:194K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS85211I-03  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
FEATURES  
GENERAL DESCRIPTION  
2 differential LVHSTL compatible outputs  
The ICS85211I-03 is a low skew, high perfor-  
ICS  
mance 1-to-2 Differential-to-LVHSTL Fanout  
Buffer and a member of the HiPerClockS™  
family of High Performance Clock Solutions  
from IDT. The CLK, nCLK pair can accept most  
1 differential CLK, nCLK input pair  
HiPerClockS™  
CLK, nCLK pair can accept the following differential  
input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL  
standard differential input levels.The ICS85211I-03 is char-  
acterized to operate from a 3.3V power supply. Guar-  
anteed output and part-to-part skew characteristics  
make the ICS85211I-03 ideal for those clock distribution  
applications demanding well defined performance and  
repeatability. For optimal performance, terminate all outputs.  
Maximum output frequency: 700MHz  
Translates any single-ended input signal to  
LVHSTL levels with resistor bias on nCLK input  
Output skew: 30ps (maximum)  
Part-to-part skew: 250ps (maximum)  
Propagation delay: 1ns (maximum)  
Output duty cycle: 49% - 51% up to 266.6MHz  
VOH = 1V (maximum)  
3.3V operating supply  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS  
6) packages.  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Q0  
nQ0  
Q1  
VDD  
1
2
3
4
8
7
6
5
Q0  
nQ0  
CLK  
nCLK  
GND  
CLK  
nCLK  
Q1  
nQ1  
nQ1  
ICS85211I-03  
8-Lead SOIC  
3.90mm x 4.90mm x 1.37mm package body  
M Package  
Top View  
85211AMI-03  
1
REV.B NOVEMBER 14, 2007  
ICS85211I-03  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Q0, nQ0  
Q1, nQ1  
GND  
Type  
Description  
1, 2  
3, 4  
5
Output  
Output  
Power  
Input  
Differential output pair. LVHSTL interface levels.  
Differential output pair. LVHSTL interface levels.  
Power supply ground.  
6
nCLK  
CLK  
VDD/2  
Inverting differential clock input. VDD/2 default when left floating.  
7
Input  
Pulldown Non-inverting differential clock input.  
Positive supply pin.  
8
VDD  
Power  
NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical  
Maximum Units  
Input Capacitance  
Input Pullup Resistor  
Input Pulldown Resistor  
4
pF  
KΩ  
KΩ  
RPULLUP  
RPULLDOWN  
51  
51  
TABLE 3. CLOCK INPUT FUNCTION TABLE  
Inputs  
Outputs  
Q0, Q1 nQ0, nQ1  
Input to Output Mode  
Polarity  
CLK  
nCLK  
0
0
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
Differential to Differential  
Differential to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Single Ended to Differential  
Non Inverting  
Non Inverting  
Non Inverting  
Non Inverting  
Inverting  
1
1
0
Biased; NOTE 1  
1
Biased; NOTE 1  
Biased; NOTE 1  
Biased; NOTE 1  
0
1
Inverting  
NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels".  
85211AMI-03  
2
REV.B NOVEMBER 14, 2007  
ICS85211I-03  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, VDD  
Inputs, VDD  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
-0.5V to VDD + 0.5 V  
-0.5V to VDD + 0.5V  
Outputs,VDD  
PackageThermal Impedance, θJA 112.7°C/W (0 lfpm)  
StorageTemperature,TSTG -65°C to 150°C  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VDD  
IDD  
Power Supply Voltage  
Power Supply Current  
3.135  
3.3  
3.465  
50  
V
mA  
TABLE 4B. DIFFERENTIAL DC CHARACTERISTICS, VDD = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
Minimum Typical Maximum Units  
nCLK  
CLK  
VDD = VIN = 3.465V  
150  
150  
µA  
µA  
µA  
µA  
V
V
DD = VIN = 3.465V  
VDD = 3.465V, VIN = 0V  
DD = 3.465V, VIN = 0V  
nCLK  
CLK  
-150  
-5  
IIL  
Input Low Current  
V
VPP  
Peak-to-Peak Input Voltage  
0.15  
1.3  
Common Mode Input Voltage;  
NOTE 1, 2  
VCMR  
0.5  
VDD - 0.85  
V
NOTE 1: For single ended applications the maximum input voltage for CLK and nCLK is VDD + 0.3V.  
NOTE 2: Common mode voltage is defined as VIH.  
TABLE 4C. LVHSTL DC CHARACTERISTICS, VDD = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
0.7  
0
1.0  
0.4  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
0.3  
0.65  
NOTE 1: All outputs must be terminated with 50Ω to ground.  
85211AMI-03  
3
REV.B NOVEMBER 14, 2007  
ICS85211I-03  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
TABLE 5. AC CHARACTERISTICS, VDD = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
fMAX  
Output Frequency  
700  
1
MHz  
ns  
ps  
ps  
ps  
%
tPD  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 4  
Part-to-Part Skew; NOTE 3, 4  
Output Rise/Fall Time  
ƒ600MHz  
0.7  
tsk(o)  
tsk(pp)  
tR / tF  
30  
250  
450  
53  
20% to 80%  
185  
47  
odc  
Output Duty Cycle  
ƒ266.6MHz  
49  
51  
%
All parameters measured at 600MHz unless noted otherwise.  
The cycle-to-cycle jitter on the input will equal the jitter on the output. The part does not add jitter.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at output differential cross points.  
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load  
conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.  
85211AMI-03  
4
REV.B NOVEMBER 14, 2007  
ICS85211I-03  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
PARAMETER MEASUREMENT INFORMATION  
VDD = 3.3V 5%  
VDD  
SCOPE  
Qx  
nCLK  
CLK  
LVHSTL  
VPP  
VCMR  
Cross Points  
nQx  
GND  
GND = 0V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nQx  
Qx  
Qx  
PART 1  
nQx  
Qy  
nQy  
PART 2  
nQy  
Qy  
tsk(pp)  
tsk(o)  
OUTPUT SKEW  
PART-TO-PART SKEW  
nCLK  
CLK  
80%  
tF  
80%  
VSWING  
20%  
Clock  
20%  
nQ0, nQ1  
Outputs  
tR  
Q0, Q1  
tPD  
OUTPUT RISE/FALL TIME  
PROPAGATION DELAY  
nQ0, nQ1  
Q0, Q1  
tPW  
tPERIOD  
tPW  
odc =  
x 100%  
tPERIOD  
odc & tPERIOD  
85211AMI-03  
5
REV.B NOVEMBER 14, 2007  
ICS85211I-03  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept of R1 and R2 might need to be adjusted to position theV_REF in  
single ended levels. The reference voltage V_REF = VDD/2 is the center of the input voltage swing. For example, if the input  
generated by the bias resistors R1, R2 and C1.This bias circuit clock swing is only 2.5V andVDD = 3.3V, V_REF should be 1.25V  
should be located as close as possible to the input pin.The ratio and R2/R1 = 0.609.  
VDD  
R1  
1K  
Single Ended Clock Input  
CLK  
V_REF  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
SCHEMATIC EXAMPLE  
Figure 2 shows a schematic example of ICS85211I-03. In this near the power pin. For ICS85211I-03, the unused outputs need  
example, the input is driven by an ICS HiPerClockS LVHSTL to be terminated.  
driver. The decoupling capacitors should be physically located  
Zo = 50 Ohm  
1.8V  
-
U1  
Zo = 50 Ohm  
Zo = 50 Ohm  
5
6
7
8
4
3
2
1
Zo = 50 Ohm  
GND  
nCLK  
CLK  
nQ1  
Q1  
nQ0  
Q0  
+
VDD  
R1  
50  
R2  
50  
LVHSTL Input  
VDD=3.3V  
LVHSTL  
ICS  
ICS85211-03  
R6  
50  
R5  
50  
C1  
0.1u  
HiPerClockS  
LVHSTL Driv er  
Unused  
Output  
Need To  
Be  
R3  
50  
R4  
50  
Terminated  
FIGURE 2. ICS85211I-03 LVHSTL BUFFER SCHEMATIC EXAMPLE  
85211AMI-03  
6
REV.B NOVEMBER 14, 2007  
ICS85211I-03  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
CLOCK INPUT INTERFACE  
The CLK /nCLK accepts differential input signals of both VSWING driver components to confirm the driver termination requirement.  
andVOH to meet theVPP andVCMR input requirements.Figures 3 to For example in Figure 3, the input termination applies for ICS  
6show interface examples for the ICS85211I-03 clock input driven HiPerClockS LVHSTL drivers.If you are using an LVHSTL driver  
from another vendor, use their termination recommendation.  
by most common driver types. The input interfaces suggested  
here are examples only. Please consult with the vendor of the  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
CLK  
Zo = 50 Ohm  
nCLK  
Zo = 50 Ohm  
HiPerClockS  
LVPECL  
Input  
nCLK  
HiPerClockS  
Input  
LVHSTL  
R1  
50  
R2  
50  
ICS  
HiPerClockS  
LVHSTL Driver  
R1  
50  
R2  
50  
R3  
50  
FIGURE 3. ICS85211I-03 CLK/NCLK INPUT DRIVEN BY  
HIPERCLOCKS LVHSTL DRIVER  
FIGURE 4. ICS85211I-03 CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER (INTERFACE 1)  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
R4  
3.3V  
125  
125  
R3  
125  
R4  
125  
C1  
C2  
LVPECL  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
CLK  
CLK  
nCLK  
HiPerClockS  
Input  
nCLK  
HiPerClockS  
Input  
LVPECL  
R5  
100-200  
R6  
100-200  
R1  
84  
R2  
84  
R1  
84  
R2  
84  
R5,R6 locate near the driver pin.  
FIGURE 5. ICS85211I-03 CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER (INTERFACE 2)  
FIGURE 6. ICS85211I-03 CLK/NCLK INPUT DRIVEN BY  
3.3V LVPECL DRIVER WITH AC COUPLE  
85211AMI-03  
7
REV.B NOVEMBER 14, 2007  
ICS85211I-03  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS85211I-03.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85211I-03 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VDD_MAX * IDD_MAX = 3.465V * 50mA = 173.3mW  
Power (outputs)MAX = 73.82mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 73.82mW = 147.6mW  
Total Power_MAX (3.465V, with all outputs switching) = 173.3mW + 147.6mW = 320.9mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W perTable 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.321W * 103.3°C/W = 118.2°C. This is well below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 8-PIN SOIC, FORCED CONVECTION  
θJA by Velocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
85211AMI-03  
8
REV.B NOVEMBER 14, 2007  
ICS85211I-03  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVHSTL output driver circuit and termination are shown in Figure 7.  
VDD  
Q1  
VOUT  
RL  
50  
Ω
FIGURE 7. LVHSTL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load.  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = (VOH_MAX /R ) * (VDD_MAX - V  
)
L
OH_MAX  
Pd_L = (VOL_MAX /R ) * (VDD_MAX - VOL_MAX  
)
L
Pd_H = (1.0V/50Ω) * (3.465V - 1.0V) = 49.3mW  
Pd_L = (0.4V (50Ω) * (3.465V - 0.4V) = 24.52mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 73.82mW  
85211AMI-03  
9
REV.B NOVEMBER 14, 2007  
ICS85211I-03  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOW TABLE  
θJA by Velocity (Linear Feet per Minute)  
0
200  
128.5°C/W  
103.3°C/W  
500  
115.5°C/W  
97.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
153.3°C/W  
112.7°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS85211I-03 is: 411  
85211AMI-03  
10  
REV.B NOVEMBER 14, 2007  
ICS85211I-03  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
PACKAGE OUTLINE - M SUFFIX  
TABLE 8. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
MINIMUN  
MAXIMUM  
N
A
A1  
B
C
D
E
e
8
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
1.27 BASIC  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
L
α
Reference Document: JEDEC Publication 95, MS-012  
85211AMI-03  
11  
REV.B NOVEMBER 14, 2007  
ICS85211I-03  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS85211AMI-03  
Marking  
5211AI03  
5211AI03  
211AI03L  
211AI03L  
Package  
8 lead SOIC  
Shipping Packaging  
Tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS85211AMI-03T  
ICS85211AMI-03LF  
ICS85211AMI-03LFT  
8 lead SOIC  
2500 Tape & Reel  
Tube  
Lead-Free, 8 lead SOIC  
Lead-Free, 8 lead SOIC  
2500 Tape & Reel  
NOTE: Parts that are ordered with an ""LF"" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial  
applications. Any other applications such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional  
processing by IDT.IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical  
instruments.  
85211AMI-03  
12  
REV.B NOVEMBER 14, 2007  
ICS85211I-03  
LOW SKEW, 1-TO-2  
DIFFERENTIAL-TO-LVHSTL FANOUT BUFFER  
REVISION HISTORY SHEET  
Description of Change  
Rev  
B
Table  
T4A  
Page  
3
8
Date  
4/8/03  
Power Supply table, changed maximum IDD spec to 50mA from 40mA.  
Power Considerations, changed IDD_MAX to 50mA from 40mA and recalculated  
equations.  
12  
B
T9  
Ordering Information Table - Added Lead Free part numbers and marking  
11/14/07  
85211AMI-03  
13  
REV.B NOVEMBER 14, 2007  

相关型号:

85211AMILF

SOIC-8, Tube
IDT

85211AMILFT

SOIC-8, Reel
IDT

85211AMIT

Low Skew Clock Driver, 85211 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 3.90 X 4.90 MM, 1.37 MM HEIGHT, MS-012, SOIC-8
IDT

85211BMI-03LF

Low Skew Clock Driver, PDSO8
IDT

85211BMI-03LFT

Low Skew Clock Driver, PDSO8
IDT

85211BMI-03T

Clock Driver, PDSO8
IDT

852140-1

ANVIL, RIGHT (DUAL)
TE

852140-2

ANVIL, RIGHT (DUAL)
TE

852140-3

ANVIL, RIGHT (DUAL)
TE

852141-1

ANVIL, LEFT (DUAL)
TE

852141-2

ANVIL, LEFT (DUAL)
TE

852141-3

ANVIL, LEFT (DUAL)
TE