841654AGI [IDT]

Clock Generator, 125MHz, PDSO28, 6.10 X 9.70 MM, 0.92 MM HEIGHT, MO-153, TSSOP-24;
841654AGI
型号: 841654AGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 125MHz, PDSO28, 6.10 X 9.70 MM, 0.92 MM HEIGHT, MO-153, TSSOP-24

时钟 光电二极管 外围集成电路 晶体
文件: 总17页 (文件大小:333K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEMTOCLOCKS™ CRYSTAL-TO-HCSL  
CLOCK GENERATOR  
ICS841654I  
GENERAL DESCRIPTION  
FEATURES  
The ICS841654I is an optimized PCIe and sRIO clock  
• Four differential HCSL clock outputs: configurable for PCIe  
(100MHz) and sRIO (100MHz or 125MHz) clock signals  
One REF_OUT LVCMOS/LVTTL clock output  
ICS  
HiPerClockS™  
generator and member of the HiPerClocksfamily  
of high-performance clock solutions from IDT. The  
device uses a 25MHz parallel crystal to generate  
100MHz and 125MHz clock signals, replacing  
• Selectable crystal oscillator interface, 25MHz, 18pF parallel  
resonant crystal or LVCMOS/LVTTL single-ended reference  
clock input  
solutions requiring multiple oscillator and fanout buffer solutions.  
The device has excellent phase jitter (< 1ps rms) suitable to clock  
components requiring precise and low-jitter PCIe or sRIO or both  
clock signals. Designed for telecom, networking and industrial  
applications, the ICS841654I can also drive the high-speed sRIO  
and PCIe SerDes clock inputs of communication processors,  
DSPs, switches and bridges.  
• Supports the following output frequencies:  
100MHz or 125MHz  
• VCO: 500MHz  
• PLL bypass and output enable  
• RMS phase jitter at 100MHz, using a 25MHz crystal  
(1.875MHz - 20MHz): 0.44ps (typical)  
• Full 3.3V power supply mode  
• -40°C to 85°C ambient operating temperature  
• Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
XTAL_IN  
VDD  
REF_OUT  
GND  
1
2
3
4
IREF  
28  
27  
26  
25  
QA0  
1
0
OSC  
FSEL0  
FSEL1  
QB0  
nQA0  
XTAL_OUT  
REF_IN  
FemtoClock  
QA0  
0
PLL  
÷NA  
Pulldown  
Pulldown  
VCO = 500MHz  
QA1  
nQA0  
VDDOA  
GND  
QA1  
nQA1  
24  
23  
22  
nQB0  
VDDOB  
GND  
QB1  
nQB1  
5
6
7
8
1
nQA1  
REF_SEL  
IREF  
21  
20  
19  
18  
17  
16  
15  
9
M = ÷20  
QB0  
MR/nOE  
VDD  
XTAL_IN  
XTAL_OUT  
GND  
10  
11  
12  
13  
nREF_OE  
BYPASS  
REF_IN  
REF_SEL  
nQB0  
÷NB  
QB1  
Pulldown  
Pulldown  
Pulldown  
BYPASS  
14  
VDDA  
nQB1  
FSEL[0:1]  
ICS841654I  
28-Lead TSSOP  
6.1mm x 9.7mm x 0.925mm  
package body  
MR/nOE  
REF_OUT  
G Package  
Top View  
Pullup  
nREF_OE  
IDT/ ICSHCSL CLOCK GENERATOR  
1
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1, 18  
VDD  
Power  
Output  
Power  
Ouput  
Power  
Input  
Core supply pins.  
Single-ended reference frequency clock output.  
LVCMOS/LVTTL interface levels.  
2
REF_OUT  
3, 7, 15, 22  
GND  
Power supply ground.  
4, 5,  
8, 9  
QA0, nQA0,  
QA1, nQA1  
Differential Bank A output pairs. HCSL interface levels.  
6
VDDOA  
Output supply pin for Bank A outputs.  
Active low REF_OUT enable/disable. See Table 3E.  
LVCMOS/LVTTL interface levels.  
10  
nREF_OE  
Pullup  
Selects PLL operation/PLL bypass operation.  
See Table 3C. LVCMOS/LVTTL interface levels.  
Single-ended PLL reference clock input.  
LVCMOS/LVTTL interface levels.  
Reference select. Selects the input reference source.  
See Table 3B. LVCMOS/LVTTL interface levels.  
11  
12  
BYPASS  
REF_IN  
Input  
Input  
Pulldown  
Pulldown  
Pulldown  
13  
14  
REF_SEL  
VDDA  
Input  
Power  
Input  
Analog supply pin.  
XTAL_OUT,  
XTAL_IN  
Parallel resonant crystal interface. XTAL_OUT is the output,  
XTAL_IN is the input. (PLL reference.)  
16, 17  
Active HIGH master reset. Active LOW output enable. When logic HIGH,  
the internal dividers are reset and the differential outputs are in high  
19  
MR/nOE  
Input  
Pulldown impedance (HiZ). When logic LOW, the internal dividers and the  
differential outputs are enabled. See Table 3D. LVCMOS/LVTTL interface  
levels.  
20, 21  
24, 25  
nQB1, QB1  
nQB0, QB0  
Output  
Power  
Input  
Differential Bank B output pairs. HCSL interface levels.  
Output supply pin for Bank B outputs.  
23  
VDDOB  
FSEL1,  
FSEL0  
26, 27  
Pulldown Output frequency select pins. LVCMOS/LVTTL interface levels.  
HCSL current reference external resistor output. A fixed precision resistor  
(RREF = 475Ω) from this pin to ground provides a reference current used  
for differential current-mode QA[0:1]/nQA[0:1] and QB[0:1]/nQB[0:1] clock  
outputs.  
28  
IREF  
Output  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Capacitance  
Input PullupResistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
IDT/ ICSHCSL CLOCK GENERATOR  
2
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
TABLE 3A. FSELX FUNCTION TABLE (fref = 25MHZ)  
Inputs  
Outputs Frequency Settings  
FSEL1  
FSEL0  
M
20  
20  
20  
20  
QA0:1/nQA0:1  
QB0:1/nQB0:1  
VCO/5 (100MHz) (default)  
VCO/4 (125MHz)  
0
0
1
1
0
1
0
1
VCO/5 (100MHz)  
VCO/5 (100MHz)  
VCO/5 (100MHz)  
VCO/4 (125MHz)  
QB0:1 = L, nQB0:1 = H  
VCO/4 (125MHz)  
TABLE 3B. REF_SEL FUNCTION TABLE  
Input  
TABLE 3C. BYPASS FUNCTION TABLE  
Input  
REF_SEL  
Input Reference  
XTAL (default)  
REF_IN  
BYPASS  
PLL Configuration NOTE 1  
0
1
0
1
PLL on (default)  
PLL bypassed (QA, QB = fref/N)  
NOTE 1: Asynchronous function.  
TABLE 3D. MR/nOE FUNCTION TABLE  
Input  
MR/nOE  
FunctionNOTE 1  
0
1
Outputs enabled (default)  
Device reset, outputs disabled (High Impedance)  
NOTE 1: Asynchronous function.  
TABLE 3E. nREF_OE FUNCTION TABLE  
Input  
nREF_OE  
FunctionNOTE 1  
0
1
REF_OUT enabled  
REF_OUT disabled (High Impedance) (default)  
NOTE 1: Asynchronous function.  
IDT/ ICSHCSL CLOCK GENERATOR  
3
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
DD  
Inputs, V  
-0.5V to VDD + 0.5V  
I
Outputs, VO  
-0.5V to VDDOX + 0.5V  
Package Thermal Impedance, θ  
64.4°C/W (0 lfpm)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 4A. POWER SUPPLY CHARACTERISTICS, VDD = VDDOA = VDDOB = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VDD  
Core Supply Voltage  
3.135  
3.3  
3.3  
3.465  
3.465  
V
V
VDDA  
Analog Supply Voltage  
VDD – 0.20  
VDDOA,  
VDDOB  
Output Supply Voltage  
3.135  
3.3  
3.465  
V
IDD  
Power Supply Current  
Analog Supply Current  
Unterminated  
Unterminated  
85  
20  
mA  
mA  
IDDA  
I
DDOA and  
Output Supply Current  
Unterminated, RREF = 475Ω 1ꢀ  
5
mA  
IDDOB  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VDD + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
REF_IN, REF_SEL,  
BYPASS, MR/nOE,  
FSEL0, FSEL1  
V
DD = VIN = 3.465 V  
VDD = VIN = 3.465V  
DD = 3.465V, VIN = 0V  
150  
5
µA  
µA  
µA  
IIH  
Input High Current  
nREF_OE  
REF_IN, REF_SEL,  
BYPASS, MR/nOE,  
FSEL0, FSEL1  
V
-5  
IIL  
Input Low Current  
nREF_OE  
REF_OUT  
VDD = 3.465V, VIN = 0V  
VDD = 3.465V  
-150  
2.6  
µA  
V
Ouput High Voltage;  
NOTE 1  
VOH  
Ouput Low Voltage;  
NOTE 1  
VOL  
REF_OUT  
REF_OUT  
VDD = 3.465V  
VDD = 3.465V  
0.5  
V
ZOUT  
Output Impedance  
20  
Ω
NOTE 1: Outputs terminated with 50Ω to VDD/2. See Parameter Measurement Information Section,  
Output Load Test Circuit diagram.  
IDT/ ICSHCSL CLOCK GENERATOR  
4
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
TABLE 5. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum  
Fundamental  
25  
Typical Maximum Units  
Mode of Oscillation  
Frequency  
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
50  
7
pF  
NOTE: Characterized using an 18pF parallel resonant crystal.  
TABLE 6A. LVCMOS AC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fMAX  
Output Frequency REF_OUT  
25  
MHz  
ns  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
0.60  
49  
1.80  
51  
TABLE 6B. HCSL AC CHARACTERISTICS, VDD = VDDOA = VDDOB = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
VCO/5  
Minimum Typical Maximum Units  
100  
125  
MHz  
MHz  
fMAX  
Output Frequency  
VCO/4  
100MHz,  
(1.875MHz - 20MHz)  
125MHz,  
(1.875MHz - 20MHz)  
0.44  
0.44  
ps  
RMS Phase Jitter (Random);  
NOTE 1  
tjit(Ø)  
ps  
ps  
ps  
tjit(cc)  
tsk(o)  
Cycle-to-Cycle Jitter; NOTE 3  
35  
Output Skew;  
NOTE 2, 3  
QAx/nQAx,  
QBx/nQBx  
100  
tL  
PLL Lock Time  
100  
950  
150  
0.3  
ms  
mV  
mV  
V
VHIGH  
VLOW  
VOVS  
VUDS  
Vrb  
Voltage High  
125MHz  
650  
700  
Voltage Low  
-150  
Max. Voltage, Overshoot  
Min. Voltage, Undershoot  
Ringback Voltage  
Absolute Crossing Voltage  
-0.3  
200  
V
0.2  
V
VCROSS  
550  
mV  
Total Variation of VCROSS over all  
edges  
ΔVCROSS  
160  
mV  
QAx/nQAx,  
QBx/nQBx  
measured between  
0.175V to 0.525V  
tR / tF  
ΔtR /ΔtF  
odc  
Output Rise/Fall Time  
Rise/Fall Time Variation  
Output Duty Cycle  
100  
48  
700  
125  
52  
ps  
ps  
QAx/nQAx,  
QBx/nQBx  
NOTE: All specifications are taken at 100MHz and 125MHz.  
NOTE 1: Please refer to the Phase Noise Plot.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
IDT/ ICSHCSL CLOCK GENERATOR  
5
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
TYPICAL PHASE NOISE AT 100MHZ  
Filter  
100MHz  
RMS Phase Jitter (Random)  
1.875MHz to 20MHz = 0.44ps (typical)  
Raw Phase Noise Data  
Phase Noise Result by adding  
a Filter to raw data  
OFFSET FREQUENCY (HZ)  
TYPICAL PHASE NOISE AT 125MHZ  
Filter  
125MHz  
RMS Phase Jitter (Random)  
1.875MHz to 20MHz = 0.44ps (typical)  
Raw Phase Noise Data  
Phase Noise Result by adding  
an Filter to raw data  
OFFSET FREQUENCY (HZ)  
IDT/ ICSHCSL CLOCK GENERATOR  
6
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PARAMETER MEASUREMENT INFORMATION  
3.3V 5ꢀ  
3.3V 5ꢀ  
3.3V 5ꢀ  
3.3V 5ꢀ  
SCOPE  
50Ω  
50Ω  
VDD,  
VDDOA,  
VDDOB  
33Ω  
33Ω  
50Ω  
50Ω  
Qx  
VDD,  
VDDOA,  
VDDOB  
VDDA  
VDDA  
49.9Ω  
49.9Ω  
2pF  
nQx  
HCSL  
HCSL  
GND  
GND  
0V  
475Ω  
IREF  
2pF  
475Ω  
IREF  
0V  
HCSL OUTPUT LOAD AC TEST CIRCUIT  
HCSL OUTPUT LOAD AC TEST CIRCUIT  
1.65V 5ꢀ  
1.65V 5ꢀ  
Phase Noise Plot  
SCOPE  
VDD  
VDDA  
Phase Noise Mask  
Qx  
LVCMOS  
GND  
Offset Frequency  
f1  
f2  
RMS Jitter = Area Under the Masked Phase Noise Plot  
-1.65V 5ꢀ  
3.3V LVCMOS OUTPUT LOAD AC TEST CIRCUIT  
RMS PHASE JITTER  
nQA[0:1],  
nQB[0:1]  
nQx  
Qx  
QA[0:1],  
QB[0:1]  
tcycle n  
tcycle n+1  
nQy  
Qy  
tjit(cc) = tcycle n – tcycle n+1  
|
|
1000 Cycles  
tsk(o)  
HCSL OUTPUT SKEW  
CYCLE-TO-CYCLE JITTER  
IDT/ ICSHCSL CLOCK GENERATOR  
7
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PARAMETER MEASUREMENT INFORMATION, CONTINUED  
80ꢀ  
tF  
VDDO  
2
80ꢀ  
tR  
REF_OUT  
20ꢀ  
20ꢀ  
tPW  
REF_OUT  
tPERIOD  
tPW  
x 100ꢀ  
odc =  
tPERIOD  
LVCMOS OUTPUT RISE/FALL TIME  
LVCMOS OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
Clock Period (Differential)  
nQAx,  
nQBx  
Positive Duty  
Cycle (Differential)  
Negative Duty  
Cycle (Differential)  
0.525V  
0.525V  
VSWING  
0.175V  
0.175V  
0.0V  
QAx, QBx  
tF  
tR  
Q - nQ  
DIFFERENTIAL MEASUREMENT POINTS FOR RISE/FALL TIME  
DIFFERENTIAL MEASUREMENT POINTS FOR DUTY CYCLE/PERIOD  
T
STABLE  
nQ  
V
RB  
+150mV  
RB = +100mV  
V
VCROSS_DELTA = 140mV  
0.0V  
RB = -100mV  
-150mV  
V
Q
Q - nQ  
V
RB  
T
STABLE  
SE MEASUREMENT POINTS FOR DELTA CROSS POINT  
DIFFERENTIAL MEASUREMENT POINTS FOR RINGBACK  
IDT/ ICSHCSL CLOCK GENERATOR  
8
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PARAMETER MEASUREMENT INFORMATION, CONTINUED  
VMAX = 1.15V  
nQ  
VCROSS_MAX = 550mV  
V
CROSS_MIN = 250mV  
Q
VMIN = -0.30V  
SE MEASUREMENT POINTS FOR ABSOLUTE CROSS POINT/SWING  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. To achieve optimum jitter per-  
formance, power supply isolation is required. The ICS841654I  
provides separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VDD, VDDA, VDDOA and  
VDDOB should be individually connected to the power supply  
plane through vias, and 0.01µF bypass capacitors should be  
used for each pin. Figure 1 illustrates this for a generic VDD pin  
and also shows that VDDA requires that an additional10Ω  
resistor along with a 10µF bypass capacitor be connected to  
the VDDA pin.  
3.3V  
VDD  
.01μF  
.01μF  
10Ω  
VDDA  
10μF  
FIGURE 1. POWER SUPPLY FILTERING  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
CRYSTAL INPUTS  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kΩ resistor can be tied  
from XTAL_IN to ground.  
OUTPUTS:  
HCSL OUTPUTS  
All unused HCSL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
REF_IN INPUT  
For applications not requiring the use of the reference clock,  
it can be left floating. Though not required, but for additional  
protection, a 1kΩ resistor can be tied from the REF_IN to ground.  
LVCMOS OUTPUT  
The unused LVCMOS output can be left floating. We recommend  
that there is no trace attached.  
LVCMOS CONTROL PINS  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
IDT/ ICSHCSL CLOCK GENERATOR  
9
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
CRYSTAL INPUT INTERFACE  
The ICS841654I has been characterized with 18pF parallel  
resonant crystals. The capacitor values shown in Figure 2 below  
were determined using a 25MHz, 18pF parallel resonant crystal  
and were chosen to minimize the ppm error.  
XTAL_OUT  
XTAL_IN  
C1  
27p  
X1  
18pF Parallel Crystal  
C2  
27p  
FIGURE 2. CRYSTAL INPUt INTERFACE  
LVCMOS TO XTAL INTERFACE  
series resistance (Rs) equals the transmission line impedance.  
In addition, matched termination at the crystal input will  
attenuate the signal in half. This can be done in one of two  
ways. First, R1 and R2 in parallel should equal the transmission  
line impedance. For most 50Ω applications, R1 and R2 can be  
100Ω. This can also be accomplished by removing R1 and  
making R2 50Ω.  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC couple capacitor. A general interface diagram is  
shown in Figure 3. The XTAL_OUT pin can be left floating.  
The input edge rate can be as slow as 10ns. For LVCMOS  
inputs, it is recommended that the amplitude be reduced from  
full swing to half swing in order to prevent signal interference  
with the power rail and to reduce noise. This configuration  
requires that the output impedance of the driver (Ro) plus the  
VDD  
VDD  
R1  
.1uf  
Ro  
Rs  
Zo = 50  
XTAL_I N  
R2  
Zo = Ro + Rs  
XTAL_OUT  
FIGURE 3. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
IDT/ ICSHCSL CLOCK GENERATOR  
10  
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
SCHEMATIC LAYOUT  
Figure 4 shows an example of ICS841654I application  
schematic. In this example, the device is operated at V =  
3.3V. The 18pF parallel resonant 25MHz crystal is used.  
The C1 = 27pF and C2 = 27pF are recommended for  
frequency accuracy. For different board layout, the C1 and  
C2 may be slightly adjusted for optimizing frequency  
accuracy. One example of HCSL and one example of  
LVCMOS terminations are shown in this schematic. The  
decoupling capacitors should be located as close as possible  
to the power pin.  
CC  
R1  
33  
Zo = 50  
REF_OUT  
LVCMOS  
R2  
R5  
33  
33  
Zo = 50  
TL2  
+
-
VDD  
VDD  
R4  
475  
Zo = 50  
TL3  
U1  
C5  
0.1u  
R6  
50  
R7  
50  
Using for PCI Express  
Add-In Card  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VDD  
REF_OUT  
GND  
QA0  
nQA0  
VDDOA  
GND  
QA1  
nQA1  
nREF_OE  
BYPASS  
REF_IN  
REF_SEL  
VDDA  
IREF  
FSEL0  
FSEL1  
QB0  
nQB0  
VDDOB  
GND  
QB1  
nQB1  
MR/nOE  
VDD  
XTAL_I N  
XTAL_O U T  
GND  
FSEL0  
FSEL1  
3
VDDOA  
VCCOA  
4
5
6
VDDOB  
VCCOB  
VDD=3.3V  
7
C7  
8
C8  
.1uf  
VDDOA=3.3V  
VDDOB=3.3V  
HCSL Termination  
.1uf  
9
nREF_OE  
BYPASS  
MR/nOE  
10  
11  
12  
13  
14  
VDD  
VDD  
REF_SEL  
VDD  
C6  
0.1u  
R8  
Zo = 50  
+
-
VDD  
VDDA  
10  
ICS841654I  
TL4  
Zo = 50  
TL5  
C1  
0.1u  
C2  
10u  
X1  
C3  
27pF  
25MHz  
R12  
50  
R13  
50  
Using for PCI Express  
Point-to-Point  
18pF  
Logic Control Input Examples  
Connection  
C4  
27pF  
Set Logic  
Input to  
'1'  
Set Logic  
Input to  
'0'  
VDD  
VDD  
RU1  
1K  
RU2  
Not Install  
To Logic  
Input  
To Logic  
Input  
pins  
pins  
RD1  
RD2  
1K  
Not Install  
FIGURE 4. ICS841654I SCHEMATIC LAYOUT  
IDT/ ICSHCSL CLOCK GENERATOR  
11  
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS841654I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS841654I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
DD  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 3.465V * 85mA = 294.5mW  
MAX  
DD_MAX  
DD_MAX  
Power (outputs) = 50.06mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 4 * 50.06mW = 200.24mW  
Total Power  
(3.465V, with all outputs switching) = 294.5mW + 200.24mW = 494.74mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θ
= Junction-to-Ambient Thermal Resistance  
JA  
Pd_total = Total Device Power Dissipation (example calculation is in Section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ must be used. Assuming no air  
JA  
flow and a multi-layer board, the appropriate value is 64.5°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.495W * 64.5°C/W = 116.9°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 7. THERMAL RESISTANCE θ FOR 28-LEAD TSSOP, FORCED CONVECTION  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
58.5°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
64.5°C/W  
60.4°C/W  
IDT/ ICSHCSL CLOCK GENERATOR  
12  
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
3. Calculations and Equations.  
The purpose of this section is to calculate power dissipation on the IC per HCSL output pair.  
HCSL output driver circuit and termination are shown in Figure 4.  
V
DD  
IOUT = 17mA  
VOUT  
RREF  
=
475Ω  
1ꢀ  
RL  
50Ω  
IC  
FIGURE 4. HCSL DRIVER CIRCUIT AND TERMINATION  
HCSL is a current steering output which sources a maximum of 17mA of current per output. To calculate worst case on-chip power  
dissipation, use the following equations which assume a 50Ω load to ground.  
The highest power dissipation occurs when V is HIGH.  
DD  
Power = (V  
– V ) * I since V = I * R  
OUT, L  
OUT OUT OUT  
DD_HIGH  
= (V  
– I * R ) * I  
DD_HIGH  
L
OUT  
OUT  
= (3.465V – 17mA * 50Ω) * 17mA  
Total Power Dissipation per output pair = 50.06mW  
IDT/ ICSHCSL CLOCK GENERATOR  
13  
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
RECOMMENDEDT ERMINATION  
Figure 5A is the recommended termination for applications  
which require the receiver and driver to be on a separate PCB.  
All traces should be 50Ω impedance.  
FIGURE 5A. RECOMMENDED TERMINATION  
Figure 5B is the recommended termination for applications which  
require a point to point connection and contain the driver and  
receiver on the same PCB. All traces should all be 50Ω impedance.  
FIGURE 5B. RECOMMENDED TERMINATION  
IDT/ ICSHCSL CLOCK GENERATOR  
14  
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
RELIABILITY INFORMATION  
TABLE 8. θ VS. AIR FLOW TABLE FOR 28 LEAD TSSOP  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
58.5°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
64.5°C/W  
60.4°C/W  
TRANSISTOR COUNT  
The transistor count for ICS841654I is: 2954  
PACKAGE OUTLINE AND PACKAGE DIMENSIONS  
PACKAGE OUTLINE - G SUFFIX FOR 28 LEAD TSSOP  
TABLE 9. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Minimum  
Maximum  
N
A
28  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
9.80  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
9.60  
c
D
E
8.10 BASIC  
0.65 BASIC  
E1  
e
6.00  
6.20  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
IDT/ ICSHCSL CLOCK GENERATOR  
15  
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
ICS841654AGI  
Marking  
Package  
Shipping Packaging Temperature  
ICS841654AGI  
ICS841654AGI  
ICS841654AGILF  
ICS841654AGILF  
28 Lead TSSOP  
tube  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS841654AGIT  
ICS841654AGILF  
ICS841654AGILFT  
28 Lead TSSOP  
1000 tape & reel  
tube  
28 Lead "Lead-Free" TSSOP  
28 Lead "Lead-Free" TSSOP  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICSHCSL CLOCK GENERATOR  
16  
ICS841654AGI REV. A APRIL 17, 2008  
ICS841654I  
FEMTOCLOCKS™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
For Tech Support  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
netcom@idt.com  
+480-763-2056  
www.IDT.com/go/contactIDT  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

841654AGIT

Clock Generator, 125MHz, PDSO28, 6.10 X 9.70 MM, 0.92 MM HEIGHT, MO-153, TSSOP-24
IDT

841664AGI

FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR
IDT

841664AGILF

FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR
IDT

841664AGILFT

FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR
IDT

841664AGIT

FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR
IDT

8416901XX

16-Bit Microprocessor
ETC

8416901YX

16-Bit Microprocessor
ETC

8416902XX

16-Bit Microprocessor
ETC

8416902YX

16-Bit Microprocessor
ETC

8416903XX

16-Bit Microprocessor
ETC

8416903YX

16-Bit Microprocessor
ETC

8416904XX

16-Bit Microprocessor
ETC