841664AGILF [IDT]

FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR; FEMTOCLOCK ™ CRYSTAL - TO- HCSL时钟发生器
841664AGILF
型号: 841664AGILF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR
FEMTOCLOCK ™ CRYSTAL - TO- HCSL时钟发生器

晶体 时钟发生器 微控制器和处理器 外围集成电路 光电二极管
文件: 总16页 (文件大小:307K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
FEMTOCLOCK™ CRYSTAL-TO-HCSL  
CLOCK GENERATOR  
ICS841664I  
GENERAL DESCRIPTION  
FEATURES  
The ICS841664I is an optimized sRIO clock  
• Four differential HCSL clock outputs: configurable for sRIO  
(125MHz or 156.25MHz) clock signals  
ICS  
HiPerClockS™  
generator and member of the HiPerClocks™ family  
One REF_OUT LVCMOS/LVTTL clock output  
of high-performance clock solutions from IDT.  
The device uses a 25MHz parallel crystal to gen-  
erate 125MHz and 156.25MHz clock signals,  
• Selectable crystal oscillator interface, 25MHz, 18pF parallel  
resonant crystal or LVCMOS/LVTTL single-ended reference  
clock input  
replacing solutions requiring multiple oscillator and fanout buffer  
solutions. The device has excellent phase jitter (< 1ps rms) suit-  
able to clock components requiring precise and low-jitter sRIO  
clock signals. Designed for telecom, networking and industrial  
applications, the ICS841664I can also drive the high-speed  
sRIO SerDes clock inputs of communication processors, DSPs,  
switches and bridges.  
• Supports the following output frequencies:  
125MHz or 156.25MHz  
• VCO: 625MHz  
• PLL bypass and output enable  
• RMS phase jitter, using a 25MHz crystal (1.875MHz - 20MHz):  
0.35ps (typical) @ 125MHz  
• Full 3.3V power supply mode  
• -40°C to 85°C ambient operating temperature  
• Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
XTAL_IN  
VDD  
REF_OUT  
GND  
1
2
3
4
IREF  
28  
27  
26  
25  
QA0  
1
0
OSC  
FSEL0  
FSEL1  
QB0  
nQA0  
XTAL_OUT  
REF_IN  
FemtoClock  
QA0  
0
PLL  
÷NA  
Pulldown  
Pulldown  
VCO = 625MHz  
QA1  
nQA0  
VDDOA  
GND  
QA1  
24  
23  
22  
21  
20  
19  
nQB0  
VDDOB  
GND  
5
6
7
8
1
nQA1  
REF_SEL  
IREF  
QB1  
nQB1  
MR/nOE  
9
nQA1  
nREF_OE  
BYPASS  
REF_IN  
REF_SEL  
M = ÷25  
QB0  
10  
11  
12  
13  
VDD  
18  
17  
16  
15  
nQB0  
XTAL_IN  
XTAL_OUT  
GND  
÷NB  
QB1  
Pulldown  
Pulldown  
Pulldown  
14  
BYPASS  
VDDA  
nQB1  
FSEL[0:1]  
ICS841664I  
28-Lead TSSOP  
6.1mm x 9.7mm x 0.925mm  
package body  
MR/nOE  
REF_OUT  
G Package  
Top View  
Pullup  
nREF_OE  
The Preliminary Information presented herein represents a product in pre-production.The noted characteristics are based on initial product characterization  
and/or qualification.Integrated DeviceTechnology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
IDT/ ICSHCSL CLOCK GENERATOR  
1
ICS841664AGI REV. A JANUARY 30, 2009  
ICS841664I  
FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PRELIMINARY  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 18  
Name  
VDD  
Type  
Description  
Power  
Output  
Power  
Core supply pins.  
2
REF_OUT  
GND  
LVCMOS/LVTTL reference frequency clock output.  
Power supply ground.  
3, 7, 15, 22  
4, 5,  
8, 9  
QA0, nQA0,  
QA1, nQA1  
Ouput  
Power  
Input  
Differential Bank A output pairs. HCSL interface levels.  
Output supply pin for Bank A outputs.  
6
VDDOA  
Active low REF_OUT enable/disable. See Table 3E.  
LVCMOS/LVTTL interface levels.  
Selects PLL operation/PLL bypass operation.  
See Table 3C. LVCMOS/LVTTL interface levels.  
10  
nREF_OE  
Pullup  
Pulldown  
11  
12  
BYPASS  
REF_IN  
REF_SEL  
VDDA  
Input  
Input  
Input  
Power  
Input  
Pulldown LVCMOS/LVTTL PLL reference clock input.  
Reference select. Selects the input reference source.  
Pulldown  
13  
See Table 3B. LVCMOS/LVTTL interface levels.  
14  
Analog supply pin.  
XTAL_OUT,  
XTAL_IN  
Parallel resonant crystal interface. XTAL_OUT is the output,  
XTAL_IN is the input. (PLL reference.)  
16, 17  
Active HIGH master reset. Active LOW output enable. When logic HIGH,  
the internal dividers are reset and the outputs are in high impedance  
(HiZ). When logic LOW, the internal dividers and the outputs are enabled.  
See Table 3D. LVCMOS/LVTTL interface levels.  
19  
MR/nOE  
Input  
Pulldown  
20, 21  
24, 25  
nQB1, QB1  
nQB0, QB0  
Output  
Power  
Input  
Differential Bank B output pairs. HCSL interface levels.  
Output supply pin for Bank B outputs.  
23  
VDDOB  
FSEL1,  
FSEL0  
26, 27  
Pulldown Output frequency select pins. LVCMOS/LVTTL interface levels.  
HCSL current reference resistor output. A fixed precision resistor (475Ω)  
from this pin to ground provides a reference current used for differential  
current-mode QXx/nQXx clock outputs.  
28  
IREF  
Output  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CIN  
Input Capacitance  
4
pF  
Power Dissipation  
Capacitance  
CPD  
VDD, VDDOA, VDDOB = 3.465V  
18  
pF  
RPULLUP  
Input PullupResistor  
51  
51  
kΩ  
kΩ  
RPULLDOWN Input Pulldown Resistor  
IDT/ ICSHCSL CLOCK GENERATOR  
2
ICS841664AGI REV. A JANUARY 30, 2009  
ICS841664I  
FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PRELIMINARY  
TABLE 3A. FSELX FUNCTION TABLE (fref = 25MHZ)  
Inputs  
Outputs Frequency Settings  
FSEL1  
FSEL0  
M
25  
25  
25  
25  
QA0:1/nQA0:1  
VCO/5 (125MHz)  
VCO/5 (125MHz)  
VCO/5 (125MHz)  
VCO/4 (156.25MHz)  
QB0:1/nQB0:1  
VCO/5 (125MHz)  
0
0
1
1
0
1
0
1
VCO/4 (156.25MHz)  
QB0:1 = L, nQB0:1 = H  
VCO/4 (156.25MHz)  
TABLE 3B. REF_SEL FUNCTION TABLE  
Input  
TABLE 3C. BYPASS FUNCTION TABLE  
Input  
REF_SEL  
Input Reference  
XTAL  
BYPASS  
PLL Configuration  
PLL on  
0
1
0
1
REF_IN  
PLL bypassed (QA, QB = fref/N)  
NOTE 1: Asynchr. function (may cause output glitch).  
TABLE 3D. MR/nOE FUNCTION TABLE  
Input  
MR/nOE  
FunctionNOTE 1  
0
1
Outputs enabled  
Device reset, outputs disabled (Low)  
NOTE 1: Asynchr. function (may cause output glitch).  
TABLE 3E. nREF_OE FUNCTION TABLE  
Input  
nREF_OE  
FunctionNOTE 1  
0
1
REF_OUT enabled  
REF_OUT disabled (high impedance)  
NOTE 1: Asynchr. function (may cause output glitch).  
IDT/ ICSHCSL CLOCK GENERATOR  
3
ICS841664AGI REV. A JANUARY 30, 2009  
ICS841664I  
FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PRELIMINARY  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
DD  
Inputs, V  
-0.5V to VDD + 0.5V  
I
Outputs, VO  
-0.5V to VDDO_X + 0.5V  
Package Thermal Impedance, θ  
64.5°C/W (0 mps)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDOA = VDDOB = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VDD  
Core Supply Voltage  
3.135  
3.3  
3.3  
3.465  
3.465  
V
V
VDDA  
Analog Supply Voltage  
VDD – 0.15  
VDDOA,  
VDDOB  
Output Supply Voltage  
3.135  
3.3  
3.465  
V
IDD  
Power Supply Current  
Analog Supply Current  
70  
15  
mA  
mA  
IDDA  
IDDOA,  
IDDOB  
Output Supply Current  
75  
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
2
VDD + 0.3  
0.8  
V
V
Input Low Voltage  
-0.3  
REF_IN, REF_SEL,  
BYPASS, MR/nOE,  
FSEL0, FSEL1  
V
DD = VIN = 3.465 V  
150  
5
µA  
µA  
µA  
IIH  
Input High Current  
nREF_OE  
VDD = VIN = 3.465V  
REF_IN, REF_SEL,  
BYPASS, MR/nOE,  
FSEL0, FSEL1  
VDD = 3.465V, VIN = 0V  
-5  
IIL  
Input Low Current  
nREF_OE  
REF_OUT  
V
DD = 3.465V, VIN = 0V  
VDD = 3.465V  
-150  
µA  
V
Ouput High Voltage;  
NOTE 1  
VOH  
2.275  
Ouput Low Voltage;  
NOTE 1  
VOL  
REF_OUT  
REF_OUT  
V
DD = 3.465V  
0.775  
V
ZOUT  
Output Impedance  
VDD = 3.465V  
20  
Ω
NOTE 1: Outputs terminated with 50Ω to VDD/2. See Parameter Measurement Information Section,  
Output Load Test Circuit diagram.  
IDT/ ICSHCSL CLOCK GENERATOR  
4
ICS841664AGI REV. A JANUARY 30, 2009  
ICS841664I  
FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PRELIMINARY  
TABLE 5. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum  
Fundamental  
25  
Typical Maximum Units  
Mode of Oscillation  
Frequency  
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
50  
7
pF  
0.1  
mW  
NOTE: Characterized using an 18pF parallel resonant crystal.  
TABLE 6A. LVCMOS AC CHARACTERISTICS, VDD = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
fMAX  
Output Frequency REF_OUT  
25  
1
MHz  
ns  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
20ꢀ to 80ꢀ  
50  
TABLE 6B. HCSL AC CHARACTERISTICS, VDD = VDDOA = VDDOB = 3.3V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
VCO/5  
Minimum Typical Maximum Units  
125  
MHz  
MHz  
fMAX  
Output Frequency  
VCO/4  
156.25  
125MHz,  
(1.875MHz - 20MHz)  
156.25MHz,  
(1.875MHz - 20MHz)  
0.35  
0.35  
ps  
ps  
ps  
RMS Phase Jitter (Random);  
NOTE 1  
tjit(Ø)  
tsk(o)  
Output Skew;  
NOTE 2, 3  
QAx/nQAx,  
QBx/nQBx  
tL  
PLL Lock Time  
1
ms  
mV  
mV  
V
VHIGH  
VLOW  
VOVS  
VUDS  
Vrb  
Voltage High  
660  
-150  
0.3  
700  
850  
150  
0.3  
Voltage Low  
Max. Voltage, Overshoot  
Min. Voltage, Undershoot  
Ringback Voltage  
Absolute Crossing Voltage  
-0.3  
0.2  
-0.3  
V
V
VCROSS  
250  
550  
140  
mV  
Total Variation of VCROSS over all  
edges  
ΔVCROSS  
mV  
QAx/nQAx,  
QBx/nQBx  
measured between  
0.175V to 0.525V  
tR / tF  
ΔtR /ΔtF  
odc  
Output Rise/Fall Time  
Rise/Fall Time Variation  
Output Duty Cycle  
350  
50  
ps  
ps  
125  
QAx/nQAx,  
QBx/nQBx  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditions.  
NOTE: All specifications are taken at 125MHz and 156.25MHz.  
NOTE 1: Please refer to the Phase Noise Plot.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
IDT/ ICSHCSL CLOCK GENERATOR  
5
ICS841664AGI REV. A JANUARY 30, 2009  
ICS841664I  
FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PRELIMINARY  
TYPICAL PHASE NOISE AT 125MHZ AT 3.3V  
sRIO Filter  
125MHz  
RMS Phase Jitter (Random)  
1.875MHz to 20MHz = 0.35ps (typical)  
Raw Phase Noise Data  
Phase Noise Result by adding  
an sRIO Filter to raw data  
OFFSET FREQUENCY (HZ)  
TYPICAL PHASE NOISE AT 156.25MHZ AT 3.3V  
sRIO Filter  
156.25MHz  
RMS Phase Jitter (Random)  
1.875MHz to 20MHz = 0.35ps (typical)  
Raw Phase Noise Data  
Phase Noise Result by adding  
an sRIO Filter to raw data  
OFFSET FREQUENCY (HZ)  
IDT/ ICSHCSL CLOCK GENERATOR  
6
ICS841664AGI REV. A JANUARY 30, 2009  
ICS841664I  
FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PRELIMINARY  
PARAMETER MEASUREMENT INFORMATION  
3.3V 5ꢀ  
3.3V 5ꢀ,  
1.65V 5ꢀ  
1.65V 5ꢀ  
Measurement  
Point  
VDD,  
VDDOA,  
VDDOB  
50Ω  
50Ω  
33Ω  
33Ω  
SCOPE  
VDD  
VDDA  
50Ω  
50Ω  
VDDA  
Qx  
HSCL  
LVCMOS  
Measurement  
Point  
GND  
GND  
475Ω  
-1.65V 5ꢀ  
0V  
3.3V HCSL OUTPUT LOAD AC TEST CIRCUIT  
3.3V LVCMOS OUTPUT LOAD AC TEST CIRCUIT  
Phase Noise Plot  
nQx  
Qx  
Phase Noise Mask  
nQy  
Qy  
tsk(o)  
Offset Frequency  
f1  
f2  
RMS Jitter = Area Under the Masked Phase Noise Plot  
HCSL OUTPUT SKEW  
RMS PHASE JITTER  
nQA0, nQA1,  
nQB0, nQB1  
VDDO  
2
QA0, QA1,  
QB0, QB1  
REF_OUT  
tPW  
tPW  
tPERIOD  
tPERIOD  
tPW  
tPW  
odc =  
x 100ꢀ  
x 100ꢀ  
odc =  
tPERIOD  
tPERIOD  
LVCMOS OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
HCSL OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
nQA0, nQA1,  
nQB0, nQB1  
0.525V  
80ꢀ  
tF  
0.525V  
80ꢀ  
tR  
VSWING  
0.175V  
QA0, QA1,  
QB0, QB1  
20ꢀ  
20ꢀ  
0.175V  
REF_OUT  
tF  
tR  
HCSL OUTPUT RISE/FALL TIME  
LVCMOS OUTPUT RISE/FALL TIME  
IDT/ ICSHCSL CLOCK GENERATOR  
7
ICS841664AGI REV. A JANUARY 30, 2009  
ICS841664I  
FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PRELIMINARY  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. To achieve optimum jitter per-  
formance, power supply isolation is required. The ICS841664I  
provides separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VDD, VDDA, VDDOA and  
VDDOB should be individually connected to the power supply plane  
through vias, and 0.01µF bypass capacitors should be used for  
each pin. Figure 1 illustrates this for a generic V pin and also  
shows that VDDA requires that an additional10ΩDDresistor along  
with a 10µF bypass capacitor be connected to the VDDA pin.  
3.3V  
VDD  
.01μF  
.01μF  
10Ω  
VDDA  
10μF  
FIGURE 1. POWER SUPPLY FILTERING  
CRYSTAL INPUT INTERFACE  
The ICS841664I has been characterized with 18pF parallel  
resonant crystals. The capacitor values shown in Figure 2 below  
were determined using a 25MHz, 18pF parallel resonant crystal  
and were chosen to minimize the ppm error.  
XTAL_OUT  
XTAL_IN  
C1  
27p  
X1  
18pF Parallel Crystal  
C2  
27p  
FIGURE 2. CRYSTAL INPUt INTERFACE  
IDT/ ICSHCSL CLOCK GENERATOR  
8
ICS841664AGI REV. A JANUARY 30, 2009  
ICS841664I  
FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PRELIMINARY  
LVCMOS TO XTAL INTERFACE  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC couple capacitor. A general interface diagram is  
shown in Figure 3. The XTAL_OUT pin can be left floating.  
The input edge rate can be as slow as 10ns. For LVCMOS  
inputs, it is recommended that the amplitude be reduced from  
full swing to half swing in order to prevent signal interference  
with the power rail and to reduce noise. This configuration  
requires that the output impedance of the driver (Ro) plus the  
series resistance (Rs) equals the transmission line impedance.  
In addition, matched termination at the crystal input will  
attenuate the signal in half. This can be done in one of two  
ways. First, R1 and R2 in parallel should equal the transmission  
line impedance. For most 50Ω applications, R1 and R2 can be  
100Ω. This can also be accomplished by removing R1 and  
making R2 50Ω.  
VDD  
VDD  
R1  
.1uf  
Ro  
Rs  
Zo = 50  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OU T  
FIGURE 3. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
CRYSTAL INPUTS  
OUTPUTS:  
HCSL OUTPUTS  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kΩ resistor can be tied  
from XTAL_IN to ground.  
All unused HCSL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
LVCMOS OUTPUT  
REF_IN INPUT  
The unused LVCMOS output can be left floating. We recommend  
For applications not requiring the use of the reference clock,  
it can be left floating. Though not required, but for additional  
protection, a 1kΩ resistor can be tied from the REF_IN to ground.  
that there is no trace attached.  
LVCMOS CONTROL PINS  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
IDT/ ICSHCSL CLOCK GENERATOR  
9
ICS841664AGI REV. A JANUARY 30, 2009  
ICS841664I  
FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PRELIMINARY  
RECOMMENDED T ERMINATION  
Figure 4A is the recommended termination for applications  
which require the receiver and driver to be on a separate PCB.  
All traces should be 50Ω impedance.  
FIGURE 4A. RECOMMENDED TERMINATION  
Figure 4B is the recommended termination for applications which  
require a point to point connection and contain the driver and  
receiver on the same PCB.All traces should all be 50Ω impedance.  
FIGURE 4B. RECOMMENDED TERMINATION  
IDT/ ICSHCSL CLOCK GENERATOR  
10  
ICS841664AGI REV. A JANUARY 30, 2009  
ICS841664I  
FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PRELIMINARY  
SCHEMATIC EXAMPLE  
frequency accuracy. One example of HCSL and one example of  
LVCMOS terminations are shown in this schematic. The  
decoupling capacitors should be located as close as possible to  
the power pin.  
Figure 5 shows an example of ICS841664I application schematic.  
In this example, the device is operated at VCC = 3.3V. The 18pF  
parallel resonant 25MHz crystal is used. The C1 = 27pF and C2  
= 27pF are recommended for frequency accuracy. For different  
board layout, the C1 and C2 may be slightly adjusted for optimizing  
FIGURE 5. ICS841664I SCHEMATIC LAYOUT  
IDT/ ICSHCSL CLOCK GENERATOR  
11  
ICS841664AGI REV. A JANUARY 30, 2009  
ICS841664I  
FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PRELIMINARY  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS841664I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS841664I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
DD  
Core and HCSL Output Power Dissipation  
Power (core) = V  
* (I + I ) = 3.465V * (70mA + 15mA) = 294.5mW  
DD_MAX DD DDA  
MAX  
Power (outputs) = 44.5mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 4 * 44.5mW = 178mW  
LVCMOS Output Power Dissipation  
Dynamic Power Dissipation at 25MHz  
Power (25MHz) = CPD * Frequency * (VDD)2 = 18pF * 25MHz * (3.465V)2 = 5.40mW per output  
Total Power Dissipation  
Total Power  
= Power (core) + Power (Outputs) + Total Power (25MHz)  
= 294.5mW + 178mW + 5.4mW  
= 477.9mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in Section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air  
flow and a multi-layer board, the appropriate value is 64.5°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.478W * 64.5°C/W = 115.8°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (multi-layer).  
TABLE 7. THERMAL RESISTANCE θ FOR 28-LEAD TSSOP, FORCED CONVECTION  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
58.5°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
64.5°C/W  
60.4°C/W  
IDT/ ICSHCSL CLOCK GENERATOR  
12  
ICS841664AGI REV. A JANUARY 30, 2009  
ICS841664I  
FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PRELIMINARY  
3. Calculations and Equations.  
The purpose of this section is to calculate power dissipation on the IC per HCSL output pair.  
HCSL output driver circuit and termination are shown in Figure 6.  
V
DD  
IOUT = 17mA  
VOUT  
RREF  
=
475  
Ω
1ꢀ  
RL  
50Ω  
IC  
FIGURE 6. HCSL DRIVER CIRCUIT AND TERMINATION  
HCSL is a current steering output which sources a maximum of 17mA of current per output. To calculate worst case on-chip power  
dissipation, use the following equations which assume a 50Ω load to ground.  
The highest power dissipation occurs when V  
.
DD_MAX  
Power = (V  
– V ) * I  
OUT  
OUT  
DD_MAX  
since V = I * R  
L
OUT  
OUT  
Power = (V  
– I * R ) * I  
L OUT  
OUT  
DD_MAX  
= (3.465V – 17mA * 50Ω) * 17mA  
Total Power Dissipation per output pair = 44.5mW  
IDT/ ICSHCSL CLOCK GENERATOR  
13  
ICS841664AGI REV. A JANUARY 30, 2009  
ICS841664I  
FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PRELIMINARY  
RELIABILITY INFORMATION  
TABLE 8. θ VS. AIR FLOW TABLE FOR 28 LEAD TSSOP  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
58.5°C/W  
Multi-Layer PCB, JEDEC Standard Test Boards  
64.5°C/W  
60.4°C/W  
TRANSISTOR COUNT  
The transistor count for ICS841664I is: 2954  
PACKAGE OUTLINE AND DIMENSIONS  
PACKAGE OUTLINE - G SUFFIX FOR 28 LEAD TSSOP  
TABLE 9. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Minimum  
Maximum  
N
A
28  
--  
1.20  
0.15  
1.05  
0.30  
0.20  
9.80  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
9.60  
c
D
E
8.10 BASIC  
0.65 BASIC  
E1  
e
6.00  
6.20  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
IDT/ ICSHCSL CLOCK GENERATOR  
14  
ICS841664AGI REV. A JANUARY 30, 2009  
ICS841664I  
FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PRELIMINARY  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
841664AGI  
Marking  
Package  
Shipping Packaging Temperature  
ICS841664AGI  
ICS841664AGI  
ICS841664AGILF  
ICS841664AGILF  
28 Lead TSSOP  
tube  
-40°C to 85°C  
841664AGIT  
28 Lead TSSOP  
1000 tape & reel  
tube  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
841664AGILF  
841664AGILFT  
28 Lead "Lead-Free" TSSOP  
28 Lead "Lead-Free" TSSOP  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICSHCSL CLOCK GENERATOR  
15  
ICS841664AGI REV. A JANUARY 30, 2009  
ICS841664I  
FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR  
PRELIMINARY  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
For Tech Support  
netcom@idt.com  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
+480-763-2056  
www.IDT.com/go/contactIDT  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
© 2009 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

841664AGILFT

FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR
IDT

841664AGIT

FEMTOCLOCK™ CRYSTAL-TO-HCSL CLOCK GENERATOR
IDT

8416901XX

16-Bit Microprocessor
ETC

8416901YX

16-Bit Microprocessor
ETC

8416902XX

16-Bit Microprocessor
ETC

8416902YX

16-Bit Microprocessor
ETC

8416903XX

16-Bit Microprocessor
ETC

8416903YX

16-Bit Microprocessor
ETC

8416904XX

16-Bit Microprocessor
ETC

8416904YX

16-Bit Microprocessor
ETC

8417-01

SMD Power Inductors and Transformers
FILTRAN

8417-02

SMD Power Inductors and Transformers
FILTRAN