ICS85454AK-01 [ICSI]

DIFFERENTIAL-TO-LVDS MULTIPLEXER; 差分至LVDS多路复用器
ICS85454AK-01
型号: ICS85454AK-01
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

DIFFERENTIAL-TO-LVDS MULTIPLEXER
差分至LVDS多路复用器

复用器
文件: 总15页 (文件大小:195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS85454-01  
DUAL 2:1/1:2  
DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS85454-01 is a 2:1/1:2 Multiplexer and Dual 2:1/1:2 MUX  
ICS  
a member of the HiPerClockSTM family of high  
Three LVDS outputs  
HiPerClockS™  
performance clock solutions from ICS. The 2:1  
Multiplexer allows one of 2 inputs to be select-  
ed onto one output pin and the 1:2 MUX  
Three differential inputs  
Differential inputs can accept the following differential  
switches one input to both of two outputs. This device  
may be useful for multiplexing multi-rate Ethernet PHYs  
which have 100Mbit and 1000Mbit transmit/receive  
pairs onto an optical SFP module which has a single  
transmit/receive pair. Another mode allows loop back  
testing and allows the output of a PHY transmit pair to be  
routed to the PHY input pair. For examples, please refer to  
the Application Information section of the data sheet.  
levels: LVPECL, LVDS, CML  
Loopback test mode available  
Maximum output frequency: 2.5GHz  
Part-to-part skew: 250ps (maximum)  
Additive phase jitter, RMS: 0.05ps (typical)  
Propagation delay: 550ps (maximum)  
2.5V operating supply  
The ICS85454-01 is optimized for applications requiring  
very high performance and has a maximum operating  
frequency in 2.5GHz. The device is packaged in a small,  
3mm x 3mm VFQFN package, making it ideal for use on  
space-constrained boards.  
-40°C to 85°C ambient operating temperature  
Available in both standard and lead-free RoHS compliant  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
SELB  
INA0  
16 15 14 13  
QA0  
1
2
12 INA0  
11 nINA0  
10 INA1  
nINA0  
nQA0  
QA1  
3
4
LOOP0  
INB  
0
nQA1  
9
nINA1  
nINB  
5
6
7
8
QA0  
nQA0  
1
0
QB  
nQB  
INA1  
ICS85454-01  
16-LeadVFQFN  
1
nINA1  
3mm x 3mm x 0.95 package body  
K Package  
LOOP1  
TopView  
QA1  
nQA1  
SELA  
85454AK-01  
www.icst.com/products/hiperclocks.html  
REV.B JUNE 16, 2006  
1
ICS85454-01  
DUAL 2:1/1:2  
DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 2  
Name  
Type  
Output  
Description  
QA0, nQA0  
Differential output pair. LVDS interface levels.  
Differential output pair. LVDS interface levels.  
3, 4  
QA1, nQA1 Output  
5
INB  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup/  
6
nINB  
Inverting differential clock input. VDD/2 default when left floating.  
Pulldown  
Select pin for QAx outputs. When HIGH, selects same inputs used for  
Pulldown QB output. When LOW, selects INB input.  
LVCMOS/LVTTL interface levels.  
7
SELB  
Input  
8
GND  
nINA1  
INA1  
Power  
Input  
Input  
Input  
Power supply ground.  
Pullup/  
9
Inverting differential clock input. VDD/2 default when left floating.  
Pulldown  
10  
11  
Pulldown Non-inverting differential clock input.  
Pullup/  
nINA0  
Inverting differential clock input. VDD/2 default when left floating.  
Pulldown  
12  
13  
INA0  
VDD  
Input  
Pulldown Non-inverting differential clock input.  
Positive supply pin.  
Power  
Select pin for QB outputs. When HIGH, selects INA1 input.  
Pulldown  
14  
SELA  
Input  
When LOW, selects INA0 input. LVCMOS/LVTTL interface levels.  
15, 16  
nQB, QB  
Output  
Differential output pair. LVDS interface levels.  
NOTE: Pulldown and Pullup refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
RPULLDOWN Input Pulldown Resistor  
37.5  
k  
RPULLUP  
Input Pullup Resistor  
37.5  
kΩ  
TABLE 3. INPUT CONTROL FUNCTIONTABLE  
Control Inputs  
Mode  
SELA  
SELB  
0
1
0
1
0
0
1
1
LOOP0 selected  
LOOP1 selected  
Loopback mode: LOOP0  
Loopback mode: LOOP1  
85454AK-01  
www.icst.com/products/hiperclocks.html  
REV.B JUNE 16, 2006  
2
ICS85454-01  
DUAL 2:1/1:2  
DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VDD  
Inputs, VI  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage  
t o the device. These ratings are stress specifi-  
cations only. Functional operation of product at  
these conditions or any conditions beyond those  
listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may  
affect product reliability.  
4.6V  
-0.5V to VDD + 0.5V  
Outputs, IO  
Continuous Current  
Surge Current  
10mA  
15mA  
OperatingTemperature Range, TA -40°C to +85°C  
StorageTemperature,TSTG -65°C to 150°C  
PackageThermal Impedance, θJA 51.5°C/W (0 lfpm)  
(Junction-to-Ambient)  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = 2.5V ± 5%  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VDD  
IDD  
Positive Supply Voltage  
Power Supply Current  
2.375  
2.5  
2.625  
90  
V
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VDD = 2.5V ± 5%  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage  
1.7  
0
VDD + 0.3  
0.7  
V
V
Input Low Voltage  
Input High Current SELA, SELB  
Input Low Current SELA, SELB  
VDD = VIN = 2.625V  
150  
µA  
µA  
IIL  
VDD = 2.625V, VIN = 0V  
-150  
TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, VDD = 2.5V ± 5%  
-40°C  
25°C  
Typ  
85°C  
Typ  
Symbol Parameter  
Units  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
INAx, INB  
nINAx, nINB  
INAx, INB  
nINAx, nINB  
IIH  
Input High Current  
Input Low Current  
150  
150  
150  
µA  
IIL  
-150  
0.15  
1.2  
-150  
0.15  
1.2  
-150  
0.15  
1.2  
µA  
V
VPP  
VCMR  
Peak-to-Peak Input Voltage  
1.2  
VDD  
1.2  
VDD  
1.2  
VDD  
Commond Mode Input Voltage;  
NOTE 1, 2  
V
NOTE 1: Common mode input voltage is defined as VIH.  
NOTE 2: For single ended applications, the maximum input voltage for INAx, nINAx and INB, nINB is VDD + 0.3V.  
85454AK-01  
www.icst.com/products/hiperclocks.html  
REV.B JUNE 16, 2006  
3
ICS85454-01  
DUAL 2:1/1:2  
DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 4D. LVDS DC CHARACTERISTICS, VDD = 2.5V ± 5%  
-40°C  
25°C  
Typ  
350  
85°C  
Typ  
350  
Symbol Parameter  
Units  
Min  
Typ  
Max  
450  
30  
Min  
Max  
450  
30  
Min  
Max  
450  
30  
VOD  
Differential Output Voltage  
250  
350  
250  
250  
mV  
mV  
V
VOD  
VOS  
VOD Magnitude Change  
Offset Voltage  
0.93  
1.18  
1.43  
10  
0.97  
1.22  
1.47  
10  
1.02  
1.27  
1.52  
10  
VOS  
VOS Magnitude Change  
mV  
NOTE 1: Refer to Parameter Measurement Information, "2.5V Output Load Test Circuit" diagram.  
TABLE 5. AC CHARACTERISTICS, VDD = 2.375V TO 2.625V  
Symbol  
Parameter  
Conditions  
Minimum Typical Maximum Units  
fMAX  
Output Frequency  
2.5  
550  
650  
GHz  
ps  
INAx to QB or INB to QAx  
INAx to QAx  
250  
300  
tPD  
Propagation Delay; NOTE 1  
ps  
tsk(pp)  
tjit  
Part-to-Part Skew; NOTE 2, 3  
250  
0.05  
55  
ps  
Buffer Additive Phase Jitter, RMS;  
refer to Additive Phase Jitter section  
ƒ= 622.08MHz,  
12kHz - 20MHz  
ps  
MUXISOLATION MUX Isolation  
tR/tF Output Rise/Fall Time  
@ 500MHz output  
20% to 80%  
dB  
ps  
50  
250  
All parameters are measured 1.7GHz unless otherwise noted.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages  
and with equal load conditions. Using the same type of inputs on each device, the outputs are measured  
at the differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
85454AK-01  
www.icst.com/products/hiperclocks.html  
REV.B JUNE 16, 2006  
4
ICS85454-01  
DUAL 2:1/1:2  
DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
ADDITIVE PHASE JITTER  
ratio of the power in the 1Hz band to the power in the funda-  
mental. When the required offset is specified, the phase noise  
is called a dBc value, which simply means dBm at a specified  
offset from the fundamental. By investigating jitter in the fre-  
quency domain, we get a better understanding of its effects  
on the desired application over the entire time record of the  
signal. It is mathematically possible to calculate an expected  
bit error rate given a phase noise plot.  
The spectral purity in a band at a specific offset from the  
fundamental compared to the power of the fundamental is  
called the dBc Phase Noise. This value is normally expressed  
using a Phase noise plot and is most often the specified plot  
in many applications. Phase noise is defined as the ratio of  
the noise power present in a 1Hz band at a specified offset  
from the fundamental frequency to the power value of the  
fundamental. This ratio is expressed in decibels (dBm) or a  
0
-10  
Additive Phase Jitter at  
622.08MHz (12kHz - 20MHz)  
= 0.05ps (typical)  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FROM CARRIER FREQUENCY (HZ)  
As with most timing specifications, phase noise measure- above. The device meets the noise floor of what is shown, but  
ments have issues. The primary issue relates to the limita- can actually be lower. The phase noise is dependant on the  
tions of the equipment. Often the noise floor of the equipment input source and measurement equipment.  
is higher than the noise floor of the device. This is illustrated  
85454AK-01  
www.icst.com/products/hiperclocks.html  
REV.B JUNE 16, 2006  
5
ICS85454-01  
DUAL 2:1/1:2  
DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
VDD  
nINA0, nINA1  
nINB  
SCOPE  
Qx  
2.5V±5%  
VPP  
VCMR  
Cross Points  
POWER SUPPLY  
+
LVDS  
Float GND  
-
INA0, INA1  
INB  
nQx  
GND  
OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
nINA0,  
nINA1  
nINB  
nQx  
PART 1  
Qx  
INA0,  
INA1  
INB  
nQA0,  
nQA1,  
nQB  
nQy  
PART 2  
Qy  
QA0,  
QA1,  
QB  
tPD  
tsk(pp)  
PROPAGATION DELAY  
PART-TO-PART SKEW  
VDD  
out  
out  
80%  
80%  
LVDS  
V
OD/VOD  
DC Input  
100  
VSWING  
20%  
Clock  
20%  
Outputs  
tF  
tR  
OUTPUT RISE/FALL TIME  
DIFFERENTIAL OUTPUTVOLTAGE  
VDD  
out  
DC Input  
LVDS  
out  
VOS/VOS  
OFFSET VOLTAGE SETUP  
85454AK-01  
www.icst.com/products/hiperclocks.html  
REV.B JUNE 16, 2006  
6
ICS85454-01  
DUAL 2:1/1:2  
DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 1 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VDD/2 is  
generated by the bias resistors R1, R2 and C1.This bias circuit  
should be located as close as possible to the input pin. The  
ratio of R1 and R2 might need to be adjusted to position the  
V_REF in the center of the input voltage swing.  
VDD  
R1  
1K  
Single Ended Clock Input  
V_REF  
IN  
nIN  
C1  
0.1u  
R2  
1K  
FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
LVDS  
IN/nIN INPUT:  
For applications not requiring the use of the differential input, All unused LVDS output pairs can be either left floating or  
both IN and nIN can be left floating. Though not required, but terminated with 100across. If they are left floating, we  
for additional protection, a 1kresistor can be tied from IN to recommend that there is no trace attached.  
ground.  
LVCMOS CONTROL PINS:  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kresistor can be used.  
85454AK-01  
www.icst.com/products/hiperclocks.html  
REV.B JUNE 16, 2006  
7
ICS85454-01  
DUAL 2:1/1:2  
DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
DIFFERENTIAL CLOCK INPUT INTERFACE  
The IN/nIN accepts LVPECL, CML, SSTL and other differen- are examples only. If the driver is from another vendor, use  
tial signals. Both VSWING and VOH must meet the VPP and VCMR their termination recommendation. Please consult with the  
input requirements. Figures 2A to 2D show interface ex- vendor of the driver component to confirm the driver termi-  
amples for the HiPerClockS IN/nIN input driven by the most nation requirements.  
common driver types. The input interfaces suggested here  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
R1  
50  
R2  
50  
Zo = 50 Ohm  
CML  
Zo = 50 Ohm  
Zo = 50 Ohm  
IN  
IN  
R1  
100  
nIN  
nIN  
Zo = 50 Ohm  
HiPerClockS  
HiPerClockS  
CML Built-In Pull-Up  
FIGURE 2A. HIPERCLOCKS IN/nIN INPUT DRIVEN BY AN  
OPEN COLLECTOR CML DRIVER  
FIGURE 2B. HIPERCLOCKS IN/nIN INPUT DRIVEN BY A  
BUILT-IN PULLUP CML DRIVER  
3.3V  
3.3V  
3.3V  
3.3V  
Zo = 50 Ohm  
Zo = 50 Ohm  
IN  
IN  
R1  
100  
R1  
100  
nIN  
nIN  
Zo = 50 Ohm  
HiPerClockS  
Zo = 50 Ohm  
LVDS  
HiPerClockS  
LVDS  
FIGURE 2C. HIPERCLOCKS IN/nIN INPUT DRIVEN BY A  
3.3V LVPECL DRIVER  
FIGURE 2D. HIPERCLOCKS IN/nIN INPUT DRIVEN BY A  
3.3V LVDS DRIVER  
85454AK-01  
www.icst.com/products/hiperclocks.html  
REV.B JUNE 16, 2006  
8
ICS85454-01  
DUAL 2:1/1:2  
DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TYPICAL APPLICATION DIAGRAM FOR HOST BUS ADAPTER BOARDS FOR ROUTING BETWEEN INTERNAL  
AND EXTERNAL CONNECTORS  
Internal  
Connector  
Host Adapter Board  
SELB  
INA0  
nINA0  
INB  
nINB  
QA0  
SerDes  
Protocol  
Controller  
nQA0  
0
1
QB  
nQB  
INA1  
nINA1  
QA1  
nQA1  
SELA  
PCI Bus  
85454AK-01  
www.icst.com/products/hiperclocks.html  
REV.B JUNE 16, 2006  
9
ICS85454-01  
DUAL 2:1/1:2  
DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TYPICAL APPLICATION DIAGRAM FOR HOT-SWAPPABLE LINKS TO REDUNDANT SWITCH FABRIC CARDS  
SELB  
LOOP 0  
INA0  
nINA0  
INB  
TX  
0
1
QA0  
nINB  
nQA0  
0
1
SerDes  
QB  
Switch  
Fabric  
nQB  
INA1  
nINA1  
QA1  
RX  
nQA1  
#0  
SELA  
LOOP 1  
#1  
Redundant  
Switch Card  
Linecard  
Backplane  
2.5V LVDS DRIVER TERMINATION  
Figure 3 shows a typical termination for LVDS driver in  
characteristic impedance of 100differential (50single)  
transmission line environment. For buffer with multiple LDVS  
driver, it is recommended to terminate the unused outputs.  
2.5V  
2.5V  
LVDS_Driver  
+
R1  
100  
-
100Differential Transmission Line  
FIGURE 3. TYPICAL LVDS DRIVERT ERMINATION  
85454AK-01  
www.icst.com/products/hiperclocks.html  
REV.B JUNE 16, 2006  
10  
ICS85454-01  
DUAL 2:1/1:2  
DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS85454-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS85454-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 2.5V + 5% = 2.625V, which gives worst case results.  
·
Power_MAX = VDD_MAX * IDD_MAX = 2.625V * 90mA = 236.3mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of  
the device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming  
no air flow of and a multi-layer board, the appropriate value is 51.5°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.236W * 51.5°C/W = 97.2°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air  
flow, and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θJA FOR 16-PIN VFQFN, FORCED CONVECTION  
θJA vs. 0 Air Flow (Linear Feet per Minute)  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
51.5°C/W  
85454AK-01  
www.icst.com/products/hiperclocks.html  
REV.B JUNE 16, 2006  
11  
ICS85454-01  
DUAL 2:1/1:2  
DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 7. θJAVS. AIR FLOWT ABLE FOR 16 LEAD VFQFN  
θJA vs. 0 Air Flow (Linear Feet per Minute)  
0
Multi-Layer PCB, JEDEC Standard Test Boards  
51.5°C/W  
TRANSISTOR COUNT  
The transistor count for ICS85454-01 is: 171  
85454AK-01  
www.icst.com/products/hiperclocks.html  
REV.B JUNE 16, 2006  
12  
ICS85454-01  
DUAL 2:1/1:2  
DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - K SUFFIX FOR 16 LEAD VFQFN  
TABLE 8. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
SYMBOL  
MINIMUM  
MAXIMUM  
N
A
16  
0.80  
0
1.0  
A1  
A3  
b
0.05  
0.25 Reference  
0.18  
0.30  
e
0.50 BASIC  
ND  
NE  
D
4
4
3.0  
D2  
E
1.0  
1.8  
3.0  
E2  
L
1.0  
1.8  
0.30  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
85454AK-01  
www.icst.com/products/hiperclocks.html  
REV.B JUNE 16, 2006  
13  
ICS85454-01  
DUAL 2:1/1:2  
DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 9.ORDERING INFORMATION  
Part/Order Number  
ICS85454AK-01  
Marking  
Package  
Shipping Packaging  
Tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
5A01  
5A01  
A01L  
A01L  
16 Lead VFQFN  
ICS85454AK-01T  
ICS85454AK-01LF  
ICS85454AK-01LFT  
16 Lead VFQFN  
2500 Tape & Reel  
Tube  
16 Lead "Lead-Free" VFQFN  
16 Lead "Lead-Free" VFQFN  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademark, HiPerClockS is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
85454AK-01  
www.icst.com/products/hiperclocks.html  
REV.B JUNE 16, 2006  
14  
ICS85454-01  
DUAL 2:1/1:2  
DIFFERENTIAL-TO-LVDS MULTIPLEXER  
Integrated  
Circuit  
Systems, Inc.  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
T4D  
4
LVDS DC Characteristics - changed VOD parameters. Changed VOD/VOS  
parameters from typical to maximum.  
B
3/14/06  
T9  
T8  
14  
13  
Ordering Information - corrected Shipping Packaging from Tray to Tube.  
Package Dimension Table - corrected D2/E2 from 0.25min/1.25max. to  
1.0min./1.8max.  
B
6/16/06  
85454AK-01  
www.icst.com/products/hiperclocks.html  
REV.B JUNE 16, 2006  
15  

相关型号:

ICS85454AK-01LF

DIFFERENTIAL-TO-LVDS MULTIPLEXER
ICSI

ICS85454AK-01LFT

DIFFERENTIAL-TO-LVDS MULTIPLEXER
ICSI

ICS85454AK-01T

DIFFERENTIAL-TO-LVDS MULTIPLEXER
ICSI

ICS85454AKI

Differential Multiplexer, 2 Func, 2 Channel, PQCC16
IDT

ICS85454AKILF

Differential Multiplexer, 2 Func, 2 Channel, PQCC16
IDT

ICS85454AKIT

Differential Multiplexer, 2 Func, 2 Channel, PQCC16
IDT

ICS85454AKLF

Low Skew Clock Driver, 85454 Series, 3 True Output(s), 0 Inverted Output(s), 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220, VFQFN-16
IDT

ICS85454AKLFT

Multiplexers/Switches
IDT

ICS85454AKT

Multiplexers/Switches
IDT

ICS8545AG

Low Skew Clock Driver, 4 True Output(s), 4 Inverted Output(s), PDSO20, MO-153, TSSOP-20
IDT

ICS8545AG-02

LOW SKEW, 1-TO-4 LVCMOS/LVTTL-TO-LVDS FANOUT BUFFER
IDT

ICS8545AG-02LF

LOW SKEW, 1-TO-4 LVCMOS/LVTTL-TO-LVDS FANOUT BUFFER
IDT