ICS84314AYLF [ICSI]

350MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL FREQUENCY SYNTHESIZER W/FANOUT BUFFER; 350MHZ ,水晶- TO- 3.3V / 2.5V LVPECL频率合成W /扇出缓冲器
ICS84314AYLF
型号: ICS84314AYLF
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

350MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL FREQUENCY SYNTHESIZER W/FANOUT BUFFER
350MHZ ,水晶- TO- 3.3V / 2.5V LVPECL频率合成W /扇出缓冲器

晶体 外围集成电路 时钟
文件: 总18页 (文件大小:222K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
FEATURES  
GENERAL DESCRIPTION  
Fully integrated PLL  
4 differential 3.3V or 2.5V LVPECL outputs  
The ICS84314 is a general purpose quad output  
ICS  
frequency synthesizer and a member of the  
HiPerClockS™ family of High Performance Clock  
HiPerClockS™  
Solutions from ICS. When the device uses par- Selectable crystal oscillator interface  
allel loading, the M bits are programmable and  
or LVCMOSTEST_CLK input  
the output divider is hard-wired for divide by 2 thus providing  
a frequency range of 125MHz to 350MHz. In serial program-  
ming mode, the M bits are programmable and the output di-  
vider can be set for either divide by 2 or divide by 4, providing  
a frequency range of 62.5MHz to 350MHz. The low cycle-  
cycle jitter and broad frequency range of the ICS84314 make  
it an ideal clock generator for a variety of demanding applica-  
tions which require high performance.  
Output frequency range: 62.5MHz to 350MHz  
VCO range: 250MHz to 700MHz  
Parallel interface for programming counter  
and output dividers during power-up  
Serial 3 wire interface  
Cycle-to-cycle jitter: 23ps (typical)  
Output skew: 16ps (typical)  
Output duty cycle: 49% < odc < 51%, fout 125MHz  
Full 3.3V or mixed 3.3V core, 2.5V operating supply  
0°C to 85°C ambient operating temperature  
Lead-Free package available  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VCO_SEL  
XTAL_SEL  
32 31 30 29 28 27 26 25  
M4  
M5  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
TEST_CLK  
XTAL_SEL  
VCCA  
TEST_CLK  
0
M6  
XTAL1  
1
OSC  
M7  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
XTAL2  
ICS84314  
M8  
÷ 16  
VEE  
VCC  
VCCO  
VCCO  
PLL  
Q0  
nQ0  
PHASE DETECTOR  
9
10 11 12 13 14 15 16  
Q1  
nQ1  
MR  
0
VCO  
÷2  
÷4  
Q2  
nQ2  
÷ M  
1
÷2  
Q3  
nQ3  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
S_LOAD  
S_DATA  
S_CLOCK  
Y Package  
TopView  
CONFIGURATION  
INTERFACE  
LOGIC  
nP_LOAD  
M0:M8  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
1
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
FUNCTIONAL DESCRIPTION  
NOTE: The functional description that follows describes  
operation using a 16MHz crystal. Valid PLL loop divider  
values for different crystal or input frequencies are defined  
in the Input Frequency Characteristics, Table 5, NOTE 1.  
nP_LOAD input is initially LOW. The data on inputs M0 through  
M8 is passed directly to the M divider. On the LOW-to-HIGH tran-  
sition of the nP_LOAD input, the data is latched and the M divider  
remains loaded until the next LOW transition on nP_LOAD or until  
a serial event occurs. As a result, the M bits can be hardwired to  
set the M divider to a specific default state that will automatically  
occur during power-up. In parallel mode, the N output divider is  
set to 2. In serial mode, the N output divider can be set for either  
÷2 or ÷4.The relationship between the VCO frequency, the crys-  
The ICS84314 features a fully integrated PLL and there-  
fore requires no external components for setting the loop  
bandwidth. A parallel-resonant, fundamental crystal is used  
as the input to the on-chip oscillator.The output of the os-  
cillator is divided by 16 prior to the phase detector.With a  
16MHz crystal, this provides a 1MHz reference frequency.  
The VCO of the PLL operates over a range of 250MHz to  
700MHz.The output of the M divider is also applied to the  
phase detector.  
tal frequency and the M divider is defined as follows:  
fxtal  
16  
x 2M  
fVCO =  
The M value and the required values of M0 through M8 are shown  
in Table 3B, Programmable VCO Frequency Function Table.Valid  
M values for which the PLL will achieve lock for a 16MHz refer-  
ence are defined as 125 M 350. The frequency out  
The phase detector and the M divider force the VCO output  
frequency to be 2M times the reference frequency by ad-  
justing the VCO control voltage. Note that for some values  
of M (either too high or too low), the PLL will not achieve  
lock. The output of the VCO is scaled by a divider prior to  
being sent to each of the LVPECL output buffers.The divider  
provides a 50% output duty cycle.  
is defined as follows: fout =  
fVCO x 1 = fxtal x 2M x 1  
16  
N
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD  
is LOW.The shift register is loaded by sampling the S_DATA bits  
with the rising edge of S_CLOCK.The contents of the shift regis-  
ter are loaded into the M divider and N output divider when  
S_LOAD transitions from LOW-to-HIGH.The M divide and N out-  
put divide values are latched on the HIGH-to-LOW transition of  
S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is  
passed directly to the M divider and N output divider on each  
rising edge of S_CLOCK.  
The programmable features of the ICS84314 support two  
input modes to program the M divider. The two input op-  
erational modes are parallel and serial. Figure 1 shows  
the timing diagram for each mode. In parallel mode, the  
SERIAL LOADING  
S_CLOCK  
S_DATA  
*NULL *NULL *NULL *NULL **N  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
M0  
t
t
H
S_LOAD  
S
nP_LOAD  
t
S
PARALLEL LOADING  
M0:M8  
M
nP_LOAD  
t
t
H
Time  
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
S
TABLE 1. N OUTPUT DIVIDER FUNCTION TABLE (SERIAL LOAD)  
N Logic Value Output Divide  
0
1
÷2  
÷4  
*NOTE: The NULL timing slot must be observed.  
**NOTE: “N” can only be controlled through serial loading.  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
2
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
TABLE 2. PIN DESCRIPTIONS  
Number  
Name  
Type  
Description  
1, 2, 3, 4,  
29, 30, 31, 32 M0, M1, M2, M3  
M4, M5, M6, M7,  
Input Pulldown  
M divider inputs. Data latched on LOW-to-HIGH transition  
of nP_LOAD input. LVCMOS / LVTTL interface levels.  
5
M8  
VEE  
Input  
Power  
Power  
Power  
Output  
Output  
Output  
Output  
Pullup  
6
Negative supply pin.  
Core power supply pin.  
Output supply pins.  
7
VCC  
8, 17  
9, 10  
11, 12  
13, 14  
15, 16  
VCCO  
Q0, nQ0  
Q1, nQ1  
Q2, nQ2  
Q3, nQ3  
Differential output for the synthesizer. LVPECL interface levels.  
Differential output for the synthesizer. LVPECL interface levels.  
Differential output for the synthesizer. LVPECL interface levels.  
Differential output for the synthesizer. LVPECL interface levels.  
Active High Master Reset. When logic HIGH, the internal dividers  
are reset causing the true outputs Qx to go low and the inverted  
18  
MR  
Input Pulldown outputs nQx to go high. When logic LOW, the internal dividers and  
the outputs are enabled. Assertion of MR does not affect loaded  
M values. LVCMOS / LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register  
on the rising edge of S_CLOCK. LVCMOS / LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge  
of S_CLOCK. LVCMOS / LVTTL interface levels.  
19  
20  
S_CLOCK  
S_DATA  
Input Pulldown  
Input Pulldown  
Controls transition of data from shift register into the dividers.  
LVCMOS / LVTTL interface levels.  
Analog supply pin.  
Selects between the crystal oscillator or test clock as the PLL  
reference source. Selects XTAL inputs when HIGH. Selects  
TEST_CLK when LOW. LVCMOS / LVTTL interface levels.  
21  
22  
S_LOAD  
VCCA  
Input Pulldown  
Power  
Input  
23  
XTAL_SEL  
Pullup  
24  
TEST_CLK  
Input Pulldown Test clock input. LVCMOS interface levels.  
25, 26  
XTAL1, XTAL2  
Input  
Crystal oscillator interface. XTAL1 is the input. XTAL2 is the output.  
Parallel load input. Determines when data present at M8:M0  
is loaded into the M divider. LVCMOS / LVTTL interface levels.  
Determines whether synthesizer is in PLL or bypass mode.  
LVCMOS / LVTTL interface levels.  
27  
28  
nP_LOAD  
VCO_SEL  
Input Pulldown  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 3. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
KΩ  
KΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
3
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
TABLE 4A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
MR nP_LOAD  
M
X
S_LOAD  
S_CLOCK  
S_DATA  
H
L
X
L
X
X
X
X
X
X
Reset. Forces outputs LOW.  
Data  
Data on M inputs passed directly to the M divider.  
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the  
M divider and N output divider.  
L
L
L
Data  
X
L
L
X
L
X
H
H
Data  
Data  
X
L
L
L
H
H
H
X
X
X
L
L
X
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 4B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE (NOTE 1)  
256  
M8  
0
128  
M7  
0
64  
M6  
1
32  
M5  
1
16  
M4  
1
8
M3  
1
4
M2  
1
2
M1  
0
1
M0  
1
VCO Frequency  
(MHz)  
M Divide  
250  
252  
254  
256  
125  
126  
127  
128  
0
0
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
696  
698  
700  
348  
349  
350  
1
0
1
0
1
1
1
0
0
1
0
1
0
1
1
1
0
1
1
0
1
0
1
1
1
1
0
NOTE 1: These M divide values and the resulting frequencies correspond to crystal or TEST_CLK input  
frequency of 16MHz.  
TABLE 4C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE (SERIAL PROGRAMMING MODE ONLY)  
Input  
N Divide  
Output Frequency (MHz)  
Qx, nQx  
N Logic  
Minimum  
125  
Maximum  
350  
0
1
2
4
62.5  
175  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
4
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5 V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 5A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, VCCO = 3.3V 5% OR 2.5V 5%, TA = 0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VCC  
Core Supply Voltage  
3.465  
3.465  
3.465  
2.625  
150  
V
V
VCCA  
Analog Supply Voltage  
3.135  
3.3  
3.135  
3.3  
V
VCCO  
Output Supply Voltage  
2.375  
2.5  
V
IEE  
Power Supply Current  
Analog Supply Current  
mA  
mA  
ICCA  
17  
TABLE 5B. LVCMOS/LVTTL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, VCCO = 3.3V 5% OR 2.5V 5%, TA = 0°C TO 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
TEST_CLK; NOTE 1  
2.35  
V
CC + 0.3  
V
V
V
V
Input  
High Voltage  
VCO_SEL, XTAL_SEL,  
nP_LOAD, MR, M0:M8,  
S_LOAD, S_DATA, S_CLOCK  
VIH  
2
VCC + 0.3  
0.95  
TEST_CLK; NOTE 1  
-0.3  
-0.3  
Input  
Low Voltage  
VCO_SEL, XTAL_SEL,  
nP_LOAD, MR, M0:M8,  
S_LOAD, S_DATA, S_CLOCK  
M0:M7, MR, nP_LOAD,  
S_CLOCK, S_DATA,  
S_LOAD  
VIL  
0.8  
VCC = VIN = 3.465V  
150  
µA  
Input  
High Current  
IIH  
M8, XTAL_SEL, VCO_SEL  
TEST_CLK  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
5
µA  
µA  
200  
M0:M7, MR, nP_LOAD,  
S_CLOCK, S_DATA,  
S_LOAD  
V
CC = 3.465V,  
IN = 0V  
VCC = 3.465V,  
IN = 0V  
-5  
µA  
µA  
V
Input  
Low Current  
IIL  
M8, XTAL_SEL, VCO_SEL  
-150  
V
NOTE:1 Characterized with 1ns input edge rate.  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
5
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
TABLE 5C. LVPECL DC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, VCCO = 3.3V 5% OR 2.5V 5%, TA = 0°C TO 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCCO - 1.4  
VCCO - 2.0  
0.6  
Typical  
Maximum Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50to VCCO - 2V. See "Parameter Measurement Information" section,  
"3.3V Output Load Test Circuit".  
TABLE 6. INPUT FREQUENCY CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
TEST_CLK; NOTE 1  
10  
12  
40  
40  
50  
MHz  
MHz  
MHz  
fIN  
Input Frequency XTAL1, XTAL2; NOTE 1  
S_CLOCK  
NOTE 1: For the input crystal and reference frequency range, the M value must be set for the VCO to operate within the  
250MHz to 700MHz range. Using the minimum input frequency of 12MHz, valid values of M are 167 M 466.  
Using the maximum frequency of 40MHz, valid values of M are 50 M 140.  
TABLE 7. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
12  
40  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
6
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
TABLE 8A. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 5%, TA = 0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FMAX  
Output Frequency  
350  
35  
MHz  
ps  
ps  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
%
tjit(cc)  
tjit(per)  
tsk(o)  
tR / tF  
Cycle-to-Cycle Jitter; NOTE 1, 3  
Period Jitter, RMS; NOTE 1  
Output Skew; NOTE 2, 3  
Output Rise/Fall Time  
23  
16  
8
30  
700  
20% to 80%  
200  
5
M to nP_LOAD  
tS  
Setup Time S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M to nP_LOAD  
5
5
5
tH  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
5
f
OUT > 125MHz  
48  
49  
50  
50  
52  
51  
1
odc  
Output Duty Cycle  
fOUT 125MHz  
%
tLOCK  
PLL Lock Time  
ms  
See Parameter Measurement Information section.  
NOTE 1: Jitter performance using XTAL inputs.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
TABLE 8B. AC CHARACTERISTICS, VCC = VCCA = 3.3V 5%, VCCO = 2.5V 5%, TA = 0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
FMAX  
Output Frequency  
350  
35  
MHz  
ps  
ps  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
%
tjit(cc)  
tjit(per)  
tsk(o)  
tR / tF  
Cycle-to-Cycle Jitter; NOTE 1, 3  
Period Jitter, RMS; NOTE 1  
Output Skew; NOTE 2, 3  
Output Rise/Fall Time  
23  
16  
7
35  
700  
20% to 80%  
200  
5
M to nP_LOAD  
tS  
Setup Time S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M to nP_LOAD  
5
5
5
tH  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
5
f
OUT > 125MHz  
48  
49  
50  
50  
52  
51  
1
odc  
Output Duty Cycle  
fOUT 125MHz  
%
tLOCK  
PLL Lock Time  
ms  
See Parameter Measurement Information section.  
NOTE 1: Jitter performance using XTAL inputs.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
7
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
PARAMETER MEASUREMENT INFORMATION  
2V  
2V  
2.8V 0.04V  
SCOPE  
SCOPE  
VCC  
VCCA  
,
VCC  
VCCA, VCCO  
,
Qx  
Qx  
VCCO  
LVPECL  
LVPECL  
VEE  
nQx  
nQx  
VEE  
-1.3V 0.165V  
-0.5V 0.125V  
3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT  
3.3V CORE/2.5V OUTPUT LOAD AC TEST CIRCUIT  
nQx  
Qx  
nQx  
Qx  
tcycle n  
tcycle n+1  
nQy  
Qy  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
tsk(o)  
OUTPUT SKEW  
CYCLE-TO-CYCLE JITTER  
VOH  
VREF  
80%  
tF  
80%  
VSWING  
20%  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
Clock  
20%  
Outputs  
tR  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
PERIOD JITTER  
OUTPUT RISE/FALL TIME  
nQx  
Qx  
Pulse Width  
tPERIOD  
tPW  
odc =  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
8
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise.The ICS84314 provides sepa-  
rate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VCC, VCCA, and VCCO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 2 illustrates how  
a 10resistor along with a 10µF and a .01µF bypass  
capacitor should be connected to each VCCA pin.  
3.3V  
VCC  
.01µF  
.01µF  
10Ω  
VCCA  
10µF  
FIGURE 2. POWER SUPPLY FILTERING  
TERMINATION FOR 3.3V LVPECL OUTPUTS  
The clock layout topology shown below is a typical termina- drive 50transmission lines. Matched impedance techniques  
tion for LVPECL outputs.The two different layouts mentioned should be used to maximize operating frequency and minimize  
are recommended only as guidelines.  
signal distortion. Figures 3A and 3B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
FOUT and nFOUT are low impedance follower outputs that layouts may exist and it would be recommended that the board  
generate ECL/LVPECL compatible outputs.Therefore, terminat- designers simulate to guarantee compatibility across all printed  
ing resistors (DC current path to ground) or current sources circuit and clock component process variations.  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Z
o = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
Zo = 50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUT TERMINATION  
FIGURE 3B. LVPECL OUTPUT TERMINATION  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
9
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 4A and Figure 4B show examples of termination for 2.5V ground level. The R3 in Figure 4A can be eliminated and the  
LVPECL driver.These terminations are equivalent to terminat- termination is shown in Figure 4C.  
ing 50to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to  
2.5V  
VCCO=2.5V  
2.5V  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
R1  
R3  
250  
250  
+
-
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
2,5V LVPECL  
Driv er  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 4A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
FIGURE 4B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
F
IGURE 4C. 2.5V LVPECL TERMINATION  
E
XAMPLE  
CRYSTAL INPUT INTERFACE  
The ICS84314 has been characterized with 18pF parallel resonant were chosen to minimize the ppm error. The optimum C1 and C2  
crystals.The capacitor values, C1 and C2, shown in Figure 5 below values can be slightly adjusted for different board layouts.  
were determined using a 25MHz, 18pF parallel resonant crystal and  
XTAL2  
C1  
22p  
X1  
18pF Parallel Crystal  
XTAL1  
C2  
22p  
Figure 5. CRYSTAL INPUt INTERFACE  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
10  
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
LAYOUT GUIDELINE  
The schematic of the ICS84314 layout example used in this layout system will depend on the selected component types, the density  
guideline is shown in Figure 6A.The ICS84314 recommended PCB of the components, the density of the traces, and the stack up of  
board layout for this example is shown in Figure 6B. This layout the P.C.board.  
example is used as a general guideline. The layout in the actual  
Logic Input Pin Examples  
C1  
X1  
C2  
VCC=3.3V  
Set Logic  
Input to  
'1'  
Set Logic  
Input to  
'0'  
VCC  
VCC  
ICS84314  
24  
RU1  
1K  
RU2  
Not Install  
U3  
VCC  
To Logic  
Input  
pins  
To Logic  
R7  
10  
Input  
pins  
1
M4  
M5  
M6  
M7  
TEST_CLK  
XTAL_SEL  
VCCA  
2
3
4
5
6
7
8
23  
22  
21  
20  
19  
18  
17  
VCCA  
C11  
RD1  
Not Install  
RD2  
1K  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
M8  
C16  
10u  
VEE  
VCC  
VCCO  
0.01u  
VCC  
VCCO  
C3  
0.1u  
C5  
0.1u  
C4  
Zo = 50 Ohm  
0.1u  
+
-
Zo = 50 Ohm  
R2  
50  
R1  
50  
C6 (Option)  
R3  
50  
0.1u  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
R5  
50  
R4  
50  
C7 (Option)  
0.1u  
R6  
50  
FIGURE 6A. SCHEMATIC OF 3.3V/3.3V RECOMMENDED LAYOUT  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
11  
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
• The traces with 50transmission lines TL1 and TL2  
at FOUT and nFOUT should have equal delay and run  
adjacent to each other.Avoid sharp angles on the clock  
trace. Sharp angle turns cause the characteristic  
impedance tochange on the transmission lines.  
The following component footprints are used in this layout  
example: All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
Place the decoupling capacitors C14 and C15 as close as pos-  
sible to the power pins. If space allows, placing the decoupling  
capacitor at the component side is preferred. This can reduce  
unwanted inductance between the decoupling capacitor and the  
power pin generated by the via.  
• Keep the clock trace on the same layer.Whenever pos-  
sible, avoid any vias on the clock traces. Any via on the  
trace can affect the trace characteristic impedance and  
hence degrade signal quality.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow more space between the clock trace  
and the other signal trace.  
Maximize the pad size of the power (ground) at the decoupling  
capacitor.Maximize the number of vias between power (ground)  
and the pads.This can reduce the inductance between the power  
(ground) plane and the component power (ground) pins.  
• Make sure no other signal trace is routed between the  
clock trace pair.  
If VCCA shares the same power supply with VCC, insert the RC  
filter R7, C11, and C16 in between. Place this RC filter as close  
to theVCCA as possible.  
The matching termination resistors R1, R2, R3 and R4 should  
be located as close to the receiver input pins as possible.  
Other termination schemes can also be used but are not  
shown in this example.  
CLOCK TRACES AND TERMINATION  
The component placements, locations and orientations should be  
arranged to achieve the best clock signal quality.Poor clock signal  
quality can degrade the system performance or cause system fail-  
ure. In the synchronous high-speed digital system, the clock signal  
is less tolerable to poor signal quality than other signals. Any ring-  
ing on the rising or falling edge or excessive ring back can cause  
system failure. The trace shape and the trace delay might be re-  
stricted by the available space on the board and the component  
location.While routing the traces, the clock signal traces should be  
routed first and should be locked prior to routing other signal traces.  
CRYSTAL  
The crystal X1 should be located as close as possible to the  
pins 25 (XTAL1) and 26 (XTAL2). The trace length between  
the X1 and U1 should be kept to a minimum to avoid unwanted  
parasitic inductance and capacitance. Other signal traces should  
not be routed near the crystal traces.  
X1  
GND  
C1  
C2  
VCC  
VIA  
U1  
PIN 1  
C16  
C11  
VCCA  
R7  
C5  
C4  
C3  
FIGURE 6B. PCB BOARD LAYOUT FOR ICS84314  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
12  
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS84314.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS84314 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 150mA = 519.7mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 4 * 30mW = 120mW  
Total Power_MAX (3.465V, with all outputs switching) = 519.7mW + 120mW = 639.7mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 42.1°C/W perTable 9 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.640W * 42.1°C/W = 111.9°C. This is below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 9. THERMAL RESISTANCE θJA FOR 32-PIN LQFP, FORCED CONVECTION  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
13  
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 7. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage ofV - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V ) =  
OH_MAX  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
L
L
[(2V - 0.9V)/50] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
14  
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
RELIABILITY INFORMATION  
TABLE 10. θJAVS. AIR FLOW TABLE FOR 32 LEAD LQFP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
55.9°C/W  
42.1°C/W  
500  
50.1°C/W  
39.4°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS84314 is: 3509  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
15  
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 11. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
D
9.00 BASIC  
7.00 BASIC  
5.60  
D1  
D2  
E
9.00 BASIC  
7.00 BASIC  
5.60  
E1  
E2  
e
0.80 BASIC  
0.60  
L
0.45  
0.75  
θ
0
°
7°  
ccc  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
16  
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
TABLE 12. ORDERING INFORMATION  
Part/Order Number  
ICS84314AY  
Marking  
Package  
Count  
250 per tray  
1000  
Temperature  
0°C to 85°C  
0°C to 85°C  
0°C to 85°C  
ICS84314AY  
ICS84314AY  
32 Lead LQFP  
ICS84314AYT  
32 Lead LQFP on Tape and Reel  
32 Lead "Lead-Free" LQFP  
ICS84314AYLF  
ICS84314AYLF  
250 per tray  
32 Lead "Lead-Free" LQFP on  
Tape and Reel  
ICS84314AYLFT  
ICS84314AYLF  
1000  
0°C to 85°C  
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements  
are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
17  
ICS84314  
Integrated  
Circuit  
Systems, Inc.  
350MH  
Z
, CRYSTAL  
-
TO-3.3V/2.5V LVPECL  
F
REQUENCY  
S
YNTHESIZER W/FANOUT  
BUFFER  
REVISION HISTORY SHEET  
Description of Change  
Rev  
Table  
Page  
Date  
6
LVPECL table - changed VOH max. from VCC - 1.0V to VCC - 0.9V.  
B
T5C  
2/4/04  
13 - 14 Changed equations in Power Considerations to correlate with Table 5C.  
1
3
5
LVCMOS/LVTTL TEST_CLK changed to LVCMOS TEST_CLK.  
Added Lead-Free bullet .  
T1  
Pin Descriptions Table - Pin 24, TEST_CLK, description changed from  
LVCMOS/LVTTL interface levels to LVCMOS interface levels.  
C
C
11/5/04  
1/27/05  
T5B  
LVCMOS DC Characteristics - TEST_CLK VIH (min.) changed from 2V to  
2.35V; VIL (max.) changed from 1.3V to 0.95V.  
T12  
T5B  
17  
5
Added Lead-Free part number to Ordering Information Table.  
LVCMOS DC Characteristics Table - added VIH/VIL NOTE 1.  
84314AY  
www.icst.com/products/hiperclocks.html  
REV. C JANUARY 27, 2005  
18  

相关型号:

ICS84314AYLFT

350MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL FREQUENCY SYNTHESIZER W/FANOUT BUFFER
ICSI

ICS84314AYT

350MHZ, CRYSTAL-TO-3.3V/2.5V LVPECL FREQUENCY SYNTHESIZER W/FANOUT BUFFER
ICSI

ICS8431AM-01

Clock Generator, 200MHz, PDSO28, SOIC-28
IDT

ICS8431AM-01LF

Clock Generator, 200MHz, PDSO28, SOIC-28
IDT

ICS8431AM-01LFT

Clock Generator, 200MHz, PDSO28, SOIC-28
IDT

ICS8431AM-01T

Clock Generator, 200MHz, PDSO28, SOIC-28
IDT

ICS8431AM-11T

Clock Generator, 400MHz, PDSO28, SOIC-28
IDT

ICS8431AM-21

350MHZ, LOW JITTER, CRYSTAL OSCILLATOR-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8431AM-21LF

350MHZ, LOW JITTER, CRYSTAL OSCILLATOR-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8431AM-21LFT

350MHZ, LOW JITTER, CRYSTAL OSCILLATOR-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8431AM-21T

350MHZ, LOW JITTER, CRYSTAL OSCILLATOR-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8431AMI-21

350MHZ, LOW JITTER, CRYSTAL OSCILLATOR-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI