HEDS9000 [HP]

Two Channel High Resolution Optical Incremental Encoder Modules; 双通道高分辨率光学增量型编码器模块
HEDS9000
型号: HEDS9000
厂家: HEWLETT-PACKARD    HEWLETT-PACKARD
描述:

Two Channel High Resolution Optical Incremental Encoder Modules
双通道高分辨率光学增量型编码器模块

编码器
文件: 总9页 (文件大小:263K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
H
Two Channel High Resolution  
Optical Incremental Encoder  
Modules  
Technical Data  
HEDS-9000/9100/9200  
Extended Resolution  
Series  
Features  
• High Resolution: Up to 2048  
Cycles per Revolution  
codestrip, these modules detect  
relative linear position.  
These modules consist of a lensed  
Light Emitting Diode (LED)  
source and detector IC enclosed  
in a small C shaped plastic  
package. Due to a highly  
collimated light source and  
unique photodetector array, these  
modules provide a highly reliable  
quadrature output.  
• Up to 8192 Counts per  
Revolution with 4X Decoding  
• Two Channel Quadrature  
Output  
• Low Cost  
• Easy to Mount  
• No Signal Adjustment  
Required  
respectively. The HEDS-9200  
Option 300 and 360 linear  
encoder modules have resolutions  
of 300 and 360 lines per inch.  
• Small Size  
• -40°C to 100°C Operating  
Temperature  
• TTL Compatible  
• Single 5 V Supply  
The HEDS-9000 and HEDS-9100  
are designed for use with  
codewheels which have an optical  
radius of 23.36 mm and 11 mm  
respectively. The HEDS-9200 is  
designed for use with a linear  
codestrip.  
Consult local Hewlett-Packard  
sales representatives for other  
resolutions.  
Description  
The HEDS-9000 Options T and U  
and the HEDS-9100 Options B  
and J are high resolution two  
channel rotary incremental  
encoder modules. These options  
are an extension of our popular  
HEDS-9000 and HEDS-9100  
series. When used with a code-  
wheel, these modules detect  
relative rotary position. The  
HEDS-9200 Option 300 and 360  
are high resolution linear encoder  
modules. When used with a  
These components produce a two  
channel quadrature output which  
can be accessed through five  
0.025 inch square pins located on  
0.1 inch centers.  
Theory of Operation  
The diagram shown on the fol-  
lowing page is a block diagram of  
the encoder module. As seen in  
this block diagram, the module  
contains a single LED as its light  
source. The light is collimated  
into a parallel beam by means of a  
single polycarbonate lens located  
directly over the LED. Opposite  
the emitter is the integrated  
The resolution of the HEDS-9000  
Options T and U are 2000 and  
2048 counts per revolution  
respectively. The HEDS-9100  
Options B and J are 1000 and  
1024 counts per revolution  
detector circuit. This IC consists  
ESD WARNING: NORMAL HANDLING PRECAUTIONS SHOULD BE TAKEN TO AVOID STATIC  
DISCHARGE.  
5965-5889E  
2-63  
Block Diagram  
Output Waveforms  
of multiple sets of photodetectors  
and the signal processing  
circuitry necessary to produce the  
digital waveforms.  
that of channel B (90 degrees out  
of phase).  
State Width Error (S): The  
deviation, in electrical degrees, of  
each state width from its ideal  
value of 90°e.  
Definitions  
Count (N): The number of bar  
and window pairs or counts per  
revolution (CPR) of the  
codewheel.  
Phase (φ): The number of elec-  
trical degrees between the center  
of the high state of channel A and  
the center of the high state of  
channel B. This value is nominally  
90°e for quadrature output.  
The codewheel/codestrip passes  
between the emitter and detector,  
causing the light beam to be  
interrupted by the pattern of  
spaces and bars on the code-  
wheel. The photodiodes which  
detect these interruptions are  
arranged in a pattern that  
corresponds to the codewheel/  
codestrip. These detectors are  
also spaced such that a light  
period on one pair of detectors  
corresponds to a dark period on  
the adjacent pair of detectors. The  
photodiode outputs are then fed  
through the signal processing  
circuitry resulting in A, A, B, and  
B. Comparators receive these  
signals and produce the final  
outputs for channels A and B. Due  
to this integrated phasing  
1 cycle (C): 360 electrical degrees  
(°e), 1 bar and window pair.  
Phase Error (∆φ): The deviation  
of the phase from its ideal value  
of 90°e.  
1 Shaft Rotation: 360 mechanical  
degrees, N cycles.  
Pulse Width (P): The number of  
electrical degrees that an output  
is highduring 1 cycle. This value  
is nominally 180°e or 1/2 cycle.  
Direction of Rotation: When the  
codewheel rotates in the direction  
of the arrow on top of the  
module, channel A will lead  
channel B. If the codewheel  
rotates in the opposite direction,  
channel B will lead channel A.  
Pulse Width Error (P): The  
deviation, in electrical degrees of  
the pulse width from its ideal  
value of 180°e.  
Optical Radius (Rop): The dis-  
tance from the codewheel’s center  
of rotation to the optical center  
(O.C.) of the encoder module.  
State Width (S): The number of  
electrical degrees between a  
transition in the output of channel  
A and the neighboring transition  
in the output of channel B. There  
are 4 states per cycle, each  
nominally 90°e.  
technique, the digital output of  
channel A is in quadrature with  
2-64  
Package Dimensions  
26.67 (1.05)  
15.2  
8.6 (0.34)  
(0.60)  
0.63 (0.025)  
2.54 (0.100) TYP.  
SQR. TYP.  
OPTION CODE  
5.1 (0.20)  
1.8  
(0.07)  
1.52 (0.060)  
1.0 (0.04)  
2.9  
(0.11)  
DATE CODE  
2.21  
(0.087)  
6.9 (0.27)  
11.9  
(0.47)  
2.54  
(0.100)  
3.73 ± 0.05  
(0.147 ± 0.002)  
20.8  
(0.82)  
H E D S - 9 X 0 0  
H p  
1.02 ± 0.10  
11.7  
(0.46)  
(0.040 ± 0.004)  
8.81  
(0.347)  
4.75 ± 0.10  
(0.187 ± 0.004)  
5.8  
(0.23)  
45°  
OPTICAL  
CENTER LINE  
2.67 (0.105) DIA.  
MOUNTING THRU  
HOLE 2 PLACES  
ALIGNING RECESS  
2.44/2.41 DIA.  
ALIGNING RECESS  
2.44/2.41 X 2.79  
(0.215 ± 0.004) (0.096/0.095 X 0.110)  
C
L
1.85 (0.073)  
1.78 ± 0.10  
(0.070 ± 0.004)  
5.46 ± 0.10  
(0.096/0.095)  
2.16 (0.085)  
DEEP  
ALIGNING RECESS  
2.44/2.41 DIA.  
(0.096/0.095)  
8.64 (0.340)  
REF.  
2.44/2.41 X 2.79  
(0.096/0.095 X 0.110)  
2.16 (0.085) DEEP  
2.16 (0.085) DEEP  
2.92 ± 0.10  
(0.115 ± 0.004)  
17.27  
(0.680)  
2.16 (0.085) DEEP  
OPTICAL  
CENTER  
4.11 (0.162)  
10
(0.400)  
10.16  
(0.4
20.96  
(0.825)  
OPTICAL CENTER  
6.35 (0.250) REF.  
TYPICAL DIMENSIONS IN  
MILLIMETERS AND (INCHES)  
SIDE A  
SIDE B  
Absolute Maximum Ratings  
Storage Temperature, TS ..................................................................... -40°C to 100°C  
Operating Temperature, TA ................................................................ -40°C to 100°C  
Supply Voltage, V ...................................................................................... -0.5 V to 7 V  
CC  
Output Voltage, VO ........................................................................................ -0.5 V to V  
CC  
Output Current per Channel, Iout ................................................. -1.0 mA to 5 mA  
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Notes  
Temperature  
TA  
-40  
100  
°C  
Supply Voltage  
VCC  
CL  
f
4.5  
5.0  
5.5  
100  
100  
Volts  
pF  
Ripple < 100 mV  
p-p  
Load Capacitance  
3.3 kpull-up resistor  
Count Frequency  
Shaft Axial Play  
kHz  
Velocity (rpm) x N/60  
± 0.125  
± 0.005  
mm  
in.  
Note: The module performance is guaranteed to 100 kHz but can operate at higher frequencies. For frequencies above 100 kHz it is  
recommended that the load capacitance not exceed 25 pF and the pull up resistance not exceed 3.3 k. For typical module performance  
above 100 kHz please see derating curves.  
2-65  
Electrical Characteristics  
Electrical Characteristics over Recommended Operating Range, typical at 25°C.  
Parameter  
Supply Current  
Symbol  
Min.  
Typical  
Max.  
Units  
Notes  
ICC  
30  
57  
85  
mA  
High Level Output Voltage  
Low Level Output Voltage  
Rise Time  
VOH  
VOL  
tr  
2.4  
Volts  
Volts  
ns  
IOH = -200 µA max.  
0.4  
IOL = 3.86 mA  
180  
40  
CL = 25 pF  
RL = 3.3 kpull-up  
Fall Time  
tf  
ns  
Encoding Characteristics  
Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances.  
These Characteristics do not include codewheel/codestrip contribution. The Typical Values are averages over  
the full rotation of the codewheel. For operation above 100 kHz, see frequency derating curves.  
Description  
Pulse Width Error  
Logic State Width Error  
Phase Error  
Symbol  
P  
Typical  
Maximum  
Units  
°e  
5
3
2
45  
45  
15  
S  
°e  
∆φ  
°e  
Note: Module mounted on tolerance circle of ± 0.13 mm (± 0.005 in.) radius referenced from module Side A aligning recess centers. 3.3  
kpull-up resistors used on all encoder module outputs.  
Frequency Derating Curves  
Typical performance over extended operating range. These curves were derived using a 25 pF load with a 3.3  
k pull-up resistor. Greater load capacitances will cause more error than shown in these graphs.  
0
15  
10  
+25 C  
+100 C  
-40 C  
-5  
+25 C  
5
0
-40 C  
+100 C  
-10  
-15  
-5  
0
100  
FREQUENCY (KHz)  
150  
200  
50  
0
100  
FREQUENCY (KHz)  
150  
200  
50  
2-66  
+0.51  
-0.25  
+0.020  
-0.010  
Gap Setting for Rotary  
and Linear Modules  
6.63  
(
0.261  
)
NOTE 1  
SIDE B  
Gap is the distance between the  
image side of the codewheel and  
the detector surface of the mod-  
ule. This gap dimension must  
always be met and codewheel  
warp and shaft end play must stay  
within this range. This dimension  
is shown in Figure 1.  
SIDE A  
IMAGE SIDE OF CODEWHEEL/CODESTRIP  
CODEWHEEL/CODESTRIP  
+0.25 +0.010  
0.140  
-0.51 -0.020  
3.56  
(
)
NOTE 1  
NOTES: 1. THESE DIMENSIONS INCLUDE CODEWHEEL/CODESTRIP WARP AND SHAFT END PLAY.  
2. DIMENSIONS IN MILLIMETERS AND (INCHES).  
Mounting Considerations  
for Rotary Modules  
Figure 2 shows a mounting  
Figure 1. Module Gap Setting.  
tolerance requirement for proper  
operation of the high resolution  
rotary encoder modules. The  
Aligning Recess Centers must be  
located within a tolerance circle  
of 0.13 mm (0.005 in.) radius  
from the nominal locations. This  
tolerance must be maintained  
whether the module is mounted  
with side A as the mounting plane  
using aligning pins (see Figure 3),  
or mounted with Side B as the  
mounting plane using an  
alignment tool.  
Mounting with Aligning  
Pins  
Figure 2. Rotary Module Mounting Tolerance.  
The high resolution rotary  
encoder modules can be mounted  
using aligning pins on the motor  
base. (HP does not provide align-  
ing pins.) For this configuration,  
Side A must be used as the  
mounting plane. The Aligning  
Recess Centers must be located  
within the 0.13 mm (0.005 in.) R  
Tolerance Circle as explained  
above. Figure 3 shows the  
necessary dimensions.  
2 PLACES  
NOTE 1  
Mounting with HP  
Alignment Tools  
HP offers alignment tools for  
mounting HP encoder modules in  
conjunction with HP codewheels,  
using side B as the mounting  
plane. Please refer to the HP  
codewheel data sheet for more  
information.  
NOTE 1: RECOMMENDED MOUNTING SCREW TORQUE IS 4 KG-CM (3.5 IN-LBS).  
Figure 3. Mounting Plane Side A.  
2-67  
Mounting Considerations for Linear Modules  
Mounting Plane Side A  
Mounting Plane Side B  
2-68  
Recommended Codewheel Characteristics  
Parameter  
Window/Bar Ratio  
Window Length  
Symbol  
φw/φb  
Lw  
Minimum  
0.7  
Maximum  
Units  
Notes  
1.4  
1.8 (0.07)  
mm (inch)  
Absolute Maximum  
Codewheel Radius  
Rc  
1.9  
(0.075)  
mm  
(inch)  
Includes eccentricity  
errors  
Rop  
+
Recommended Codestrip Characteristics and Alignment  
Codestrip design must take into consideration mounting as referenced to either side A or side B (see Figure 4).  
Mounting as Referenced to Side A Mounting as Referenced to Side B  
Figure 4. Codestrip Design  
STATIC CHARGE WARNING: LARGE STATIC CHARGE ON CODESTRIP MAY HARM MODULE.  
PREVENT ACCUMULATION OF CHARGE.  
Mounting Ref.  
Side A  
Mounting Ref.  
Side B  
Parameter  
Window/Bar Ratio  
Window Distance  
Symbol  
Units  
Ww/Wb  
0.7 min., 1.4 max.  
La 0.51 (0.020)  
0.90 (0.035) min.  
0.7 min., 1.4 max.  
Lb 3.23 (0.127)  
0.90 (0.035) min.  
L
S
mm (inch)  
mm (inch)  
Window Edge to  
Module Opt Center Line  
Parallelism  
α
1.3 max.  
1.3 max.  
deg.  
Module to Codestrip  
Note: All parameters and equations must be satisfied over the full length of codestrip travel including maximum codestrip runout.  
2-69  
Connectors  
Manufacturer  
Part Number  
Mounting Surface  
AMP  
103686-4  
640442-5  
Both  
Side B  
DuPont  
HP  
65039-032 with 4825X-000 term.  
HEDS-8902 with 4-wire leads  
Both  
Side B (see Fig. 7)  
Side B  
Molex  
2695 series with 2759 series term.  
Figure 7. HEDS-8902 Connector.  
2-70  
Ordering Information  
Two Channel Encoder Modules with a 23.36 mm Optical Radius  
0 0  
HEDS-9000 Option  
*
Resolution  
(Cycles/Rev)  
T - 2000 CPR  
U - 2048 CPR  
Two Channel Encoder Modules with an 11.00 mm Optical Radius  
0 0  
HEDS-9100 Option  
*
Resolution  
(Cycles/Rev)  
B - 1000 CPR  
J - 1024 CPR  
Two Channel Linear Encoder Module  
HEDS-9200 Option  
Resolution  
(Cycles/Rev)  
300 - 300 LPI  
360 - 360 LPI  
Note: For lower resolutions, please refer to HEDS-9000/9100 and  
HEDS-9200 data sheets for detailed information.  
*Codewheel Information  
For information on matching codewheels and  
accessories for use with HP rotary encoder modules,  
please refer to the HP Codewheel Data sheet HEDS-  
5120/6100, HEDG-5120/6120, HEDM-5120/6120  
2-71  

相关型号:

HEDS9000_1

Two Channel High Resolution Optical Incremental Encoder Modules
AGILENT

HEDS9100A

Optoelectronic
ETC

HEDS9100C

Optoelectronic
ETC

HEDS9100D

Optoelectronic
ETC

HEDS9100E

Optoelectronic
ETC

HEDS9100F

Optoelectronic
ETC

HEDS9100G

Optoelectronic
ETC

HEDS9100H

Optoelectronic
ETC

HEDS9100I

Optoelectronic
ETC

HEDS9100K

Optoelectronic
ETC

HEDS9200

2 CHANNEL ENCODER MODULE
AGILENT