GS816V73GC-200IT [GSI]

Cache SRAM, 256KX72, 2.6ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209;
GS816V73GC-200IT
型号: GS816V73GC-200IT
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

Cache SRAM, 256KX72, 2.6ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209

静态存储器 内存集成电路
文件: 总29页 (文件大小:733K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS816V73C-200  
209-Pin BGA  
Commercial Temp  
Industrial Temp  
200 MHz  
1.8 V VDD  
1.8 V I/O  
256K x 72  
18Mb S/DCD Sync Burst SRAM  
Supplemental Datasheet  
Functional Description  
Current Consumption  
The GS816V73C-200 complies with all specifications of the  
GS816273C-250/225/200, Revision 1.01, 12/2002 (attached),  
except where superceded by the following tables:  
• Absolute Maximum Ratings  
-200  
Unit  
Pipeline  
3-1-1-1  
t
3.0  
5.0  
ns  
ns  
KQ  
tCycle  
• Power supply Ranges  
• V  
Range Logic Levels  
1.8 V  
Curr (x72)  
340  
mA  
DDQ  
• Operating Currents  
• JTAG Port Recommended Operating Conditions  
• Ordering Information  
• Datasheet Revision History  
Features  
• 1.8 V core power supply  
• 1.8 V I/O supply  
Absolute Maximum Ratings  
(All voltages reference to V  
)
SS  
Symbol  
Description  
Value  
Unit  
V
V
Voltage on V Pins  
0.5 to 3.6  
DD  
DD  
V
Voltage in V  
Pins  
DDQ  
0.5 to 3.6  
V
DDQ  
V
Voltage on Clock Input Pin  
Voltage on I/O Pins  
0.5 to 3.6  
+0.5 (3.6 V max.)  
DDQ  
V
CK  
V
0.5 to V  
V
I/O  
V
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
Package Power Dissipation  
Storage Temperature  
0.5 to V +0.5 (3.6 V max.)  
V
IN  
DD  
I
+/20  
+/20  
mA  
mA  
W
IN  
I
OUT  
P
1.5  
D
o
T
55 to 125  
55 to 125  
STG  
C
o
T
Temperature Under Bias  
BIAS  
C
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Condi-  
tions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component.  
Rev: 1.02 12/2002  
1/4  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
ByteSafe is a Trademark of Giga Semiconductor, Inc. (GSI Technology).  
GS816V73C-200  
Power Supply Voltage Ranges  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Notes  
V
1.8 V Supply Voltage  
1.7  
1.7  
1.8  
1.8  
2.0  
2.0  
V
V
DD  
1.8 V V  
I/O Supply Voltage  
V
DDQ  
DDQ  
Notes:  
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 3.6 V maximum, with a pulse width not to exceed 20% tKC.  
V
Range Logic Levels  
Parameter  
DDQ  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Notes  
V
Input High Voltage  
V
0.6*V  
V
+ 0.3  
DD  
V
V
V
V
1
DD  
IH  
DD  
V
Input Low Voltage  
V
0.3*V  
DD  
0.3  
0.6*V  
1
DD  
IL  
V
I/O Input High Voltage  
I/O Input Low Voltage  
V
V
+ 0.3  
DDQ  
1,3  
1,3  
DDQ  
IHQ  
DD  
V
V
0.3*V  
DD  
0.3  
DDQ  
ILQ  
Notes:  
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 3.6 V maximum, with a pulse width not to exceed 20% tKC.  
3. VIHQ (max) is voltage on VDDQ pins plus 0.3 V.  
Rev: 1.02 12/2002  
2/4  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS816V73C-200  
Operating Currents  
-200  
Parameter  
Test Conditions  
Mode  
Symbol  
Unit  
0
40  
to 70°C  
to 85°C  
Device Selected;  
All other inputs  
V or V  
Operating  
Current  
I
290  
60  
300  
60  
DD  
mA  
(x72)  
Pipeline  
I
IH  
IL  
DDQ  
1.8 V  
Output open  
Standby  
Current  
ZZ V – 0.2 V  
I
mA  
mA  
Pipeline  
Pipeline  
35  
75  
45  
80  
DD  
SB  
Device Deselected;  
All other inputs  
V or V  
Deselect  
Current  
I
DD  
IH  
IL  
Notes:  
1.  
I
and I  
apply to V and V operation.  
DDQ  
DD  
DDQ  
DD  
2. All parameters listed are worst case scenario.  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
Min.  
Max.  
Unit Notes  
V
0.6 * V  
V
+0.3  
DD  
1.8 V Test Port Input High Voltage  
1.8 V Test Port Input Low Voltage  
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
Test Port Output High Voltage  
Test Port Output Low Voltage  
V
V
1
1
IHJ  
DD  
V
0.3 * V  
1
0.3  
ILJ  
DD  
I
300  
1  
uA  
uA  
uA  
V
2
INHJ  
I
100  
1
3
INLJ  
I
1  
4
OLJ  
V
1.2  
5, 6  
5, 7  
5, 8  
5, 9  
OHJ  
V
0.4  
V
OLJ  
V
V
– 100 mV  
DDQ  
Test Port Output CMOS High  
V
OHJC  
V
Test Port Output CMOS Low  
100 mV  
V
OLJC  
Notes:  
1. Input Under/overshoot voltage must be 2 V > Vi < V  
+2 V not to exceed 3.6 V maximum, with a pulse width not to exceed 20% tTKC.  
DDn  
2.  
V
V V  
ILJ  
IN  
DD  
3. 0 V V V  
IN  
ILJ  
4. Output Disable, V  
= 0 to V  
DD  
OUT  
5. The TDO output driver is served by the V  
supply.  
DDQ  
6.  
7.  
8.  
9.  
I
I
I
I
= 4 mA  
OHJ  
= + 4 mA  
OLJ  
= –100 uA  
= +100 uA  
OHJC  
OHJC  
Rev: 1.02 12/2002  
3/4  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
GS816V73C-200  
Ordering Information for GSI Synchronous Burst RAMs  
2
Speed  
3
1
Org  
Type  
Package  
Status  
T
Part Number  
A
(MHz)  
256K x 72  
256K x 72  
Notes:  
GS816V73C-200  
GS816V73C-200I  
S/DCD Pipeline  
S/DCD Pipeline  
209 BGA  
209 BGA  
200  
C
I
200  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS816V73C-200IT.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
3. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which  
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.  
18Mb Sync SRAM Datasheet Revision History  
DS/DateRev. Code: Old;  
New  
Types of Changes  
Format or Content  
Page;Revisions;Reason  
• Creation of new datasheet  
816V73_r1  
• Removed 250 MHz and 225 MHz speed bins  
• Updated tKQ from 2.5 ns to 3.0 ns  
816V73_r1; 816V73_r1_01  
Content  
Content  
• Updated base datasheet reference  
• Updated I  
values  
DDQ  
• Updated Note 1 for Operating Currents table (should only  
816V73_r1_01;  
816V73_r1_02  
reference V and V  
)
DDQ  
DD  
• Update Note 1 for JTAG Operating Conditions table (changed  
4.6 V to 3.6 V  
• Added industrial part ordering information  
Rev: 1.02 12/2002  
4/4  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
209-Pin BGA  
Commercial Temp  
250 MHz133MHz  
256K x 72  
2.5 V or 3.3 V VDD  
Industrial Temp 18Mb S/DCD Sync Burst SRAMs  
2.5 V or 3.3 V I/O  
outputs just after the second rising edge of clock. The user may  
configure this SRAM for either mode of operation using the SCD  
mode input.  
Features  
• Single/Dual Cycle Deselect selectable  
• IEEE 1149.1 JTAG-compatible Boundary Scan  
• ZQ mode pin for user-selectable high/low output drive  
• 2.5 or 3.3 V +10%/–10% core power supply  
• 2.5 V or 3.3 V I/O supply  
• LBO pin for Linear or Interleaved Burst mode  
• Internal input resistors on mode pins allow floating mode pins  
• Byte Write (BW) and/or Global Write (GW) operation  
• Internal self-timed write cycle  
• Automatic power-down for portable applications  
• JEDEC-standard 209-bump BGA package  
Byte Write and Global Write  
Byte write operation is performed by using Byte Write enable  
(BW) input combined with one or more individual byte write  
signals (Bx). In addition, Global Write (GW) is available for  
writing all bytes at one time, regardless of the Byte Write control  
inputs.  
FLXDrive™  
The ZQ pin allows selection between high drive strength (ZQ low)  
for multi-drop bus applications and normal drive strength (ZQ  
floating or high) point-to-point applications. See the Output Driver  
Characteristics chart for details.  
-250 -225 -200 -166 -150 -133 Unit  
Pipeline  
3-1-1-1  
t
2.6 2.6 2.6 2.9 3.3 3.5 ns  
4.0 4.4 5.0 6.0 6.7 7.5 ns  
KQ  
Sleep Mode  
tCycle  
Low power (Sleep mode) is attained through the assertion (High)  
of the ZZ signal, or by stopping the clock (CK). Memory data is  
retained during Sleep mode.  
3.3 V  
2.5 V  
Curr (x72) 430 395 350 300 270 245 mA  
Curr (x72) 410 380 335 290 260 235 mA  
Core and Interface Voltages  
The GS816273C operates on a 2.5 V or 3.3 V power supply. All  
input are 3.3 V and 2.5 V compatible. Separate output power  
(VDDQ) pins are used to decouple output noise from the internal  
Functional Description  
Applications  
circuits and are 3.3 V and 2.5 V compatible.  
The GS816273C is an 18,874,368-bit high performance  
synchronous SRAM with a 2-bit burst address counter. Although  
of a type originally developed for Level 2 Cache applications  
supporting high performance CPUs, the device now finds  
application in synchronous SRAM applications, ranging from  
DSP main store to networking chip set support.  
Controls  
Addresses, data I/Os, chip enable (E1), address burst control  
inputs (ADSP, ADSC, ADV), and write control inputs (Bx, BW,  
GW) are synchronous and are controlled by a positive-edge-  
triggered clock input (CK). Output enable (G) and power down  
control (ZZ) are asynchronous inputs. Burst cycles can be initiated  
with either ADSP or ADSC inputs. In Burst mode, subsequent  
burst addresses are generated internally and are controlled by  
ADV. The burst address counter may be configured to count in  
either linear or interleave order with the Linear Burst Order (LBO)  
input. The Burst function need not be used. New addresses can be  
loaded on every cycle with no degradation of chip performance.  
SCD and DCD Pipelined Reads  
The GS816273C is a SCD (Single Cycle Deselect) and DCD  
(Dual Cycle Deselect) pipelined synchronous SRAM. DCD  
SRAMs pipeline disable commands to the same degree as read  
commands. SCD SRAMs pipeline deselect commands one stage  
less than read commands. SCD RAMs begin turning off their  
outputs immediately after the deselect command has been  
captured in the input registers. DCD RAMs hold the deselect  
command for one full cycle and then begin turning off their  
Rev: 1.01 12/2002  
1/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
ByteSafe is a Trademark of Giga Semiconductor, Inc. (GSI Technology).  
Preliminary  
GS816273C-250/225/200/166/150/133  
GS816273 Pad Out  
209 Bump BGATop View  
Package C  
1
2
3
4
5
6
ADSC  
BW  
7
8
9
10  
11  
A
B
C
D
E
F
DQG5  
DQG6  
DQG7  
DQG8  
DQG9  
DQC4  
DQC3  
DQC2  
DQC1  
NC  
DQG1  
DQG2  
DQG3  
DQG4  
DQC9  
DQC8  
DQC7  
DQC6  
DQC5  
NC  
A15  
E2  
ADSP  
NC  
ADV  
A16  
NC  
E3  
A17  
DQB1  
DQB2  
DQB3  
DQB4  
DQF9  
DQF8  
DQF7  
DQF6  
DQF5  
NC  
DQB5  
DQB6  
DQB7  
DQB8  
DQB9  
DQF4  
DQF3  
DQF2  
DQF1  
NC  
BC  
BG  
BB  
BF  
BH  
BD  
NC  
E1  
BE  
BA  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
CK  
NC  
NC  
G
GW  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
NC  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
VDD  
ZQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
G
H
J
MCH  
MCL  
MCL  
MCL  
VDDQ/DNU  
MCL  
SCD  
ZZ  
K
L
DQH1  
DQH2  
DQH3  
DQH4  
DQD9  
DQD8  
DQD7  
DQD6  
DQD5  
DQH5  
DQH6  
DQH7  
DQH8  
DQH9  
DQD4  
DQD3  
DQD2  
DQD1  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
NC  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
NC  
DQA5  
DQA6  
DQA7  
DQA8  
DQA9  
DQE4  
DQE3  
DQE2  
DQE1  
DQA1  
DQA2  
DQA3  
DQA4  
DQE9  
DQE8  
DQE7  
DQE6  
DQE5  
M
N
P
R
T
VDD  
LBO  
A12  
U
V
A14  
A13  
A7  
A11  
A6  
A10  
A9  
A8  
A1  
A5  
A4  
W
TMS  
TDI  
A3  
A0  
A2  
TDO  
TCK  
Rev 10  
11 x 19 Bump BGA14 x 22 mm2 Body1 mm Bump Pitch  
Rev: 1.01 12/2002  
2/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
GS816273 BGA Pin Description  
Symbol  
A0, A1  
An  
Type  
Description  
I
I
Address field LSBs and Address Counter Preset Inputs.  
Address Inputs  
DQA1DQA9  
DQB1DQB9  
DQC1DQC9  
DQD1DQD9  
DQE1DQE9  
DQF1DQF9  
DQG1DQG9  
DQH1DQH9  
I/O  
Data Input and Output pins  
Byte Write Enable for DQA, DQB, DQC, DQD, DQE,  
DQF, DQG, DQH I/Os; active low  
BA, BB, BC,BD, BE, BF,  
BG,BH  
I
NC  
CK  
I
No Connect  
Clock Input Signal; active high  
I
Global Write Enable—Writes all bytes; active low  
Chip Enable; active low  
GW  
I
E1, E3  
E2  
I
Chip Enable; active high  
I
Output Enable; active low  
G
I
Burst address counter advance enable; active low  
Address Strobe (Processor, Cache Controller); active low  
Sleep Mode control; active high  
ADV  
ADSP, ADSC  
ZZ  
I
I
I
Linear Burst Order mode; active low  
Single Cycle Deselect/Dual Cycle Deselect Mode Control  
Must Connect High  
LBO  
I
SCD  
MCH  
MCL  
I
Must Connect Low  
Rev: 1.01 12/2002  
3/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
GS816273 BGA Pin Description  
Symbol  
Type  
Description  
I
Byte Enable; active low  
BW  
FLXDrive Output Impedance Control  
(Low = Low Impedance [High Drive], High = High Impedance [Low Drive])  
I
ZQ  
I
I
Scan Test Mode Select  
Scan Test Data In  
Scan Test Data Out  
Scan Test Clock  
TMS  
TDI  
O
I
TDO  
TCK  
V
I
Core power supply  
DD  
V
I
I
I/O and Core Ground  
SS  
V
Output driver power supply  
DDQ  
V
or V (must be tied high)  
DDQ  
DD  
V
/DNU  
or  
DDQ  
Do Not Use (must be left floating)  
Mode Pin Functions  
Mode Name  
Pin  
Name  
State  
Function  
L
Linear Burst  
Interleaved Burst  
Active  
Burst Order Control  
Power Down Control  
LBO  
H
L or NC  
ZZ  
Standby, I = I  
H
DD SB  
L
Dual Cycle Deselect  
Single Cycle Deselect  
Single/Dual Cycle Deselect Control  
SCD  
ZQ  
H or NC  
L
High Drive (Low Impedance)  
Low Drive (High Impedance)  
FLXDrive Output Impedance Control  
Note:  
H or NC  
Thereis a pull-down device on the ZZ pin, so this input pin can be unconnected and the chip will operate in the default states as specified in the  
above tables.  
Rev: 1.01 12/2002  
4/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
Enable / Disable Parity I/O Pins  
This SRAM allows the user to configure the device to operate in Parity I/O active (x18, x36, or x72) or in Parity I/O inactive (x16,  
x32, or x64) mode. Holding the PE bump low or letting it float will activate the 9th I/O on each byte of the RAM. Grounding PE  
deactivates the 9th I/O of each byte.  
Burst Counter Sequences  
Linear Burst Sequence  
Interleaved Burst Sequence  
A[1:0] A[1:0] A[1:0] A[1:0]  
A[1:0] A[1:0] A[1:0] A[1:0]  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
1st address  
2nd address  
3rd address  
4th address  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Note: The burst counter wraps to initial state on the 5th clock.  
Note: The burst counter wraps to initial state on the 5th clock.  
BPR 1999.05.18  
Byte Write Truth Table  
Function  
Read  
GW  
H
BW  
H
L
BA  
X
BB  
X
BC  
X
BD  
X
Notes  
1
Read  
H
H
L
H
H
L
H
H
H
L
H
H
H
H
L
1
Write byte a  
Write byte b  
Write byte c  
Write byte d  
Write all bytes  
Write all bytes  
H
L
2, 3  
H
L
H
H
H
L
2, 3  
H
L
H
H
L
2, 3, 4  
2, 3, 4  
2, 3, 4  
H
L
H
L
H
L
L
L
X
X
X
X
X
Notes:  
1. All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.  
2. Byte Write Enable inputs BA, BB, BC, and/or BD may be used in any combination with BW to write single or multiple bytes.  
3. All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.  
4. Bytes C” and “D” are only available on the x36 version.  
Rev: 1.01 12/2002  
5/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
Synchronous Truth Table  
Operation  
State  
3
4
Diagram  
Address Used  
E1  
ADSP ADSC  
ADV  
W
DQ  
5
Key  
Deselect Cycle, Power Down  
Read Cycle, Begin Burst  
None  
External  
External  
External  
Next  
X
R
H
L
X
L
L
X
L
X
X
X
X
L
X
X
F
T
F
F
T
T
F
F
T
T
High-Z  
Q
Q
D
Q
Q
D
D
Q
Q
D
D
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
R
L
L
X
H
X
H
X
H
X
H
H
H
H
X
H
X
H
X
H
X
W
L
CR  
CR  
CW  
CW  
H
H
H
H
H
H
H
H
Next  
L
Next  
L
Next  
L
Current  
Current  
Current  
Current  
H
H
H
H
Notes:  
1. X = Don’t Care, H = High, L = Low  
2. W = T (True) and F (False) is defined in the Byte Write Truth Table preceding  
3. G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shown  
as “Q” in the Truth Table above).  
4. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish  
basic synchronous or synchronous burst operations and may be avoided for simplicity.  
5. Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.  
6. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.  
Rev: 1.01 12/2002  
6/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
Simplified State Diagram  
X
Deselect  
W
R
W
R
X
R
X
First Write  
First Read  
CW  
CR  
CR  
W
R
R
X
Burst Write  
X
Burst Read  
CR  
CR  
CW  
Notes:  
1. The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low.  
2. The upper portion of the diagram assumes active use of only the Enable (E1) and Write (BA, BB, BC, BD, BW, and GW) control inputs, and  
that ADSP is tied high and ADSC is tied low.  
3. The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs and  
assumes ADSP is tied high and ADV is tied low.  
Rev: 1.01 12/2002  
7/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
Simplified State Diagram with G  
X
Deselect  
W
R
W
R
X
W
R
X
First Write  
First Read  
CR  
CW  
CW  
CR  
W
R
R
W
X
Burst Write  
X
Burst Read  
CR  
CR  
CW  
CW  
Notes:  
1. The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G.  
2. Use of “Dummy Reads” (Read Cycles with G High) may be used to make the transition from read cycles to write cycles without passing  
through a Deselect cycle. Dummy Read cycles increment the address counter just like normal read cycles.  
3. Transitions shown in grey tone assume G has been pulsed high long enough to turn the RAM’s drivers off and for incoming data to meet  
Data Input Set Up Time.  
Rev: 1.01 12/2002  
8/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
Absolute Maximum Ratings  
(All voltages reference to V )  
SS  
Symbol  
Description  
Value  
Unit  
V
V
Voltage on V Pins  
0.5 to 4.6  
0.5 to 4.6  
0.5 to 6  
DD  
DD  
V
Voltage in V  
Pins  
DDQ  
V
DDQ  
V
Voltage on Clock Input Pin  
Voltage on I/O Pins  
V
CK  
V
0.5 to V  
+0.5 (4.6 V max.)  
DDQ  
V
I/O  
V
0.5 to V +0.5 (4.6 V max.)  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
Package Power Dissipation  
Storage Temperature  
V
IN  
DD  
I
+/20  
+/20  
mA  
mA  
W
IN  
I
OUT  
P
1.5  
D
o
T
55 to 125  
55 to 125  
C
STG  
o
T
Temperature Under Bias  
C
BIAS  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended  
Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of  
this component.  
Rev: 1.01 12/2002  
9/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
Power Supply Voltage Ranges  
Parameter  
Symbol  
Min.  
3.0  
Typ.  
3.3  
Max.  
3.6  
Unit  
Notes  
V
3.3 V Supply Voltage  
2.5 V Supply Voltage  
V
V
V
V
DD3  
V
2.3  
2.5  
2.7  
DD2  
3.3 V V  
2.5 V V  
I/O Supply Voltage  
I/O Supply Voltage  
V
3.0  
3.3  
3.6  
DDQ  
DDQ  
DDQ3  
V
2.3  
2.5  
2.7  
DDQ2  
Notes:  
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
V
Range Logic Levels  
Parameter  
DDQ3  
Symbol  
Min.  
2.0  
Typ.  
Max.  
Unit  
Notes  
V
Input High Voltage  
V
V
+ 0.3  
DD  
V
V
V
V
1
DD  
IH  
V
Input Low Voltage  
V
0.3  
2.0  
0.8  
+ 0.3  
1
DD  
IL  
V
I/O Input High Voltage  
I/O Input Low Voltage  
V
V
1,3  
1,3  
DDQ  
IHQ  
DDQ  
V
V
0.3  
0.8  
DDQ  
ILQ  
Notes:  
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
3. VIHQ (max) is voltage on VDDQ pins plus 0.3 V.  
V
Range Logic Levels  
Parameter  
DDQ2  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Notes  
V
Input High Voltage  
V
0.6*V  
V
+ 0.3  
DD  
V
V
V
V
1
DD  
IH  
DD  
V
Input Low Voltage  
V
0.3*V  
DD  
0.3  
1
DD  
IL  
V
I/O Input High Voltage  
I/O Input Low Voltage  
V
0.6*V  
V
+ 0.3  
DDQ  
1,3  
1,3  
DDQ  
IHQ  
DD  
V
V
0.3*V  
DD  
0.3  
DDQ  
ILQ  
Notes:  
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
3. VIHQ (max) is voltage on VDDQ pins plus 0.3 V.  
Rev: 1.01 12/2002  
10/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
Recommended Operating Temperatures  
Parameter  
Symbol  
Min.  
0
Typ.  
25  
Max.  
70  
Unit  
°C  
Notes  
T
Ambient Temperature (Commercial Range Versions)  
2
2
A
T
Ambient Temperature (Industrial Range Versions)  
Note:  
40  
25  
85  
°C  
A
1. The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifications quoted are  
evaluated for worst case in the temperature range marked on the device.  
2. Input Under/overshoot voltage must be 2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
V
IH  
20% tKC  
V
+ 2.0 V  
50%  
DD  
V
SS  
50%  
V
DD  
V
2.0 V  
SS  
20% tKC  
V
IL  
Capacitance  
o
(T = 25 C, f = 1 MHZ, V = 2.5 V)  
A
DD  
Parameter  
Symbol  
Test conditions  
Typ.  
Max.  
Unit  
pF  
C
V = 0 V  
Input Capacitance  
4
6
5
7
IN  
IN  
C
V
= 0 V  
OUT  
Input/Output Capacitance  
pF  
I/O  
Note: These parameters are sample tested.  
Package Thermal Characteristics  
Rating  
Junction to Ambient (at 200 lfm)  
Junction to Ambient (at 200 lfm)  
Junction to Case (TOP)  
Notes:  
Layer Board  
Symbol  
Max  
40  
Unit  
Notes  
1,2  
R
single  
four  
°C/W  
°C/W  
°C/W  
ΘJA  
R
24  
1,2  
ΘJA  
R
9
3
ΘJC  
1. Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature, ambient. Temper-  
ature air flow, board density, and PCB thermal resistance.  
2. SCMI G-38-87  
3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1  
Rev: 1.01 12/2002  
11/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
AC Test Conditions  
Parameter  
Conditions  
V
– 0.2 V  
Input high level  
Input low level  
DD  
0.2 V  
1 V/ns  
/2  
Input slew rate  
V
Input reference level  
DD  
V
/2  
Output reference level  
Output load  
DDQ  
Fig. 1  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as specified with output loading as shown in Fig.  
1 unless otherwise noted.  
3. Device is deselected as defined by the Truth Table.  
Output Load 1  
DQ  
*
50Ω  
30pF  
V
DDQ/2  
* Distributed Test Jig Capacitance  
DC Electrical Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Input Leakage Current  
(except mode pins)  
I
V = 0 to V  
IN DD  
1 uA  
1 uA  
IL  
V
V V  
IN  
1 uA  
1 uA  
1 uA  
100 uA  
DD  
IH  
IH  
I
I
ZZ and PE Input Current  
SCD and ZQ Input Current  
IN1  
IN2  
0 V V V  
IN  
V
V V  
IN  
100 uA  
1 uA  
1 uA  
1 uA  
DD  
IL  
IL  
0 V V V  
IN  
I
Output Disable, V  
= 0 to V  
DD  
Output Leakage Current  
Output High Voltage  
Output High Voltage  
Output Low Voltage  
1 uA  
1.7 V  
2.4 V  
1 uA  
OL  
OUT  
DDQ  
DDQ  
V
V
I
I
= 8 mA, V  
= 8 mA, V  
= 2.375 V  
= 3.135 V  
OH2  
OH3  
OH  
OH  
V
I
= 8 mA  
OL  
0.4 V  
OL  
Rev: 1.01 12/2002  
12/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
Rev: 1.01 12/2002  
13/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
AC Electrical Characteristics  
-250  
-225  
-200  
-166  
-150  
-133  
Parameter  
Symbol  
Unit  
Min Max Min Max Min Max Min Max Min Max Min Max  
Clock Cycle Time  
Clock to Output Valid  
Clock to Output Invalid  
Clock to Output in Low-Z  
Setup time  
tKC  
tKQ  
4.0  
2.6  
2.6  
2.6  
4.4  
2.6  
2.6  
2.6  
5.0  
2.6  
2.6  
2.6  
6.0  
2.9  
2.9  
2.9  
6.7  
3.3  
3.0  
3.3  
7.5  
1.0  
1.0  
1.5  
0.5  
1.7  
2
3.5  
3.0  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tKQX  
1.0  
1.0  
1.2  
0.2  
1.0  
1.0  
1.3  
0.3  
1.0  
1.0  
1.4  
0.4  
1.0  
1.0  
1.5  
0.5  
1.0  
1.0  
1.5  
0.5  
1
tLZ  
Pipeline  
tS  
tH  
Hold time  
1
G to output in High-Z  
G to Output Valid  
Clock HIGH Time  
Clock LOW Time  
tOHZ  
tOE  
tKH  
tKL  
1.3  
1.3  
1.3  
1.3  
1.5  
1.5  
1.5  
1.5  
1.5  
1.7  
Clock to Output in  
High-Z  
1
1.5  
2.6  
1.5  
2.6  
1.5  
2.6  
1.5  
2.9 1.5 3.0 1.5 3.0  
ns  
tHZ  
1
G to output in Low-Z  
ZZ setup time  
ZZ hold time  
0
5
0
5
0
5
0
5
0
5
0
5
ns  
ns  
ns  
ns  
tOLZ  
2
tZZS  
tZZH  
2
1
1
1
1
1
1
ZZ recovery  
tZZR  
100  
100  
100  
100  
100  
100  
Notes:  
1. These parameters are sampled and are not 100% tested.  
2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold  
times as specified above.  
Rev: 1.01 12/2002  
14/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
Rev: 1.01 12/2002  
15/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
Sleep Mode  
During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high,  
the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to  
low, the SRAM operates normally after ZZ recovery time.  
Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I 2. The duration of  
SB  
Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become  
disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode.  
When the ZZ pin is driven high, I 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending  
SB  
operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated  
until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands  
may be applied while the SRAM is recovering from Sleep mode.  
Sleep Mode Timing Diagram  
CK  
tH  
tS  
tKC  
tKL  
tKH  
ADSP  
ADSC  
ZZ  
tZZH  
tZZS  
tZZR  
Snooze  
Application Tips  
Single and Dual Cycle Deselect  
SCD devices (like this one) force the use of “dummy read cycles” (read cycles that are launched normally, but that are ended with  
the output drivers inactive) in a fully synchronous environment. Dummy read cycles waste performance, but their use usually  
assures there will be no bus contention in transitions from reads to writes or between banks of RAMs. DCD SRAMs do not waste  
bandwidth on dummy cycles and are logically simpler to manage in a multiple bank application (wait states need not be inserted at  
bank address boundary crossings), but greater care must be exercised to avoid excessive bus contention.  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V . The JTAG output  
DD  
drivers are powered by V  
.
DDQ  
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
Rev: 1.01 12/2002  
16/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG  
Port unused, TCK, TDI, and TMS may be left floating or tied to either V or V . TDO should be left unconnected.  
DD  
SS  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
Test Data In  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the  
In state of the TAP Controller state machine and the instruction that is currently loaded in the TAP  
Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce  
the same result as a logic one input level.  
Output that is active depending on the state of the TAP state machine. Output changes in  
Out response to the falling edge of TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
TDO  
Test Data Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is  
held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s and  
0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the rising  
edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI  
and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
Rev: 1.01 12/2002  
17/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
JTAG TAP Block Diagram  
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1 0  
·
· · ·  
Boundary Scan Register  
n
2 1 0  
· · · · · · · · ·  
TMS  
TCK  
Test Access Port (TAP) Controller  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
ID Register Contents  
Die  
Revision  
Code  
GSI Technology  
JEDEC Vendor  
ID Code  
I/O  
Not Used  
Configuration  
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
x72 0 1 1 0 1 1 0 0 1  
0
1
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; the standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads, and can be used to load  
address, data or control signals into the RAM or to preload the I/O buffers.  
When the TAP controller is placed in Capture-IR state the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state the Instruction Register is placed between TDI and TDO. In this state the desired  
instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all instructions, the  
TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP instruction set for this  
device is listed in the following table.  
Rev: 1.01 12/2002  
18/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
Select IR  
0
0
0
1
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
0
1
1
1
Exit1 DR  
Exit1 IR  
0
0
Pause DR  
Pause IR  
0
0
0
1
1
Exit2 DR  
Exit2 IR  
0
1
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register the Bypass Register is placed between TDI and TDO. This occurs when  
the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices  
in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the Instruc-  
tion Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan  
Register. Boundary Scan Register locations are not associated with an input or I/O pin, and are loaded with the default state identified in the  
Boundary Scan Chain table at the end of this section of the datasheet. Because the RAM clock is independent from the TAP Clock (TCK) it  
is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e. in a metastable state). Although  
allowing the TAP to sample metastable inputs will not harm the device, repeatable results cannot be expected. RAM input signals must be  
stabilized for long enough to meet the TAPs input data capture set-up plus hold time (tTS plus tTH). The RAMs clock inputs need not be  
paused for any other TAP operation except capturing the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-  
DR state then places the boundary scan register between the TDI and TDO pins.  
EXTEST  
Rev: 1.01 12/2002  
19/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with all logic 0s. The  
EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is still determined by its input pins.  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command. Then the EXTEST  
command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output drivers on the falling edge of TCK  
when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected,  
the sate of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are trans-  
ferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR state, the RAM’s output pins drive out the  
value of the Boundary Scan Register location with which each output pin is associated.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID  
register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any  
time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all RAM outputs are forced to an inactive drive state (high-Z) and the Bound-  
ary Scan Register is connected between TDI and TDO when the TAP controller is moved to the Shift-DR state.  
RFU  
These instructions are Reserved for Future Use. In this device they replicate the BYPASS instruction.  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
IDCODE  
Code  
000  
001  
Description  
Notes  
1
1, 2  
Places the Boundary Scan Register between TDI and TDO.  
Preloads ID Register and places it between TDI and TDO.  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
SAMPLE-Z  
010  
011  
TDO.  
1
1
Forces all RAM output drivers to High-Z.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and  
TDO.  
GSI private instruction.  
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
100  
101  
110  
111  
1
1
1
1
GSI  
RFU  
BYPASS  
Places Bypass Register between TDI and TDO.  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in test-logic-reset state.  
Rev: 1.01 12/2002  
20/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
Min.  
2.0  
Max.  
Unit Notes  
V
V
V
+0.3  
DD3  
3.3 V Test Port Input High Voltage  
3.3 V Test Port Input Low Voltage  
2.5 V Test Port Input High Voltage  
2.5 V Test Port Input Low Voltage  
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
V
V
1
1
IHJ3  
V
0.3  
0.8  
+0.3  
ILJ3  
V
0.6 * V  
V
1
IHJ2  
DD2  
DD2  
V
0.3 * V  
1
0.3  
300  
1  
V
1
ILJ2  
DD2  
I
uA  
uA  
uA  
V
2
INHJ  
I
100  
1
3
INLJ  
I
1  
4
OLJ  
V
Test Port Output High Voltage  
1.7  
5, 6  
5, 7  
5, 8  
5, 9  
OHJ  
V
Test Port Output Low Voltage  
0.4  
V
OLJ  
V
V
– 100 mV  
DDQ  
Test Port Output CMOS High  
V
OHJC  
V
Test Port Output CMOS Low  
100 mV  
V
OLJC  
Notes:  
1. Input Under/overshoot voltage must be 2 V > Vi < V  
+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tTKC.  
DDn  
2.  
V
V V  
ILJ  
IN  
DDn  
3. 0 V V V  
IN  
ILJn  
4. Output Disable, V  
= 0 to V  
DDn  
OUT  
5. The TDO output driver is served by the V  
supply.  
DDQ  
6.  
7.  
8.  
9.  
I
I
I
I
= 4 mA  
OHJ  
= + 4 mA  
OLJ  
= –100 uA  
= +100 uA  
OHJC  
OHJC  
JTAG Port AC Test Conditions  
Parameter  
Input high level  
Conditions  
2.3 V  
JTAG Port AC Test Load  
DQ  
Input low level  
0.2 V  
*
Input slew rate  
1 V/ns  
50Ω  
30pF  
Input reference level  
Output reference level  
1.25 V  
V = 1.25 V  
T
1.25 V  
* Distributed Test Jig Capacitance  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as as shown unless otherwise noted.  
Rev: 1.01 12/2002  
21/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
JTAG Port Timing Diagram  
tTKL  
tTS  
tTKH  
tTKC  
TCK  
tTH  
TMS  
TDI  
TDO  
tTKQ  
JTAG Port AC Electrical Characteristics  
Parameter  
TCK Cycle Time  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
50  
Max  
Unit  
ns  
ns  
ns  
ns  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
20  
20  
10  
10  
ns  
ns  
tTH  
Rev: 1.01 12/2002  
22/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
209 BGA Package Drawing (Package C)  
14 mm x 22 mm Body, 1.0 mm Bump Pitch, 11 x 19 Bump Array  
A1  
C
A
Side View  
D
aaa  
D1  
e
Bottom View  
b
e
Symbol  
Min  
Typ  
Max  
1.70  
0.60  
0.70  
0.38  
22.1  
Units  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
A
A1  
b
0.40  
0.50  
0.31  
21.9  
0.50  
0.60  
c
0.36  
D
22.0  
D1  
E
18.0 (BSC)  
14.0  
13.9  
14.1  
E1  
e
10.0 (BSC)  
1.00 (BSC)  
0.15  
aaa  
Rev 1.0  
Package Dimensions—119-Pin PBGA  
Rev: 1.01 12/2002  
23/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
Ordering Information for GSI Synchronous Burst RAMs  
2
Speed  
(MHz)  
3
1
Org  
Type  
Package  
Status  
T
Part Number  
A
256K x 72  
256K x 72  
256K x 72  
256K x 72  
256K x 72  
256K x 72  
256K x 72  
256K x 72  
256K x 72  
256K x 72  
256K x 72  
256K x 72  
Notes:  
GS816273C-250  
GS816273C-225  
GS816273C-200  
GS816273C-166  
GS816273C-150  
GS816273C-133  
GS816273C-250I  
GS816273C-225I  
GS816273C-200I  
GS816273C-166I  
GS816273C-150I  
GS816273C-133I  
S/DCD Pipeline  
S/DCD Pipeline  
S/DCD Pipeline  
S/DCD Pipeline  
S/DCD Pipeline  
S/DCD Pipeline  
S/DCD Pipeline  
S/DCD Pipeline  
S/DCD Pipeline  
S/DCD Pipeline  
S/DCD Pipeline  
S/DCD Pipeline  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
209 BGA  
250  
225  
200  
166  
150  
133  
250  
225  
200  
166  
150  
133  
C
C
C
C
C
C
I
I
I
I
I
I
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS816273B-150IB.  
2. T = C = Commercial Temperature Range. T = I = Industrial Temperature Range.  
A
A
3. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which  
are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.  
Rev: 1.01 12/2002  
24/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  
Preliminary  
GS816273C-250/225/200/166/150/133  
18Mb Sync SRAM Datasheet Revision History  
DS/DateRev. Code: Old;  
New  
Types of Changes  
Format or Content  
Page;Revisions;Reason  
• Creation of new datasheet  
816273_r1  
• Changed bump L6 to VDDQ/DNU  
• Removed PE pin (replaced with NC)  
• Updated tKQ numbers for 250 and 225 MHz  
• Updated AC Characteristics table (tOE, tHZ, and tOHZ to  
equal tKQ (PL) for 250 and 225 MHz)  
• Added new timing diagrams  
816273_r1; 816273_r1_01  
content  
Rev: 1.01 12/2002  
25/25  
© 2002, Giga Semiconductor, Inc.  
Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com.  

相关型号:

GS816V73GC-200T

Cache SRAM, 256KX72, 2.6ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170D18B-250

Standard SRAM, 1MX18, 2.1ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170D18B-250I

Standard SRAM, 1MX18, 2.1ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170D18B-250IT

Standard SRAM, 1MX18, 2.1ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170D18B-250T

Standard SRAM, 1MX18, 2.1ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170D18B-333IT

Standard SRAM, 1MX18, 1.6ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170D36GB-250IT

Standard SRAM, 512KX36, 2.1ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170D36GB-250T

Standard SRAM, 512KX36, 2.1ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170D36GB-300

Standard SRAM, 512KX36, 1.8ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170D36GB-300I

Standard SRAM, 512KX36, 1.8ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170D36GB-300IT

Standard SRAM, 512KX36, 1.8ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170D36GB-300T

Standard SRAM, 512KX36, 1.8ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI