GS8170D36GB-300IT [GSI]

Standard SRAM, 512KX36, 1.8ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209;
GS8170D36GB-300IT
型号: GS8170D36GB-300IT
厂家: GSI TECHNOLOGY    GSI TECHNOLOGY
描述:

Standard SRAM, 512KX36, 1.8ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209

静态存储器
文件: 总32页 (文件大小:1120K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
GS8170D18/36B-333/300/250  
209-Bump BGA  
Commercial Temp  
Industrial Temp  
250 - 333 MHz  
18Mb S1x2Lp DDR SRAM  
1M x 18, 512K x 36  
1.8 V V  
DD  
1.8 V and 1.5 V I/O  
Features  
• Double Data Rate Read and Write mode  
• JEDEC standard SigmaRAMpinout and package  
• 1.8 V +150/–100 mV core power supply  
• 1.5 V or 1.8 V I/O supply  
• Pipelined read operation.  
• Fully coherent read and write pipelines  
• Echo Clock outputs track data output drivers  
• ZQ mode pin for user-selectable output drive strength  
• 2 User programmable chip enable inputs for easy depth  
expansion.  
• IEEE 1149.1 JTAG-compatible Boundary Scan  
• 209-bump, 14 mm x 22 mm, 1 mm bump pitch BGA package  
• Pin compatible with future 32M, 64M, and 128M devices  
SigmaRAM Family Overview  
Bottom View  
209-Bump, 14 mm x 22 mm BGA  
1 mm Bump Pitch, 11 x 19 Bump Array  
GS8170D18/36 SigmaRAMs are built in compliance with the  
SigmaRAM pinout standard for synchronous SRAMs.  
18,874,368-bit (18Mb) SRAMs. These are the first in a family  
of wide, very low voltage CMOS I/O SRAMs designed to  
operate at the speeds needed to implement economical high  
performance networking systems.  
Because the DDR SRAM always transfers data in two halves,  
A0 is internally set to 0 for the first half of each read or write  
transfer, and automatically incremented to 1 for the falling  
edge transfer. The address field of a DDR SRAM is always one  
address pin less than the advertised index depth (e.g., the 1M x  
18 has a 512k addressable index).  
GSI's SRAMs are offered in a number of configurations that  
emulate other synchronous SRAMs, such as Burst RAMs,  
NBT, Late Write, or Double Data Rate (DDR) SRAMs. The  
logical differences between the protocols employed by these  
RAMs hinge mainly on various combinations of address  
bursting, output data registering and write cueing. The  
SRAMfamily standard allows a user to implement the  
interface protocol best suited to the task at hand.  
In Pipeline mode, single data rate SRAMs incorporate a rising-  
edge-triggered output register. In DDR mode, rising- and  
falling-edge-triggered output registers are employed. For read  
cycles, a DDR SRAM’s output data is staged at the input of an  
edge-triggered output register during the access cycle and then  
released to the output drivers at the next rising and subsequent  
falling edge of clock.  
Functional Description  
GS817x18/36/72B SRAMs are implemented with GSI's high  
performance CMOS technology and are packaged in a 209-  
bump BGA.  
Because SigmaRAMs are synchronous devices, address, and  
read/write control inputs are captured on the rising edge of the  
input clock. Write cycles are internally self-timed and initiated  
by the rising edge of the clock input. This feature eliminates  
complex off-chip write pulse generation required by  
asynchronous SRAMs and simplifies input signal timing. In  
DDR mode the device captures Data In on both rising and  
falling edges of clock and drives data on both clock edges as  
well.  
Rev: 1.04b 06/2001  
1/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
8170D36B 512K x 36 Pinout  
512K x 36 Common I/O—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
NC  
NC  
A
E2  
A
ADV  
A
E3  
A
DQb  
DQb  
(16M)  
B
C
NC  
NC  
NC  
NC  
MCL  
NC  
A
W
A
MCL  
NC  
DQb  
DQb  
DQb  
DQb  
NC  
MCL  
NC  
E1  
NC  
NC  
MCL  
(128M)  
D
E
F
NC  
NC  
NC  
DQPc  
DQc  
DQc  
DQc  
DQc  
CQ2  
NC  
VSS  
VDDQ  
VSS  
NC  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
NC  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
MCL  
VDD  
ZQ  
NC  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
NC  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
VSS  
VDDQ  
VSS  
DQb  
NC  
DQb  
DQPb  
NC  
DQc  
DQc  
DQc  
DQc  
CQ2  
NC  
NC  
G
H
J
VDDQ  
VSS  
EP2  
EP3  
M4  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
VDDQ  
CK  
VDDQ  
NC  
NC  
NC  
K
L
MCL  
M2  
CQ1  
DQa  
DQa  
DQa  
DQa  
DQPa  
NC  
CQ1  
DQa  
DQa  
DQa  
DQa  
NC  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
M
N
P
R
T
NC  
NC  
M3  
NC  
NC  
MCH  
MCL  
VDD  
MCL  
A
NC  
NC  
DQPd  
DQd  
DQd  
DQd  
DQd  
NC  
DQd  
DQd  
DQd  
DQd  
NC  
U
V
NC  
A
NC (64M)  
A
NC (32M)  
A
A
NC  
NC  
NC  
A
A
A1  
A
A
NC  
NC  
W
TMS  
TDI  
A
MCL  
A
TDO  
TCK  
NC  
NC  
11 x 19 Bump BGA—14 x 22 mm2 Body—1 mm Bump Pitch  
• 2001.03  
Rev: 1.04b 06/2001  
2/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
8170D18 1M x 18 Pinout  
1M x 18 Common I/O—Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
NC  
NC  
A
E2  
A
ADV  
A
E3  
A
NC  
NC  
(16M)  
B
C
NC  
NC  
NC  
NC  
MCL  
NC  
NC  
A
W
A
A
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
E1  
MCL  
(128M)  
D
E
F
NC  
NC  
NC  
DQPb  
DQb  
DQb  
DQb  
DQb  
CQ2  
NC  
VSS  
VDDQ  
VSS  
NC  
VDDQ  
VSS  
NC  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
MCL  
VDD  
ZQ  
NC  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
NC  
VDDQ  
VSS  
VSS  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
DQb  
DQb  
DQb  
DQb  
CQ2  
NC  
NC  
NC  
G
H
J
VDDQ  
VSS  
VDDQ  
VSS  
EP2  
EP3  
M4  
VDDQ  
VSS  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
VDDQ  
CK  
VDDQ  
NC  
VDDQ  
NC  
VDDQ  
NC  
NC  
NC  
K
L
MCL  
M2  
CQ1  
DQa  
DQa  
DQa  
DQa  
DQPa  
NC  
CQ1  
DQa  
DQa  
DQa  
DQa  
NC  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
M
N
P
R
T
NC  
NC  
M3  
NC  
NC  
MCH  
MCL  
VDD  
MCL  
A
NC  
NC  
NC  
NC  
VDDQ  
NC  
VDDQ  
NC  
NC  
NC  
NC  
U
NC  
NC  
NC  
A
NC  
NC  
A
NC  
NC  
NC  
(64M)  
(32M)  
V
W
NC  
NC  
NC  
NC  
A
A
A
A
A1  
A
A
A
A
NC  
NC  
NC  
NC  
TMS  
TDI  
MCL  
TDO  
TCK  
11 x 19 Bump BGA—14 x 22 mm2 Body—1 mm Bump Pitch  
• 2001.03  
Rev: 1.04b 06/2001  
3/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
Pin Description Table  
Pin Location  
Symbol  
Description  
Type  
Comments  
A3, A5, A7, A9, B7, U4,  
U6, U8, V3, V4, V5, V6,  
V7, V8, V9, W5, W7  
A
Address  
Input  
C7  
B5  
A
A
Address  
Address  
Input  
Input  
x18 version only  
x18 and x36 versions  
Active High  
A6  
ADV  
CK  
CQ  
CQ  
Advance  
Clock  
Input  
K3  
Input  
Active High  
K1, K11  
K2, K10  
Echo Clock  
Echo Clock  
Output  
Output  
Active High  
Active Low  
E2, F1, F2, G1, G2, H1,  
H2, J1, J2, L10, L11,  
M10, M11, N10, N11,  
P10, P11, R10  
DQ  
DQ  
Data I/O  
Data I/O  
Input/Output  
Input/Output  
x18 and x36 versions  
x36 version  
A10, A11, B10, B11,  
C10, C11, D10, D11,  
E11, R1, T1, T2, U1, U2,  
V1, V2, W1, W2  
C6  
E1  
Chip Enable  
Chip Enable  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Active Low  
A4, A8  
E2 & E3  
Programmable Active High or Low  
G6, H6  
W9  
EP2 & EP3  
TCK  
Chip Enable Program Pin  
Test Clock  
Active High  
W4  
TDI  
Test Data In  
W8  
TDO  
Test Data Out  
W3  
TMS  
Test Mode Select  
Mode Control Pins  
Must Connect High  
L6, M6, J6  
N6  
M2, M3 & M4  
MCH  
Active High  
B3, C9, D6, K6, P6, T6,  
W6  
MCL  
Must Connect Low  
Input  
Active Low (all versions)  
Rev: 1.04b 06/2001  
4/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
Pin Description Table  
Pin Location  
Symbol  
Description  
Type  
Comments  
B8, C4  
MCL  
Must Connect Low  
Input  
Active Low (x36 version)  
A1, A2, B1, B2, B4, B9,  
C1, C2, C3, C5, C8, D1,  
D2, D4, D5, D7, D8,E1,  
E10, F10, F11, G10,  
G11, H10, H11, J10,  
J11, K4, K8, K9, L1, L2,  
M1, M2, N1, N2, P1, P2,  
R2, R11, T4, T5, T7, T8,  
T10, T11, U3, U5, U7,  
U9, U10, U11, V10, V11,  
W10, W11  
NC  
No Connect  
Not connected to die (all versions)  
C7  
NC  
NC  
No Connect  
No Connect  
Not connected to die (x36 version)  
A1, A2, B1, B2, B4, B9,  
C1, C2, C3, C8, D1, D2,  
E1, E10, F10, F11, G10,  
G11, H10, H11, J10,  
J11, L1, L2, M1, M2, N1,  
N2, P1, P2, R2, R11,  
T10, T11, U10, U11,  
V10, V11, W10, W11  
Not connected to die (x36/x18 versions)  
A10, A11, B8, B10, B11,  
C4, C10, C11, D10, D11,  
E11, R1, T1, T2, U1, U2,  
V1, V2, W1, W2  
NC  
No Connect  
Not connected to die (x18 version)  
B6  
W
Write  
Input  
Input  
Active Low  
E5, E6, E7, G5, G7, J5,  
J7, L5, L7, N5, N7, R5,  
R6, R7  
VDD  
Core Power Supply  
1.8 V Nominal  
E3, E4, E8, E9, J3, J4,  
J8, J9, L3, L4, L8, L9,  
N3, N4, N8, N9, R3, R4,  
R8, R9  
VDDQ  
Output Driver Power Supply  
Input  
1.8 V or 1.5 V Nominal  
D3, D9, F3, F4, F5, F7,  
F8, F9, H3, H4, H5, H7,  
H8, H9, K5, K7, M3, M4,  
M5, M7, M8, M9, P3, P4,  
P5, P7, P8, P9, T3, T9  
VSS  
ZQ  
Ground  
Input  
Input  
Low = Low Impedance [High Drive]  
High = High Impedance [Low Drive]  
F6  
Output Impedance Control  
Rev: 1.04b 06/2001  
5/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
Background  
The central characteristics of SRAMs are that they are extremely fast and consume very little power. Because both operating and  
interface power is low, SRAMs can be implemented in a wide (x36) configuration, providing very high single package bandwidth  
(in excess of 20 Gb/s in ordinary pipelined configuration) and very low random access latency (5 ns). The use of very low voltage  
circuits in the core and 1.8 V or 1.5 V interface voltages allow the speed, power and density performance of SRAMs.  
Although the SigmaRAM family of pinouts has been designed to support a number of different common read and write protocol  
options, not all SigmaRAM implementations will support all possible protocols. The following timing diagrams provide a quick  
comparison between read and write protocols options available in the context of the SigmaRAM standard. This particular data  
sheet covers the SigmaRAM.  
The character of the applications for fast synchronous SRAMs in networking systems are extremely diverse. SRAMs have been  
developed to address the diverse needs of the networking market in a manner that can be supported with a unified development and  
manufacturing infrastructure. SRAMs address each of the bus protocol options commonly found in networking systems. This  
allows the SRAM to find application in radical shrinks and speed-ups of existing networking chip sets that were designed for use  
with older SRAMs, like the NBT, Late Write, or Double Data Rate SRAMs, as well as with new chip sets and ASIC’s that employ  
the Echo Clocks and realize the full potential of the SRAMs.  
Mode Selection Truth Table Standard  
M2 M3 M4 Name  
Function  
Early Write, Flow through Read  
Late Write, Flow through Read  
RFU  
Analogous to...  
Flow through Burst RAM  
Flow through NBT SRAM  
In This Data Sheet?  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
No  
No  
n/a  
Yes  
No  
No  
No  
S1x1Ef  
S1x1Lf  
DDR  
Double Data Rate SRAM  
Pipelined Burst RAM  
S1x2Lp  
S1x1Ep  
S1x1Dp  
S1x1Lp  
Early Write, Pipelined Read  
Double Late Write, Pipelined Read  
Late Write, Pipelined Read  
Pipelined NBT SRAM  
Pipelined Late Write SRAM  
All address and control inputs (with the exception of PE2, PE3, and the mode pins, M2–M4) are synchronized to rising clock  
edges. Data in is captured on both rising and falling edges of CK. Read and write operations must be initiated with the Advance/  
Load pin (ADV) held low, in order to load the new address. Device activation is accomplished by asserting all three of the Chip  
Enable inputs (E1, E2, and E3). Deassertion of any one of the Enable inputs will deactivate the device. It should be noted that  
ONLY deactivation of the RAM via E2 and/or E3 deactivates the Echo Clocks, CQ1–CQn.  
Rev: 1.04b 06/2001  
6/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
Read Operations  
Double Data Rate Read  
In applications where a data rate markedly faster than the RAM’s latency is desired, Double Data Rate reads double the data  
transfer rate (read or write bandwidth) achieved in Pipeline mode while keeping the RAM’s clock frequency constant. In Double  
Data Rate mode, the RAM multiplexes the results of a read out of the RAM on half the usual number of data pins. The output  
register/mux behaves just as if it were in Pipeline mode for the first transfer, but then makes a second transfer in response to the  
next falling edge of clock as well. Interleaved Burst Order is not supported in DDR mode.SigmaRAM DDR RAMs burst in linear  
order only.  
Double Data Rate Pipelined Read  
Read  
Deselect  
Read  
Read  
Read  
CK  
Address  
/E1  
A
XX  
C
D
E
F
/W  
QA0  
QA1  
QC0  
QC1  
QD0  
QD1  
DQ  
CQ  
Key  
Hi-Z  
Access  
Write Operations  
Write operation occurs when the following conditions are satisfied at the rising edge of clock: All three chip enables (E1, E2, and  
E3) are active and the write enable input signal (W) is asserted low.  
Double Data Rate Write  
A Double Data Rate Write is a specialized form of Late Write. In Double Data Rate mode, the RAM will capture Data In on both  
rising and falling edges of the RAM clock, CK, beginning with the rising edge of clock that follows the capture of the write address  
and command.  
Rev: 1.04b 06/2001  
7/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
SigmaRAM Double Data Rate Read and Write  
Read  
Deselect  
Write  
Read  
Read  
CK  
Address  
/E1  
A
B
C
D
E
F
/W  
QA0  
QA1  
DC0  
DC1  
QD0  
QD1  
DQ  
CQ  
Key  
Hi-Z  
Access  
Special Functions  
Burst Cycles  
SRAMs provide an on-chip burst address generator that can be utilized, if desired, to further simplify burst read or write  
implementations. The ADV control pin, when driven high, commands the SRAM to advance the internal address counter and use  
the counter generated address to read or write the SRAM. The starting address for the first cycle in a burst cycle series is loaded  
into the SRAM by driving the ADV pin low, into Load mode.  
Rev: 1.04b 06/2001  
8/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
SigmaRAM DDR Burst Read with Counter Wrap-around  
Read  
Continue  
Continue  
Read  
Continue  
CK  
External  
Address  
A2  
A2  
XX  
A0  
XX  
A2  
B0  
B0  
XX  
B2  
XX  
B1  
Internal  
Address  
A3  
A1  
A3  
B1  
B3  
Counter Wraps  
/E1  
/W  
ADV  
DQ  
CQ  
QA2  
QA3  
QA0  
QA1  
QA2  
QA3  
QB0  
QB1  
Rev: 1.04b 06/2001  
9/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
SigmaRAM DDR Burst Write with Counter Wrap-around  
Write  
Continue  
Continue  
Write  
Continue  
CK  
External  
Address  
A2  
A2  
XX  
A0  
XX  
A2  
B0  
B0  
XX  
B2  
XX  
B1  
Internal  
Address  
A3  
A1  
A3  
B1  
B3  
Counter Wraps  
/E1  
/W  
ADV  
DQ  
CQ  
DA2  
DA3  
DA0  
DA1  
DA2  
DA3  
DB0  
DB1  
DB2  
Burst Order  
The burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have been  
accessed. SigmaRAMs always count in linear burst order.  
Linear Burst Order  
2
2
A[1:0]  
A[1:0]  
A[1:0]  
01  
A[1:0]  
11  
1st address (Rising Edge CK)  
2nd address (Falling Edge CK)  
3rd address (Rising Edge CK)  
4th address (Falling Edge CK)  
00  
01  
10  
11  
10  
11  
00  
01  
10  
00  
11  
01  
00  
10  
Notes:  
1. The burst counter wraps to initial state on the 3rd rising edge of clock.  
2. The DDR SigmaRAM always begins an read or write at A0 = 0. A0 is internally set to 0 at the rising edge of clock and is not  
available to the user.  
Rev: 1.04b 06/2001  
10/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
Echo Clock  
SRAMs feature Echo Clocks, CQ1,CQ2, CQ1, and CQ2 that track the performance of the output drivers. The Echo Clocks are  
delayed copies of the main RAM clock, CK. Echo Clocks are designed to track changes in output driver delays due to variance in  
die temperature and supply voltage. The Echo Clocks are designed to fire with the rest of the data output drivers. SigmaRAMs  
provide both in-phase, or true, Echo Clock outputs (CQ1 and CQ2) and inverted Echo Clock outputs (CQ1 and CQ2).  
It should be noted that deselection of the RAM via E2 and E3 also deselects the Echo Clock output drivers. The deselection of  
Echo Clock drivers is always pipelined to the same degree as output data. Deselection of the RAM via E1 does not deactivate the  
Echo Clocks.  
Programmable Enables  
SRAMs feature two user-programmable chip enable inputs, E2 and E3. The sense of the inputs, whether they function as active  
low or active high inputs, is determined by the state of the programming inputs, PE2 and PE3. For example, if PE2 is held at VDD  
,
E2 functions as an active high enable. If PE2 is held to VSS, E2 functions as an active low chip enable input.  
Programmability of E2 and E3 allows four banks of depth expansion to be accomplished with no additional logic. By programming  
the enable inputs of four SRAMs in binary sequence (00, 01, 10, 11) and driving the enable inputs with two address inputs, four  
SRAMs can be made to look like one larger RAM to the system.  
Example Four Bank Depth Expansion Schematic - S1x2Lp  
A1–An  
E1  
CK  
W
DQ0–DQn  
Bank 0  
Bank 3  
Bank 1  
Bank 2  
A
A1–An – 2  
An – 1  
An  
A1–An – 2  
An – 1  
An  
A1–An – 2  
An – 1  
An  
A1–An – 2  
An – 1  
An  
A
A
A
E3  
E2  
E1  
CK  
E3  
E2  
E1  
CK  
E3  
E3  
E2  
E2  
E1  
E1  
CK  
CK  
W
W
W
W
DQ  
CQ  
DQ  
CQ  
DQ  
CQ  
DQ  
CQ  
CQ  
Bank Enable Truth Table  
EP2  
EP3  
VSS  
VDD  
VSS  
VDD  
E2  
E3  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
VSS  
VSS  
VDD  
VDD  
Active Low  
Active Low  
Active High  
Active High  
Active Low  
Active High  
Active Low  
Active High  
Rev: 1.04b 06/2001  
11/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
Echo Clock Control in Two Banks of SigmaRAM Double Data Rate RAMs  
Read  
Read  
Read  
Read  
Read  
CK  
Address  
A
B
C
D
E
F
/E2 Bank 1  
E2 Bank 2  
QA0  
QA1  
QC0  
QC1  
DQ  
Bank 1  
CQ  
Bank 1  
CQ1 + CQ2  
CQ  
Bank 2  
QB0  
QB1  
QD0  
QD1  
DQ  
Bank 2  
Note: E1\ does not deselect the Echo Clock Outputs. Echo Clock outputs are synchronously deselected by E2 or E3 being sampled false.  
It should be noted that deselection of the RAM via E2 and E3 also deselects the Echo Clock output drivers. The deselection of  
Echo Clock drivers is always pipelined to the same degree as output data. Deselection of the RAM via E1 does not deactivate the  
Echo Clocks.  
In some applications it may be appropriate to pause between banks; to deselect both RAMs with E1 before resuming read  
operations. An E1 deselect at a bank switch will allow at least one clock to be issued from the new bank before the first read cycle  
in the bank. Although the following drawing illustrates a E1 read pause upon switching from Bank 1 to Bank 2, a write to Bank 2  
would have the same effect, causing the RAM in Bank 2 to issue at least one clock before it is needed.  
Rev: 1.04b 06/2001  
12/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
SigmaRAM DDR Bank Switch with E1 Deselect  
Read  
No Op  
Read  
Read  
Read  
CK  
Address  
/E1  
A
XX  
C
D
E
F
/E2 Bank 1  
E2 Bank 2  
QA0  
QA1  
DQ  
Bank 1  
CQ  
Bank 1  
CQ1 + CQ2  
CQ  
Bank 2  
QC0  
QC1  
QD0  
QD1  
DQ  
Bank 2  
Note: E1\ does not deselect the Echo Clock Outputs. Echo Clock outputs are synchronously deselected by E2 or E3 being sampled false.  
FLXDrive™ Output Driver Impedance Control  
The ZQ pin allows selection between SRAM nominal drive strength (ZQ low) for multi-drop bus applications and low drive  
strength (ZQ floating or high) point-to-point applications. See ”Output Driver Characteristics” on page 42 for details.  
Rev: 1.04b 06/2001  
13/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
1x2Lp Clock Truth Table  
E1  
E
ADV  
W
BW  
DQ/CQ DQ/CQ DQ/CQ DQ/CQ  
CK  
Current Operation  
(t ) (t ) (t ) (t )  
(t )  
(t )  
(t  
)
(t  
)
(t  
)
n
X
X
1
n
F
X
T
X
n
n
X
X
X
X
n
n
n+½  
n+1  
n+1½  
0® 1  
0® 1  
0® 1  
0® 1  
0
X
Bank Deselect  
X
Bank Deselect  
Bank Deselect (Continue)  
Deselect  
***  
Hi-Z  
***  
Hi-Z  
Hi-Z  
1
0
1
Hi-Z/CQ  
Hi-Z/CQ  
X
Deselect  
Deselect (Continue)  
Hi-Z/CQ  
***  
Dn/CQ  
(tn)  
Dn+½/CQ  
(tn  
Write  
Loads new address  
0® 1  
0® 1  
0® 1  
0
X
0
T
X
T
X
0
1
0
1
0
X
1
X
)
+½  
Dn-½/CQ  
(tn-  
Dn+½/CQ  
(tn  
Dn-1/CQ  
Dn/CQ  
(tn)  
Write Continue  
Increments address by 2  
Write  
X
(tn-1  
)
)
)
+½  
½
Qn/CQ  
(tn)  
Qn+½/CQ  
(tn  
Read  
Loads new address  
***  
)
+½  
Qn-½/CQ  
(tn-  
Qn+½/CQ  
(tn  
Qn-1/CQ  
(tn-1  
Qn/CQ  
(tn)  
Read Continue  
Increments address by 2  
0® 1  
X
X
Read  
)
)
)
+½  
½
Notes:  
1. If E2 = EP2 and E3 = EP3 then E = “T” else E = “F”.  
2. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.  
3. “***” indicates that the DQ input requirement / output state and CQ output state are determined by the previous operation.  
4. DQs are tri-stated in response to Bank Deselect, Chip Deselect, and Write commands, one full cycle after the command is  
sampled.  
5. CQs are tri-stated in response to Bank Deselect commands only, one full cycle after the command is sampled.  
6. One (1) Continue operation may be initiated after a Read or Write operation is initiated to burst transfer four (4) distinct  
pieces of data per single external address input. If a second (2nd) Continue operation is initiated, the internal address wraps  
back to the initial external (base) address.  
Rev: 1.04b 06/2001  
14/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
Common I/O State Diagram  
X,F,0,X or X,X,1,X  
Bank  
Deselect  
0,T,0,1  
0,T,0,0  
1,T,0,X  
X,F,0,X  
Deselect  
0,T,0,1  
0,T,0,0  
1,T,0,X or X,X,1,X  
1,T,0,X  
1,T,0,X  
0,T,0,0  
0,T,0,1  
Read  
Write  
X,F,0,X  
X,F,0,X  
0,T,0,1  
X,X,1,X  
X,X,1,X  
0,T,0,0  
0,T,0,0  
0,T,0,1  
1,T,0,X  
X,F,0,X  
0,T,0,0 0,T,0,1  
1,T,0,X  
X,F,0,X  
Read  
Continue  
Write  
Continue  
X,X,1,X  
X,X,1,X  
n
n+1  
n+2  
n+3  
Key  
Input Command Code  
Clock (CK)  
ƒ
Transition  
Current State (n)  
Next State (n + 1)  
Command  
ƒ
ƒ
ƒ
ƒ
Current State  
Next State  
Current State & Next State Definition for Read/Write Control State Diagram  
Notes:  
1. The notation “X,X,X,X” controlling the state transitions above indicate the states of inputs E1, E, ADV, and W respectively.  
2. If (E2 = EP2 and E3 = EP3) then E = “T” else E = “F”.  
3. “1” = input “high”; “0” = input “low”; “X” = input “don’t care”; “T” = input “true”; “F” = input “false”.  
Rev: 1.04b 06/2001  
15/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
Absolute Maximum Ratings  
(All voltages reference to VSS  
)
Symbol  
VDD  
VDDQ  
VI/O  
Description  
Value  
–0.5 to 2.5  
Unit  
Voltage on VDD Pins  
Voltage in VDDQ Pins  
V
V
–0.5 to VDD  
–0.5 to VDDQ+0.5 (£ 2.5 V max.)  
–0.5 to VDDQ+0.5 (£ 2.5 V max.)  
Voltage on I/O Pins  
Voltage on Other Input Pins  
Input Current on Any Pin  
Output Current on Any I/O Pin  
Maximum Junction Temperature  
Storage Temperature  
V
VIN  
V
IIN  
+/–100  
+/–100  
125  
mA dc  
mA dc  
IOUT  
TJ  
oC  
ºC  
TSTG  
–55 to 125  
Note:  
Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to  
Recommended Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions, for an extended  
period of time, may affect reliability of this component.  
Recommended Operating Conditions  
Power Supplies  
Parameter  
Symbol  
VDD  
Min.  
1.7  
Typ.  
1.8  
Max.  
1.95  
VDD  
Unit  
V
Notes  
Supply Voltage  
VDDQ  
VDDQ  
1.8 V I/O Supply Voltage  
1.5 V I/O Supply Voltage  
1.7  
1.8  
V
1
1
1.4  
1.5  
1.6 V  
70  
V
Ambient Temperature  
(Commercial Range Versions)  
TA  
TA  
0
25  
25  
°C  
°C  
2
2
Ambient Temperature  
(Industrial Range Versions)  
–40  
85  
Notes:  
1. Unless otherwise noted, all performance specifications quoted are evaluated for worst case at both 1.4 V £ VDDQ £ 1.6V (i.e., 1.5 V I/O)  
and 1.7 V £ VDDQ £ 1.95 V (i.e., 1.8 V I/O) and quoted at whichever condition is worst case.  
2. Most speed grades and configurations of this device are offered in both Commercial and Industrial Temperature ranges. The  
part number of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-  
tions quoted are evaluated for worst case in the temperature range marked on the device.  
Rev: 1.04b 06/2001  
16/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
CMOS I/O DC Input Characteristics  
Parameter  
Symbol  
VIH  
Min.  
Typ.  
Max.  
Unit  
V
Notes  
0.65 * VDDQ  
VDD+ 0.3  
0.35 * VDDQ  
CMOS Input High Voltage  
1
1
VIL  
CMOS Input Low Voltage  
–0.3  
V
Note:  
1. For devices supplied with CMOS input buffers. Compatible with both 1.8 V and 1.5 V I/O drivers.  
Undershoot Measurement and Timing  
Overshoot Measurement and Timing  
VIH  
20% tKC  
VDD + 1.0 V  
50%  
VSS  
50%  
VDD  
VSS – 1.0 V  
20% tKC  
VIL  
Capacitance  
(TA = 25oC, f = 1 MHZ, VDD = 3.3 V)  
Parameter  
Symbol  
CIN  
Test conditions  
Typ.  
Max.  
Unit  
pF  
VIN = 0 V  
Input Capacitance  
4
6
5
7
COUT  
VOUT = 0 V  
Output Capacitance  
pF  
Note: This parameter is sample tested.  
Package Thermal Characteristics  
Rating  
Layer Board  
Symbol  
RQJA  
Max  
TBD  
TBD  
TBD  
Unit  
Notes  
1,2  
Junction to Ambient (at 200 lfm)  
Junction to Ambient (at 200 lfm)  
single  
four  
°C/W  
°C/W  
°C/W  
RQJA  
1,2  
RQJC  
Junction to Case (TOP)  
n/a  
3
Notes:  
1. Junction temperature is a function of SRAM power dissipation, package thermal resistance, mounting board temperature,  
ambient. Temperature air flow, board density, and PCB thermal resistance.  
2. SCMI G-38-87  
3. Average thermal resistance between die and top surface, MIL SPEC-883, Method 1012.1  
Rev: 1.04b 06/2001  
17/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
AC Test Conditions  
Parameter  
Conditions  
VDDQ  
Input high level  
Input low level  
0 V  
Max. input slew rate  
Input reference level  
2 V/ns  
VDDQ/2  
VDDQ/2  
Output reference level  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as specified with output loading as shown unless otherwise noted.  
AC Test Load Diagram  
DQ  
ZQ = High (CMOS I/O)  
50W  
VT = VDDQ/2  
Input and Output Leakage Characteristics  
Parameter  
Symbol  
Test Conditions  
Min.  
Max  
Notes  
Input Leakage Current  
(except mode pins)  
IIL  
VIN = 0 to VDD  
–2 uA  
2 uA  
VDD ³ VIN ³ VIL  
0V £ VIN £ VIL  
–100 uA  
–2 uA  
2 uA  
2 uA  
IINM  
Mode Pin Input Current  
Output Leakage Current  
Output Disable,  
VOUT = 0 to VDDQ  
IOL  
–2 uA  
2 uA  
Rev: 1.04b 06/2001  
18/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
Selectable Impedance Output Driver DC Electrical Characteristics  
Parameter  
Symbol  
VOHL  
Test Conditions  
IOHL = –4 mA  
IOLL = 4 mA  
Min.  
Max  
Notes  
VDDQ – 0.4 V  
Low Drive Output High Voltage  
Low Drive Output Low Voltage  
High Drive Output High Voltage  
High Drive Output Low Voltage  
1
1
2
2
VOLL  
0.4 V  
VOHH  
VOLH  
IOHH = –8 mA  
IOLH = 8 mA  
VDDQ – 0.4 V  
0.4 V  
Notes:  
1. ZQ = 1; High Impedance output driver setting  
2. ZQ = 0; Low Impedance output driver setting  
Rev: 1.04b 06/2001  
19/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
Operating Currents  
-333  
-300  
-250  
Parameter  
Symbol  
Test Conditions  
0°C to  
70°C  
–40°C to  
+85°C  
0°C to  
70°C  
–40°C to  
+85°C  
0°C to  
70°C  
–40°C to  
+85°C  
IDDP  
Pipeline  
650 mA TBD mA 600 mA TBD mA 525 mA TBD mA  
TBD mA TBD mA TBD mA TBD mA TBD mA TBD mA  
475 mA TBD mA 445 mA TBD mA 395 mA TBD mA  
TBD mA TBD mA TBD mA TBD mA TBD mA TBD mA  
250 mA TBD mA 240 mA TBD mA 225 mA TBD mA  
TBD mA TBD mA TBD mA TBD mA TBD mA TBD mA  
215 mA TBD mA 210 mA TBD mA 200 mA TBD mA  
TBD mA TBD mA TBD mA TBD mA TBD mA TBD mA  
250 mA TBD mA 240 mA TBD mA 225 mA TBD mA  
TBD mA TBD mA TBD mA TBD mA TBD mA TBD mA  
215 mA TBD mA 210 mA TBD mA 200 mA TBD mA  
TBD mA TBD mA TBD mA TBD mA TBD mA TBD mA  
x36  
IDDF  
Flow-through  
E1 £ VIL Max.  
Operating  
Current  
tKHKH ³ tKHKH Min.  
All other inputs  
IDDP  
Pipeline  
VIL ³ VIN ³ VIH  
x18  
x36  
IDDF  
Flow-through  
ISB1  
Pipeline  
ISB1  
Flow-through  
E1 ³ VIH Min. or  
Chip Disable  
Current  
tKHKH ³ tKHKH Min.  
All other inputs  
ISB1  
Pipeline  
VIL ³ VIN ³ VIH  
x18  
x36  
ISB1  
Flow-through  
ISB2  
Pipeline  
ISB2  
Flow-through  
E2 or E3 False  
tKHKH ³ tKHKH Min.  
All other inputs  
Bank Deselect  
Current  
ISB2  
Pipeline  
VIL ³ VIN ³ VIH  
x18  
ISB2  
Flow-through  
Device Deselected  
All inputs  
CMOS  
Deselect  
Current  
VSS + 0.10 V  
IDD3  
150 mA  
³ VIN  
³
VDD – 0.10 V  
Rev: 1.04b 06/2001  
20/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
AC Electrical Characteristics  
-333  
-300  
-250  
Parameter  
Symbol  
Unit Notes  
Min Max Min Max  
Min  
4.0  
1.5  
1.5  
0.5  
0.5  
Max  
Clock Cycle Time  
Clock High Time  
tKHKH  
tKHKL  
tKLKH  
tKHCX1  
tKHCH  
tCHCL  
tKLCL  
3.0  
1.2  
1.2  
0.5  
0.5  
3.3  
1.3  
1.3  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
Clock Low Time  
Clock High to Echo Clock Low-Z  
Clock High to Echo Clock High  
Echo Clock High Time  
1.5  
1.7  
2.0  
2
tKHKL +/- 100 ps  
1.5 0.5  
tKLKH _/- 100 ps  
tKHKL +/- 120 ps  
0.5 2.0  
tKHKL +/- 120 ps  
Clock Low to Echo Clock Low  
Echo Clock Low Time  
0.5  
1.7  
tCLCH  
tKHCZ  
tKHQX1  
tKHQV  
tKLQX  
tKLQV  
tKHQX  
tKHQZ  
tCHQV  
tCLQX  
tCLQV  
tCHQX  
tAVKH  
tKHAX  
tEVKH  
tKHEX  
tWVKH  
tKHWX  
tBVKH  
tKHBX  
tDVKH  
2
1, 2  
1
Clock High to Echo Clock High-Z  
Clock High to Output in Low-Z  
Clock High to Output Valid  
Clock Low to Output Invalid  
Clock Low to Output Valid  
Clock High to Output Invalid  
Clock High to Output in High-Z  
Echo Clock High to Output Valid  
Echo Clock Low to Output Invalid  
Echo Clock Low to Output Valid  
Echo Clock High to Output Invalid  
Address Valid to Clock High  
Clock High to Address Don’t Care  
Enable Valid to Clock High  
Clock High to Enable Don’t Care  
Write Valid to Clock High  
0.5  
0.5  
1.5  
0.5  
0.5  
1.7  
0.5  
0.5  
2.0  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
1
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.6  
0.2  
1.8  
0.2  
0.5  
2.1  
0.25  
2
–0.2  
–0.2  
–0.25  
2
0.2  
0.2  
0.25  
2
-0.2  
0.6  
0.4  
0.6  
0.4  
0.6  
0.4  
0.6  
0.4  
0.32  
-0.2  
0.7  
0.4  
0.7  
0.4  
0.7  
0.4  
0.7  
0.4  
0.35  
-0.25  
0.8  
2
0.5  
0.8  
0.5  
0.8  
Clock High to Write Don’t Care  
Byte Write Valid to Clock High  
Clock High to Byte Write Don’t Care  
Data In Valid to Clock High  
Notes:  
0.5  
0.8  
0.5  
0.40  
1. Measured at 100 mV from steady state. Not 100% tested.  
2. Guaranteed by design. Not 100% tested.  
3. For any specific temperature and voltage tKHCZ < tKHCX1.  
Rev: 1.04b 06/2001  
21/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
-333  
-300  
-250  
Parameter  
Symbol  
Unit Notes  
Min Max Min Max  
Min  
0.35  
0.40  
0.35  
0.8  
Max  
Clock High to Data In Don’t Care  
Data In Valid to Clock Low  
tKHDX  
tDVKL  
0.27  
0.32  
0.27  
0.6  
0.30  
0.35  
0.30  
0.7  
ns  
ns  
ns  
ns  
ns  
Clock Low to Data In Don’t Care  
ADV Valid to Clock High  
tKLDX  
tadvVKH  
tKHadvX  
Clock High to ADV Don’t Care  
0.4  
0.4  
0.5  
Notes:  
1. Measured at 100 mV from steady state. Not 100% tested.  
2. Guaranteed by design. Not 100% tested.  
3. For any specific temperature and voltage tKHCZ < tKHCX1.  
Rev: 1.04b 06/2001  
22/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
Timing Parameter Key—Read Cycle Timing  
tKHKH  
tKHKL  
CK  
tKHAX  
tKLKH  
tAVKH  
C
D
A
E
tKHQZ  
tKHQX  
tKLQV  
tKLQX  
tKHQV  
tKHQX1  
DQ (DDR)  
QB1  
QB2  
tCLQX  
tCHQX  
tCHQV  
tCLQV  
tKHCH  
tKHCX1  
tCHCL  
tCLCH  
tKHCZ  
CQ  
= CQ High Z  
Rev: 1.04b 06/2001  
23/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
Timing Parameter Key—Control and Data In Timing  
CK  
tKHAX  
tAVKH  
A
B
A
C
tnVKH  
tKHnX  
E1, E2, E3,  
W, Bn, ADV  
tDVKH  
tKHDX  
DQ (Data In)  
DDR Write  
DA1  
DA2  
DB1  
DB2  
tDVKL  
tKLDX  
Note: tnVKH = tEVKH, tWVKH, tBVKH, etc. and tKHnX = tKHEX, tKHWX, tKHBX, etc.  
JTAG Port Operation  
Overview  
The JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan  
interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with VDD. The JTAG output  
drivers are powered by VDDQ  
.
Disabling the JTAG Port  
It is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless  
clocked. To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to  
VDD. TDO should be left unconnected.  
Rev: 1.04b 06/2001  
24/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
JTAG Pin Descriptions  
Pin  
Pin Name  
I/O  
Description  
Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate  
from the falling edge of TCK.  
TCK  
Test Clock  
In  
The TMS input is sampled on the rising edge of TCK. This is the command input for the TAP  
TMS  
TDI  
Test Mode Select  
In controller state machine. An undriven TMS input will produce the same result as a logic one input  
level.  
The TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers  
placed between TDI and TDO. The register placed between TDI and TDO is determined by the state  
In of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction  
Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same  
result as a logic one input level.  
Test Data In  
Output that is active depending on the state of the TAP state machine. Output changes in response  
to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.  
TDO  
Test Data Out  
Out  
Note:  
This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held  
high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.  
JTAG Port Registers  
Overview  
The various JTAG registers, refered to as Test Access Port or TAP Registers, are selected (one at a time) via the sequences of 1s  
and 0s applied to TMS as TCK is strobed. Each of the TAP registers are serial shift registers that capture serial input data on the  
rising edge of TCK and push serial data out on the next falling edge of TCK. When a register is selected, it is placed between the  
TDI and TDO pins.  
Instruction Register  
The Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or  
the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the  
TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the  
controller is placed in Test-Logic-Reset state.  
Bypass Register  
The Bypass Register is a single-bit register that can be placed between TDI and TDO. It allows serial test data to be passed through  
the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.  
Boundary Scan Register  
The Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins.  
The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The  
Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the  
device pins and the bits in the Boundary Scan Register is described in the Scan Order Table following. The Boundary Scan  
Register, under the control of the TAP Controller, is loaded with the contents of the RAMs I/O ring when the controller is in  
Capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to Shift-DR state. SAMPLE-Z,  
SAMPLE/PRELOAD and EXTEST instructions can be used to activate the Boundary Scan Register.  
Rev: 1.04b 06/2001  
25/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
JTAG TAP Block Diagram  
0
Bypass Register  
2
1 0  
Instruction Register  
TDI  
TDO  
ID Code Register  
31 30 29  
2 1 0  
·
· · ·  
Boundary Scan Register  
n
2 1 0  
· · · · · · · · ·  
TMS  
TCK  
Test Access Port (TAP) Controller  
Identification (ID) Register  
The ID Register is a 32-bit register that is loaded with a device and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the Instruction Register. The code is loaded from a 32-bit on-chip ROM.  
It describes various attributes of the RAM as indicated below. The register is then placed between the TDI and TDO pins when the  
controller is moved into Shift-DR state. Bit 0 in the register is the LSB and the first to reach TDO when shifting begins.  
ID Register Contents  
Die  
Revision  
Code  
GSI Technology  
JEDEC Vendor  
ID Code  
I/O  
Not Used  
Configuration  
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1  
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0  
Bit #  
9 8 7 6 5 4 3 2 1  
0
x36  
x18  
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
0
0
0 1 1 0 1 1 0 0 1  
0 1 1 0 1 1 0 0 1  
1
1
Tap Controller Instruction Set  
Overview  
There are two classes of instructions defined in the Standard 1149.1-1990; standard (Public) instructions, and device specific  
(Private) instructions. Some Public instructions are mandatory for 1149.1 compliance. Optional Public instructions must be  
implemented in prescribed ways. The TAP on this device may be used to monitor all input and I/O pads. This device will not  
perform INTEST but can perform the preload portion of the SAMPLE/PRELOAD command.  
Rev: 1.04b 06/2001  
26/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
When the TAP controller is placed in Capture-IR state, the two least significant bits of the instruction register are loaded with 01.  
When the controller is moved to the Shift-IR state, the Instruction Register is placed between TDI and TDO. In this state the  
desired instruction is serially loaded through the TDI input (while the previous contents are shifted out at TDO). For all  
instructions, the TAP executes newly loaded instructions only when the controller is moved to Update-IR state. The TAP  
instruction set for this device is listed in the following table.  
JTAG Tap Controller State Diagram  
Test Logic Reset  
1
0
1
1
1
Run Test Idle  
Select DR  
0
Select IR  
0
0
1
1
1
Capture DR  
0
Capture IR  
0
Shift DR  
1
Shift IR  
1
0
0
1
Exit1 DR  
0
Exit1 IR  
0
Pause DR  
1
Pause IR  
1
0
0
0
0
Exit2 DR  
1
Exit2 IR  
1
Update DR  
Update IR  
1
0
1
0
Instruction Descriptions  
BYPASS  
When the BYPASS instruction is loaded in the Instruction Register, the Bypass Register is placed between TDI and TDO. This occurs when  
the TAP controller is moved to the Shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices  
in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the Instruc-  
tion Register, moving the TAP controller into the Capture-DR state loads the data in the RAMs input and I/O buffers into the Boundary Scan  
Register. Some Boundary Scan Register locations are not associated with an input or I/O pin, and are loaded with the default state identified  
in the BSDL file. Because the RAM clock is independent from the TAP Clock (TCK) it is possible for the TAP to attempt to capture the I/O  
ring contents while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will  
not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAP’s input  
data capture set-up plus hold time (tTS plus tTH ). The RAM’s clock inputs need not be paused for any other TAP operation except capturing  
Rev: 1.04b 06/2001  
27/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
the I/O ring contents into the Boundary Scan Register. Moving the controller to Shift-DR state then places the Boundary Scan Register  
between the TDI and TDO pins. The Update-DR controller state transfers the contents of boundary scan cells into the holding register of  
each cell associated with an output pin on the RAM.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is to be executed whenever the instruction register is loaded with all logic 0s.  
The EXTEST command does not block or override the RAM’s input pins; therefore, the RAM’s internal state is still determined by its input  
pins.  
Typically, the Boundary Scan Register is loaded with the desired pattern of data with the SAMPLE/PRELOAD command. Then the EXTEST  
command is used to output the Boundary Scan Register’s contents, in parallel, on the RAM’s data output drivers on the falling edge of TCK  
when the controller is in the Update-IR state.  
Alternately, the Boundary Scan Register may be loaded in parallel using the EXTEST command. When the EXTEST instruction is selected,  
the state of all the RAM’s input and I/O pins, as well as the default values at Scan Register locations not associated with a pin, are sampled  
and transferred in parallel into the Boundary Scan Register on the rising edge of TCK in the Capture-DR state. Boundary Scan Register con-  
tents may then be shifted serially through the register using the Shift-DR command or the controller can be skipped to the Update-DR com-  
mand. When the controller is placed in the Update-DR state, a RAM that has a fully compliant EXTEST function drives out the value of the  
Boundary Scan Register location associated with which each output pin.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in Capture-DR mode and places the ID  
register between the TDI and TDO pins in Shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any  
time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z/PRELOAD  
The SAMPLE-Z instruction operates exactly like SAMPLE/PRELOAD except that loading the SAMPLE-Z instruction forces all the RAM’s  
output drivers, except TDO, to an inactive drive state (high-Z).  
RFU  
These instructions are reserved for future use. In this device they replicate the BYPASS instruction.  
Rev: 1.04b 06/2001  
28/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
JTAG TAP Instruction Set Summary  
Instruction  
EXTEST  
IDCODE  
Code  
Description  
Notes  
1
000 Places the Boundary Scan Register between TDI and TDO.  
001 Preloads ID Register and places it between TDI and TDO.  
1, 2  
SAMPLE-Z/  
PRELOAD  
Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
Forces all Data and Clock output drivers to High-Z.  
010  
011  
1
1
1
Do not use this instruction; Reserved for Future Use.  
Replicates BYPASS instruction. Places Bypass Register between TDI and TDO.  
RFU  
SAMPLE/  
PRELOAD  
100 Captures I/O ring contents. Places the Boundary Scan Register between TDI and TDO.  
GSI Private  
RFU  
101 GSI Private instruction.  
1
1
1
110 Do not use this instruction; Reserved for Future Use.  
111 Places Bypass Register between TDI and TDO.  
BYPASS  
Notes:  
1. Instruction codes expressed in binary, MSB on left, LSB on right.  
2. Default instruction automatically loaded at power-up and in Test-Logic-Reset state.  
JTAG Port Recommended Operating Conditions and DC Characteristics  
Parameter  
Symbol  
VIHT  
Min.  
Max.  
Unit  
V
Notes  
0.65 * VDD  
VDD+0.3  
0.35 * VDD  
Test Port Input High Voltage  
1
1
VILT  
Test Port Input Low Voltage  
–0.3  
V
IINTH  
IINTL  
TMS, TCK and TDI Input Leakage Current  
TMS, TCK and TDI Input Leakage Current  
TDO Output Leakage Current  
Test Port Output High Voltage  
Test Port Output Low Voltage  
–100  
2
uA  
uA  
uA  
V
2
–2  
–2  
2
2
3
IOLT  
4
VOHT  
VOLT  
VDDQ – 100 mV  
5, 6  
7
100 mV  
V
Notes:  
1. Input Under/overshoot voltage must be –1 V < Vi < VDD + 1 V with a pulse width not to exceed 20% tTKC.  
2. VDD ³ VIN ³ VIL  
3. 0 V £ VIN £ VIL  
4. Output Disable, VOUT = 0 to VDD  
5. The TDO output driver is served by the VDD supply.  
6. IOH = –100 uA  
7. IOL = +100 uA  
Rev: 1.04b 06/2001  
29/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
JTAG Port AC Test Conditions  
Parameter  
Conditions  
JTAG Port AC Test Load  
VDD – 200 mV  
Input high level  
Input low level  
DQ  
200 mV  
1 V/ns  
VDD/2  
Input slew rate  
50W  
Input reference level  
VT = VDD/2  
VDD/2  
Output reference level  
Notes:  
1. Include scope and jig capacitance.  
2. Test conditions as as shown unless otherwise noted.  
JTAG Port Timing Diagram  
tTKL  
tTKH  
tTKC  
TCK  
tTS  
tTH  
TMS  
TDI  
TDO  
tTKQ  
JTAG Port AC Electrical Characteristics  
Parameter  
Symbol  
tTKC  
tTKQ  
tTKH  
tTKL  
tTS  
Min  
50  
Max  
Unit  
ns  
TCK Cycle Time  
TCK Low to TDO Valid  
TCK High Pulse Width  
TCK Low Pulse Width  
TDI & TMS Set Up Time  
TDI & TMS Hold Time  
20  
ns  
20  
20  
10  
10  
ns  
ns  
ns  
tTH  
ns  
Rev: 1.04b 06/2001  
30/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
209 BGA Package Drawing  
14 mm x 22 mm Body, 1.0 mm Bump Pitch, 11 x 19 Bump Array  
A1  
C
A
Side View  
D
aaa  
D1  
e
Bottom View  
Æb  
e
Symbol  
Min  
Typ  
Max  
1.70  
0.60  
0.70  
0.38  
22.1  
Units  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
A
A1  
Æb  
c
0.40  
0.50  
0.31  
21.9  
0.50  
0.60  
0.36  
D
22.0  
D1  
E
18.0 (BSC)  
14.0  
13.9  
14.1  
E1  
e
10.0 (BSC)  
1.00 (BSC)  
0.15  
aaa  
Rev 1.0  
Rev: 1.04b 06/2001  
31/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D
Preliminary  
GS8170D18/36B-333/300/250  
Ordering Information—GSI SigmaRAM  
T
Speed  
1
Org  
Type  
Package  
Part Number  
3
(MHz)  
333  
300  
250  
333  
300  
250  
333  
300  
250  
333  
300  
250  
A
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
512K x 36  
1Mx 18  
GS8170D36B-333  
GS8170D36B-300  
GS8170D36B-250  
GS8170D36B-333I  
GS8170D36B-300I  
GS8170D36B-250I  
GS8170D18B-333  
GS8170D18B-300  
GS8170D18B-250  
GS8170D18B-333I  
GS8170D18B-300I  
GS8170D18B-250I  
1 mm Pitch, 209-Pin BGA  
1 mm Pitch, 209-Pin BGA  
1 mm Pitch, 209-Pin BGA  
1 mm Pitch, 209-Pin BGA  
1 mm Pitch, 209-Pin BGA  
1 mm Pitch, 209-Pin BGA  
1 mm Pitch, 209-Pin BGA  
1 mm Pitch, 209-Pin BGA  
1 mm Pitch, 209-Pin BGA  
1 mm Pitch, 209-Pin BGA  
1 mm Pitch, 209-Pin BGA  
1 mm Pitch, 209-Pin BGA  
C
S1x2 SRAM  
S1x2 SRAM  
S1x2 SRAM  
S1x2 SRAM  
S1x2 SRAM  
S1x2 SRAM  
S1x2 SRAM  
S1x2 SRAM  
S1x2 SRAM  
S1x2 SRAM  
S1x2 SRAM  
S1x2 SRAM  
C
C
I
I
I
C
C
C
I
1Mx 18  
1Mx 18  
1Mx 18  
1Mx 18  
I
1Mx 18  
I
Notes:  
1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example:  
GS817x72B-300T.  
2. TA = C = Commercial Temperature Range. TA = I = Industrial Temperature Range.  
Rev: 1.04b 06/2001  
32/32  
© 2001, GSI Technology, Inc.  
Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.  
D

相关型号:

GS8170D36GB-300T

Standard SRAM, 512KX36, 1.8ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170D36GB-333

Standard SRAM, 512KX36, 1.6ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170D36GB-333I

Standard SRAM, 512KX36, 1.6ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170D36GB-333IT

Standard SRAM, 512KX36, 1.6ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170D36GB-333T

Standard SRAM, 512KX36, 1.6ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170DD18C-250IT

Standard SRAM, 1MX18, 2.1ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170DD18C-300I

Standard SRAM, 1MX18, 1.8ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170DD18C-333I

Standard SRAM, 1MX18, 1.6ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170DD18GC-250I

Standard SRAM, 1MX18, 2.1ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170DD18GC-250T

Standard SRAM, 1MX18, 2.1ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170DD18GC-300I

Standard SRAM, 1MX18, 1.8ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI

GS8170DD18GC-333

Standard SRAM, 1MX18, 1.6ns, CMOS, PBGA209, 14 X 22 MM, 1 MM PITCH, BGA-209
GSI