MB89P875 [FUJITSU]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89P875
型号: MB89P875
厂家: FUJITSU    FUJITSU
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器
文件: 总51页 (文件大小:684K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12516-4E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89870 Series  
MB89875/P875/PV870  
DESCRIPTION  
The MB89870 series is a line of single-chip microcontrollers. In addition to a compact instruction set, the  
microcontrollers contain a variety of peripheral functions such as dual-clock control system, five operating speed  
control stages, timers, a PWM timer, a serial interface, an A/D converter, an external interrupt, an LCD controller/  
driver, and a watch prescaler.  
FEATURES  
• F2MC-8L family CPU core  
• Dual-clock control system  
• Maximum memory space: 64 Kbytes  
• Minimum execution time: 0.4 µs/10 MHz  
• Interrupt processing time: 3.6 µs/10 MHz  
• I/O ports: max. 45 channels  
• 21-bit timebase timer  
• 8-bit PWM timer: 1 channel, 1 output channel  
• 8/16-bit timer/counter: 2 channels (16 bits × 1 channel)  
• 8-bit serial I/O: 1 channel  
• 10-bit A/D converter: 8 channels  
• OP amp: 4 channels  
• External interrupt (wake-up function): 8 channels  
(Continued)  
PACKAGE  
80-pin Plastic LQFP  
80-pin Plastic QFP  
80-pin Ceramic MQFP  
(FPT-80P-M05)  
(FPT-80P-M06)  
(MQP-80C-P01)  
MB89870 Series  
(Continued)  
• Watch prescaler (15 bits)  
• LCD controller/driver: 16 to 24 segments × 2 to 4 commons  
• Power-on reset function  
• Low-power consumption modes (subclock mode, watch mode, sleep mode, and stop mode)  
• LQFP-80 (0.50-mm pitch) and QFP-80 (0.80-mm pitch) package  
PRODUCT LINEUP  
Part number  
MB89P875  
MB89PV870  
MB89875  
Parameter  
Classification  
Mass production product  
(mask ROM product)  
Piggyback/evaluation product  
(for development)  
One-time PROM product  
ROM size  
16 K × 8 bits  
(internal mask ROM)  
16 K × 8 bits  
(internal PROM)  
32 K × 8 bits  
(external ROM)  
RAM size  
512 × 8 bits  
1 K × 8 bits  
LCD display RAM  
CPU functions  
12 × 8 bits  
Number of instructions:  
Instruction bit length:  
Instruction length:  
Data bit length:  
136  
8 bits  
1 to 3 bytes  
1, 8, 16 bits  
Minimum execution time: 0.4 µs/10 MHz to 6.4 µs/10 MHz, 61.0 µs/32.768 kHz  
Interrupt processing time: 3.6 µs/10 MHz to 57.6 µs/10 MHz, 549.3 µs/32.768 kHz  
Ports  
General-purpose I/O ports (CMOS): 45 (42 ports also serve as peripherals and 8 ports are  
also an N-ch open-drain type.)  
8-bit interval timer operation (square output capable, operating clock cycle: 0.4 µs to 3.3 ms) × 1 channel  
8-bit PWM timer  
Timers  
7/8-bit resolution PWM operation (conversion cycle: 51.2 µs to 839 ms) × 1 channel  
8-bit timer operation (operating clock cycle) × 2 channels  
16-bit timer operation (operating clock cycle) × 1 channel  
8-bit Serial I/O  
8 bits  
LSB first/MSB first selectable  
One clock selectable from four operation clocks  
(one external shift clock, three internal shift clocks: 0.8 µs, 3.2 µs, 12.8 µs)  
LCD controller  
24 segments × 4 commons  
10-bit A/D  
converter  
10-bit resolution × 8 channels  
A/D conversion mode (conversion time: 13.2 µs)  
Sense mode (conversion time: 7.2 µs)  
OP amps  
4 channels  
The output can be used for A/D converter input.  
(Continued)  
2
MB89870 Series  
(Continued)  
Part number  
MB89P875  
MB89PV870  
MB89875  
Parameter  
External  
interrupt  
8 independent channels (edge selection, interrupt vector, and source flag)  
Rising edge/falling edge selectable (4 channels)  
Rising edge/falling edge/both edges selectable (4 channels)  
Used also for wake-up from stop/sleep mode (Edge detection is also permitted in stop mode.)  
Low-power  
Consumption  
(Standby mode)  
Subclock mode, sleep mode, watch mode, and stop mode  
CMOS  
Process  
Operating voltage*  
EPROM for use  
2.2 V to 6.0 V  
2.7 V to 6.0 V  
MBM27C256A-20TV  
* : Varies with conditions such as the operating frequency. (See section “Electrical Characteristics.”)  
PACKAGE AND CORRESPONDING PRODUCTS  
MB89875  
MB89P875  
Package  
MB89PV870  
FPT-80P-M05  
FPT-80P-M06  
MQP-80C-P01  
×
×
×
: Available  
× : Not available  
Note: For more information about each package, see section “Package Dimensions.”  
3
MB89870 Series  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Before evaluating using the piggyback product, verify its differences from the product that will actually be used.  
Take particular care on the following points:  
• On the MB89PV870, the program area starts from address 8006H but on the MB89P875 and MB89875 starts  
from 8000H.  
(On the MB89P875, addresses BFF0H to BFF6H comprise the option setting area, option settings can be read  
by reading these addresses. On the MB89PV870 and MB89875, addresses 8000H to 8006H could also be  
used as a program ROM. However, do not use these addresses in order to maintain compatibility of the  
MB89P875.)  
2. Current Consumption  
• In the case of the MB89PV870, add the current consumed by the EPROM which is connected to the top socket.  
• When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume  
more current than the product with a mask ROM.  
However, the current consumption in sleep/stop modes is the same. (For more information, see sections  
Electrical Characteristics” and “Example Characteristics.”)  
3. Mask Options  
Functions that can be selected as options and how to designate these options vary by the product.  
Before using options check section “Mask Options.”  
Take particular care on the following points:  
• A pull-up resistor cannot be selectable for P30 to P37 if they are used as the analog input pin for an A/D  
converter.  
• A pull-up resistor cannot be selectable for P10 to P17, and P34 to P37 if an OP amp is used.  
• A pull-up resistor is not selectable for P40 to P47 and P23, P24 if they are used as LCD pins.  
• Options are fixed on the MB89PV870.  
4
MB89870 Series  
PIN ASSIGNMENT  
(Top view)  
P46/SEG22  
P47/SEG23  
AVSS  
1
2
3
4
5
6
7
8
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SEG1  
SEG0  
COM0  
COM1  
COM2/P24  
COM3/P23  
V3  
VCC  
V2  
V1  
V0  
VSS  
P22  
P21  
P20  
X1A  
X0A  
P57/SCK  
P56/SO  
P55/SI  
AVR  
AVCC  
P30/AN0  
P31/AN1  
P32/AN2  
P33/AN3  
P34/AN4/OUT0  
P35/AN5/OUT1  
P36/AN6/OUT2  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P37/AN7/OUT3  
X1  
X0  
MOD1  
MOD0  
RST  
P00/INT0  
(FPT-80P-M05)  
5
MB89870 Series  
(Top view)  
P44/SEG20  
P45/SEG21  
P46/SEG22  
P47/SEG23  
AVSS  
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SEG3  
SEG2  
SEG1  
SEG0  
COM0  
COM1  
COM2/P24  
COM3/P23  
V3  
VCC  
V2  
V1  
V0  
VSS  
P22  
P21  
P20  
X1A  
X0A  
AVR  
AVCC  
P30/AN0  
P31/AN1  
P32/AN2  
P33/AN3  
P34/AN4/OUT0  
P35/AN5/OUT1  
P36/AN6/OUT2  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P37/AN7/OUT3  
X1  
X0  
MOD1  
MOD0  
RST  
P57/SCK  
P56/SO  
P55/SI  
P54/BUZ  
P53/EC  
P00/INT0  
P01/INT1  
P02/INT2  
(FPT-80P-M06)  
6
MB89870 Series  
(Top view)  
P44/SEG20  
P45/SEG21  
P46/SEG22  
P47/SEG23  
AVSS  
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SEG3  
SEG2  
SEG1  
SEG0  
COM0  
COM1  
COM2/P24  
COM3/P23  
V3  
VCC  
V2  
V1  
V0  
VSS  
P22  
P21  
P20  
X1A  
X0A  
AVR  
AVCC  
P30/AN0  
P31/AN1  
P32/AN2  
P33/AN3  
P34/AN4/OUT0  
P35/AN5/OUT1  
P36/AN6/OUT2  
VSS  
101  
102  
103  
104  
105  
106  
107  
108  
109  
93  
92  
91  
90  
89  
88  
87  
86  
85  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P37/AN7/OUT3  
X1  
X0  
MOD1  
MOD0  
RST  
P57/SCK  
P56/SO  
P55/SI  
P54/BUZ  
P53/EC  
P00/INT0  
P01/INT1  
P02/INT2  
Each pin inside the dashed line  
is for the MB89PV870 only.  
(MQP-80C-P01)  
Pin assignment on package top (MB89PV870 only)  
Pin no.  
81  
Pin name  
N.C.  
VPP  
Pin no.  
89  
Pin name  
A2  
Pin no.  
97  
Pin name  
N.C.  
O4  
Pin no.  
Pin name  
OE  
105  
106  
107  
108  
109  
110  
111  
112  
82  
90  
A1  
98  
N.C.  
A11  
A9  
83  
A12  
A7  
91  
A0  
99  
O5  
84  
92  
N.C.  
O1  
100  
101  
102  
103  
104  
O6  
85  
A6  
93  
O7  
A8  
86  
A5  
94  
O2  
O8  
A13  
A14  
VCC  
87  
A4  
95  
O3  
CE  
88  
A3  
96  
VSS  
A10  
N.C.: Internally connected. Do not use.  
7
MB89870 Series  
PIN DESCRIPTION  
Pin no.  
Circuit  
type  
Pin name  
Function  
QFP*2  
LQFP*1  
MQFP*3  
15  
16  
44  
45  
17  
18  
19  
17  
18  
46  
47  
19  
20  
21  
X1  
A
B
C
J
Main clock crystal oscillator pins (max. 10 MHz)  
X0  
X0A  
X1A  
MOD1  
MOD0  
RST  
Subclock crystal oscillator pins (32.768 kHz)  
Operating mode selection pins  
Connect to VSS (GND) when using.  
Reset I/O pin  
“L” is output from this pin by an internal source.  
The internal circuit is initialized by the input of “L”.  
20 to 27  
22 to 29  
P00/INT0 to  
P07/INT7  
D
E
General-purpose I/O ports  
Also serve as an external interrupt input (wake-up  
function).  
External interrupt input is hysteresis input.  
28,  
29,  
30,  
31,  
32,  
33,  
34,  
35  
30,  
31,  
32,  
33,  
34,  
35,  
36,  
37  
P10/IN0–,  
P11/IN0+,  
P12/IN1–,  
P13/IN1+,  
P14/IN2–,  
P15/IN2+,  
P16/IN3–,  
P17/IN3+  
General-purpose I/O ports  
Also serve as the input for the OP amp  
46 to 48  
6 to 9  
48 to 50  
8 to 11  
P20 to P22  
F
E
General-purpose I/O ports  
P30/AN0 to  
P33/AN3  
General-purpose I/O ports  
Also serve as the input for the A/D converter.  
10 to 14  
12 to 16  
P34/AN4/OUT0 to  
P37/AN7/OUT3  
G
H
F
General-purpose I/O ports  
Also serve as the A/D converter input and the  
output for the OP amp.  
75 to 80,  
1,2  
77 to 80,  
1 to 4  
P40/SEG16 to  
P47/SEG23  
General-purpose I/O ports  
Also serve as an LCD controller/driver segment  
output.  
36  
38  
P50/PWM  
General-purpose I/O port  
The output type can be switched between N-ch  
open-drain and CMOS. Also serves as an 8-bit  
PWM timer.  
37,  
38,  
39  
39,  
40,  
41  
P51/TO2,  
P52/TO1,  
P53/EC  
F
General-purpose I/O ports  
The output type can be switched between N-ch  
open-drain and CMOS. Also serves as an 8/16-bit  
timer/counter.  
(Continued)  
*1: FPT-80P-M05  
*2: FPT-80P-M06  
*3: MQP-80C-P01  
8
MB89870 Series  
(Continued)  
Pin no.  
Circuit  
type  
Pin name  
P54/BUZ  
Function  
QFP*2  
LQFP*1  
MQFP*3  
40  
42  
F
General-purpose I/O port  
The output type can be switched between N-ch  
open-drain and CMOS. Also serves as a buzzer  
output.  
41,  
42,  
43  
43,  
44,  
45  
P55/SI,  
P56/SO,  
P57/SCK  
F
General-purpose I/O ports  
The output type can be switched between N-ch  
open-drain and CMOS. Also serve as an 8-bit serial  
I/O.  
59 to 74  
61 to 76  
SEG15 to SEG0  
I
I
LCD controller/driver segment output pins  
LCD controller/driver common output pins  
58,  
57  
60,  
59  
COM0,  
COM1  
56,  
55  
58,  
57  
COM2/P24,  
COM3/P23  
H
LCD controller/driver common output pins  
These pins can be used as general-purpose I/O  
ports when they are not used as common output  
pins.  
50 to 54  
52 to 56  
V3 to V0  
AVCC  
AVR  
AVSS  
VCC  
LCD driving power supply pins  
5
4
7
6
A/D converter and OP amp power supply pin  
A/D converter reference voltage input pin  
A/D converter and OP amp power supply (GND) pin  
Power supply pin  
3
5
53  
55  
13,  
49  
15,  
51  
VSS  
Power supply (GND) pins  
*1: FPT-80P-M05  
*2: FPT-80P-M06  
*3: MQP-80C-P01  
9
MB89870 Series  
• External EPROM pins (MB89PV870 only)  
Pin no.  
Pin name  
VPP  
I/O  
O
Function  
82  
“H” level output pin  
Address output pins  
83  
84  
85  
86  
87  
88  
89  
90  
91  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
O
93  
94  
95  
O1  
O2  
O3  
I
Data input pins  
96  
VSS  
O
I
Power supply (GND) pin  
Data input pins  
98  
99  
100  
101  
102  
O4  
O5  
O6  
O7  
O8  
103  
CE  
O
ROM chip enable pin  
Outputs “H” during standby.  
104  
105  
A10  
OE  
O
O
Address output pin  
ROM output enable pin  
Outputs “L” at all times.  
107  
108  
109  
A11  
A9  
A8  
O
Address output pins  
110  
111  
112  
A13  
A14  
VCC  
O
O
O
EPROM power supply pin  
81  
92  
N.C.  
Internally connected pins  
Be sure to leave them open.  
97  
106  
10  
MB89870 Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
Main clock  
X1  
• At an oscillation feedback resistor of approximately  
1 M/5.0 V  
N-ch P-ch  
X0  
P-ch  
N-ch  
Main clock control signal  
B
Subclock  
X1A  
X0A  
• At an oscillation feedback resistor of approximately  
4.5 M/5.0 V  
N-ch P-ch  
P-ch  
N-ch  
Subclock control signal  
C
D
• CMOS hysteresis input  
• CMOS I/O (when selected as general-purpose ports)  
• Hysteresis input (when selected as an external  
interrupt input)  
R
P-ch  
• Pull-up resistor optional at approximately 50 k/5.0 V  
P-ch  
N-ch  
E
• Analog input  
R
P-ch  
N-ch  
• CMOS I/O (when selected as general-purpose ports)  
• Pull-up resistor optional at approximately 50 k/5.0 V  
Analog input  
P-ch  
P-ch  
N-ch  
(Continued)  
11  
MB89870 Series  
(Continued)  
Type  
Circuit  
Remarks  
F
• CMOS I/O (when selected as general-purpose ports)  
• P50 to P57 are output only and can be switched  
between CMOS output and N-ch open-drain output.  
• Pull-up resistor optional at approximately 50 k/5.0 V  
R
P-ch  
P-ch  
N-ch  
G
• Analog input  
• Analog output  
• CMOS I/O (when selected as general-purpose ports)  
• Pull-up resistor optional at approximately 50 k/5.0 V  
R
P-ch  
N-ch  
Analog output  
Analog output  
P-ch  
P-ch  
N-ch  
H
• LCD controller/driver output  
• CMOS I/O (when selected as general-purpose ports)  
• Pull-up resistor optional at approximately 50 k/5.0 V  
P-ch  
N-ch  
R
P-ch  
N-ch  
P-ch  
P-ch  
N-ch  
I
• LCD controller/driver output  
P-ch  
N-ch  
P-ch  
N-ch  
J
• At an output pull-up resistor (P-ch) of approximately  
50 k/5.0 V  
R
• CMOS hysteresis input  
P-ch  
N-ch  
12  
MB89870 Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- and high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in section “Electrical Characteristics” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters  
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.  
4. Treatment of N.C. Pins  
Be sure to leave (internally connected) N.C. pins open.  
5. Power Supply Voltage Fluctuations  
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage  
couldcausemalfunctions, evenifitoccurswithintheratedrange. StabilizingvoltagesuppliedtotheICistherefore  
important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P  
value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient  
fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.  
6. Precautions when Using an External Clock  
When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and  
wake-up from stop mode.  
13  
MB89870 Series  
PROGRAMMING TO THE EPROM ON THE MB89P875  
The MB89P875 is an OTPROM version of the MB89870 series.  
1. Features  
• 16-Kbyte PROM on chip  
• Options can be set using the EPROM programmer.  
• Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in each mode such as 16-Kbyte PROM, option area is diagrammed below.  
Address  
0000H  
Single chip  
EPROM mode  
(Corresponding address on the EPROM programmer)  
I/O  
0080H  
0280H  
RAM  
Not available  
BFF0H  
BFF6H  
C000H  
3FF0H  
Not available  
Not available  
Option area  
3FF6H  
Vacancy  
4000H  
EPROM  
16 KB  
PROM  
16 KB  
FFFFH  
7FFFH  
3. Programming to the EPROM  
In EPROM mode, the MB89P875 functions equivalent to the MBM27C256A. This allows the PROM to be  
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by  
using the dedicated socket adapter. When the operating ROM area for a single chip is 16 Kbytes (C000H to  
FFFFH) the PROM can be programmed as follows:  
Programming procedure  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 4000H to 7FFFH (note that addresses C000H to FFFFH  
while operating as a single chip assign to 4000H to 7FFFH in EPROM mode).  
Load option data into addresses 3FF0H to 3FF6H of the EPROM programmer. (For information about each  
corresponding option, see “7. Setting OTPROM Options.”)  
(3) Program to 3FF0H to 7FFFH with the EPROM programmer.  
14  
MB89870 Series  
4. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked  
OTPROM microcomputer program.  
Program, verify  
Aging  
+150°C, 48 Hrs.  
Data verification  
Assembly  
5. Programming Yield  
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.  
For this reason, a programming yield of 100% cannot be assured at all times.  
6. EPROM Programmer Socket Adapter  
Recommended programmer  
manufacturer and programmer name  
Compatible socket adapter  
Minato  
Electronics Inc.  
Part No.  
Package  
Advantest Corp.  
Sun Hayato Co., Ltd.  
1890A  
R4945A  
MB89P875PFV  
MB89P875PF  
LQFP-80  
QFP-80  
ROM-80SQF-28DP-8L  
ROM-80QF-28DP-8L3  
Recommended  
Recommended  
Recommended  
Recommended  
Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403  
FAX (81)-3-5396-9106  
Minato Electronics Inc.: TEL: USA (1)-916-348-6066  
JAPAN (81)-45-591-5611  
Advantest Corp.: TEL: Except JAPAN (81)-3-3930-4111  
15  
MB89870 Series  
7. Setting OTPROM Options  
The programming procedure is the same as that for the PROM. Options can be set by programming values at  
the addresses shown on the memory map. The relationship between bits and options is shown on the following  
bit map:  
• OTPROM option bit map  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Single/dual-  
clock system  
1: Dual clock  
0: Single  
Oscillation stabilization time  
Vacancy  
Vacancy  
Vacancy  
Reset pin  
output  
1: Yes  
Power-on  
reset  
1: Yes  
0: No  
3FF0H  
Readable  
Readable  
Readable  
00: 218/FCH  
01: 217/FCH  
10: 213/FCH  
11: 0  
and writable and writable and writable  
0: No  
clock  
P07  
P06  
P05  
P04  
P03  
P02  
P01  
P00  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
3FF1H  
3FF2H  
3FF3H  
3FF4H  
3FF5H  
3FF6H  
Vacancy  
Vacancy  
P44 to P47 P40 to P43 P16, P17  
P14, P15  
Pull-up  
1: No  
P12, P13  
Pull-up  
1: No  
P10, P11  
Pull-up  
1: No  
Pull-up  
1: No  
Pull-up  
1: No  
Pull-up  
1: No  
Readable  
and writable and writable 0: Yes  
Readable  
0: Yes  
0: Yes  
0: Yes  
0: Yes  
0: Yes  
P37  
P36  
P35  
P34  
P33  
P32  
P31  
P30  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Vacancy  
Vacancy  
Vacancy  
P24  
Pull-up  
1: No  
P23  
P22  
P21  
P20  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Readable  
Readable  
Readable  
and writable and writable and writable 0: Yes  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Reserved bit  
Readable  
Readable  
Readable  
Readable  
Readable  
Readable  
Readable  
Readable  
and writable and writable and writable and writable and writable and writable and writable and writable  
Note: Each bit is set to ‘1’ as the initialized value.  
16  
MB89870 Series  
PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE  
1. EPROM for Use  
MBM27C256A-20TV  
2. Programming Socket Adapter  
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato  
Co., Ltd.) listed below.  
Package  
Compatible socket part number  
ROM-32LC-28DP-YG  
LCC-32 (Rectangle)  
LCC-32 (Square)  
ROM-32LC-28DP-S  
Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403  
FAX (81)-3-5396-9106  
3. Memory Space  
Memory space in 32-Kbyte PROM is diagrammed below.  
Address  
0000H  
Single chip  
I/O  
Corresponding addresses on the  
EPROM programmer  
0080H  
0480H  
8000H  
8006H  
RAM  
Not available  
Not available  
0000H  
Not available  
0006H  
PROM  
32 KB  
PROM  
32 KB  
FFFFH  
7FFFH  
4. Programming to the EPROM  
(1) Set the EPROM programmer to the MBM27C256A.  
(2) Load program data into the EPROM programmer at 0006H to 7FFFH.  
(3) Program to 0000H to 7FFFH with the EPROM programmer.  
17  
MB89870 Series  
BLOCK DIAGRAM  
I/O port  
Timebase timer  
8-bit PWM timer  
P50/PWM  
P51/TO2  
X0  
X1  
Main clock oscillator  
Clock controller  
8-bit timer/counter 2  
8-bit timer/counter 1  
Subclock oscillator  
(32.768 kHz)  
X0A  
X1A  
P52/TO1  
P53/EC  
Reset circuit  
(Watchdog)  
RST  
Buzzer output  
8-bit serial I/O  
P54/BUZ  
I/O port  
P55/SI  
P56/SO  
P57/SCK  
8
8
P40/SEG16 to  
P47/SEG23  
LCD controller/driver  
3
2
COM2/P24,  
COM3/P23  
P20 to P22  
I/O port  
I/O port  
2
COM0, COM1  
SEG0 to SEG15  
V0 to V3  
COM: 2 to 4  
16  
SEG: 16 to 24  
8
4
8
4
External interrupt  
P00/INT0 to  
P07/INT7  
4
10-bit A/D converter  
P30/AN0 to  
P33/AN3  
LCD display RAM  
P34/AN4/OUT0  
(12 × 8 bits)  
+
P10/IN0–  
P11/IN0+  
RAM  
P35/AN5/OUT1  
+
P12/IN1–  
P13/IN1+  
F2MC-8L  
CPU  
P36/AN6/OUT2  
+
P14/IN2–  
P15/IN2+  
ROM  
Other pins  
P37/AN7/OUT3  
MOD × 2, VCC × 1  
+
P16/IN3–  
P17/IN3+  
V
SS × 2  
AVCC, AVSS, AVR  
18  
MB89870 Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89870 series offer a memory space of 64 Kbytes for storing all of I/O, data, and  
program areas. The I/O area is located at the lowest address. The data area is provided immediately above the  
I/O area. The data area can be divided into register, stack, and direct areas according to the application. The  
program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of  
interrupt reset vectors and vector call instructions toward the highest address within the program area. The  
memory space of the MB89870 series is structured as illustrated below.  
Memory Space  
MB89P875  
I/O  
MB89PV870  
I/O  
MB89875  
I/O  
0000H  
0080H  
0100H  
0000H  
0080H  
0000H  
0080H  
0100H  
RAM  
1 KB  
RAM  
512 B  
RAM  
512 B  
0100H  
0200H  
Register  
Register  
Register  
0200H  
0280H  
0200H  
0280H  
Not available  
Not available  
0480H  
8000H  
Not available  
Not available  
BFF0H  
C000H  
C000H  
External ROM  
32 KB  
PROM  
16 KB  
ROM  
16 KB  
FFFFH  
FFFFH  
FFFFH  
19  
MB89870 Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers  
in the memory. The following dedicated registers are provided:  
Program counter (PC):  
Accumulator (A):  
A 16-bit register for indicating instruction storage positions  
A 16-bit temporary register for storing arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator  
When the instruction is an 8-bit data processing instruction, the lower byte is used.  
Index register (IX):  
Extra pointer (EP):  
Stack pointer (SP):  
Program status (PS):  
A 16-bit register for index modification  
A 16-bit pointer for indicating a memory address  
A 16-bit register for indicating a stack area  
A 16-bit register for storing a register pointer, a condition code  
16 bits  
Initial value  
FFFDH  
: Program counter  
: Accumulator  
PC  
A
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
: Temporary accumulator  
: Index register  
T
IX  
: Extra pointer  
EP  
SP  
PS  
: Stack pointer  
: Program status  
I-flag = 0, IL1,0 = 11  
The other bit values are indeterminate.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR). (See the diagram below.)  
Structure of the Program Status Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
PS  
RP  
Vacancy Vacancy Vacancy  
H
IL1, 0  
N
V
C
RP  
CCR  
20  
MB89870 Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for Conversion of Actual Addresses of the General-purpose Register Area  
RP  
Lower OP codes  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and  
bits for control of CPU operations at the time of an interrupt.  
H-flag: Set to ‘1’ when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation.  
Cleared to ‘0’ otherwise. This flag is for decimal adjustment instructions.  
I-flag: Interrupt is enabled when this flag is set to ‘1’. Interrupt is disabled when the flag is cleared to ‘0’. Cleared  
to ‘0’ at the reset.  
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is  
higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
High  
1
0
1
1
0
2
3
1
1
Low  
N-flag: Set to ‘1’ if the MSB becomes to ‘1’ as the result of an arithmetic operation. Cleared to ‘0’ when the bit  
is cleared to ‘0’.  
Z-flag: Set to ‘1’ when an arithmetic operation results in 0. Cleared otherwise.  
V-flag: Set to ‘1’ if the complement on 2 overflows as a result of an arithmetic operation. Cleared to ‘0’ if the  
overflow does not occur.  
C-flag: Set to ‘1’ when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to  
‘0’ otherwise. Set to the shift-out value in the case of a shift instruction.  
21  
MB89870 Series  
The following general-purpose registers are provided:  
General-purpose registers: An 8-bit register for storing data  
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains  
eight registers and up to a total of 32 banks can be used on the MB89875 (RAM 512 × 8 bits). The bank currently  
in use is indicated by the register bank pointer (RP).  
Note: The number of register banks that can be used varies with the RAM size.  
Register Bank Configuraiton  
This address = 0100H + 8 × (RP)  
R 0  
R 1  
R 2  
R 3  
R 4  
R 5  
R 6  
R 7  
32 banks  
Memory area  
22  
MB89870 Series  
I/O MAP  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
Read/write  
R/W  
W
Register name  
PDR0  
Register description  
Port 0 data register  
DDR0  
Port 0 data direction register  
Port 1 data register  
Port 1 data direction register  
Port 2 data register  
Port 2 data direction register  
Vacancy  
R/W  
W
PDR1  
DDR1  
R/W  
R/W  
PDR2  
DDR2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SCC  
SMC  
System clock control register  
Standby control register  
Watchdog timer control register  
Timebase timer control register  
Watch prescaler control register  
Port 3 data register  
Port 3 data direction register  
Port 4 data register  
Port 4 data direction register  
Vacancy  
WDTE  
TBCR  
WCR  
PDR3  
DDR3  
PDR4  
DDR4  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
R/W  
R/W  
PDR5  
DDR5  
Port 5 data register  
Port 5 data direction register  
Vacancy  
Vacancy  
R/W  
CHG5  
Port 5 switching register  
Vacancy  
Vacancy  
W
R/W  
W
ICR3  
CNTR  
COMP  
Port 3 input control register  
PWM control register  
PWM compare register  
(Continued)  
23  
MB89870 Series  
(Continued)  
Address  
20H  
Read/write  
Register name  
Register description  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
21H  
22H  
23H  
24H  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
T2CR  
T1CR  
T2DR  
T1DR  
SMR  
Timer 2 control register  
Timer 1 control register  
Timer 2 data register  
25H  
26H  
27H  
Timer 1 data register  
28H  
Serial mode register  
29H  
SDR  
Serial data register  
2AH  
Vacancy  
2BH  
Vacancy  
2CH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OPC  
ADC1  
ADC2  
ADCH  
ADCL  
EIE1  
OP amp control register  
A/D converter control register 1  
A/D converter control register 2  
A/D converter data register H  
A/D converter data register L  
External interrupt 1 enable register  
External interrupt 1 flag register  
External interrupt 2 enable register  
Vacancy  
2DH  
2EH  
2FH  
30H  
31H  
32H  
EIF1  
33H  
EIE2  
34H to 5FH  
60H to 6BH  
6CH to 6FH  
70H  
R/W  
VRAM  
Display data RAM  
Vacancy  
R/W  
R/W  
LCR1  
LCR2  
LCD controller/driver control register 1  
LCD controller/driver control register 2  
Vacancy  
71H  
72H to 7BH  
7CH  
W
W
W
ILR1  
ILR2  
ILR3  
Interrupt level setting register 1  
Interrupt level setting register 2  
Interrupt level setting register 3  
Vacancy  
7DH  
7EH  
7FH  
Note: Do not use vacancies.  
24  
MB89870 Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(AVSS = VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC  
AVCC  
Power supply voltage  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
V
V
*
A/D converter reference input  
voltage  
AVR  
VSS + 7.0  
LCD power supply voltage  
Input voltage  
V0 to V3 VSS – 0.3  
VSS + 7.0  
VCC + 0.3  
VCC + 0.3  
V
V
V
V0 to V3 must not exceed VCC.  
VI  
VSS – 0.3  
VSS – 0.3  
Output voltage  
VO  
“L” level maximum output  
current  
IOL  
20  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Average value (operating  
current × operating rate)  
“L” level average output current  
IOLAV  
IOL  
IOLAV  
IOH  
“L” level total maximum output  
current  
100  
40  
“L” level total average output  
current  
Average value (operating  
current × operating rate)  
“H” level maximum output  
current  
–20  
–4  
Average value (operating  
current × operating rate)  
“H” level average output current  
IOHAV  
IOH  
IOHAV  
“H” level total maximum output  
current  
–50  
–20  
“H” level total average output  
current  
Average value (operating  
current × operating rate)  
Power consumption  
Operating temperature  
Storage temperature  
PD  
300  
+85  
mW  
°C  
TA  
–40  
–55  
Tstg  
+150  
°C  
* : Use AVCC and VCC set at the same voltage.  
Take care so that AVR does not exceed AVCC + 0.3 V and AVCC does not exceed VCC, such as when power is  
turned on.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
25  
MB89870 Series  
2. Recommended Operating Conditions  
(AVSS = VSS = 0.0 V)  
Remarks  
Value  
Symbol  
Unit  
Parameter  
Min.  
Max.  
Normal operation assurance range*  
MB89875  
2.2*  
6.0*  
V
VCC  
AVCC  
Power supply voltage  
Normal operation assurance range  
MB89PV870/P875  
2.7  
1.5  
0.0  
6.0  
6.0  
V
V
V
Retains the RAM state in stop mode  
A/D converter reference input  
voltage  
AVR  
AVCC  
LCD power supply range  
(The optimum value is dependent on  
the LCD element in use.)  
LCD power supply voltage  
V0 to V3  
TA  
VSS  
VCC  
V
Operating temperature  
–40  
+85  
°C  
* : These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1  
and “5. A/D Converter Electrical Characteristics.”  
26  
MB89870 Series  
Figure 1 Operating Voltage vs. Main Clock Operating Frequency  
6
Analog accuracy assured in the  
AVCC = 3.5 V to 6.0 V range  
5
Operation assurance range  
4
3
2
1
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0  
Main clock operating frequency (at an instruction cycle of 4/FCH) (MHz)  
0.4  
4.0 2.0  
0.8  
Minimum execution time (instruction cycle) (ms)  
Note: The shaded area is assured only for the MB89875.  
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/FCH.  
Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the  
operating speed is switched using a gear.  
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All  
the device’s electrical characteristics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside  
these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representative beforehand.  
27  
MB89870 Series  
3. DC Characteristics  
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter Symbol  
Pin name  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
P20 to P24,  
VIH  
P30 to P37, P40 to P47,  
P50 to P52, P54, P56  
0.7 VCC  
VCC + 0.3  
V
“H” level input  
voltage  
P00 to P07, P10 to P17,  
MOD0, MOD1, RST,  
P53, P55, P57  
VIHS  
0.8 VCC  
VSS 0.3  
VSS 0.3  
VCC + 0.3  
0.3 VCC  
0.2 VCC  
V
V
V
P20 to P24,  
P30 to P37, P40 to P47,  
P50 to P52, P54, P56  
VIL  
“L” level input  
voltage  
P00 to P07, P10 to P17,  
MOD0, MOD1, RST,  
P53, P55, P57  
VILS  
Open-drain  
output  
pin  
N-ch open-  
VD  
P50 to P57  
VSS 0.3  
VCC – 0.3  
V
drain  
application  
voltage  
“H” level  
output  
voltage  
P00 to P07, P10 to P17,  
P20 to P24, P30 to P37, IOH = –2.0 mA  
P40 to P47, P50 to P57  
VOH  
4.0  
V
V
“L” level  
output  
voltage  
P00 to P07, P10 to P17,  
P20 to P24, P30 to P37, IOL = 4.0 mA  
P40 to P47, P50 to P57  
VOL  
0.4  
±5  
Input leakage  
current  
(Hi-Z output  
leakage  
P00 to P07, P10 to P17,  
P20 to P24, P30 to P37, 0.0 V < VI <  
P40 to P47, P50 to P57 VCC  
MOD0, MOD1, RST  
With pull-up  
resistor  
ILI  
µA  
current)  
P00 to P07, P10 to P17,  
P20 to P24, P30 to P37, VI = 0.0 V  
P40 to P47, P50 to P57  
Pull-up  
resistance  
With pull-up  
kΩ  
RPULL  
25  
50  
100  
resistor  
(Continued)  
28  
MB89870 Series  
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Pin name  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
FCH = 10 MHz  
VCC = 5.0 V  
tinst = 0.4 µs  
ICC1  
12  
20  
mA  
*2  
MB89875/  
mA  
FCH = 10 MHz  
VCC = 3.0 V  
tinst*2 = 6.4 µs  
1.0  
1.5  
2
PV870  
ICC2  
2.5  
mA MB89P875  
FCH = 10 MHz  
VCC = 5.0 V  
tinst = 0.4 µs  
ICCS1  
ICCS2  
ICCL  
3
7
mA  
*2  
FCH = 10 MHz  
VCC = 3.0 V  
0.5  
1.5  
mA  
*2  
tinst = 6.4 µs  
MB89875/  
µA  
FCL = 32.768 kHz,  
VCC = 3.0 V  
Subclock mode  
50  
100  
700  
PV870  
500  
µA MB89P875  
VCC  
FCL = 32.768 kHz,  
VCC = 3.0 V  
Subclock sleep  
mode  
ICCLS  
15  
3
50  
µA  
Power supply  
current*1  
FCL = 32.768 kHz,  
VCC = 3.0 V  
• Watch mode  
• Main clock stop  
mode at dual-  
clock system  
ICCT  
15  
µA  
TA = +25°C  
• Subclock stop  
mode  
• Main clock stop  
mode at single-  
clock system  
ICCH  
1
µA  
FCH = 10 MHz,  
when A/D  
conversion is  
activated  
IA  
1.5  
3
1
mA  
AVCC  
FCH = 10 MHz,  
TA = +25°C,  
when A/D  
IAH  
µA  
conversion is  
stopped  
(Continued)  
29  
MB89870 Series  
(Continued)  
(AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Parameter  
Symbol  
Pin name  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
Between  
VCC and V0  
at VCC = 5.0 V  
LCD divided  
resistance  
RLCD  
300  
500  
750  
kΩ  
kΩ  
kΩ  
COM0 to 3 output  
impedance  
RVCOM  
COM0 to 3  
2.5  
15  
V1 to V3 = 5.0 V  
SEG0 to 24  
output  
RVSEG  
SEG0 to 24  
impedance  
LCD controller/  
driver leakage  
current  
V0 to V3, COM0 to 3  
SEG0 to SEG24  
ILCDL  
±1  
µA  
Other than AVCC,  
AVSS, VCC, and VSS  
Input capacitance CIN  
f = 1 MHz  
10  
pF  
*1: The power supply current is measured at the external clock.  
*2: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
Note: For pins which serve as the LCD and ports (P23, P24 and P40 to P47), see the port parameter when these  
pins are used as ports and the LCD parameter when they are used as LCD pins.  
30  
MB89870 Series  
4. AC Characteristics  
(1) Reset Timing  
(VCC = +5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
RST “L” pulse width  
tZLZH  
48 tHCYL  
ns  
tZLZH  
RST  
0.2 VCC  
0.2 VCC  
(2) Power-on Reset  
Parameter  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Condition  
Unit  
Remarks  
Min.  
Max.  
50  
Power supply rising time  
Power supply cutoff time  
tR  
1
ms  
ms  
Power-on reset function only  
Due to repeated operations  
tOFF  
Note: Make sure that power supply rises within the selected oscillation stabilization time.  
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is  
recommended.  
tOFF  
tR  
2.0 V  
0.2 V  
0.2 V  
0.2 V  
V
CC  
31  
MB89870 Series  
(3) Clock Timing  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol Pin name Condition  
Unit  
Remarks  
Parameter  
Clock frequency  
Clock cycle time  
Min.  
1
Typ.  
Max.  
10  
FCH  
X0, X1  
MHz  
kHz  
ns  
FCL  
X0A, X1A  
X0, X1  
32.768  
tHCYL  
tLCYL  
100  
1000  
X0A, X1A  
30.5  
µs  
Input clock pulse  
width  
PWH  
PWL  
X0  
X0  
20  
ns  
ns  
External clock  
External clock  
Input clock rising/  
falling time  
tCR  
tCF  
10  
32  
MB89870 Series  
X0 and X1 Timing and Conditions  
tHCYL  
PWH  
PWL  
tCR  
tCF  
0.8 VCC  
0.8 VCC  
X0  
0.2 VCC  
0.2 VCC  
0.2 VCC  
Main Clock Conditions  
When a crystal  
or  
ceramic resonator is used  
When an external clock is used  
X0  
X1  
X0  
X1  
Open  
X0A and X1A Timing and Conditions  
tLCYL  
X0A  
0.2 VCC  
0.2 VCC  
Subclock Conditions  
When a crystal  
or  
ceramic resonator is used  
X0A  
X1A  
33  
MB89870 Series  
(4) Instruction Cycle  
Symbol  
Value (typical)  
4/FCH, 8/FCH, 16/FCH, 64/FCH µs  
2/FCL µs  
Unit  
Remarks  
Parameter  
(4/FCH) tinst = 0.4 µs when operating at  
FCH = 10 MHz  
Instruction cycle  
(minimum execution time)  
tinst  
tinst = 61.036 µs when operating at  
FCL = 32.768 kHz  
Note: When operating at 10 MHz, the cycle varies with the set execution time.  
(5) Serial I/O Timing  
(VCC = +5.0 V±10%, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Min.  
Symbol Pin name  
Condition  
Unit Remarks  
Parameter  
Max.  
Serial clock cycle time  
SCK ↓ → SO time  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
tSHSL  
tSLSH  
tSLOV  
tIVSH  
tSHIX  
SCK  
2 tinst*  
–200  
µs  
ns  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
SCK, SO  
SI, SCK  
SCK, SI  
200  
Internal shift  
clock mode  
Valid SI SCK ↑  
1/2 tinst*  
1/2 tinst*  
1 tinst*  
1 tinst*  
0
SCK ↑ → valid SI hold time  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
SCK ↓ → SO time  
SCK  
External shift  
clock mode  
SCK, SO  
SI, SCK  
SCK, SI  
200  
Valid SI SCK ↑  
1/2 tinst*  
1/2 tinst*  
SCK ↑ → valid SI hold time  
* : For information on tinst, see “(4) Instruction Cycle.”  
Internal Shift Clock Mode  
tSCYC  
2.4 V  
SCK  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
SO  
0.8 V  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
SI  
0.2 VCC  
External Shift Clock Mode  
tSLSH  
tSHSL  
0.8 VCC  
0.8 VCC  
SCK  
0.2 VCC  
0.2 VCC  
tSLOV  
2.4 V  
0.8 V  
SO  
SI  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
34  
MB89870 Series  
(6) Peripheral Input Timing  
Parameter  
(VCC = +5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin name  
Unit Remarks  
Min.  
1 tinst*  
1 tinst*  
2 tinst*  
2 tinst*  
Max.  
Peripheral input “H” pulse width 1  
Peripheral input “L” pulse width 1  
Peripheral input “H” pulse width 2  
Peripheral input “L” pulse width 2  
tILIH1  
tIHIL1  
tILIH2  
tIHIL2  
µs  
µs  
µs  
µs  
EC  
INT7 to INT0  
* : For information on tinst, see “(4) Instruction Cycle.”  
tIHIL1  
tILIH1  
EC  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
tIHIL2  
tILIH2  
INT7 to INT0  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
35  
MB89870 Series  
5. A/D Converter Electrical Characteristics  
(AVCC = VCC = +3.5 V to +6.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Typ.  
Pin  
name  
Symbol  
Remarks  
Parameter  
Resolution  
Condition  
Unit  
Min.  
Max.  
10  
bit  
Total error  
±3.0  
±2.0  
±1.5  
LSB  
LSB  
LSB  
Linearity error  
Differential linearity error  
Zero transition voltage  
AVR = AVCC  
VOT  
AVSS – 1.5 LSB AVSS + 0.5 LSB AVSS + 2.5 LSB mV  
AVR – 3.5 LSB AVR – 1.5 LSB AVR + 0.5 LSB mV  
Full-scale transition  
voltage  
VFST  
Interchannel disparity  
4.0  
LSB  
A/D mode conversion  
time  
33 tinst*  
µs  
Sense mode conversion  
time  
18 tinst*  
µs  
Analog port input  
current  
AN0  
to  
IAIN  
10  
µA  
AN7  
Analog input voltage  
Reference voltage  
0.0  
0.0  
AVR  
AVCC  
V
V
AVR = 5.0 V,  
when A/D  
conversion  
is activated  
IR  
200  
µA  
µA  
AVR  
Reference voltage  
supply current  
AVR = 5.0 V,  
when A/D  
conversion  
is stopped  
IRH  
1
* : For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”  
6. A/D Converter Glossary  
• Resolution  
Analog changes that are identifiable with the A/D converter  
When the number of bits is 10, analog voltage can be divided into 210 = 1024.  
• Linearity error (unit: LSB)  
The deviation of the straight line connecting the zero transition point (“00 0000 0000” “00 0000 0001”) with  
the full-scale transition point (“11 1111 1111” “11 1111 1110”) from actual conversion characteristics  
• Differential linearity error (unit: LSB)  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
Total error (unit: LSB)  
The difference between theoretical and actual conversion values  
36  
MB89870 Series  
Digital output  
Theoretical conversion value  
Actual conversion value  
11 1111 1111  
11 1111 1110  
(1 LSB × N + VOT)  
AVR  
1024  
1 LSB =  
VNT – (1 LSB × N + VOT)  
Linearity error =  
1 LSB  
V( N + 1 ) T – VNT  
– 1  
Differential linearity error =  
Total error =  
1 LSB  
Linearity error  
VNT – (1 LSB × N + 1 LSB)  
1 LSB  
00 0000 0010  
00 0000 0001  
00 0000 0000  
VOT  
VNT  
V(N + 1)T  
VFST  
Analog input  
7. Notes on Using A/D Converter  
• Input impedance of the analog input pins  
The A/D converter used for the MB89870 series contains a sample hold circuit as illustrated below to fetch  
analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.  
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage  
might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output  
impedance of the external circuit low (below 10 k).  
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about  
0.1 µF for the analog input pin.  
Analog Input Equivalent Circuit  
Sample hold circuit  
.
C = 33 pF  
.
Analog input pin  
Comparator  
If the analog input  
impedance is higher  
than 10 k, it is  
recommended to  
connect an external  
capacitor of approx.  
0.1 µF.  
.
R = 6 kΩ  
.
Close for 8 instruction cycles after activating  
A/D conversion.  
Analog channel selector  
• Error  
The smaller the | AVR – AVSS |, the greater the error would become relatively.  
37  
MB89870 Series  
8. OP Amp Electrical Characteristics  
(1) AVCC = 5.0 V  
(AVCC = VCC = 4.5 V to 5.5 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Pin  
name  
Parameter  
Symbol  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
0.5 VCC –  
1.25  
0.5 VCC +  
1.25  
IN0± to  
IN3±  
I/O voltage range  
0.5 VCC  
V
Minimum load  
resistance  
100  
kΩ  
Maximum load  
resistance  
–10  
0
100  
+10  
pF  
mV  
Offset voltage  
Gain-bandwidth  
production  
1.8  
MHz  
DC gain  
75  
dB  
Slew rate  
0.9  
V/µs  
(2) AVCC = 3.0 V  
(AVCC = VCC = 2.7 V to 3.3 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Pin  
name  
Parameter  
Symbol  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
0.5 VCC –  
0.35  
IN0± to  
IN3±  
I/O voltage range  
0.5  
VCC – 1.20  
V
Minimum load  
resistance  
250  
kΩ  
Maximum load  
resistance  
–10  
0
100  
+10  
µA  
mV  
Offset voltage  
Gain-bandwidth  
production  
0.5  
MHz  
DC gain  
75  
dB  
Slew rate  
0.1  
V/µs  
38  
MB89870 Series  
EXAMPLE CHARACTERISTICS  
(1) “L” Level Output Voltage  
(2) “H” Level Output Voltage  
VOL vs. IOL  
VOL (V)  
VCC – VOH vs. IOH  
TA = +25 °C  
VCC – VOH (V)  
1.0  
VCC = 2.5 V  
TA = +25 °C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 2.5 V  
VCC = 3.0 V  
0.5  
VCC = 3.0 V  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
0.4  
0.3  
0.2  
0.1  
0.0  
VCC = 4.0 V  
VCC = 5.0 V  
VCC = 6.0 V  
10  
IOL (mA)  
0
1
2
3
4
5
6
7
8
9
0.0  
–0.5 –1.0 –1.5 –2.0 –2.5 –3.0  
IOH (mA)  
(3) “H” Level Input Voltage/“L” Level Input  
Voltage (CMOS Input)  
(4) “H” Level Input Voltage/“L” Level Input  
Voltage (Hysteresis Input)  
VIN vs. VCC  
VIN (V)  
VIN vs. VCC  
VIN (V)  
5.0  
5.0  
TA = +25°C  
4.5  
4.0  
TA = +25 °C  
4.5  
3.5  
VIHS  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
3.0  
2.5  
VILS  
2.0  
1.5  
1.0  
0.5  
0.0  
1.0  
0.5  
0.0  
0
1
2
3
4
5
6
7
VCC (V)  
VIHS: Threshold when input voltage in hysteresis  
characteristics is set to “H” level  
0
1
2
3
4
5
6
7
VCC (V)  
VILS: Threshold when input voltage in hysteresis  
characteristics is set to “L” level  
39  
MB89870 Series  
(5) Power Supply Current (External Clock)  
ICCS1 vs. VCC, ICCS2 vs. V CC  
ICC1 vs. VCC, ICC2 vs. VCC  
ICCS (mA)  
5.0  
ICC (mA)  
16  
Divide by 4 (ICC1)  
FCH = 10 MHz  
TA = +25°C  
FCH = 10 MHz  
TA = +25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
14  
12  
10  
8
Divide by 4 (ICC1)  
Divide by 8  
Divide by 8  
6
Divide by 16  
Divide by 16  
4
Divide by 64 (ICC2)  
2
Divide by 64 (ICC2)  
0.5  
0
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
ICCLS vs. VCC  
ICCL vs. VCC  
ICCLS (µA)  
ICCL (µA)  
50  
200  
TA = +25 °C  
TA = +25 °C  
45  
40  
35  
30  
25  
20  
15  
10  
5
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
VCC (V)  
(Continued)  
40  
MB89870 Series  
(Continued)  
ICCT vs. VCC  
ICCH vs. VCC  
I
CCT (µA)  
20  
ICCH (µA)  
2.0  
TA = +25 ¡C  
TA = +25 °C  
18  
16  
14  
12  
10  
8
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
4
2
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
VCC (V)  
IA vs. AVCC  
IR vs. AVR  
IA (mA)  
5.0  
IR (µA)  
200  
TA = +25 °C  
FCH = 10 MHz  
TA = + 25 °C  
4.5  
4.0  
180  
160  
140  
120  
100  
80  
3.5  
3.0  
2.5  
2.0  
60  
1.5  
1.0  
40  
20  
0.5  
0
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
AVCC (V)  
AVR (V)  
(6) Pull-up Resistance  
RPULL vs. VCC  
RPULL (k)  
1000  
TA = +25 °C  
100  
10  
1
2
3
4
5
6
VCC (V)  
41  
MB89870 Series  
INSTRUCTIONS (136 INSTRUCTIONS)  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
#vct  
#d8  
#d16  
dir: b  
rel  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
Register indirect (Example: @A, @IX, @EP)  
@
A
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
AH  
AL  
Lower 8 bits of accumulator A (8 bits)  
T
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
TH  
TL  
IX  
EP  
PC  
SP  
PS  
dr  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
CCR  
RP  
Ri  
Register bank pointer RP (5 bits)  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
( × )  
(( × ))  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
42  
MB89870 Series  
Columns indicate the following:  
Mnemonic:  
~:  
Assembler notation of an instruction  
The number of instructions  
The number of bytes  
#:  
Operation:  
TL, TH, AH:  
Operation of an instruction  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH prior to the instruction executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
43  
MB89870 Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(AH) ( (EP) ), (AL) ( (EP) + 1) AL  
(A) (EP)  
(EP) d16  
(IX) (A)  
AL  
AL  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
F0  
Notes: During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
44  
MB89870 Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
(TL) (AL)  
(T) (A)  
13  
03  
C
A
C
A
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
(A) (Ri)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
45  
MB89870 Series  
(Continued)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
46  
MB89870 Series  
INSTRUCTION MAP  
47  
MB89870 Series  
MASK OPTIONS  
Part number  
MB89875  
MB89P875  
MB89PV870  
No.  
Specify when  
ordering masking  
Set with EPROM  
programmer  
Specifying procedure  
Setting not possible  
Pull-up resistors  
Specify by pin  
Specify by pin  
P00 to P07, P10 to P17,  
P20 to P24, P30 to P37,  
P40 to P47, P50 to P57  
(in 2-pin unit for P10 (in 2-pin unit for P10 Fixed to without pull-  
to P17, and in 4-pin to P17, and in 4-pin up resistor  
unit for P40 to P47) unit for P40 to P47)  
1
Power-on reset selection  
Fixed to with power-  
on reset  
2
3
With power-on reset  
Without power-on reset  
Selectable  
Selectable  
Selection of the oscillation  
stabilization time initial value  
218/FCH (Approx. 26.2 ms)  
217/FCH (Approx. 13.1 ms)  
213/FCH (Approx. 0.8 ms)  
24/FCH (Approx. 0 ms)  
Fixed to 218/FCH  
(Approx. 26.2 ms)  
Selectable  
Selectable  
Selection either single- or dual-clock  
system  
Fixed to dual-clock  
system  
4
5
Selectable  
Selectable  
Selectable  
Selectable  
Single clock  
Dual Clock  
Reset pin output  
With reset output  
Without reset output  
Fixed to with reset  
output  
Notes: Reset is input asynchronized with the internal clock whether with or without power-on reset.  
P30 to P37 should be set to without pull-up resistor when an A/D conveter is used.  
P10 to P17, P34 to P37 should be set to without pull-up resistor when an OP amp is used.  
P40 to P47 and P23 and P24 should be set to without pull-up resistor when an LCD controller/driver is used.  
ORDERING INFORMATION  
Part number  
MB89875PFV  
Package  
Remarks  
80-pin Plastic LQFP  
(FPT-80P-M05)  
MB89P875PFV  
MB89875PF  
MB89P875PF  
80-pin Plastic QFP  
(FPT-80P-M06)  
80-pin Ceramic MQFP  
(MQP-80C-P01)  
MB89PV870CF  
48  
MB89870 Series  
PACKAGE DIMENSIONS  
80-pin Plastic LQFP  
(FPT-80P-M05)  
14.00±0.20(.551±.008)SQ  
12.00±0.10(.472±.004)SQ  
1.50 +00..1200  
.059 +..000048  
(Mounting height)  
60  
41  
61  
40  
13.00  
(.512)  
NOM  
9.50  
(.374)  
REF  
INDEX  
80  
21  
1
20  
LEAD No.  
Details of "A" part  
"A"  
0.50±0.08  
(.0197±.0031)  
0.18 +00..0038  
.007 +..000013  
0.127 +00..0025  
.005 +..000012  
0.10±0.10  
(.004±.004)  
(STAND OFF)  
0.50±0.20(.020±.008)  
0.10(.004)  
0
10°  
C
Dimensions in mm (inches)  
1995 FUJITSU LIMITED F80008S-2C-5  
80-pin Plastic QFP  
(FPT-80P-M06)  
23.90±0.40(.941±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
(Mounting height)  
0.05(.002)MIN  
(STAND OFF)  
64  
41  
65  
40  
12.00(.472)  
16.30±0.40  
14.00±0.20 17.90±0.40  
(.551±.008) (.705±.016)  
REF  
(.642±.016)  
INDEX  
80  
25  
"A"  
1
24  
LEAD No.  
0.80(.0315)TYP  
0.35±0.10  
(.014±.004)  
0.15±0.05(.006±.002)  
Details of "B" part  
M
0.16(.006)  
Details of "A" part  
0.25(.010)  
"B"  
0.10(.004)  
0.30(.012)  
0.18(.007)MAX  
0.58(.023)MAX  
0
10°  
18.40(.724)REF  
0.80±0.20  
(.031±.008)  
22.30±0.40(.878±.016)  
Dimensions in mm (inches)  
C
1994 FUJITSU LIMITED F80010S-3C-2  
49  
MB89870 Series  
80-pin Ceramic MQFP  
(MQP-80C-P01)  
18.70(.736)TYP  
12.00(.472)TYP  
16.30±0.33  
(.642±.013)  
15.58±0.20  
(.613±.008)  
1.50(.059)TYP  
1.00(.040)TYP  
0.80±0.25  
(.0315±.010)  
INDEX AREA  
1.20 +00..2400  
4.50(.177)  
TYP  
0.80±0.25  
(.0315±.010)  
.047 +..000186  
1.27±0.13  
(.050±.005)  
INDEX AREA  
18.12±0.20  
(.713±.008)  
22.30±0.33  
(.878±.013)  
12.02(.473)  
TYP  
18.40(.724)  
REF  
10.16(.400)  
TYP  
14.22(.560)  
TYP  
0.30(.012)  
24.70(.972)  
TYP  
TYP  
INDEX  
6.00(.236)  
TYP  
0.40±0.10  
(.016±.004)  
1.27±0.13  
(.050±.005)  
0.30(.012)TYP  
0.40±0.10  
(.016±.004)  
1.20 +00..2400  
.047 +..000186  
1.50(.059)  
TYP  
7.62(.300)TYP  
9.48(.373)TYP  
11.68(.460)TYP  
1.00(.040)  
TYP  
0.15±0.05 8.70(.343)  
(.006±.002) MAX  
Dimensions in mm (inches)  
C
1994 FUJITSU LIMITED M80001SC-4-2  
50  
MB89870 Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
KAWASAKI PLANT, 4-1-1, Kamikodanaka  
Nakahara-ku, Kawasaki-shi  
Kanagawa 211-8588, Japan  
Tel: 81(44) 754-3763  
All Rights Reserved.  
The contents of this document are subject to change without  
notice. Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
Fax: 81(44) 754-3329  
http://www.fujitsu.co.jp/  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications,  
and are not intended to be incorporated in devices for actual use.  
Also, FUJITSU is unable to assume responsibility for  
infringement of any patent rights or other rights of third parties  
arising from the use of this information or circuit diagrams.  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
Semiconductor Division  
3545 North First Street  
San Jose, CA 95134-1804, USA  
Tel: (408) 922-9000  
FUJITSU semiconductor devices are intended for use in  
standard applications (computers, office automation and other  
office equipment, industrial, communications, and  
Fax: (408) 922-9179  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: (800) 866-8608  
measurement equipment, personal or household devices, etc.).  
CAUTION:  
Fax: (408) 922-9179  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage,  
or where extremely high levels of reliability are demanded  
(such as aerospace systems, atomic energy controls, sea floor  
repeaters, vehicle operating controls, medical devices for life  
support, etc.) are requested to consult with FUJITSU sales  
representatives before such use. The company will not be  
responsible for damages arising from such use without prior  
approval.  
http://www.fujitsumicro.com/  
Europe  
FUJITSU MIKROELEKTRONIK GmbH  
Am Siebenstein 6-10  
D-63303 Dreieich-Buchschlag  
Germany  
Tel: (06103) 690-0  
Fax: (06103) 690-122  
Any semiconductor devices have an inherent chance of  
failure. You must protect against injury, damage or loss from  
such failures by incorporating safety design measures into your  
facility and equipment such as redundancy, fire protection, and  
prevention of over-current levels and other abnormal operating  
conditions.  
http://www.fujitsu-ede.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE LTD  
#05-08, 151 Lorong Chuan  
New Tech Park  
Singapore 556741  
Tel: (65) 281-0770  
Fax: (65) 281-0220  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for  
export of those products from Japan.  
http://www.fmap.com.sg/  
F9812  
FUJITSU LIMITED Printed in Japan  
51  

相关型号:

MB89P875PF

8-bit Proprietary Microcontroller
FUJITSU

MB89P875PFV

8-bit Proprietary Microcontroller
FUJITSU

MB89P899

8-bit Proprietary Microcontroller
FUJITSU

MB89P899PF

8-bit Proprietary Microcontroller
FUJITSU

MB89P915

8-bit Proprietary Microcontroller
FUJITSU

MB89P915P-101-SH

8-bit Proprietary Microcontroller
FUJITSU

MB89P915P-102-SH

8-bit Proprietary Microcontroller
FUJITSU

MB89P915PF-101

8-bit Proprietary Microcontroller
FUJITSU

MB89P915PF-102

8-bit Proprietary Microcontroller
FUJITSU

MB89P928

8-bit Proprietary Microcontroller
FUJITSU

MB89P928PF

8-bit Proprietary Microcontroller
FUJITSU

MB89P935A

8-bit Proprietary Microcontroller
FUJITSU