MB89P928PF [FUJITSU]

8-bit Proprietary Microcontroller; 8位微控制器专有
MB89P928PF
型号: MB89P928PF
厂家: FUJITSU    FUJITSU
描述:

8-bit Proprietary Microcontroller
8位微控制器专有

微控制器
文件: 总46页 (文件大小:624K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS07-12526-1E  
8-bit Proprietary Microcontroller  
CMOS  
F2MC-8L MB89920 Series  
MB89923/925/P928/PV920  
DESCRIPTION  
The MB89920 series is a line of single-chip microcontrollers using the F2MC*-8L CPU core which can operate  
at low voltage but at high speed.  
The microcontrollers in this series contain peripheral functions such as a PWM timer, an input capture/output  
compare control counter, an LCD controller/driver, an A/D converter, and a UART.  
The MB89920 series can suit a wide range of applications such as analog input conversion, pulse input  
measurement/pulse output control, serial communications control, and display control.  
*: F2MC stands for FUJITSU Flexible Microcontroller.  
FEATURES  
• High speed processing at low voltage  
Minimum execution time: 0.5 µs/8.0 MHz  
• F2MC-8L family CPU core  
Multiplication and division instructions  
16-bit arithmetic operations  
Test and branch instructions  
Instruction set optimized for controllers  
Bit manipulation instructions, etc.  
• 8-bit PWM timer: 2 channels (also usable as a reload timer)  
• 16-bit input capture: 2 channels / 16-bit output compare: 2 channels  
(Continued)  
PACKAGE  
80-pin Plastic QFP  
80-pin Ceramic MQFP  
(FPT-80P-M06)  
(MQP-80C-P01)  
MB89920 Series  
(Continued)  
• 20-bit time-base counter  
• UART: 1 channel (with asynchronous transfer mode and 8-bit synchronous serial mode)  
• 8-bit serial interface: 1 channel (LSB first/MSB first selectability)  
• 10-bit A/D converter: 8 channels  
• LCD controller/driver: 28 segments × 4 commons (max. 112 pixels)  
• Low-voltage detection reset  
• Watchdog timer reset  
• External interrupt: 4 channels  
Four channels are independent and capable of wake-up from the low-power consumption mode (with edge  
detection function)  
• Buzzer output/clock output  
• Low-power consumption modes:  
Stop mode (The software stops oscillation to minimize the current consumption.)  
Sleep mode (The CPU stops to reduce current consumption to approx. 1/3 of normal.)  
Hardware standby mode (The pin input stops oscillation.)  
2
MB89920 Series  
PRODUCT LINEUP  
Part number  
MB89925  
Mass production products  
(mask ROM products)  
8 K × 8 bits 16 K × 8 bits  
(internal mask ROM) (internal mask ROM)  
256 × 8 bits 512 × 8 bits  
MB89P928  
MB89PV920  
MB89923  
Parameter  
Classification  
Piggyback/evaluation  
product (for development)  
One-time PROM product  
(for development)  
ROM size  
48 K × 8 bits  
(internal PROM)  
48 K × 8 bits  
(external ROM)  
RAM size  
1024 × 8 bits  
CPU functions  
Number of instructions:  
Instruction bit length:  
Instruction length:  
Data bit length:  
Minimum execution time:  
Interrupt processing time:  
136  
8 bits  
1 to 3 bytes  
1, 8, 16 bits  
0.5 µs/8 MHz  
4.5 µs/8 MHz  
Ports  
I/O ports (CMOS):  
I/O ports (N-ch open-drain):  
Total:  
35 (25 ports also serve as peripherals.)  
34 (All also serve as peripherals.)  
69  
Set with EPROM programmer  
Options  
Specify with mask options  
None  
20-bit time-base  
timer  
20 bits (interval time selection: 4.10 ms, 16.38 ms, 65.54 ms, 262 ms/8 MHz)  
Real-time I/O  
16-bit timer: operating clock cycle (0.5 µs, 1.0 µs, 2.0 µs, 4.0 µs), overflow interrupt  
Input capture: 16 bits × 2 channels, external trigger edge selectability  
Output compare: 16 bits × 2 channels  
LCD controller/  
driver  
Common output: 4 (selectable from 2 to 4 by software)  
Segment output: 28 (can be switched to ports in 4-pin unit by software)  
Bias power supply pins: 3  
LCD display RAM size: 14 × 8 bits  
Dividing resistor for LCD driving: bult-in (external resistor selectability)  
8-bit PWM timer  
UART  
8 bits × 2-channel reload timer operation  
8 bits × 2-channel PWM operation (4 cycles selectable)  
8 bits × 1-channel PPG operation (4 oscillation clocks selectable)  
Variable data length (7 or 8 bits), internal baud rate generator, error detection function,  
full-duplex with internal double buffer, NRZ transmission formation,  
Clock synchronous/asynchronous transfer capable  
8-bit serial I/O  
8 bits, LSB first/MSB first selectability,  
One clock selectable from four transfer clocks  
(one external shift clock, three internal shift clocks: 1.0 µs, 4.0 µs, 16.0 µs)  
10-bit A/D  
converter  
10-bit resolution × 8 channels  
A/D conversion mode (conversion time: 16.5 µs (33 instruction cycles))  
Sense mode (conversion time: 9.0 µs (18 instruction cycles))  
Continuous activation by an internal clock capable  
Watchdog timer  
Interval time: approx. 130 to 260 ms  
Low-voltage  
detection reset  
Reset activation voltage: 3.0 to 4.3 V  
Reset release voltage: 3.1 to 4.5 V  
Hardware standby  
Buzzer/clock output  
External interrupt  
Package  
Stop the clock oscillation by pin input  
1 channel (output a frequency from 1 KHz, 2 KHz, 4 KHz, and divided clock frequency)  
4 channels (rising edge/falling edge selectability)  
QFP-80  
MQFP-80  
Operating voltage  
EPROM for use  
2.2 to 6.0 V*  
2.7 to 6.0 V*  
2.7 to 6.0 V*  
MBM27C512-20TV  
(LCC package)  
* : The minimum operating voltage varies with conditions such as the operating frequencies, functions, and  
development tool.  
3
MB89920 Series  
PACKAGE AND CORRESPONDING PRODUCTS  
MB89923  
Package  
MB89925  
MB89PV920  
MB89P928  
FPT-80P-M06  
MQP-80C-P01  
×
×
: Available  
× : Not available  
Note: For more information about each package, see section “Package Dimensions.”  
DIFFERENCES AMONG PRODUCTS  
1. Memory Size  
Before evaluating using the piggyback product, verify its differences from the product that will actually be used.  
Take particular care on the following points:  
• The stack area, etc., is set at the upper limit of the RAM.  
• The external area is used.  
2. Current Consumption  
• In the case of the MB89PV920, add the current consumed by the EPROM which is connected to the top socket.  
• When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume  
more current than the product with a mask ROM.  
However, the current consumption in sleep/stop modes is the same. (For more information, see section  
Electrical Characteristics.”)  
3. Mask Options  
Functions that can be selected as options and how to designate these options vary by the product.  
Before using options check section “Mask Options.”  
4
MB89920 Series  
PIN ASSIGNMENT  
(Top view)  
P72/SEG18  
1
2
3
4
5
6
7
8
64  
P51/SEG1  
P50/SEG0  
P40/COM0  
P41/COM1  
P42/COM2  
P43/COM3  
P44/V1  
P45/V2  
V3  
VCC  
AVCC  
P73/SEG19  
P74/SEG20  
P75/SEG21  
P76/SEG22  
P77/SEG23  
P80/SEG24  
P81/SEG25  
P82/SEG26  
P83/SEG27  
P90/RTO0  
P91/RTO1  
P92/CLK  
P93/PWM0  
VSS  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
(Lead pitch: 0.80 mm)  
(Body size: 20 mm × 14 mm)  
AVR  
AVSS  
P10/AN0  
P11/AN1  
P12/AN2  
P13/AN3  
P14/AN4  
P15/AN5  
P16/AN6  
P17/AN7  
P00/INT0  
P01/INT1  
P02/INT2  
MODA  
X1  
X0  
P94/PWM1  
HST  
RST  
P95/SCK  
P96/SO  
P97/SI  
(FPT-80P-M06)  
(Only for mass production or one-time PROM products)  
5
MB89920 Series  
(Top view)  
P72/SEG18  
P73/SEG19  
P74/SEG20  
P75/SEG21  
P76/SEG22  
P77/SEG23  
P80/SEG24  
P81/SEG25  
P82/SEG26  
P83/SEG27  
P90/RTO0  
P91/RTO1  
P92/CLK  
P93/PWM0  
VSS  
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P51/SEG1  
P50/SEG0  
P40/COM0  
P41/COM1  
P42/COM2  
P43/COM3  
P44/V1  
P45/V2  
V3  
V CC  
AV CC  
101  
102  
103  
104  
105  
106  
107  
108  
109  
93  
92  
91  
90  
89  
88  
87  
86  
85  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
AVR  
AVSS  
P10/AN0  
P11/AN1  
P12/AN2  
P13/AN3  
P14/AN4  
P15/AN5  
P16/AN6  
P17/AN7  
P00/INT0  
P01/INT1  
P02/INT2  
MODA  
X1  
X0  
P94/PWM1  
HST  
RST  
P95/SCK  
P96/SO  
P97/SI  
(MQP-80C-P01)  
• Pin assignment on package top (only for piggyback/evaluation product)  
Pin no.  
81  
Pin name  
N.C.  
A15  
Pin no.  
89  
Pin name  
AD2  
AD1  
AD0  
N.C.  
O1  
Pin no.  
97  
Pin name  
N.C.  
O4  
Pin no.  
Pin name  
OE/VPP  
N.C.  
A11  
105  
106  
107  
108  
109  
110  
111  
112  
82  
90  
98  
83  
A12  
91  
99  
O5  
84  
AD7  
92  
100  
101  
102  
103  
104  
O6  
A9  
85  
AD6  
93  
O7  
A8  
86  
AD5  
94  
O2  
O8  
A13  
87  
AD4  
95  
O3  
CE  
A14  
88  
AD3  
96  
VSS  
A10  
VCC  
N.C.: Internally connected. Do not use.  
(Only for piggyback/evaluation product)  
6
MB89920 Series  
PIN DESCRIPTION  
Circuit  
type  
Pin no.  
Pin name  
Function  
17  
18  
16  
X1  
X0  
A
Clock oscillator pins  
MODA  
B
Operation mode selection input pin  
Connect this pin to VSS (GND).  
20  
21  
HST  
RST  
B
C
Hardware standby input pin  
Reset I/O pin  
This pin is an N-ch open-drain output type with a pull-up resistor,  
and a hysteresis input type.  
“L” is output from this pin by an internal reset source. The internal  
circuit is initialized by the input of “L”.  
11,  
12  
P90/RTO0,  
P91/RTO1  
D
General-purpose I/O ports  
A pull-up resistor option is provided. Also serve as an output  
compare data output.  
13  
14  
P92/BUZ/CLK  
P93/PWM0  
D
D
General-purpose I/O port  
Also serves as a buzzer/clock output.  
General-purpose I/O port  
A pull-up resistor option is provided.  
Also serves as an 8-bit PWM output.  
19  
22  
P94/PWM1  
P95/SCK  
D
E
General-purpose I/O port  
A pull-up resistor option is provided.  
Also serves as an 8-bit PWM output.  
General-purpose I/O port  
A pull-up resistor option is provided.  
Also serves as the clock I/O (SCK) for the serial I/O. The SCK  
input is a hysteresis input.  
The output type can be switched between N-ch open-drain and  
CMOS.  
23  
P96/SO  
D
General-purpose I/O port  
A pull-up resistor option is provided.  
Also serves as the data output (SO) for the serial I/O. The output  
type can be switched between N-ch open-drain and CMOS.  
24  
25  
P97/SI  
E
E
General-purpose I/O port  
A pull-up resistor option is provided.  
Also serves as the data input (SI) for the serial I/O.  
P32/UCK  
General-purpose I/O port  
A pull-up resistor option is provided.  
Also serves as a UART clock I/O (UCK). The UCK input is  
hysteresis input.  
The output type can be switched between N-ch open-drain and  
CMOS.  
26  
P31/UO  
D
General-purpose I/O port  
A pull-up resistor option is provided.  
Also serves as a UART data output (UO).  
The output type can be switched between N-ch open-drain and  
CMOS.  
(Continued)  
7
MB89920 Series  
(Continued)  
Circuit  
type  
Pin no.  
Pin name  
P30/UI  
Function  
27  
E
General-purpose I/O port  
A pull-up resistor option is provided.  
Also serves as a UART data input (UI).  
General-purpose I/O ports  
A pull-up resistor option is provided.  
28 to 31  
32  
P27 to P24  
P23/RTI1  
D
E
General-purpose I/O port  
A pull-up resistor option is provided.  
Also serves as an input capture data input.  
33,  
34  
P22,  
P21  
General-purpose I/O ports  
A pull-up resistor option is provided.  
D
E
35  
P20/RTI0  
General-purpose I/O port  
A pull-up resistor option is provided.  
Also serves as an input capture data input.  
36 to 39  
40 to 43  
P07 to P04  
D
E
General-purpose I/O ports  
A pull-up resistor options is provided.  
P03/INT3 to  
P00/INT0  
General-purpose I/O ports  
A pull-up resistor options is provided.  
Also serve as an external interrupt input (INT0 to INT3).  
44 to 51  
P17/AN7 to  
P10/AN0  
G
F
CMOS I/O ports  
Also serve as an A/D converter analog input.  
57,  
58  
P45/V2,  
P44/V1  
LCD driving power supply pins  
These pins can be used as an N-ch open-drain general-purpose  
I/O when not used as an LCD driving power supply.  
59 to 62  
63 to 70  
71 to 78  
P43/COM3 to  
P40/COM0  
F
F
F
F
F
F
LCD common output pins  
These pins can be used as an N-ch open-drain general-purpose  
I/O when not used as an LCD common output.  
P50/SEG0 to  
P57/SEG7  
LCD segment output pins  
These pins can be used as an N-ch open-drain general-purpose  
I/O when not used as an LCD segment output.  
P60/SEG8 to  
P67/SEG15  
LCD segment output pins  
These pins can be used as an N-ch open-drain general-purpose  
I/O when not used as an LCD segment output.  
79,  
80  
P70/SEG16,  
P71/SEG17  
LCD segment output pins  
These pins can be used as an N-ch open-drain general-purpose  
I/O when not used as an LCD segment output.  
1 to 6  
P72/SEG18 to  
P77/SEG23  
LCD segment output pins  
These pins can be used as an N-ch open-drain general-purpose  
I/O when not used as an LCD segment output.  
7 to 11  
P80/SEG24 to  
P83/SEG27  
LCD segment output pins  
These pins can be used as an N-ch open-drain general-purpose  
I/O when not used as an LCD segment output.  
52  
53  
54  
55  
56  
15  
AVSS  
AVR  
AVCC  
VCC  
A/D converter power supply (GND) pin  
A/D converter reference power supply pin  
A/D converter power supply pin  
Power supply pin  
V3  
LCD driving power supply pin  
Power supply (GND) pin  
VSS  
8
MB89920 Series  
• External EPROM pins (the MB89PV920 only)  
Pin no.  
Pin name  
A15  
I/O  
Function  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
O
Address output pins  
A12  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
93  
94  
95  
O1  
O2  
O3  
I
Data input pins  
96  
VSS  
O
I
Power supply (GND) pin  
Data input pins  
98  
99  
100  
101  
102  
O4  
O5  
O6  
O7  
O8  
103  
CE  
O
ROM chip enable pin  
Outputs “H” during standby.  
104  
105  
A10  
O
O
Address output pin  
OE/VPP  
ROM output enable pin  
Outputs “L” at all times.  
107  
108  
109  
A11  
A9  
A8  
O
Address output pins  
110  
111  
112  
A13  
A14  
VCC  
O
O
Address output pin  
Address output pin  
O
EPROM power supply pin  
81  
92  
N.C.  
Internally connected pins  
Be sure to leave them open.  
97  
106  
9
MB89920 Series  
I/O CIRCUIT TYPE  
Type  
Circuit  
Remarks  
A
• At an oscillation feedback resistor of approximately  
1 M(1 to 8 MHz)  
X1  
X0  
Standby control signal  
B
C
• At an output pull-up resistor of approximately 50 KΩ  
(5.0 V)  
R
P-ch  
• Hysteresis input  
N-ch  
D
• CMOS output  
• CMOS input  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional  
E
• CMOS output  
• CMOS input  
• Hysteresis input (peripheral input)  
R
P-ch  
P-ch  
N-ch  
• Pull-up resistor optional  
(Continued)  
10  
MB89920 Series  
(Continued)  
Type  
Circuit  
Remarks  
F
• N-ch open-drain I/O  
• Also serves as LCD controller/driver common/  
segment output.  
N-ch  
P-ch  
N-ch  
P-ch  
N-ch  
G
• CMOS I/O  
• Analog input  
P-ch  
N-ch  
Analog input  
11  
MB89920 Series  
HANDLING DEVICES  
1. Preventing Latchup  
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins  
other than medium- to high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum  
Ratings” in section “Electrical Characteristics” is applied between VCC and VSS.  
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When  
using, take great care not to exceed the absolute maximum ratings.  
Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital  
power supply (VCC) when the analog system power supply is turned on and off.  
2. Treatment of Unused Input Pins  
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down  
resistor.  
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters  
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.  
4. Treatment of N.C. Pins  
Be sure to leave (internally connected) N.C. pins open.  
5. Power Supply Voltage Fluctuations  
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage  
couldcausemalfunctions, evenifitoccurswithintheratedrange. StabilizingvoltagesuppliedtotheICistherefore  
important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P  
value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient  
fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.  
6. Precautions when Using an External Clock  
Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and  
wake-up from stop mode.  
12  
MB89920 Series  
PROGRAMMING TO THE EPROM ON THE MB89P928  
The MB89P928 is an OTPROM version of the MB89920 series.  
1. Features  
• 48-Kbyte PROM on chip  
• Options can be set using the EPROM programmer.  
• Equivalency to the MBM27C1001A in EPROM mode (when programmed with the EPROM programmer)  
2. Memory Space  
Memory space in the EPROM mode is diagrammed below.  
Address  
Normal operating mode  
EPROM mode  
(Corresponding addresses on the EPROM programmer)  
0000H  
0080H  
0000H  
I/O  
Vacancy  
(Read value undefined)  
0100H  
0200H  
RAM  
Register  
0480H  
0FE4H  
Option area  
1000H  
Not available  
Vacancy  
(Read value undefined)  
4000H  
4000H  
Program area  
(EPROM)  
ROM  
FFFFH  
FFFFH  
Vacancy  
(Read value undefined)  
1FFFH  
13  
MB89920 Series  
3.Programming to the EPROM  
In EPROM mode, the MB89P928 functions equivalent to the MBM27C1001A. This allows the PROM to be  
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by  
using the dedicated socket adapter.  
• Programming procedure  
(1) Set the EPROM programmer to the MBM27C1001A.  
(2) Load program data into the EPROM programmer at 0FE4H to FFFFH.  
(3) Program with the EPROM programmer.  
4. Recommended Screening Conditions  
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked  
OTPROM microcomputer program.  
Program, verify  
Aging  
+150 °C, 48 Hrs.  
Data verification  
Assembly  
5. Programming Yield  
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.  
For this reason, a programming yield of 100% cannot be assured at all times.  
6. EPROM Programmer Socket Adapter  
Package  
Compatible socket adapter  
FPT-80P-M06  
ROM-80QF-32DP-8LA  
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760  
Note: Depending on the EPROM programmer, inserting a capacitor of about 0.1 µF between VPP and VSS or VCC  
and VSS can stabilize programming operations.  
14  
MB89920 Series  
7. PROM Option Bit Map  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Vacancy  
Vacancy  
Vacancy  
Oscillation Reset pin  
stabilization output  
time  
Power-on  
reset  
Vacancy  
Vacancy  
0FE4H  
Readable  
Readable  
Readable  
1: Crystal  
0: Ceramic 0: No  
1: Yes  
1: Yes  
0: No  
Readable  
Readable  
P07  
P06  
P05  
P04  
P03  
P02  
P01  
P00  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
0FE8H  
0FECH  
0FF0H  
0FF4H  
P27  
P26  
P25  
P24  
P23  
P22  
P21  
P20  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
P32  
P31  
P30  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Readable  
Readable  
Readable  
Readable  
Readable  
P97  
P96  
P95  
P94  
P93  
P92  
P91  
P90  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Pull-up  
1: No  
0: Yes  
Vacancy  
Vacancy  
WDT/low-  
voltage  
Low-voltage detection Low-voltage Low-voltage Watchdog  
voltage  
reset  
detection  
timer (WDT)  
control  
0FF8H Readable  
Readable  
1: Register  
0: Option  
EPROM  
1: Yes  
0: No  
1:  
1:  
00:  
10: 3.6 V  
— 01: 3.3 V  
Automatic Automatic  
0: 0:  
Prohibited Prohibited  
11: 4.0 V  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
0FFCH  
Readable  
Readable  
Readable  
Readable  
Readable  
Readable  
Readable  
Readable  
Notes: Set each bit to 1 to erase.  
Do not write 0 to the vacant bit.  
The read value of the vacant bit is 1, unless 0 is written to it.  
• Write the same value as each option register to the 3-byte vacant address that follows above option  
registers.  
Example: In the case of 0FE4H, write the same value to 0FE5H, 0FE6H and 0FF7H.  
• This optional information is taken into the OTPROM while the oscillation is being reset. Therefore, if the  
hardwarestateisinitiallyshiftedtostandbystateafterthepowersupplyisturnedon, theoptionalinformation  
will not be valid during the transition (in a state of the initial value 1).  
After the hardware standby state is cleared, the oscillation starts and the optional information becomes  
valid.  
Note that if the hardware is shifted to the standby or stop state in the course of a normal operation  
(oscillation), the contents of the optional register are valid since the option data has already been taken  
into the OTPROM.  
15  
MB89920 Series  
PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE  
1. EPROM for Use  
MBM27C512-20TV  
2. Programming Socket Adapter  
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato  
Co., Ltd.) listed below.  
Package  
LCC-32(Rectangle) ROM-32LC-28DP-YG  
LCC-32(Square) ROM-32LC-28DP-S  
Adapter socket part number  
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760  
3. Memory Space  
Memory space in each mode is diagrammed below.  
Normal operating mode  
I/O  
Corresponding addresses on the EPROM programmer  
0000H  
Address  
0000H  
0080H  
RAM  
Not available  
0480H  
4000H  
Not available  
4000H  
PROM  
48 KB  
EPROM  
48 KB  
FFFFH  
FFFFH  
4. Programming to the EPROM  
(1) Set the EPROM programmer to the MBM27C512.  
(2) Load program data into the EPROM programmer at 4000H to FFFFH.  
(3) Program to 4000H to FFFFH with the EPROM programmer.  
16  
MB89920 Series  
BLOCK DIAGRAM  
X0  
X1  
Operating mode  
Oscillator  
MODA  
control  
HST  
Clock control  
Time-base timer  
Watchdog timer  
CMOS I/O port  
Output compare  
Reset circuit  
RST  
P91/RTO1  
P90/RTO0  
Low-voltage detection  
16-bit  
free run counter  
RAM  
P23/RTI1  
P20/RTI0  
Input capture  
UART  
2
F MC-8L  
CPU  
P32/UCK  
P31/UO  
P30/UI  
ROM  
P95/SCK  
P96/SO  
P97/SI  
Serial I/O  
4
P80/SEG24 to  
P83/SEG27  
N-ch open-drain I/O port  
28  
8
P70/SEG16 to  
P77/SEG23  
2-channel  
8-bit PWM timer  
8
P60/SEG8 to  
P67/SEG15  
P50/SEG0 to  
P57/SEG7  
8-bit timer #2  
8-bit timer #1  
P94/PWM1  
P93/PWM0  
8
LCD controller  
/driver  
V3  
2
2
4
P44/V1,  
P45/V2  
AVR  
4
P40/COM0 to  
P43/COM3  
10-bit  
8
8
A/D converter  
P10/AN0 to  
P17/AN7  
N-ch open-drain I/O port  
CMOS I/O port  
6
P21 to P22  
P24 to P27  
Buzzer/clock  
output  
P92/CLK  
4
P04 to P07  
CMOS I/O port  
4
4
P00/INT0 to  
P03/INT3  
External interrupt  
CMOS I/O port  
17  
MB89920 Series  
CPU CORE  
1. Memory Space  
The microcontrollers of the MB89920 series offer a memory space of 64 Kbytes for storing all of I/O, data, and  
program areas. The I/O area is located at the lowest address. The data area is provided immediately above the  
I/O area. The data area can be divided into register, stack, and direct areas according to the application. The  
program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of  
interrupt reset vectors and vector call instructions toward the highest address within the program area. The  
memory space of the MB89920 series is structured as illustrated below.  
Memory Space  
MB89923  
MB89925  
MB89P928  
MB89PV920  
0000H  
0080H  
0000H  
0080H  
0000H  
0080H  
0000H  
0080H  
I/O  
I/O  
I/O  
RAM  
I/O  
RAM  
RAM  
RAM  
0100H  
0180H  
0100H  
0100H  
0200H  
0100H  
0200H  
Register  
Register  
Register  
Register  
0200H  
0280H  
0480H  
0480H  
Not available  
Not available  
Not available  
Not available  
4000H  
4000H  
C000H  
Program ROM  
Program ROM  
E000H  
FFFFH  
ROM  
ROM  
FFFFH  
FFFFH  
FFFFH  
18  
MB89920 Series  
2. Registers  
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers  
in the memory. The following dedicated registers are provided:  
Program counter (PC):  
Accumulator (A):  
A 16-bit register for indicating instruction storage positions  
A 16-bit temporary register for storing arithmetic operations, etc. When the  
instruction is an 8-bit data processing instruction, the lower byte is used.  
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator  
Whenthe instructionisan8-bitdataprocessinginstruction,thelowerbyteisused.  
Index register (IX):  
Extra pointer (EP):  
Stack pointer (SP):  
Program status (PS):  
A 16-bit register for index modification  
A 16-bit pointer for indicating a memory address  
A 16-bit register for indicating a stack area  
A 16-bit register for storing a register pointer, a condition code  
Initial value  
16 bits  
PC  
A
: Program counter  
: Accumulator  
FFFDH  
Undefined  
Undefined  
Undefined  
Undefined  
Undefined  
T
: Temporary accumulator  
: Index register  
IX  
EP  
SP  
PS  
: Extra pointer  
: Stack pointer  
: Program status  
I-flag = 0, IL1, 0 = 11  
Other bits are undefined.  
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for  
use as a condition code register (CCR). (See the diagram below.)  
Structure of the Program Status Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
I
5
4
3
2
Z
1
0
Vacancy Vacancy Vacancy  
PS  
RP  
H
IL1, 0  
N
V
C
RP  
CCR  
19  
MB89920 Series  
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents  
and the actual address is based on the conversion rule illustrated below.  
Rule for Conversion of Actual Addresses of the General-purpose Register Area  
RP  
Lower OP codes  
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 b1 b0  
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and  
bits for control of CPU operations at the time of an interrupt.  
H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared  
otherwise. This flag is for decimal adjustment instructions.  
I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0  
when reset.  
IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is  
higher than the value indicated by this bit.  
IL1  
0
IL0  
0
Interrupt level  
High-low  
High  
1
0
1
1
0
2
3
1
1
Low = no interrupt  
N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.  
Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.  
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does  
not occur.  
C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise.  
Set to the shift-out value in the case of a shift instruction.  
20  
MB89920 Series  
The following general-purpose registers are provided:  
General-purpose registers: An 8-bit register for storing data  
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains  
eight registers and up to a total of 16 banks can be used on the MB89925. Up to a total of 16 banks can be  
used on the MB89923. The bank currently in use is indicated by the register bank pointer (RP).  
Note: The number of register banks that can be used varies with the RAM size.  
Register Bank Configuration  
This address = 0100H + 8 × (RP)  
R 0  
R 1  
R 2  
R 3  
R 4  
R 5  
R 6  
R 7  
32 banks  
Memory area  
21  
MB89920 Series  
I/O MAP  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
Read/write  
(R/W)  
(W)  
Register  
PDR0  
Register description  
Port 0 data register  
Intial value  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
DDR0  
PDR1  
Port 0 data direction register  
Port 1 data register  
Port 1 data direction register  
Vacancy  
(R/W)  
(W)  
DDR1  
Vacancy  
Vacancy  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
STBC  
WDTE  
TBCR  
LVRC  
PDR3  
DDR3  
PDR4  
PDR5  
PDR6  
PDR7  
PDR8  
PDR9  
DDR9  
PDR2  
DDR2  
BUZR  
ADC1  
ADC2  
ADCH  
ADCL  
SMR  
Standby control register  
Watchdog timer control register  
Time-base timer control register  
0 0 0 1 X X X X B  
X X X X X X X X B  
X X X 0 0 0 0 0 B  
Low-voltage detection reset control register 0 X 1 1 X 0 0 X B  
Port 3 data/peripheral I/O control register  
Port 3 data direction register  
Port 4 data register  
0 0 0 0 – X X X B  
– – – – – 0 0 0 B  
– – 1 1 1 1 1 1 B  
1 1 1 1 1 1 1 1 B  
1 1 1 1 1 1 1 1 B  
1 1 1 1 1 1 1 1 B  
– – – – 1 1 1 1 B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
X X X X 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
X 0 0 0 0 0 0 1 B  
– – – – – – X X B  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
X X X X X X X X B  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(W)  
Port 5 data register  
Port 6 data register  
Port 7 data register  
Port 8 data register  
Port 9 data register  
Port 9 data direction register  
Port 2 data register  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
Port 2 data direction register  
Buzzer control register  
AD converter control register 1  
AD converter control register 2  
AD converter data register “H”  
AD converter data register “L”  
Serial mode register  
SDR  
Serial data register  
Vacancy  
(W)  
ICR1  
Port 1 input control register  
0 0 0 0 0 0 0 0 B  
(Continued)  
–: Unused X: Undefined  
Note: Do not use vacancies  
22  
MB89920 Series  
Address  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
Read/write  
(R/W)  
(R/W)  
(R/W)  
(W)  
Register  
CNTR1  
CNTR2  
CNTR3  
COMR2  
COMR1  
Register description  
Initial value  
PWM timer control register 1  
PWM timer control register 2  
PWM timer control register 3  
PWM timer compare register 2  
PWM timer compare register 1  
Vacancy  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 X 0 0 0 0 B  
X X X X X X X X B  
X X X X X X X X B  
(W)  
Vacancy  
Vacancy  
(R/W)  
(R)  
TMCR  
TCHR  
TCLR  
Timer control register  
Timer count register (H)  
Timer count register (L)  
Output control register  
Output compare register 0 (H)  
Output compare register 0 (L)  
Output compare register 1 (H)  
Output compare register 1 (L)  
Input capture control register  
Input capture interrupt control register  
Input capture register 0 (H)  
Input capture register 0 (L)  
Input capture register 1 (H)  
Input capture register 1 (L)  
Vacancy  
0 0 X X 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
X 0 0 0 X 0 0 0 B  
X 0 0 0 0 X 0 0 B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
X X X X X X X X B  
(R)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
(R)  
OPCR  
CPR0H  
CPR0L  
CPR1H  
CPR1L  
ICCR  
ICIC  
ICR0H  
ICR0L  
ICR1H  
ICR1L  
(R)  
(R)  
(R)  
Vacancy  
(R/W)  
(R/W)  
EIC1  
EIC2  
External interrupt control register 1  
External interrupt control register 2  
Vacancy  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
Vacancy  
–: Unused X: Undefined  
(Continued)  
Note: Do not use vacancies  
23  
MB89920 Series  
(Continued)  
Address  
40H  
Read/write  
(R/W)  
Register  
USMR  
USCR  
Register description  
UART mode register  
Initial value  
0 0 0 0 0 0 0 0 B  
0 0 0 0 0 0 0 0 B  
0 0 0 0 1 X X X B  
41H  
(R/W)  
UART control register  
UART status register  
42H  
(R/W)  
USTR  
(R)  
(W)  
RXDR  
TXDR  
UART receiver data register  
UART transmitter data register  
X X X X X X X X B  
X X X X X X X X B  
43H  
44H  
45H  
Vacancy  
(R/W)  
RRDR  
Baud rate generator/reload data register  
Vacancy  
X X X X X X X X B  
46H  
47H  
Vacancy  
48 to 5FH  
60 to 6DH  
70H  
Vacancy  
(R/W)  
(R/W)  
(R/W)  
(R/W)  
VRAM  
LCR1  
LCR2  
LCR3  
Display data RAM  
X X X X X X X X B  
0 0 0 0 0 0 0 0 B  
0 0 0 – – – – – B  
0 0 0 0 0 0 0 0 B  
LCD controller/driver control register 1  
LCD controller/driver control register 2  
LCD controller/driver control register 3  
Vacancy  
71H  
72H  
73 to 7BH  
7CH  
(W)  
(W)  
(W)  
ILR1  
ILR2  
ILR3  
Interrupt level setting register 1  
Interrupt level setting register 2  
Interrupt level setting register 3  
Vacancy  
1 1 1 1 1 1 1 1 B  
1 1 1 1 1 1 1 1 B  
1 1 1 1 1 1 1 1 B  
7DH  
7EH  
7FH  
–: Unused X: Undefined  
Note: Do not use vacancies  
24  
MB89920 Series  
ELECTRICAL CHARACTERISTICS  
1. Absolute Maximum Ratings  
(VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
Max.  
VCC  
VSS – 0.3  
VSS – 0.3  
VSS + 7.0  
VCC + 0.3  
V
V
1
AVCC  
*
Power supply voltage  
AVR must not exceed AVCC + 0.3  
V.  
AVR  
VSS – 0.3  
VSS + 7.0  
V
LCD power supply voltage  
Input voltage  
V1 to V3 VSS – 0.3  
VSS + 7.0  
VCC + 0.3  
V
V
V1 V2 V3 *2  
VI1  
VSS – 0.3  
P00 to P07, P10 to P17, P20 to  
P27, P30 to P32, P90 to P97  
VO1  
VSS – 0.3  
VCC + 0.3  
VSS + 7.0  
V
V
Output voltage  
P40 to P45, P50 to P57, P60 to  
P67, P70 to P77, P80 to P83  
Must not exceed “V3 + 0.3 V”  
VO2  
VSS – 0.3  
“L” level maximum output  
current  
IOL  
20  
4
mA Peak value  
mA Average value  
mA Peak value  
“L” level average output current  
IOLAV  
IOL  
“L” level total maximum output  
current  
100  
“L” level total average output  
current  
IOLAV  
40  
mA Average value  
“H” level maximum output  
current  
IOH  
–20  
–4  
mA Peak value  
mA Average value  
mA Peak value  
“H” level average output current  
IOHAV  
IOH  
“H” level total maximum output  
current  
–50  
“H” level total average output  
current  
IOHAV  
–20  
mA Average value  
Power consumption  
Operating temperature  
Storage temperature  
PD  
300  
+85  
mW  
°C  
TA  
–40  
–55  
Tstg  
+150  
°C  
*1: Use AVCC and VCC set at the same voltage.  
Take care so that AVCC does not exceed VCC, such as when power is turned on.  
*2: VCC must not exceed V3.  
Precautions: Permanent device damage may occur if the above “Absolute Maximum Ratings” are exceeded. Func-  
tional operation should be restricted to the conditions as detailed in the operational sections of this  
data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
25  
MB89920 Series  
2. Recommended Operating Conditions  
(VSS = 0.0 V)  
Value  
Symbol  
Unit  
Remarks  
Parameter  
Min.  
2.2*1  
2.7*1  
1.5  
Max.  
6.0  
V
V
V
Normal operation assurance range  
MB89PV920/P928  
Power supply voltage  
VCC  
6.0  
6.0  
Retains the RAM state in stop mode  
A/D converter reference input  
voltage  
AVR  
3.0  
AVCC  
V
LCD power supply voltage  
Operating temperature  
V1 to V3  
VSS  
VSS + 6.0  
+85  
V
V1 V2 V3*2  
TA  
–40  
°C  
*1: These values vary with the operating frequency, instruction cycle, and analog assurance range. See Figure 1  
and “5. A/D Converter Electrical Characteristics.”  
*2: VCC must not exceed V3.  
6
Analog accuracy assured in the  
AVCC = 3.5 V to 6.0 V range  
5
Operation assurance range  
4
3
2
1
10.0  
Clock operating frequency (at an instruction cycle of 4/FC) (MHz)  
1.0  
5.0  
8.0 9.0  
2.0  
3.0 4.0  
6.0 7.0  
4.0  
0.8  
0.5  
2.0  
Minimum execution time (instruction cycle) (µs)  
Note: The shaded area is assured only for the MB89923/925.  
Figure 1 Operating Voltage vs. Clock Operating Frequency  
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/FC.  
Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the  
operating speed is switched using a gear.  
26  
MB89920 Series  
3. DC Characteristics  
(VCC = 5.0 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Sym-  
Parameter  
bol  
Pin  
Condition  
Unit Remarks  
Min.  
Typ.  
Max.  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P32,  
P40 to P45, P50 to P57,  
P60 to P67, P70 to P77,  
P80 to P83, P90 to P97  
VCC +  
0.3  
VIH  
0.7 VCC  
V
V
V
V
V
“H” level input  
voltage  
Peripheral input  
of the port 0, 2,  
3, and 9  
VCC +  
0.3  
RST, MODA, HST  
VIHS  
0.8 VCC  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P32,  
P40 to P45, P50 to P57,  
P60 to P67, P70 to P77,  
P80 to P83, P90 to P97  
VSS −  
0.3  
VIL  
0.3 VCC  
0.2 VCC  
“L” level input  
voltage  
Peripheral input  
of the port 0, 2,  
3, and 9  
VSS −  
0.3  
RST, MODA, HST  
VILS  
Open-drain  
output  
pin application  
P40 to P45, P50 to P57,  
P60 to P67, P70 to P77,  
P80 to P83*1  
VSS −  
0.3  
VSS +  
6.0  
VD  
voltage  
P00 to P07, P10 to P17,  
P30 to P32, P90 to P97  
VOH1  
IOH = –2.0 mA  
IOH = –5.0 mA  
4.0  
2.4  
V
V
“H” level output  
voltage  
P20 to P27  
VOH2  
P00 to P07, P10 to P17,  
P30 to P32, P40 to P45,  
P50 to P57, P60 to P67,  
P70 to P77, P80 to P83,  
P90 to P97  
VOL1  
IOL = 4.0 mA  
0.4  
V
“L” level output  
voltage  
P20 to P27  
RST  
VOL2  
VOL3  
IOL = 5.0 mA  
IOL = 4.0 mA  
0.4  
0.4  
V
V
Input leakage  
current  
(Hi-z output  
leakage  
P00 to P07, P10 to P17,  
P20 to P27, P30 to P32,  
P40 to P45, P50 to P57,  
P60 to P67, P70 to P77,  
P80 to P83, P90 to P97,  
MODA  
0.45 V < VI <  
VCC  
Without pull-  
up resistor  
ILI1  
±5  
µA  
kΩ  
current)  
Pull-up  
resistance  
Without pull-  
up resistor  
P00 to P07, P20 to P27,  
P30 to P32, P90 to P97  
RPULU  
VI = 0.0 V  
25  
50  
100  
(Continued)  
27  
MB89920 Series  
(VCC = 5.0 V, VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Sym-  
Parameter  
bol  
Pin  
Condition  
VCC = 5.0 V  
Unit Remarks  
Min.  
Typ.  
Max.  
ICC  
12  
20  
mA tinst = 0.5 µs  
Sleep mode  
mA  
ICCS  
ICCH  
VCC  
VCC = 5.0 V  
3
7
1
tinst = 0.5 µs  
TA = +25°C  
µA Stop mode  
when A/D  
conversion is  
activated  
Power supply  
current*2  
IA  
6
8
mA  
AVCC  
when A/D  
conversion is  
stopped  
IAH  
1
µA  
TA = +25°C  
LCD divided  
resistance  
RLCD  
Between V3 and VSS  
COM0 to 3  
200  
300  
450  
2.5  
kΩ  
kΩ  
COM0 to 3 output  
impedance  
RVCOM  
V1 to V 3 = 5.0 V  
V1 to V 3 = 5.0 V  
SEG0 to 27  
output  
RVSEG  
SEG0 to 27  
15  
kΩ  
impedance  
LCD controller/  
driver leakage  
current  
V1 to V3, COM0 to  
3,  
SEG0 to 27  
ILCDL  
V1 to V 3 = 5.0 V  
f = 1 MHz  
±1  
µA  
Other than AVCC,  
AVSS, VCC, and VSS  
Input capacitance CIN  
10  
pF  
*1: VD must not exceed V3.  
*2: The measurement conditions of power supply current are as follows: the external clock and TA = +25°C.  
In the case of the MB89PV920, the current consumed by the connected EPROM and ICE is not included.  
Note: For pins which serve as the LCD and ports (P40 to P45, P50 to P57, P60 to P67, P70 to P77, and P80 to  
P83), see the port parameter when these pins are used as ports and the LCD parameter when they are used  
as LCD pins.  
28  
MB89920 Series  
4. AC Characteristics  
(1) Reset Timing  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Condition  
Unit  
Remarks  
Parameter  
Min.  
Max.  
RST “L” pulse width  
tZLZH  
48 tHCYL  
ns  
tZLZH  
RST  
0.2 VCC  
0.2 VCC  
(2) Power-on Reset  
Parameter  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Min. Max.  
Symbol Condition  
Unit  
Remarks  
Power supply rising time  
Power supply cut-off time  
tR  
1
50  
ms  
ms  
Power-on reset function only  
Due to repeated operations  
tOFF  
Note: Make sure that power supply rises within the selected oscillation stabilization time.  
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is  
recommended.  
tR  
tOFF  
2.0 V  
0.2 V  
0.2 V  
0.2 V  
VCC  
29  
MB89920 Series  
(3) Clock Timing  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
FC  
Pin  
Condition  
Unit  
Remarks  
Parameter  
Min.  
1
Max.  
8
Clock frequency  
Clock cycle time  
X0, X1  
X0, X1  
MHz  
ns  
tXCYL  
125  
1000  
PWH  
PWL  
Input clock pulse width  
X0  
X0  
20  
ns  
ns  
External clock  
External clock  
Input clock rising/falling  
time  
tCR  
tCF  
10  
X0 and X1 Timing and Conditions  
tXCYL  
PWH  
PWL  
tCF  
tCR  
0.8 VCC  
0.8 VCC  
X0  
0.2 VCC  
0.2 VCC  
0.2 VCC  
Clock Conditions  
When a crystal  
or  
ceramic resonator is used  
When an external clock is used  
X0  
X1  
X0  
X1  
FC  
Open  
C1  
C2  
(4) Instruction Cycle  
Parameter  
Symbol  
Value (typical)  
Unit  
Remarks  
Instruction cycle  
(minimum execution time)  
(4/FC) tinst = 0.5 µs when operating at  
FC = 8 MHz  
tinst  
4/FC  
µs  
30  
MB89920 Series  
(5) Serial I/O Timing  
Parameter  
(AVCC = VCC = +5.0 V±10%, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
SCK  
Condition  
Unit Remarks  
Min.  
2 tinst*  
–200  
Max.  
Serial clock cycle time  
SCK ↓ → SO time  
tSCYC  
tSLOV  
tIVSH  
tSHIX  
tSHSL  
tSLSH  
tSLOV  
tIVSH  
tSHIX  
µs  
ns  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
SCK, SO  
SI, SCK  
SCK, SI  
SCK  
200  
Internal shift  
clock mode  
Valid SI SCK ↑  
1/2 tinst*  
1/2 tinst*  
1 tinst*  
1 tinst*  
0
SCK ↑ → valid SI hold time  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
SCK ↓ → SO time  
SCK  
External shift  
clock mode  
SCK, SO  
SI, SCK  
SCK, SI  
200  
Valid SI SCK ↑  
1/2 tinst*  
1/2 tinst*  
SCK ↑ → valid SI hold time  
* : For information on tinst, see “(4) Instruction Cycle.”  
Internal Shift Clock Mode  
tSCYC  
SCK  
2.4 V  
0.8 V  
0.8 V  
tSLOV  
2.4 V  
SO  
0.8 V  
tIVSH  
tSHIX  
0.8 VCC  
0.2 VCC  
0.8 VCC  
SI  
0.2 VCC  
External Shift Clock Mode  
tSLSH  
tSHSL  
SCK  
0.8 VCC  
0.8 VCC  
0.2 VCC  
0.2 VCC  
tSLOV  
2.4 V  
0.8 V  
SO  
tIVSH  
0.8 VCC  
0.2 VCC  
tSHIX  
0.8 VCC  
0.2 VCC  
SI  
31  
MB89920 Series  
(6) Peripheral Input Timing  
(VCC = +5.0 V±10%, AVSS = VSS= 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Pin  
Unit Remarks  
Parameter  
Min.  
2 tinst*  
2 tinst*  
Max.  
Peripheral input “H” pulse width 1  
Peripheral input “L” pulse width 1  
tILIH1  
tIHIL1  
INT0 to INT3, RTI0, 1  
INT0 to INT3, RTI0, 1  
* : For information on tinst, see “(4) Instruction Cycle.”  
tIHIL1  
tILIH1  
RTI0, 1  
INT0 to 3  
0.8 VCC  
0.2 VCC  
0.8 V CC  
0.2 VCC  
32  
MB89920 Series  
5. A/D Converter Electrical Characteristics  
(AVCC = VCC = +3.5 V to +6.0 V, FC = 8 MHZ, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Sym-  
bol  
Parameter  
Resolution  
Pin  
Condition  
Unit  
Min.  
Typ.  
Max.  
10  
bit  
Linearity error  
±2.0  
±1.5  
±3.0  
LSB  
LSB  
LSB  
mV  
Differential linearity error  
Differential total error  
AVCC = AVR =  
VCC  
AN0 to AN7  
AN0 to AN7  
AVSS – 1.5 LSB AVSS + 0.5 LSB AVSS + 2.5 LSB  
Zero transition voltage VOT  
Full-scale transition  
VFST  
AVR – 3.5 LSB AVR – 1.5 LSB AVR + 0.5 LSB  
mV  
voltage  
Interchannel disparity  
4
LSB  
µs  
µA  
V
A/D mode conversion time  
Analog port input current  
Analog input voltage  
Reference voltage  
16.5  
10  
AN0 to AN7  
AN0 to AN7  
AVR  
At 8-MHZ oscillattion  
VAIN  
0.0  
0.0  
AVR  
AVCC  
V
Reference voltage  
supply current  
IR  
AVR  
AVR = 5.0 V  
200  
µA  
Precautions: • The smaller | AVR – AVSS |, the greater the error would become relatively.  
• The output impedance of the external circuit for the analog input must satisfy the following conditions:  
Output impedance of the external circuit < Approx. 10 kΩ  
If the output impedance of the external circuit is too high, an analog voltage sampling time might be  
insufficient (sampling time = 7.5 µs at 8 MHz oscillation).  
An analog input equivalent circuit is shown below.  
Sample hold circuit  
R 10 kis  
recommended.  
.
C = 60 pF  
.
AN  
Comparator  
.
R = 3 kΩ  
.
Analog channel selector  
Close for approx. 15 instruction cycles  
after activating A/D conversion.  
If R > 10 k, it is recommended  
to connect an external capacitor  
of approx. 0.1 µF.  
Microcontroller’s internal circuit  
Since the A/D converter contains sample hold circuit, the level of the analog input pin might not stabilize within the  
sampling period after A/D activation, resulting in inaccurate A/D conversion values, if the input impedance to the  
analog pin is too high. Be sure to maintain an appropriate input impedance to the analog pin.  
It is recommended to keep the input impedance to the analog pin not exceed 10 k. If it exceeds 10 k, it is  
recommended to connect a capacitor of about 0.1 µF for the analog input pin.  
ExceptforthesamplingperiodafterA/Dactivation, theinputleakagecurrentoftheanaloginputpinislessthan10µA.  
33  
MB89920 Series  
(1) A/D Converter Glossary  
• Resolution  
Analog changes that are identifiable with the A/D converter.  
• Linearity error  
The deviation of the straight line connecting the zero transition point (“00 0000 0000” “00 0000 0001”) with  
the full-scale transition point (“11 1111 1111” “11 1111 1110”) from actual conversion characteristics  
• Differential linearity error  
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value  
Total error  
The difference between theoretical and actual conversion values, caused by the zero transition error, full-scale  
transition error, linearity error, quantization error, and noise.  
Theoreticall I/O characteristics  
VFST  
Total error  
3FF  
3FE  
3FD  
3FF  
3FE  
3FD  
Actual conversion  
value  
1.5 LSB  
{1 LSB × N + 0.5 LSB}  
004  
003  
002  
001  
004  
003  
002  
001  
VNT  
VOT  
Actual conversion  
value  
1 LSB  
Theoretical value  
0.5 LSB  
AVSS  
AVR  
AVSS  
AVR  
Analog input  
Analog input  
VFST VOT  
VNT  
{1 LSB × N + 0.5 LSB}  
1 LSB =  
(V)  
Total error of digital output N =  
1022  
1 LSB  
(Continued)  
34  
MB89920 Series  
(Continued)  
Zero transition error  
Full-scale transition error  
Theoretical value  
004  
003  
002  
001  
Actual conversion  
3FF  
3FE  
3FD  
3FC  
value  
Actual conversion  
value  
VFST (Actual  
measured value)  
Theoretical  
value  
Actual conversion  
value  
Actual conversion  
value  
VOT (Actual measured value)  
Analog input  
AVSS  
AVR  
Analog input  
Linearity error  
Differential linearity error  
3FF  
3FE  
3FD  
Theoretical value  
Actual conversion  
value  
N + 1  
{1 LSB × N + VOT}  
Actual conversion  
value  
V(N + 1)T  
VFST (Actual  
measured  
value)  
N
VNT  
004  
003  
002  
001  
N – 1  
N – 2  
VNT  
Actual conversion  
value  
Actual conversion  
value  
Theoretical value  
VOT (Actual measured value)  
Analog input  
AVSS  
AVR  
AVSS  
AVR  
– 1  
Analog input  
VNT – {1 LSB × N + VOT}  
V(N+1)T – VNT  
Linearity error of digital output N =  
Differential linearity error of digital output N =  
1 LSB  
1 LSB  
35  
MB89920 Series  
6. Low-voltage Detection Reset  
Parameter  
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)  
Value  
Symbol  
Condition  
Unit Remarks  
Min.  
3.00  
3.30  
3.70  
3.10  
3.40  
3.80  
0.10  
0.3  
Max.  
3.60  
3.90  
4.30  
3.80  
4.10  
4.50  
VDL1  
VDL2  
VDL3  
VDH1  
VDH2  
VDH3  
V  
V
V
Voltage detected at power supply  
voltage drop  
V
1
*
V
Voltage detected at power supply  
voltage rise  
V
V
Hysteresis width  
V
Reset ignore time  
tL  
µs  
ns  
µs  
V/µs  
Reset sense time  
tLW  
16 tXCYL  
Reset detection deley time  
Voltage regulation (V/t)  
tD  
2.0  
VCR  
0.10  
*1: VDH and VDL can be set for the MB89923 and MB89925 by mask options; for the MB89PV920 and MB89P928  
by registers.  
Power supply voltage  
VCC  
t∆  
VDH*  
V∆  
V  
VDL*  
tD  
tOSC  
tOSC  
tD  
RUN  
RESET  
tOSC oscillation stabilization time 219 = 65.5 ms (f = 8 MHz)  
Power supply voltage  
VCC  
less than tL  
over than tLW  
VDH*  
VDL*  
t
t
RUN  
RESET  
Not reset  
Reset  
36  
MB89920 Series  
INSTRUCTIONS (136 INSTRUCTIONS)  
Execution instructions can be divided into the following four groups:  
Transfer  
• Arithmetic operation  
• Branch  
• Others  
Table 1 lists symbols used for notation of instructions.  
Table 1 Instruction Symbols  
Symbol  
dir  
Meaning  
Direct address (8 bits)  
off  
Offset (8 bits)  
ext  
#vct  
#d8  
#d16  
dir: b  
rel  
Extended address (16 bits)  
Vector table number (3 bits)  
Immediate data (8 bits)  
Immediate data (16 bits)  
Bit direct address (8:3 bits)  
Branch relative address (8 bits)  
Register indirect (Example: @A, @IX, @EP)  
@
A
AH  
AL  
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of accumulator A (8 bits)  
Lower 8 bits of accumulator A (8 bits)  
T
TH  
TL  
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Upper 8 bits of temporary accumulator T (8 bits)  
Lower 8 bits of temporary accumulator T (8 bits)  
Index register IX (16 bits)  
IX  
EP  
PC  
SP  
PS  
dr  
CCR  
RP  
Ri  
Extra pointer EP (16 bits)  
Program counter PC (16 bits)  
Stack pointer SP (16 bits)  
Program status PS (16 bits)  
Accumulator A or index register IX (16 bits)  
Condition code register CCR (8 bits)  
Register bank pointer RP (5 bits)  
General-purpose register Ri (8 bits, i = 0 to 7)  
Indicates that the very × is the immediate data.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
×
Indicates that the contents of × is the target of accessing.  
( × )  
(( × ))  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
The address indicated by the contents of × is the target of accessing.  
(Whether its length is 8 or 16 bits is determined by the instruction in use.)  
Columns indicate the following:  
Mnemonic: Assembler notation of an instruction  
~:  
#:  
The number of instructions  
The number of bytes  
Operation: Operation of an instruction  
TL, TH, AH:  
A content change when each of the TL, TH, and AH instructions is executed. Symbols in  
the column indicate the following:  
indicates no change.  
• dH is the 8 upper bits of operation description data.  
• AL and AH must become the contents of AL and AH prior to the instruction executed.  
• 00 becomes 00.  
N, Z, V, C:  
OP code:  
An instruction of which the corresponding flag will change. If + is written in this column,  
the relevant instruction will change its corresponding flag.  
Code of an instruction. If an instruction is more than one code, it is written according to  
the following rule:  
Example: 48 to 4F This indicates 48, 49, ... 4F.  
37  
MB89920 Series  
Table 2 Transfer Instructions (48 instructions)  
Mnemonic  
MOV dir,A  
MOV @IX +off,A  
MOV ext,A  
MOV @EP,A  
MOV Ri,A  
MOV A,#d8  
MOV A,dir  
MOV A,@IX +off  
MOV A,ext  
MOV A,@A  
MOV A,@EP  
MOV A,Ri  
MOV dir,#d8  
MOV @IX +off,#d8  
MOV @EP,#d8  
MOV Ri,#d8  
MOVW dir,A  
MOVW @IX +off,A  
~
#
Operation  
TL  
TH AH NZVC OP code  
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
(dir) (A)  
AL  
AL  
AL  
AL  
AL  
AL  
AL  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
45  
46  
61  
( (IX) +off ) (A)  
(ext) (A)  
( (EP) ) (A)  
47  
(Ri) (A)  
(A) d8  
(A) (dir)  
48 to 4F  
04  
05  
06  
60  
92  
(A) ( (IX) +off)  
(A) (ext)  
(A) ( (A) )  
(A) ( (EP) )  
07  
(A) (Ri)  
(dir) d8  
08 to 0F  
85  
86  
87  
88 to 8F  
D5  
( (IX) +off ) d8  
( (EP) ) d8  
(Ri) d8  
(dir) (AH),(dir + 1) (AL)  
( (IX) +off) (AH),  
( (IX) +off + 1) (AL)  
(ext) (AH), (ext + 1) (AL)  
( (EP) ) (AH),( (EP) + 1) (AL)  
(EP) (A)  
D6  
MOVW ext,A  
MOVW @EP,A  
MOVW EP,A  
MOVW A,#d16  
MOVW A,dir  
MOVW A,@IX +off  
5
4
2
3
4
5
3
1
1
3
2
2
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
– – – –  
– – – –  
– – – –  
+ + – –  
+ + – –  
+ + – –  
D4  
D7  
E3  
E4  
C5  
C6  
(A) d16  
(AH) (dir), (AL) (dir + 1)  
(AH) ( (IX) +off),  
(AL) ( (IX) +off + 1)  
(AH) (ext), (AL) (ext + 1)  
(AH) ( (A) ), (AL) ( (A) ) + 1)  
(AH) ( (EP) ), (AL) ( (EP) + 1)  
(A) (EP)  
MOVW A,ext  
MOVW A,@A  
MOVW A,@EP  
MOVW A,EP  
MOVW EP,#d16  
MOVW IX,A  
MOVW A,IX  
MOVW SP,A  
MOVW A,SP  
MOV @A,T  
MOVW @A,T  
MOVW IX,#d16  
MOVW A,PS  
MOVW PS,A  
MOVW SP,#d16  
SWAP  
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
AL  
AL  
AL  
AH  
AH  
AH  
dH  
dH  
dH  
dH  
dH  
dH  
dH  
AL  
dH  
dH  
dH  
dH  
dH  
+ + – –  
+ + – –  
+ + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
+ + + +  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
C4  
93  
C7  
F3  
E7  
E2  
F2  
E1  
F1  
82  
83  
E6  
70  
71  
E5  
10  
(EP) d16  
(IX) (A)  
(A) (IX)  
(SP) (A)  
(A) (SP)  
( (A) ) (T)  
( (A) ) (TH),( (A) + 1) (TL)  
(IX) d16  
(A) (PS)  
(PS) (A)  
(SP) d16  
(AH) (AL)  
(dir): b 1  
(dir): b 0  
(AL) (TL)  
(A) (T)  
(A) (EP)  
(A) (IX)  
(A) (SP)  
(A) (PC)  
SETB dir: b  
CLRB dir: b  
XCH A,T  
A8 to AF  
A0 to A7  
42  
AL  
AL  
AH  
XCHW A,T  
43  
F7  
F6  
F5  
XCHW A,EP  
XCHW A,IX  
XCHW A,SP  
MOVW A,PC  
F0  
Note During byte transfer to A, T A is restricted to low bytes.  
Operands in more than one operand instruction must be stored in the order in which their mnemonics  
are written. (Reverse arrangement of F2MC-8 family)  
38  
MB89920 Series  
Table 3 Arithmetic Operation Instructions (62 instructions)  
Mnemonic  
ADDC A,Ri  
ADDC A,#d8  
ADDC A,dir  
ADDC A,@IX +off  
ADDC A,@EP  
ADDCW A  
ADDC A  
SUBC A,Ri  
SUBC A,#d8  
SUBC A,dir  
SUBC A,@IX +off  
SUBC A,@EP  
SUBCW A  
SUBC A  
INC Ri  
INCW EP  
INCW IX  
INCW A  
DEC Ri  
DECW EP  
DECW IX  
DECW A  
MULU A  
DIVU A  
~
#
Operation  
(A) (A) + (Ri) + C  
TL  
TH AH NZVC OP code  
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19  
21  
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dL  
00  
dH  
dH  
dH  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + –  
– – – –  
– – – –  
+ + – –  
+ + + –  
– – – –  
– – – –  
+ + – –  
– – – –  
– – – –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + – +  
28 to 2F  
24  
(A) (A) + d8 + C  
(A) (A) + (dir) + C  
(A) (A) + ( (IX) +off) + C  
(A) (A) + ( (EP) ) + C  
(A) (A) + (T) + C  
(AL) (AL) + (TL) + C  
(A) (A) (Ri) C  
(A) (A) d8 C  
(A) (A) (dir) C  
(A) (A) ( (IX) +off) C  
(A) (A) ( (EP) ) C  
(A) (T) (A) C  
(AL) (TL) (AL) C  
(Ri) (Ri) + 1  
(EP) (EP) + 1  
(IX) (IX) + 1  
(A) (A) + 1  
(Ri) (Ri) 1  
(EP) (EP) 1  
(IX) (IX) 1  
(A) (A) 1  
25  
26  
27  
23  
22  
38 to 3F  
34  
35  
36  
37  
33  
32  
C8 to CF  
C3  
C2  
C0  
D8 to DF  
D3  
D2  
D0  
01  
11  
63  
73  
53  
12  
dH  
dH  
00  
dH  
dH  
dH  
(A) (AL) × (TL)  
(A) (T) / (AL),MOD (T)  
(A) (A) (T)  
(A) (A) (T)  
(A) (A) (T)  
ANDW A  
ORW A  
XORW A  
CMP A  
CMPW A  
RORC A  
(TL) (AL)  
(T) (A)  
13  
03  
A
C
C A  
ROLC A  
2
1
+ + – +  
02  
(A) d8  
(A) (dir)  
(A) ( (EP) )  
(A) ( (IX) +off)  
(A) (Ri)  
CMP A,#d8  
CMP A,dir  
CMP A,@EP  
CMP A,@IX +off  
CMP A,Ri  
DAA  
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
14  
15  
17  
16  
18 to 1F  
84  
Decimal adjust for addition  
Decimal adjust for subtraction  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
DAS  
XOR A  
94  
52  
54  
55  
57  
56  
XOR A,#d8  
XOR A,dir  
XOR A,@EP  
XOR A,@IX +off  
XOR A,Ri  
AND A  
58 to 5F  
62  
AND A,#d8  
AND A,dir  
64  
65  
(A) (AL) (dir)  
(Continued)  
39  
MB89920 Series  
(Continued)  
Mnemonic  
~
#
Operation  
(A) (AL) ( (EP) )  
TL  
TH AH NZVC OP code  
AND A,@EP  
AND A,@IX +off  
AND A,Ri  
OR A  
OR A,#d8  
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + R –  
+ + + +  
+ + + +  
+ + + +  
+ + + +  
– – – –  
– – – –  
67  
66  
68 to 6F  
72  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(A) (AL) (TL)  
(A) (AL) d8  
(A) (AL) (dir)  
(A) (AL) ( (EP) )  
(A) (AL) ( (IX) +off)  
(A) (AL) (Ri)  
(dir) – d8  
74  
75  
77  
76  
OR A,dir  
OR A,@EP  
OR A,@IX +off  
OR A,Ri  
CMP dir,#d8  
CMP @EP,#d8  
CMP @IX +off,#d8  
CMP Ri,#d8  
INCW SP  
78 to 7F  
95  
97  
96  
98 to 9F  
C1  
( (EP) ) – d8  
( (IX) + off) – d8  
(Ri) – d8  
(SP) (SP) + 1  
(SP) (SP) – 1  
DECW SP  
D1  
Table 4 Branch Instructions (17 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
BZ/BEQ rel  
BNZ/BNE rel  
BC/BLO rel  
BNC/BHS rel  
BN rel  
BP rel  
BLT rel  
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
If Z = 1 then PC PC + rel  
If Z = 0 then PC PC + rel  
If C = 1 then PC PC + rel  
If C = 0 then PC PC + rel  
If N = 1 then PC PC + rel  
If N = 0 then PC PC + rel  
If V N = 1 then PC PC + rel  
If V N = 0 then PC PC + reI  
If (dir: b) = 0 then PC PC + rel  
If (dir: b) = 1 then PC PC + rel  
(PC) (A)  
(PC) ext  
Vector call  
Subroutine call  
(PC) (A),(A) (PC) + 1  
Return from subrountine  
Return form interrupt  
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– + – –  
– + – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
Restore  
FD  
FC  
F9  
F8  
FB  
FA  
FF  
FE  
BGE rel  
BBC dir: b,rel  
BBS dir: b,rel  
JMP @A  
JMP ext  
CALLV #vct  
CALL ext  
XCHW A,PC  
RET  
B0 to B7  
B8 to BF  
E0  
21  
E8 to EF  
31  
F4  
20  
30  
RETI  
Table 5 Other Instructions (9 instructions)  
Mnemonic  
~
#
Operation  
TL  
TH AH NZVC OP code  
PUSHW A  
POPW A  
PUSHW IX  
POPW IX  
NOP  
CLRC  
SETC  
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
dH  
– – – –  
– – – –  
– – – –  
– – – –  
– – – –  
– – – R  
– – – S  
– – – –  
– – – –  
40  
50  
41  
51  
00  
81  
91  
80  
90  
CLRI  
SETI  
40  
MB89920 Series  
INSTRUCTION MAP  
41  
MB89920 Series  
MASK OPTIONS  
MB89923  
MB89925  
Part number  
MB89P928  
MB89PV920  
No.  
Specify when  
ordering  
masking  
Set with EPROM  
programmer  
Setting not  
possible  
Specifying procedure  
P00 to P07, P20 to P27,  
P30 to P32, P90 to P97  
Pull-up resistors  
1
2
P00 to P07, P20 to P27,  
P30 to P32, P90 to P97  
Can be set per pin No pull-up resistor  
: Selectable by pin  
Power-on reset  
With power-on  
Power-on reset provided  
No power-on reset  
Selectable  
Can be set  
reset  
Oscillation stabilization time slection (at 8 HZ)  
Cystal oscillator  
(32.8 ms/8MHZ)  
Ceramic oscillator  
(2.05 ms/8 MHZ)  
Crystal oscillator  
Can be set  
3
Selectable  
(32.8 ms/8 MHZ)  
Reset pin output  
Reset output provided  
No reset output  
4
5
6
7
Selectable  
Selectable  
Selectable  
Selectable  
Can be set  
Can be set  
Can be set  
Can be set  
With reset output  
Watchdog timer  
Inactive by default  
(Can be activated  
by software)  
Activation prohibited  
Automatic activation  
Low-voltage detection reset circuit  
Activation prohibited  
Inactive by default  
(Can be activated  
by software)  
Automatic activation  
Low-voltage detection reset output  
Output disabled  
Inactive by default  
(Can be activated  
by software)  
Output enabled  
Low-voltage detection voltage  
3.3 V ± 0.3 V  
8
9
Selectable  
Selectable  
Can be set  
Can be set  
Register setting  
3.6 V ± 0.3 V  
4.0 V ± 0.3 V  
Low-voltage detection reset/watchdog  
timer function selection  
Register setting valid  
Fixed to register  
setting  
Option setting valid  
42  
MB89920 Series  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
MB89923PF  
MB89925PF  
MB89P928PF  
80-pin Plastic QFP  
(FPT-80P-M06)  
80-pin Ceramic MQFP  
(MQP-80C-P01)  
MB89PV920CF  
43  
MB89920 Series  
PACKAGE DIMENSIONS  
80-pin Plastic QFP  
(FPT-80P-M06)  
23.90±0.40(.941±.016)  
20.00±0.20(.787±.008)  
3.35(.132)MAX  
0.05(.002)MIN  
(STAND OFF)  
64  
41  
65  
40  
12.00(.472)  
REF  
14.00±0.20 17.90±0.40  
(.551±.008) (.705±.016)  
16.30±0.40  
(.642±.016)  
INDEX  
80  
25  
"A"  
1
24  
LEAD No.  
0.80(.0315)TYP  
0.35±0.10  
(.014±.004)  
0.15±0.05(.006±.002)  
Details of "B" part  
M
0.16(.006)  
Details of "A" part  
0.25(.010)  
0.30(.012)  
"B"  
0.10(.004)  
0
10°  
0.18(.007)MAX  
0.58(.023)MAX  
18.40(.724)REF  
0.80±0.20  
(.031±.008)  
22.30±0.40(.878±.016)  
C
1994 FUJITSU LIMITED F80010S-3C-2  
Dimensions in mm (inches)  
44  
MB89920 Series  
80-pin Ceramic MQFP  
(MQP-80C-P01)  
18.70(.736)TYP  
12.00(.472)TYP  
16.30±0.33  
(.642±.013)  
15.58±0.20  
(.613±.008)  
1.50(.059)TYP  
1.00(.040)TYP  
0.80±0.25  
(.0315±.010)  
INDEX AREA  
1.20+00..2400  
4.50(.177)  
TYP  
.047 +..000186  
0.80±0.25  
(.0315±.010)  
1.27±0.13  
(.050±.005)  
INDEX AREA  
18.12±0.20  
(.713±.008)  
22.30±0.33  
(.878±.013)  
12.02(.473)  
TYP  
18.40(.724)  
REF  
10.16(.400)  
14.22(.560)  
TYP  
0.30(.012)  
TYP  
24.70(.972)  
TYP  
TYP  
INDEX  
6.00(.236)  
TYP  
0.40±0.10  
(.016±.004)  
1.27±0.13  
(.050±.005)  
0.30(.012)TYP  
7.62(.300)TYP  
9.48(.373)TYP  
11.68(.460)TYP  
0.40±0.10  
(.016±.004)  
1.20+00..2400  
.047 +..000186  
1.50(.059)  
TYP  
1.00(.040)  
TYP  
0.15±0.05 8.70(.343)  
(.006±.002) MAX  
C
1994 FUJITSU LIMITED M80001SC-4-2  
Dimensions in mm (inches)  
45  
MB89920 Series  
FUJITSU LIMITED  
For further information please contact:  
Japan  
All Rights Reserved.  
FUJITSU LIMITED  
Corporate Global Business Support Division  
Electronic Devices  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
KAWASAKI PLANT, 4-1-1, Kamikodanaka,  
Nakahara-ku, Kawasaki-shi,  
Kanagawa 211-8588, Japan  
Tel: +81-44-754-3763  
The information and circuit diagrams in this document are  
presented as examples of semiconductor device applications, and  
are not intended to be incorporated in devices for actual use. Also,  
FUJITSU is unable to assume responsibility for infringement of  
any patent rights or other rights of third parties arising from the use  
of this information or circuit diagrams.  
Fax: +81-44-754-3329  
http://www.fujitsu.co.jp/  
North and South America  
FUJITSU MICROELECTRONICS, INC.  
3545 North First Street,  
San Jose, CA 95134-1804, U.S.A.  
Tel: +1-408-922-9000  
Fax: +1-408-922-9179  
The contents of this document may not be reproduced or copied  
without the permission of FUJITSU LIMITED.  
Customer Response Center  
Mon. - Fri.: 7 am - 5 pm (PST)  
Tel: +1-800-866-8608  
FUJITSU semiconductor devices are intended for use in standard  
applications (computers, office automation and other office  
equipments, industrial, communications, and measurement  
equipments, personal or household devices, etc.).  
Fax: +1-408-922-9179  
http://www.fujitsumicro.com/  
CAUTION:  
Europe  
Customers considering the use of our products in special  
applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage, or  
where extremely high levels of reliability are demanded (such as  
aerospace systems, atomic energy controls, sea floor repeaters,  
vehicle operating controls, medical devices for life support, etc.)  
are requested to consult with FUJITSU sales representatives before  
such use. The company will not be responsible for damages arising  
from such use without prior approval.  
FUJITSU MICROELECTRONICS EUROPE GmbH  
Am Siebenstein 6-10,  
D-63303 Dreieich-Buchschlag,  
Germany  
Tel: +49-6103-690-0  
Fax: +49-6103-690-122  
http://www.fujitsu-fme.com/  
Asia Pacific  
FUJITSU MICROELECTRONICS ASIA PTE. LTD.  
#05-08, 151 Lorong Chuan,  
New Tech Park,  
Any semiconductor devices have inherently a certain rate of failure.  
You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
Singapore 556741  
Tel: +65-281-0770  
Fax: +65-281-0220  
http://www.fmap.com.sg/  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Control Law of Japan, the  
prior authorization by Japanese government should be required for  
export of those products from Japan.  
Korea  
FUJITSU MICROELECTRONICS KOREA LTD.  
1702 KOSMO TOWER, 1002 Daechi-Dong,  
Kangnam-Gu,Seoul 135-280  
Korea  
Tel: +82-2-3484-7100  
Fax: +82-2-3484-7111  
F0005  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB89P935A

8-bit Proprietary Microcontroller
FUJITSU

MB89P935APFV

8-bit Proprietary Microcontroller
FUJITSU

MB89P935APFV

Microcontroller, 8-Bit, OTPROM, 10MHz, CMOS, PDSO30, PLASTIC, SSOP-30
SPANSION

MB89P935B

8-bit Proprietary Microcontroller
FUJITSU

MB89P935BPFV

8-bit Proprietary Microcontroller
FUJITSU

MB89P945

8-bit Proprietary Microcontroller
FUJITSU

MB89P945PF

8-bit Proprietary Microcontroller
FUJITSU

MB89P945PF

Microcontroller, 8-Bit, OTPROM, F2MC-8L CPU, 8MHz, CMOS, PQFP48, 12 X 12 MM, 2.70 MM HEIGHT, 0.80 MM PITCH, PLASTIC, QFP-48
CYPRESS

MB89P955

8-bit Proprietary Microcontroller
FUJITSU

MB89P955PFM

8-bit Proprietary Microcontroller
FUJITSU

MB89P965A

8-bit Proprietary Microcontroller
FUJITSU

MB89P965APF

Microcontroller, 8-Bit, OTPROM, F2MC-8L CPU, 10MHz, CMOS, PQFP48, 0.80 MM PITCH, PLASTIC, QFP-48
FUJITSU