PXN20 [FREESCALE]

PXN20 Microcontroller; PXN20微控制器
PXN20
型号: PXN20
厂家: Freescale    Freescale
描述:

PXN20 Microcontroller
PXN20微控制器

微控制器
文件: 总60页 (文件大小:456K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: PXN20  
Rev. 1, 09/2011  
PXN20 PXN21  
MAPBGA–208  
17 mm x 17 mm  
PXN20 Microcontroller Data  
Sheet  
PXN20 features:  
– Internal conversion triggering for ADC  
– Triggerable by internal timers or eMIOS200  
• 32-bit CPU core complex (e200z650)  
– Compliant with Power Architecture embedded category  
– 32 KB unified cache with line locking and eight-entry  
store buffer16  
– Execution speed static to 116 MHz  
• 32-bit I/O processor (e200z0)  
• Deserial Serial Peripheral Interface (DSPI)  
– Four individual DSPI modules  
– Full duplex, synchronous transfers  
– Master or slave operation  
2
• Inter-IC communication (I C) interface  
2
– Four individual I C modules  
– Execution speed static to 1/2 CPU core speed (58 MHz)  
• 2 MB on-chip flash  
– Multi-master operation  
• Serial Communication Interface (eSCI) module  
– Two-channel DMA interface  
– Configurable as LIN bus master  
• eMIOS200 timed input/output  
– 24 channels, 16-bit timers (PXN20)  
– 32 channels, 16-bit timers (PXN21)  
• Controller Area Network (FlexCAN) module  
– Compliant with CAN protocol specification, Version  
2.0B active  
– Supports read during program and erase operations, and  
multiple blocks allowing EEPROM emulation  
• 512 KB + 80 KB (592 KB) on-chip ECC SRAM (PXN20)  
• 128 KB on-chip ECC SRAM (PXN21)  
• 16-entry Memory Protection Unit (PXN21 only)  
• Direct memory access controller  
– 16-channel on PXN20  
– 32-channel on PXN21  
• Fast ethernet controller  
– 64 mailboxes, each configurable as transmit or receive  
• Dual-channel FlexRay controller  
– Full implementation of FlexRay Protocol Specification  
2.1, RevA  
– Supports 10-Mbps and 100-Mbps IEEE 802.3 MII,  
10-Mbps 7-wire interface  
– IEEE 802.3 MAC (compliant with IEEE 802.3 1998  
edition)  
– 128 message buffers  
• JTAG controller (PXN20 only)  
• Media Local Bus (MLB) interface (PXN20 only)  
– Supports 16 logical channels, max speed 1024 Fs  
• Interrupt controller (INTC) supports 316 external interrupt  
vectors (22 are reserved)  
– Compliant with the IEEE 1149.1-2001  
• Nexus Development Interface (NDI)  
– Available in 256 MAPBGA package only  
– Compliant with IEEE-ISTO 5001-2003  
– Nexus class 3 development support on e200z650  
– Nexus class 2+ development support on e200z0  
• Internal voltage regulator allows operation from single  
3.3 V or 5 V supply  
• System clocks  
– Frequency-modulated phase-locked loop (FMPLL)  
– 4 – 40 MHz crystal oscillator (XTAL)  
– 32 kHz crystal oscillator (XTAL)  
– Dedicated 16 MHz and 128 kHz internal RC oscillators  
• Analog to Digital Converter (ADC) module  
– 10-bit A/D resolution  
– 32 external channels  
– 36 internal channels (PXN20)  
– 64 internal channels (PXN21)  
• Cross-Triggering Unit (PXN21 only)  
© Freescale Semiconductor, Inc., 2011. All rights reserved.  
Table of Contents  
1
Ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
4.6 Operating current specifications  
. . . . . . . . . . . . . . 32  
1.1 Orderable parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.2 PXN20 family feature set . . . . . . . . . . . . . . . . . . . . . . . .3  
PXN20 block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Pin assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
3.1 208-ball MAPBGA pin assignments . . . . . . . . . . . . . . . .7  
3.2 Pin muxing and reset states . . . . . . . . . . . . . . . . . . . . . .8  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.1 Maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.2 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .27  
4.3 ESD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
4.4 VRC electrical specifications. . . . . . . . . . . . . . . . . . . . .30  
4.5 DC electrical specifications. . . . . . . . . . . . . . . . . . . . . .30  
4.7 I/O pad current specifications . . . . . . . . . . . . . . . . . . . 34  
4.8 Low voltage characteristics . . . . . . . . . . . . . . . . . . . . . 36  
4.9 Oscillators electrical characteristics. . . . . . . . . . . . . . . 36  
4.10 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . 38  
4.11 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . 39  
4.12 Flash memory electrical characteristics . . . . . . . . . . . 39  
4.13 Pad AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . 40  
4.14 AC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Package characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
5.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . 58  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
2
3
4
5
6
PXS30 Microcontroller Data Sheet, Rev. 1  
2
Freescale Semiconductor  
Ordering information  
1
Ordering information  
1.1  
Orderable parts  
Table 1 shows the orderable part numbers for the PXN20 family.  
M PX  
N 20 20 V MG 116 R  
Qualification status  
Brand  
Family  
Class  
Flash memory size  
Temperature range  
Package identifier  
Operating frequency  
Tape and reel indicator  
Qualification status  
Family  
Flash Memory Size  
D = Display Graphics  
N = Connectivity/Network  
R = Performance/Real Time Control  
S = Safety  
20 = 2 MB  
P = Pre-qualification (engineering samples)  
M = Fully spec. qualified, general market flow  
S = Fully spec. qualified, automotive flow  
Temperature range  
Package identifier  
MG = 208 MAPBGA  
Operating frequency  
Tape and reel status  
V = –40 °C to 105 °C  
(ambient)  
116 = 116 MHz  
R = Tape and reel  
(blank) = Trays  
Note: Not all options are available on all devices. See Table 1 for more information.  
Figure 1. PXN20 orderable part number description  
Table 1. PXN20 orderable part number summary  
Speed  
(MHz)  
Part number  
Flash/SRAM  
Package  
MPXN2020VMG116  
MPXN2120VMG116  
2 MB / 592 KB  
2 MB / 128 KB  
208 MAPBGA (17 mm x 17 mm)  
208 MAPBGA (17 mm x 17 mm)  
116  
116  
1.2  
PXN20 family feature set  
Table 2. PXN20 family feature set  
PXN20  
Feature  
PXN21  
Central Processing Unit (CPU)  
Cache  
e200z650  
32K, 4/8way  
Yes  
e200z650  
32K, 4/8way  
Yes  
Floating Point Unit (FPU)  
Signal Processing Engine (SPE)  
Memory Management Unit (MMU)  
Yes  
Yes  
32 entry  
32 entry  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
3
Ordering information  
Table 2. PXN20 family feature set (continued)  
PXN20  
Feature  
PXN21  
CPU Execution Speed  
Static, 116 MHz  
Static, 116 MHz  
Input/Output Processor (IOP)  
IOP Execution Speed  
Flash with ECC  
e200z0  
e200z0  
1/2 CPU execution speed  
1/2 CPU execution speed  
2 MB  
2 MB  
Data Flash Block  
8x16 KB  
8x16 KB  
RAM with ECC  
592 KB  
128 KB  
Memory Protection Unit (MPU)  
Direct Memory Access Unit (eDMA)  
Ethernet (FEC)  
No  
16 entry  
16 Channel  
32 Channel  
Yes  
No  
MediaLB (MLB-DIM)  
Yes  
No  
FlexRay Controller  
Yes (128 Message Buffers)  
36 internal channels, 10-bit  
No  
Analog-to-Digital Converter (ADC)  
64 internal channels, 10-bit  
Supports 32 external channels Supports 32 external channels  
Total Timer I/O (eMIOS200)  
24 channels, 16-bit  
32 channels, 16-bit  
Cross Trigger Unit (CTU)  
No  
6
Yes  
12  
Asynchronous Serial Interfaces (UART)  
Synchronous Serial Interfaces (SPI)  
Controller Area Network (CAN) Controller  
Inter-Integrated Circuit (I2C) Controller  
Frequency Modulated PLL (FMPLL)  
4 – 40 MHz XTAL Oscillator  
4
4
6
5
4
4
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
8
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
8
16 MHz IRC Oscillator  
32 kHz XTAL Oscillator  
128 kHz IRC Oscillator  
Real Time Counter/ Autonomous Periodic Interrupts (RTC/API)  
Periodic Interrupt Timer (PIT)  
System Timer Module (STM)  
Software Watchdog Timer (SWT)  
General-Purpose I/O (GPIO)  
Yes  
Yes  
155  
Yes  
Yes  
Yes  
Yes  
155  
Yes  
Yes  
Clock Monitor (FMPLL)  
JTAG  
Nexus Debug (Only supported on emulation package)  
Nexus3 (e200Z6)  
Nexus2+ (e200Z0)  
Nexus3 (e200Z6)  
Nexus2+ (e200Z0)  
Production Package  
208 MAPBGA  
256 MAPBGA  
208 MAPBGA  
256 MAPBGA  
Emulation Package (for development use only)  
PXN20 Microcontroller Data Sheet, Rev. 1  
4
Freescale Semiconductor  
PXN20 block diagrams  
2
PXN20 block diagrams  
Figure 2 shows a top-level block diagram of the PXN20 device.  
PXN20 Block Diagram  
Debug  
32 kHz  
XTAL  
4-40 MHz  
XTAL  
16 MHz  
IRC  
VREG  
Controller  
JTAG  
Masters  
e200z650 Core  
VLE  
Nexus3 (Z6)  
Nexus2+ (Z0)  
RTC/API  
SWT  
STM  
INTC  
PIT  
128 kHz  
IRC  
FMPLL  
MMU (32 TLB)  
FPU/SPE  
Semaphores  
e200z0 Core  
16-ch DMA  
Mux  
32 KB Cache  
4/8 Way  
Ethernet  
MLB-DIM FlexRay™  
VLE  
BAM  
SIU  
Crossbar Switch (XBAR)  
PBRIDGE A  
2 MB  
Flash  
(ECC)  
PBRIDGE B  
80 KB  
SRAM  
(ECC)  
512 KB  
SRAM  
(ECC)  
6 x UART/LIN  
36 x ADC  
2 x I2C  
2 x SPI  
6 x CAN  
2 x SPI  
2 x I2C  
Standby RAM  
ECSM  
ECSM  
24 x eMIOS  
ECSM  
ADC  
BAM  
CAN  
– Analog-to-digital converter  
– Boot assist module  
– Controller area network controller  
– Error correction code  
– Error correction status module  
– Timed input/output  
– Enhanced direct memory access controller  
– Fast ethernet controller  
MLB-DIM – Media Local Bus device interface module  
NDI – Nexus debug interface  
PBRIDGE– Peripheral I/O bridge  
ECC  
PIT  
RTC  
SIU  
SPI  
STM  
SWT  
– Periodic interrupt timer  
– Real time clock  
– System integration unit  
– Serial peripheral interface controller  
– System timer module  
ECSM  
eMIOS  
eDMA  
FEC  
FlexRay™ – FlexRay bus controller  
– Software watchdog timer  
FMPLL  
I2C  
INTC  
JTAG  
– Frequency-modulated phase-locked loop  
– Inter-integrated circuit controller  
– Interrupt controller  
UART/LIN – Universal asynchronous receiver/transmitter/  
local interconnect network  
VREG  
– Voltage regator  
– Joint Test Action Group interface  
Figure 2. PXN20 block diagram  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
5
PXN20 block diagrams  
Figure 3 shows a top level block diagram for the PXN21 device.  
PXN21 Block Diagram  
Debug  
JTAG  
32 kHz  
XTAL  
4–40 MHz  
XTAL  
16 MHz  
IRC  
VREG  
Controller  
Masters  
e200z650 Core  
VLE  
Nexus3 (Z6)  
RTC/API  
SWT  
STM  
INTC  
PIT  
128 kHz  
IRC  
FMPLL  
Nexus2+ (Z0)  
MMU (32 TLB)  
FPU/SPE  
Semaphores  
e200z0 Core  
32-ch DMA  
Mux  
32 KB Cache  
4/8 Way  
VLE  
BAM  
SIU  
Crossbar Switch (XBAR)  
Memory Protection Unit (MPU)  
2 MB  
Flash  
(ECC)  
PBRIDGE B  
PBRIDGE A  
128 KB  
SRAM  
(ECC)  
2
8 x UART/LIN  
64 x ADC  
2 x I  
C
4 x UART/LIN  
2 x SPI  
2 x SPI  
Standby RAM  
ECSM  
2
ECSM  
32 x eMIOS  
5 x CAN  
2 x I  
C
CTU  
MPU  
NDI  
– Memory protection unit  
– Nexus debug interface  
ADC  
BAM  
CAN  
CTU  
ECC  
ECSM  
eDMA  
eMIOS  
FMPLL  
I2C  
– Analog-to-digital converter  
– Boot assist module  
– Controller area network controller  
– Cross triggering unit  
PBRIDGE – Peripheral I/O bridge  
PIT  
RTC  
SIU  
SPI  
– Periodic interrupt timer  
– Real time clock  
– System integration unit  
– Serial peripheral interface controller  
– System timer module  
– Software watchdog timer  
– Error correction code  
– Error correction status module  
– Enhanced direct memory access controller  
– Timed input/output  
– Frequency-modulated phase-locked loop  
– Inter-integrated circuit controller  
– Interrupt controller  
STM  
SWT  
UART/LIN – Universal asynchronous receiver/transmitter/  
INTC  
JTAG  
local interconnect network  
– Voltage regulator  
– Joint Test Action Group interface  
VREG  
Figure 3. PXN21 block diagram  
PXN20 Microcontroller Data Sheet, Rev. 1  
6
Freescale Semiconductor  
Pin assignments  
3
Pin assignments  
3.1  
208-ball MAPBGA pin assignments  
Figure 4 shows the 208-ball MAPBGA pin assignments.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
PD0  
PC12  
PC9  
PC7  
PC2  
PB13  
PB10  
PB8 RESET VDDSYN XTAL EXTAL VSSSYN  
V
V
A
B
C
D
E
F
V
PG1  
A
B
C
D
E
F
SS  
SS  
PD2  
PD3  
PD5  
PD7  
PD9  
PD11  
PD13  
PF1  
PD1  
PD4  
PD6  
PD8  
PD10  
PD12  
PF0  
PC11  
PC10  
PC13  
PC15  
PC8  
PC5  
PC3  
PC6  
PB14  
PC1  
PC4  
PB11  
PB15  
PC0  
V
PB9  
PB4  
PB5  
PB2  
PB3  
PB0  
PB1  
PG0  
V
V
DDA  
RCCTL  
RC  
RH  
PD14 PC14  
PB6  
PB12  
V
V
RL  
SSA  
PD15  
V
V
V
V
PB7  
PA0  
PA1  
PA14  
PA10  
PA11  
PA13  
PA12  
PA9  
PA8  
PA7  
PG2  
DDE1  
SS  
DD  
DD  
PE0  
PE3  
PE1  
PE2  
PA15  
PA2  
208 MAPBGA Ball Map  
(as viewed from top through the package)  
PA3  
PA5  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
PE4  
G
H
J
G
H
J
V
V
PA4  
PA6  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
PE5  
V
V
PG6  
PG7  
PG8  
PG9  
PG10  
PH3  
PH4  
PH6  
DD  
RCSEL  
V
PF2  
TDI  
PE8  
PG3  
PG4  
PG5  
PF13  
PF12  
PG11  
PG12  
PG13  
PG14  
PG15  
PH1  
DDE3  
JCOMP  
TMS  
TDO  
PE10  
TCK  
V
DD  
K
L
PK1  
PK0  
PK2  
PE7  
PE6  
PF3  
PF5  
V
K
L
DDEMLB  
V
V
DDE2  
DD33  
PE9  
PE11  
PE12  
PK4  
TEST  
PF4  
PF6  
M
N
P
R
T
M
N
P
R
T
PE15  
PK10  
PK8  
PE14  
PH8  
PJ0  
PH9  
PH10  
PJ2  
PH11  
PH12  
PJ4  
V
PH15  
PJ10  
PJ11  
PJ12  
V
V
DDE4  
DD  
SS  
PF8  
PE13  
PK6  
PH13  
PJ6  
PF15  
PJ14  
PH14  
PJ9  
PF14  
PH5  
PF10  
PH2  
PF7  
PF11  
PH7  
15  
V
PJ3  
8
PJ7  
10  
PJ8  
11  
PJ13  
12  
PJ15  
13  
PH0  
14  
PF9  
2
PK3  
3
PK5  
4
PK7  
5
PK9  
6
PJ1  
7
PJ5  
9
V
SS  
SS  
1
16  
Figure 4. PXN20 208-ball MAPBGA (full diagram)  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
7
Pin assignments  
3.2  
Pin muxing and reset states  
Table 3 shows the signals properties for each pin on PXN20. For all port pins that have an associated SIU_PCRn register to  
control pin properties, the supported functions column lists the functions associated with the programming of the  
SIU_PCRn[PA] bit in the order: general-purpose input/output (GPIO), function 1, function 2, and function 3 (see Figure 5).  
When an alternate function is not implemented for a value of SIU_PCRn[PA], a dash is shown in the Description column and  
the respective value in the PA bit field is reserved.  
GPIO  
Supported  
(PCR) PA4  
Num3  
Description  
Functions2  
PA[0]  
AN[0]  
0
00  
01  
10  
11  
GPIO  
Port A GPI  
ADC Analog Input  
Function 1  
Functions 2 and 3  
not implemented  
Figure 5. Supported functions example  
Table 3. PXN20 signal properties  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
Port A (16)  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA[0]  
AN[0]  
0
1
2
3
4
5
00 Port A GPI  
01 ADC Analog Input  
I
I
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
IHA  
IHA  
IHA  
IHA  
IHA  
IHA  
D15  
E15  
F16  
F15  
G16  
G15  
10  
11  
PA[1]  
AN[1]  
00 Port A GPI  
01 ADC Analog Input  
I
I
10  
11  
PA[2]  
AN[2]  
00 Port A GPI  
01 ADC Analog Input  
I
I
10  
11  
PA[3]  
AN[3]  
00 Port A GPI  
01 ADC Analog Input  
I
I
10  
11  
PA[4]  
AN[4]  
00 Port A GPI  
01 ADC Analog Input  
I
I
10  
11  
PA[5]  
AN[5]  
00 Port A GPI  
01 ADC Analog Input  
I
I
10  
11  
PXN20 Microcontroller Data Sheet, Rev. 1  
8
Freescale Semiconductor  
Pin assignments  
Table 3. PXN20 signal properties (continued)  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
PA6  
PA[6]  
AN[6]  
6
00 Port A GPI  
01 ADC Analog Input  
I
I
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
IHA  
IHA  
IHA  
IHA  
IHA  
IHA  
IHA  
IHA  
IHA  
IHA  
H16  
G14  
F14  
E14  
D13  
E13  
D14  
F13  
D16  
E16  
10  
11  
PA7  
PA[7]  
AN[7]  
7
00 Port A GPI  
01 ADC Analog Input  
I
I
10  
11  
PA8  
PA[8]  
AN[8]  
8
00 Port A GPI  
01 ADC Analog Input  
I
I
10  
11  
PA9  
PA[9]  
AN[9]  
9
00 Port A GPI  
01 ADC Analog Input  
I
I
10  
11  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA[10]  
AN[10]  
10  
11  
12  
13  
14  
15  
00 Port A GPI  
01 ADC Analog Input  
I
I
10  
11  
PA[11]  
AN[11]  
00 Port A GPI  
01 ADC Analog Input  
I
I
10  
11  
PA[12]  
AN[12]  
00 Port A GPI  
01 ADC Analog Input  
I
I
10  
11  
PA[13]  
AN[13]  
00 Port A GPI  
01 ADC Analog Input  
I
I
10  
11  
PA[14]  
AN[14]  
EXTAL32  
00 Port A GPI  
01 ADC Analog Input  
10 External 32 kHz Crystal In  
I
I
I
11  
PA[15]  
AN[15]  
XTAL32  
00 Port A GPI  
01 ADC Analog Input  
10 External 32 kHz Crystal Out  
I
I
O
11  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
9
Pin assignments  
Table 3. PXN20 signal properties (continued)  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
Port B (16)  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
PB8  
PB9  
PB[0]  
AN[16]/ANW  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
00 Port B GPIO  
01 ADC Analog Input/Mux In  
I/O VDDE1 SHA  
I
B14  
C14  
B13  
C13  
C12  
D12  
C11  
D11  
A10  
B12  
10  
11  
PB[1]  
AN[17]/ANX  
00 Port B GPIO  
01 ADC Analog Input/Mux In  
I/O VDDE1 SHA  
I
10  
11  
PB[2]  
AN[18]/ANY  
00 Port B GPIO  
01 ADC Analog Input/Mux In  
I/O VDDE1 SHA  
I
10  
11  
PB[3]  
AN[19]/ANZ  
00 Port B GPIO  
01 ADC Analog Input/Mux In  
I/O VDDE1 SHA  
I
10  
11  
PB[4]  
AN[20]  
00 Port B GPIO  
01 ADC Analog Input  
I/O VDDE1 SHA  
I
10  
11  
PB[5]  
AN[21]  
00 Port B GPIO  
01 ADC Analog Input  
I/O VDDE1 SHA  
I
10  
11  
PB[6]  
AN[22]  
00 Port B GPIO  
01 ADC Analog Input  
I/O VDDE1 SHA  
I
10  
11  
PB[7]  
AN[23]  
00 Port B GPIO  
01 ADC Analog Input  
I/O VDDE1 SHA  
I
10  
11  
PB[8]  
AN[24]  
PCS_A[2]  
00 Port B GPIO  
01 ADC Analog Input  
10 DSPI_A Peripheral Chip Select  
I/O VDDE1 SHA  
I
O
11  
PB[9]  
00 Port B GPIO  
I/O VDDE1 SHA  
AN[25]  
PCS_A[3]  
01 ADC Analog Input  
10 DSPI_A Peripheral Chip Select  
I
O
11  
PXN20 Microcontroller Data Sheet, Rev. 1  
10  
Freescale Semiconductor  
Pin assignments  
Table 3. PXN20 signal properties (continued)  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
PB10 PB[10]  
AN[26]  
26  
27  
28  
29  
30  
31  
00 Port B GPIO  
01 ADC Analog Input  
10 DSPI_B Peripheral Chip Select  
11  
I/O VDDE1 SHA  
I
O
A9  
PCS_B[4]  
PB11 PB[11]  
AN[27]  
00 Port B GPIO  
01 ADC Analog Input  
10 DSPI_B Peripheral Chip Select  
I/O VDDE1 SHA  
I
O
B9  
PCS_B[5]  
11  
PB12 PB[12]  
AN[28]  
00 Port B GPIO  
01 ADC Analog Input  
10 DSPI_C Peripheral Chip Select  
I/O VDDE1 SHA  
I
O
C10  
A8  
PCS_C[1]  
11  
PB13 PB[13]  
AN[29]  
00 Port B GPIO  
01 ADC Analog Input  
10 DSPI_C Peripheral Chip Select  
I/O VDDE1 SHA  
I
O
PCS_C[2]  
11  
PB14 PB[14]  
AN[30]  
00 Port B GPIO  
01 ADC Analog Input  
10 DSPI_D Peripheral Chip Select  
I/O VDDE1 SHA  
I
O
B8  
PCS_D[3]  
11  
PB15 PB[15]  
AN[31]  
00 Port B GPIO  
01 ADC Analog Input  
I/O VDDE1 SHA  
I
C9  
PCS_D[4]  
10 DSPI_D Peripheral Chip Select  
O
11  
Port C (16)  
PC0  
PC1  
PC2  
PC3  
PC[0]  
AN[32]  
32  
33  
34  
35  
00 Port C GPIO  
01 ADC Analog Input  
I/O VDDE1 SHA  
I
D9  
C8  
A7  
B7  
10  
11  
PC[1]  
AN[33]  
00 Port C GPIO  
01 ADC Analog Input  
I/O VDDE1 SHA  
I
10  
11  
PC[2]  
AN[34]  
EVTI  
00 Port C GPIO  
01 ADC Analog Input  
10 Nexus Event In  
I/O VDDE1 SHA  
I
I
11  
PC[3]  
00 Port C GPIO  
I/O VDDE1 SHA  
AN[35]  
EVTO  
01 ADC Analog Input  
10 Nexus Event Out  
I
O
11  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
11  
Pin assignments  
Table 3. PXN20 signal properties (continued)  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
PC4  
PC5  
PC6  
PC7  
PC8  
PC9  
PC[4]  
AN[36]  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
00 Port C GPIO  
01 ADC Analog Input  
I/O VDDE1 SHA  
I
D8  
C6  
C7  
A6  
B6  
A5  
B5  
B4  
A4  
C5  
C4  
10  
11  
PC[5]  
AN[37]  
Z6NMI  
00 Port C GPIO  
01 ADC Analog Input  
10 Z6 Core Non-Maskable Interrupt  
I/O VDDE1 SHA  
I
I
11  
PC[6]  
AN[38]  
Z0NMI  
00 Port C GPIO  
01 ADC Analog Input  
10 Z0 Core Non-Maskable Interrupt  
I/O VDDE1 SHA  
I
I
11  
PC[7]  
AN[39]  
FR_DBG3  
00 Port C GPIO  
01 ADC Analog Input  
10 FlexRay Debug  
I/O VDDE1 SHA  
I
O
11  
PC[8]  
AN[40]  
FR_DBG2  
00 Port C GPIO  
01 ADC Analog Input  
10 FlexRay Debug  
I/O VDDE1 SHA  
I
O
11  
PC[9]  
AN[41]  
FR_DBG1  
00 Port C GPIO  
01 ADC Analog Input  
10 FlexRay Debug  
I/O VDDE1 SHA  
I
O
11  
PC10 PC[10]  
AN[42]  
00 Port C GPIO  
01 ADC Analog Input  
10 FlexRay Debug  
I/O VDDE1 SHA  
I
O
FR_DBG0  
11  
PC11 PC[11]  
AN[43]  
00 Port C GPIO  
I/O VDDE1 SHA  
I
I/O  
01 ADC Analog Input  
SCL_C  
10 I2C_C Serial Clock  
11  
PC12 PC[12]  
AN[44]  
00 Port C GPIO  
I/O VDDE1 SHA  
I
I/O  
01 ADC Analog Input  
SDA_C  
10 I2C_C Serial Data  
11  
PC13 PC[13]  
AN[45]  
00 Port C GPIO  
01 ADC Analog Input  
I/O VDDE1 SHA  
I
O
MA[0]  
10  
11 ADC Ext. Mux Address Select  
PC14 PC[14]  
AN[46]  
00 Port C GPIO  
01 ADC Analog Input  
10 ADC Ext. Mux Address Select  
I/O VDDE1 SHA  
I
O
MA[1]  
11  
PXN20 Microcontroller Data Sheet, Rev. 1  
12  
Freescale Semiconductor  
Pin assignments  
Table 3. PXN20 signal properties (continued)  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
PC15 PC[15]  
AN[47]  
47  
00 Port C GPIO  
01 ADC Analog Input  
10 ADC Ext. Mux Address Select  
11  
I/O VDDE1 SHA  
I
O
D5  
MA[2]  
Port D (16)  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PD8  
PD[0]  
CNTX_A  
48  
49  
50  
51  
52  
53  
54  
55  
56  
00 Port D GPIO  
01 FlexCAN_A Transmit  
I/O VDDE2  
SH  
SH  
SH  
SH  
SH  
SH  
SH  
SH  
SH  
A2  
B2  
B1  
C1  
C2  
D1  
D2  
E1  
E2  
O
10  
11  
PD[1]  
CNRX_A  
00 Port D GPIO  
01 FlexCAN_A Receive  
I/O VDDE2  
I
10  
11  
PD[2]  
CNTX_B  
00 Port D GPIO  
01 FlexCAN_B Transmit  
I/O VDDE2  
O
10  
11  
PD[3]  
CNRX_B  
00 Port D GPIO  
01 FlexCAN_B Receive  
I/O VDDE2  
I
10  
11  
PD[4]  
CNTX_C  
00 Port D GPIO  
01 FlexCAN_C Transmit  
I/O VDDE2  
O
10  
11  
PD[5]  
CNRX_C  
00 Port D GPIO  
01 FlexCAN_C Receive  
I/O VDDE2  
I
10  
11  
PD[6]  
00 Port D GPIO  
I/O VDDE2  
O
O
CNTX_D  
TXD_K  
SCL_B  
01 FlexCAN_D Transmit  
10 SCI_K Transmit  
11 I2C_B Serial Clock  
I/O  
PD[7]  
00 Port D GPIO  
I/O VDDE2  
I
I
CNRX_D  
RXD_K  
SDA_B  
01 FlexCAN_D Receive  
10 SCI_K Receive  
11 I2C_B Serial Data  
I/O  
PD[8]  
00 Port D GPIO  
I/O VDDE2  
CNTX_E  
TXD_L  
SCL_C  
01 FlexCAN_E Transmit  
10 SCI_L Transmit  
11 I2C_C Serial Clock  
O
O
I/O  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
13  
Pin assignments  
Table 3. PXN20 signal properties (continued)  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
PD9  
PD[9]  
57  
58  
59  
60  
61  
62  
63  
00 Port D GPIO  
I/O VDDE2  
I
I
SH  
SH  
SH  
SH  
SH  
SH  
SH  
F1  
F2  
G1  
G2  
H1  
C3  
D3  
CNRX_E  
RXD_L  
SDA_C  
01 FlexCAN_E Receive  
10 SCI_L Receive  
11 I2C_C Serial Data  
I/O  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
PD[10]  
00 Port D GPIO  
I/O VDDE2  
O
O
CNTX_F  
TXD_M  
SCL_D  
01 FlexCAN_F Transmit  
10 SCI_M Transmit  
11 I2C_D Serial Clock  
I/O  
PD[11]  
00 Port D GPIO  
I/O VDDE2  
I
I
CNRX_F  
RXD_M  
SDA_D  
01 FlexCAN_F Receive  
10 SCI_M Receive  
11 I2C_D Serial Data  
I/O  
PD[12]  
TXD_A  
00 Port D GPIO  
01 eSCI_A Transmit  
I/O VDDE2  
O
10  
11  
PD[13]  
RXD_A  
00 Port D GPIO  
01 eSCI_A Receive  
I/O VDDE2  
I
10  
11  
PD[14]  
TXD_B  
00 Port D GPIO  
01 eSCI_B Transmit  
I/O VDDE2  
O
10  
11  
PD[15]  
RXD_B  
00 Port D GPIO  
01 eSCI_B Receive  
I/O VDDE2  
I
10  
11  
Port E (16)  
PE0  
PE1  
PE2  
PE[0]  
TXD_C  
eMIOS[31]  
64  
65  
66  
00 Port E GPIO  
01 eSCI_C Transmit  
10 eMIOS Channel  
I/O VDDE2  
SH  
SH  
SH  
E3  
E4  
F4  
O
I/O  
11  
PE[1]  
RXD_C  
eMIOS[30]  
00 Port E GPIO  
01 eSCI_C Receive  
10 eMIOS Channel  
I/O VDDE2  
I
I/O  
11  
PE[2]  
00 Port E GPIO  
I/O VDDE2  
TXD_D  
eMIOS[29]  
01 eSCI_D Transmit  
10 eMIOS Channel  
O
I/O  
11  
PXN20 Microcontroller Data Sheet, Rev. 1  
14  
Freescale Semiconductor  
Pin assignments  
Table 3. PXN20 signal properties (continued)  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
PE3  
PE[3]  
RXD_D  
eMIOS[28]  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
00 Port E GPIO  
01 eSCI_D Receive  
10 eMIOS Channel  
11  
I/O VDDE2  
I
I/O  
SH  
SH  
SH  
SH  
SH  
SH  
SH  
SH  
SH  
SH  
SH  
F3  
G3  
H3  
M2  
L2  
PE4  
PE[4]  
TXD_E  
eMIOS[27]  
00 Port E GPIO  
01 eSCI_E Transmit  
10 eMIOS Channel  
I/O VDDE2  
O
I/O  
11  
PE5  
PE[5]  
RXD_E  
eMIOS[26]  
00 Port E GPIO  
01 eSCI_E Receive  
10 eMIOS Channel  
I/O VDDE2  
I
I/O  
11  
PE6  
PE[6]  
TXD_F  
eMIOS[25]  
00 Port E GPIO  
01 eSCI_F Transmit  
10 eMIOS Channel  
I/O VDDE2  
O
I/O  
11  
PE7  
PE[7]  
RXD_F  
eMIOS[24]  
00 Port E GPIO  
01 eSCI_F Receive  
10 eMIOS Channel  
I/O VDDE2  
I
I/O  
11  
PE8  
PE[8]  
TXD_G  
PCS_A[1]  
00 Port E GPIO  
01 eSCI_G Transmit  
10 DSPI_A Peripheral Chip Select  
I/O VDDE2  
O
O
J4  
11  
PE9  
PE[9]  
RXD_G  
PCS_A[4]  
00 Port E GPIO  
01 eSCI_G Receive  
10 DSPI_A Peripheral Chip Select  
I/O VDDE2  
I
O
M4  
N3  
N4  
P4  
P5  
11  
PE10  
PE11  
PE12  
PE13  
PE[10]  
TXD_H  
PCS_B[3]  
00 Port E GPIO  
01 eSCI_H Transmit  
10 DSPI_B Peripheral Chip Select  
I/O VDDE2  
O
O
11  
PE[11]  
RXD_H  
PCS_B[2]  
00 Port E GPIO  
01 eSCI_H Receive  
10 DSPI_B Peripheral Chip Select  
I/O VDDE2  
I
O
11  
PE[12]  
TXD_J  
PCS_C[5]  
00 Port E GPIO  
01 eSCI_J Transmit  
10 DSPI_C Peripheral Chip Select  
I/O VDDE2  
O
O
11  
PE[13]  
00 Port E GPIO  
I/O VDDE2  
RXD_J  
01 eSCI_J Receive  
I
PCS_C[3]  
10 DSPI_C Peripheral Chip Select  
O
11  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
15  
Pin assignments  
Table 3. PXN20 signal properties (continued)  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
PE14  
PE15  
PE[14]  
SCL_A  
PCS_D[2]  
78  
00 Port E GPIO  
01 I2C_A Serial Clock  
10 DSPI_D Peripheral Chip Select  
11  
I/O VDDE2  
I/O  
O
SH  
SH  
N7  
PE[15]  
SDA_A  
PCS_D[5]  
79  
00 Port E GPIO  
I/O VDDE2  
I/O  
O
N6  
01 I2C_A Serial Data  
10 DSPI_D Peripheral Chip Select  
11  
Port F (16)  
PF0  
PF1  
PF2  
PF3  
PF4  
PF5  
PF6  
PF7  
PF[0]  
SCK_A  
80  
81  
82  
83  
84  
85  
86  
87  
00 Port F GPIO  
01 DSPI_A Serial Clock  
I/O VDDE2  
I/O  
MH  
MH  
SH  
SH  
MH  
MH  
SH  
SH  
H2  
J1  
10  
11  
PF[1]  
SOUT_A  
00 Port F GPIO  
01 DSPI_A Serial Data Out  
I/O VDDE2  
O
10  
11  
PF[2]  
SIN_A  
00 Port F GPIO  
01 DSPI_A Serial Data In  
I/O VDDE2  
I
J2  
10  
11  
PF[3]  
00 Port F GPIO  
I/O VDDE2  
I/O  
O
N2  
M1  
P2  
N1  
R2  
PCS_A[0]  
PCS_B[5]  
PCS_C[4]  
01 DSPI_A Peripheral Chip Select  
10 DSPI_B Peripheral Chip Select  
11 DSPI_C Peripheral Chip Select  
O
PF[4]  
SCK_B  
PCS_A[1]  
PCS_C[2]  
00 Port F GPIO  
01 DSPI_B Serial Clock  
10 DSPI_A Peripheral Chip Select  
11 DSPI_C Peripheral Chip Select  
I/O VDDE2  
I/O  
O
O
PF[5]  
00 Port F GPIO  
I/O VDDE2  
SOUT_B  
PCS_A[2]  
PCS_C[3]  
01 DSPI_B Serial Data Out  
10 DSPI_A Peripheral Chip Select  
11 DSPI_C Peripheral Chip Select  
O
O
O
PF[6]  
SIN_B  
PCS_A[3]  
PCS_C[5]  
00 Port F GPIO  
I/O VDDE2  
I
O
O
01 DSPI_B Serial Data In  
10 DSPI_A Peripheral Chip Select  
11 DSPI_C Peripheral Chip Select  
PF[7]  
00 Port F GPIO  
I/O VDDE2  
PCS_B[0]  
PCS_C[5]  
PCS_D[4]  
01 DSPI_B Peripheral Chip Select  
10 DSPI_C Peripheral Chip Select  
11 DSPI_D Peripheral Chip Select  
I/O  
O
O
PXN20 Microcontroller Data Sheet, Rev. 1  
16  
Freescale Semiconductor  
Pin assignments  
Table 3. PXN20 signal properties (continued)  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
PF8  
PF[8]  
SCK_C  
88  
89  
90  
91  
92  
93  
94  
95  
00 Port F GPIO  
01 DSPI_C Serial Clock  
I/O VDDE2  
I/O  
MH  
MH  
SH  
SH  
MH  
MH  
SH  
SH  
P1  
10  
11  
PF9  
PF[9]  
SOUT_C  
00 Port F GPIO  
01 DSPI_C Serial Data Out  
I/O VDDE2  
T2  
O
10  
11  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PF[10]  
SIN_C  
00 Port F GPIO  
01 DSPI_C Serial Data In  
I/O VDDE2  
I
R1  
10  
11  
PF[11]  
00 Port F GPIO  
I/O VDDE2  
I/O  
O
R3  
PCS_C[0]  
PCS_D[5]  
PCS_A[4]  
01 DSPI_C Peripheral Chip Select  
10 DSPI_D Peripheral Chip Select  
11 DSPI_A Peripheral Chip Select  
O
PF[12]  
SCK_D  
00 Port F GPIO  
01 DSPI_D Serial Clock  
I/O VDDE3  
I/O  
N14  
M14  
P14  
P13  
10  
11  
PF[13]  
SOUT_D  
00 Port F GPIO  
01 DSPI_D Serial Data Out  
I/O VDDE3  
O
10  
11  
PF[14]  
SIN_D  
00 Port F GPIO  
01 DSPI_D Serial Data In  
I/O VDDE3  
I
10  
11  
PF[15]  
00 Port F GPIO  
I/O VDDE3  
PCS_D[0]  
PCS_A[5]  
PCS_B[4]  
01 DSPI_D Peripheral Chip Select  
10 DSPI_A Peripheral Chip Select  
11 DSPI_B Peripheral Chip Select  
I/O  
O
O
Port G (16)  
PG0  
PG1  
PG[0]  
96  
97  
00 Port G GPIO  
I/O VDDE2 SHA  
B3  
A3  
PCS_A[4]  
PCS_B[3]  
AN[48]  
01 DSPI_A Peripheral Chip Select  
10 DSPI_B Peripheral Chip Select  
11 ADC Analog Input  
O
O
I
PG[1]  
00 Port G GPIO  
I/O VDDE2 SHA  
PCS_A[5]  
PCS_B[4]  
AN[49]  
01 DSPI_A Peripheral Chip Select  
10 DSPI_B Peripheral Chip Select  
11 ADC Analog Input  
O
O
I
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
17  
Pin assignments  
Table 3. PXN20 signal properties (continued)  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PG8  
PG9  
PG10  
PG11  
PG12  
PG[2]  
98  
00 Port G GPIO  
I/O VDDE3 SHA  
H14  
J14  
K14  
L14  
H15  
J15  
K15  
L15  
M15  
J16  
K16  
PCS_D[1]  
SCL_C  
AN[50]  
01 DSPI_D Peripheral Chip Select  
O
I/O  
I
10 I2C_C Serial Clock  
11 ADC Analog Input  
PG[3]  
99  
00 Port G GPIO  
I/O VDDE3 SHA  
PCS_D[2]  
SDA_C  
AN[51]  
01 DSPI_D Peripheral Chip Select  
10 I2C_C Serial Data  
11 ADC Analog Input  
O
I/O  
I
PG[4]  
100  
101  
102  
103  
104  
105  
106  
107  
108  
00 Port G GPIO  
I/O VDDE3 SHA  
PCS_D[3]  
SCL_B  
AN[52]  
01 DSPI_D Peripheral Chip Select  
10 I2C_B Serial Clock  
11 ADC Analog Input  
O
I/O  
I
PG[5]  
00 Port G GPIO  
I/O VDDE3 SHA  
PCS_D[4]  
SDA_B  
AN[53]  
01 DSPI_D Peripheral Chip Select  
10 I2C_B Serial Data  
11 ADC Analog Input  
O
I/O  
I
PG[6]  
00 Port G GPIO  
I/O VDDE3 MHA  
PCS_C[1]  
FEC_MDC  
AN[54]  
01 DSPI_C Peripheral Chip Select  
10 Ethernet Mgmt. Data Clock  
11 ADC Analog Input  
O
O
I
PG[7]  
00 Port G GPIO  
I/O VDDE3 MHA  
PCS_C[2]  
FEC_MDIO  
AN[55]  
01 DSPI_C Peripheral Chip Select  
10 Ethernet Mgmt. Data I/O  
11 ADC Analog Input  
O
I/O  
I
PG[8]  
00 Port G GPIO  
I/O VDDE3 SHA  
I/O  
I
I
eMIOS[7]  
FEC_TX_CLK  
AN[56]  
01 eMIOS Channel  
10 Ethernet Transmit Clock  
11 ADC Analog Input  
PG[9]  
00 Port G GPIO  
I/O VDDE3 SHA  
I/O  
I
I
eMIOS[6]  
FEC_CRS  
AN[57]  
01 eMIOS Channel  
10 Ethernet Carrier Sense  
11 ADC Analog Input  
PG[10]  
00 Port G GPIO  
I/O VDDE3 MHA  
eMIOS[5]  
FEC_TX_ER  
AN[58]  
01 eMIOS Channel  
10 Ethernet Transmit Error  
11 ADC Analog Input  
I/O  
O
I
PG[11]  
00 Port G GPIO  
I/O VDDE3 SHA  
I/O  
I
I
eMIOS[4]  
FEC_RX_CLK  
AN[59]  
01 eMIOS Channel  
10 Ethernet Receive Clock  
11 ADC Analog Input  
PG[12]  
00 Port G GPIO  
I/O VDDE3 MHA  
eMIOS[3]  
FEC_TXD[0]  
AN[60]  
01 eMIOS Channel  
10 Ethernet Transmit Data  
11 ADC Analog Input  
I/O  
O
I
PXN20 Microcontroller Data Sheet, Rev. 1  
18  
Freescale Semiconductor  
Pin assignments  
Table 3. PXN20 signal properties (continued)  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
PG13  
PG14  
PG15  
PG[13]  
109  
110  
111  
00 Port G GPIO  
01 eMIOS Channel  
10 Ethernet Transmit Data  
11 ADC Analog Input  
I/O VDDE3 MHA  
L16  
M16  
N16  
eMIOS[2]  
FEC_TXD[1]  
AN[61]  
I/O  
O
I
PG[14]  
00 Port G GPIO  
I/O VDDE3 MHA  
eMIOS[1]  
FEC_TXD[2]  
AN[62]  
01 eMIOS Channel  
10 Ethernet Transmit Data  
11 ADC Analog Input  
I/O  
O
I
PG[15]  
00 Port G GPIO  
I/O VDDE3 MHA  
eMIOS[0]  
FEC_TXD[3]  
AN[63]  
01 eMIOS Channel  
10 Ethernet Transmit Data  
11 ADC Analog Input  
I/O  
O
I
Port H (16)  
PH0  
PH1  
PH2  
PH3  
PH4  
PH5  
PH6  
PH[0]  
eMIOS[31]  
FEC_COL  
112  
113  
114  
115  
116  
117  
118  
00 Port H GPIO  
01 eMIOS Channel  
10 Ethernet Collision  
I/O VDDE3  
I/O  
I
SH  
SH  
MH  
SH  
SH  
SH  
SH  
T14  
P16  
R16  
N15  
P15  
R14  
R15  
11  
PH[1]  
eMIOS[30]  
FEC_RX_DV  
00 Port H GPIO  
01 eMIOS Channel  
10 Ethernet Receive Data Valid  
I/O VDDE3  
I/O  
I
11  
PH[2]  
eMIOS[29]  
FEC_TX_EN  
00 Port H GPIO  
01 eMIOS Channel  
10 Ethernet Transmit Enable  
I/O VDDE3  
I/O  
O
11  
PH[3]  
eMIOS[28]  
FEC_RX_ER  
00 Port H GPIO  
01 eMIOS Channel  
10 Ethernet Receive Error  
I/O VDDE3  
I/O  
I
11  
PH[4]  
eMIOS[27]  
FEC_RXD[0]  
00 Port H GPIO  
01 eMIOS Channel  
10 Ethernet Receive Data  
I/O VDDE3  
I/O  
I
11  
PH[5]  
eMIOS[26]  
FEC_RXD[1]  
00 Port H GPIO  
01 eMIOS Channel  
10 Ethernet Receive Data  
I/O VDDE3  
I/O  
I
11  
PH[6]  
00 Port H GPIO  
I/O VDDE3  
eMIOS[25]  
FEC_RXD[2]  
01 eMIOS Channel  
10 Ethernet Receive Data  
I/O  
I
11  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
19  
Pin assignments  
Table 3. PXN20 signal properties (continued)  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
PH7  
PH[7]  
eMIOS[24]  
FEC_RXD[3]  
119  
120  
121  
122  
123  
124  
125  
126  
127  
00 Port H GPIO  
01 eMIOS Channel  
10 Ethernet Receive Data  
11  
I/O VDDE3  
I/O  
I
SH  
SH  
SH  
SH  
SH  
SH  
SH  
SH  
SH  
T15  
PH8  
PH[8]  
eMIOS[23]  
00 Port H GPIO  
01 eMIOS Channel  
I/O VDDE4  
I/O  
P7  
10  
11  
PH9  
PH[9]  
eMIOS[22]  
00 Port H GPIO  
01 eMIOS Channel  
I/O VDDE4  
I/O  
N8  
10  
11  
PH10  
PH11  
PH12  
PH13  
PH14  
PH15  
PH[10]  
eMIOS[21]  
00 Port H GPIO  
01 eMIOS Channel  
I/O VDDE4  
I/O  
P8  
10  
11  
PH[11]  
eMIOS[20]  
00 Port H GPIO  
01 eMIOS Channel  
I/O VDDE4  
I/O  
N9  
10  
11  
PH[12]  
eMIOS[19]  
00 Port H GPIO  
01 eMIOS Channel  
I/O VDDE4  
I/O  
P9  
10  
11  
PH[13]  
eMIOS[18]  
00 Port H GPIO  
01 eMIOS Channel  
I/O VDDE4  
I/O  
P10  
P11  
N11  
10  
11  
PH[14]  
eMIOS[17]  
00 Port H GPIO  
01 eMIOS Channel  
I/O VDDE4  
I/O  
10  
11  
PH[15]  
00 Port H GPIO  
I/O VDDE4  
eMIOS[16]  
01 eMIOS Channel  
I/O  
10  
11  
Port J (16)  
PJ0  
PJ[0]  
128  
00 Port J GPIO  
I/O VDDE4  
SH  
R7  
eMIOS[15]  
PCS_A[4]  
01 eMIOS Channel  
I/O  
O
10 DSPI_A Peripheral Chip Select  
11  
PXN20 Microcontroller Data Sheet, Rev. 1  
20  
Freescale Semiconductor  
Pin assignments  
Table 3. PXN20 signal properties (continued)  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
PJ1  
PJ2  
PJ3  
PJ4  
PJ5  
PJ6  
PJ7  
PJ8  
PJ9  
PJ10  
PJ11  
PJ[1]  
eMIOS[14]  
PCS_A[5]  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
00 Port J GPIO  
01 eMIOS Channel  
10 DSPI_A Peripheral Chip Select  
11  
I/O VDDE4  
I/O  
O
SH  
SH  
SH  
SH  
SH  
SH  
SH  
SH  
SH  
SH  
SH  
T7  
PJ[2]  
eMIOS[13]  
PCS_B[1]  
00 Port J GPIO  
01 eMIOS Channel  
10 DSPI_B Peripheral Chip Select  
I/O VDDE4  
I/O  
O
R8  
11  
PJ[3]  
eMIOS[12]  
PCS_B[2]  
00 Port J GPIO  
01 eMIOS Channel  
10 DSPI_B Peripheral Chip Select  
I/O VDDE4  
I/O  
O
T8  
11  
PJ[4]  
eMIOS[11]  
PCS_C[3]  
00 Port J GPIO  
01 eMIOS Channel  
10 DSPI_C Peripheral Chip Select  
I/O VDDE4  
I/O  
O
R9  
11  
PJ[5]  
eMIOS[10]  
PCS_C[4]  
00 Port J GPIO  
01 eMIOS Channel  
10 DSPI_C Peripheral Chip Select  
I/O VDDE4  
I/O  
O
T9  
11  
PJ[6]  
eMIOS[09]  
PCS_D[5]  
00 Port J GPIO  
01 eMIOS Channel  
10 DSPI_D Peripheral Chip Select  
I/O VDDE4  
I/O  
O
R10  
T10  
T11  
R11  
N12  
P12  
11  
PJ[7]  
eMIOS[08]  
PCS_D[1]  
00 Port J GPIO  
01 eMIOS Channel  
10 DSPI_D Peripheral Chip Select  
I/O VDDE4  
I/O  
O
11  
PJ[8]  
eMIOS[07]  
00 Port J GPIO  
01 eMIOS Channel  
I/O VDDE4  
I/O  
10  
11  
PJ[9]  
eMIOS[06]  
00 Port J GPIO  
01 eMIOS Channel  
I/O VDDE4  
I/O  
10  
11  
PJ[10]  
eMIOS[05]  
00 Port J GPIO  
01 eMIOS Channel  
I/O VDDE4  
I/O  
10  
11  
PJ[11]  
00 Port J GPIO  
I/O VDDE4  
eMIOS[04]  
01 eMIOS Channel  
I/O  
10  
11  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
21  
Pin assignments  
Table 3. PXN20 signal properties (continued)  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
PJ12  
PJ13  
PJ14  
PJ15  
PJ[12]  
eMIOS[03]  
140  
141  
142  
143  
00 Port J GPIO  
01 eMIOS Channel  
I/O VDDE4  
I/O  
SH  
SH  
SH  
SH  
R12  
T12  
R13  
T13  
10  
11  
PJ[13]  
eMIOS[02]  
00 Port J GPIO  
01 eMIOS Channel  
I/O VDDE4  
I/O  
10  
11  
PJ[14]  
eMIOS[01]  
00 Port J GPIO  
01 eMIOS Channel  
I/O VDDE4  
I/O  
10  
11  
PJ[15]  
00 Port J GPIO  
I/O VDDE4  
eMIOS[00]  
01 eMIOS Channel  
I/O  
10  
11  
Port K (11)  
PK0  
PK1  
PK2  
PK3  
PK4  
PK5  
PK[0]  
144  
145  
146  
147  
148  
149  
00 Port K GPIO  
I/O VDDEMLB  
I
I/O  
O
F
F
L1  
K1  
K2  
T3  
R4  
T4  
MLBCLK  
SCK_B  
CLKOUT  
01 Media Local Bus Clock  
10 DSPI_B Serial Clock  
11 CLKOUT (Test Only)  
PK[1]  
00 Port K GPIO  
I/O VDDEMLB  
I/O  
O
MLBSIG  
SOUT_B  
PCS_D[4]  
01 Media Local Bus Signal  
10 DSPI_B Serial Data Out  
11 DSPI_D Peripheral Chip Select  
O
PK[2]  
MLBDAT  
SIN_B  
00 Port K GPIO  
I/O VDDEMLB  
I/O  
I
F
01 Media Local Bus Data  
10 DSPI_B Serial Data In  
11 DSPI_D Peripheral Chip Select  
PCS_D[5]  
O
PK[3]  
FR_A_RX  
MA[0]  
00 Port K GPIO  
I/O VDDE2  
I
O
O
SH  
MH  
MH  
01 FlexRay A Receive Data  
10 ADC Ext. Mux Address Select  
11 DSPI_C Peripheral Chip Select  
PCS_C[1]  
PK[4]  
FR_A_TX  
MA[1]  
00 Port K GPIO  
I/O VDDE2  
01 FlexRay A Transmit Data  
10 ADC Ext. Mux Address Select  
11 DSPI_C Peripheral Chip Select  
O
O
O
PCS_C[2]  
PK[5]  
00 Port K GPIO  
I/O VDDE2  
FR_A_TX_EN  
MA[2]  
PCS_C[3]  
01 FlexRay A Transmit Enable  
10 ADC Ext. Mux Address Select  
11 DSPI_C Peripheral Chip Select  
O
O
O
PXN20 Microcontroller Data Sheet, Rev. 1  
22  
Freescale Semiconductor  
Pin assignments  
Table 3. PXN20 signal properties (continued)  
Package Pin  
Locations  
Status  
GPIO  
Pin  
Supported  
I/O  
Volt-  
Pad  
(PCR) PA4  
Num3  
Description  
Name1 Functions2  
Type age Type5  
During After  
Reset6 Reset7  
208  
BGA  
PK6  
PK7  
PK8  
PK9  
PK[6]  
150  
151  
152  
153  
00 Port K GPIO  
01 FlexRay B Receive Data  
10 DSPI_B Peripheral Chip Select  
11 DSPI_C Peripheral Chip Select  
I/O VDDE2  
I
O
O
SH  
MH  
MH  
R5  
T5  
R6  
T6  
FR_B_RX  
PCS_B[1]  
PCS_C[4]  
PK[7]  
00 Port K GPIO  
I/O VDDE2  
FR_B_TX  
PCS_B[2]  
PCS_C[5]  
01 FlexRay B Transmit Data  
10 DSPI_B Peripheral Chip Select  
11 DSPI_C Peripheral Chip Select  
O
O
O
PK[8]  
00 Port K GPIO  
I/O VDDE2  
FR_B_TX_EN  
PCS_B[3]  
PCS_A[1]  
01 FlexRay B Transmit Enable  
10 DSPI_B Peripheral Chip Select  
11 DSPI_A Peripheral Chip Select  
O
O
O
PK[9]  
00 Port K GPIO  
I/O VDDE2  
MH BOOT GPIO  
CLKOUT  
PCS_D[1]  
PCS_A[2]  
BOOTCFG  
01 CLKOUT (User mode)  
10 DSPI_D Peripheral Chip Select  
11 DSPI_A Peripheral Chip Select  
Boot Configuration  
O
O
O
I
CFG  
(Pull-  
down)  
PK10  
PK[10]  
154  
00 Port K GPIO  
I/O VDDE2  
SH  
P6  
PCS_B[5]  
PCS_D[2]  
PCS_A[3]  
01 DSPI_B Peripheral Chip Select  
10 DSPI_D Peripheral Chip Select  
11 DSPI_A Peripheral Chip Select  
O
O
O
Miscellaneous Pins (9)  
EXTAL EXTAL  
EXTCLK  
Main Crystal Oscillator Input  
I
VDDSYN  
A
EXTAL  
XTAL  
A14  
External Clock Input  
Main Crystal Oscillator Output  
JTAG Test Data Input  
JTAG Test Data Output  
JTAG Test Mode Select Input  
JTAG Test Clock Input  
JTAG Compliancy  
I
O
I
XTAL  
TDI  
XTAL  
TDI  
VDDSYN  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE2  
VDDE3  
A
A13  
J3  
SH  
MH  
MH  
TDI (Pull Up)  
TDO (Pull Up8)  
TMS (Pull Up)  
TDO  
TMS  
TCK  
TDO  
TMS  
TCK  
O
I
M3  
L3  
I
SH TCK (Pull Down)  
P3  
JCOMP (Pull Down)  
TEST9  
JCOMP JCOMP  
TEST TEST  
RESET RESET  
I
SH  
IH  
K3  
Test Mode Select  
I
M13  
A11  
External Reset  
I/O VDDE1  
MH RESET (Pull Up)  
1
2
The primary signal name is used as the pin label on the BGA map for identification purposes.  
Each line in the Signal Name column corresponds to a separate signal function on the pin. For all device I/O pins, the primary,  
alternate, or GPIO signal functions are designated in the PA field of the System Integration Unit (SIU) PCR registers except  
where explicitly noted.  
3
4
The GPIO number is the same as the corresponding pad configuration register (SIU_PCRn) number.  
The PA bitfield in the SIU_PCRn register selects the signal function for the pin. A dash in the Description field of this table  
indicates that this value for PC is reserved on this pin, and should not be used.  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
23  
Pin assignments  
5
The pad type is indicated by one or more of the following abbreviations: A–analog, F—fast speed, H–high voltage, I—input-only,  
M–medium speed, S–slow speed. For example, pad type SH designates a slow high-voltage pad.  
6
The Status During Reset pin is sampled after the internal POR is negated. Prior to exiting POR, the signal has a high  
impedance. The terminology used in this column is: O – output, I – input, Up – weak pull up enabled, Down – weak pulldown  
enabled, Low – output driven low, High – output driven high. A dash on the left side of the slash denotes that both the input and  
output buffers for the pin are off. A dash on the right side of the slash denotes that there is no weak pull up/down enabled on  
the pin. The signal name to the left or right of the slash indicates the pin is enabled.  
7
The Function After Reset of a GPI function is general purpose input. A dash on the left side of the slash denotes that both the  
input and output buffers for the pin are off. A dash on the right side of the slash denotes that there is no weak pull up/down  
enabled on the pin.  
8
Pullup is enabled only when JCOMP is negated.  
9
Tie to VSS for normal operation.  
PXN20 Microcontroller Data Sheet, Rev. 1  
24  
Freescale Semiconductor  
Pin assignments  
3.2.1  
Power and ground supply summary  
Table 4. PXN20 power/ground  
Package Pin Locations  
Pin  
Name  
Function Description  
Voltage1  
208  
VDD  
VDDE1  
VDDE2  
VDDE3  
VDDE4  
VDDA  
Internal Logic Power  
External I/O Power  
1.2 V  
D4, D10, H4, G13, K13, N5  
3.3–5.0 V  
D6  
L4  
J13  
N10  
B15  
L13  
K4  
Analog Power  
3.3 V I/O Power  
3.3–5.0 V  
3.3 V  
VDD33  
VDDEMLB  
VRCSEL  
VRC  
Media Local Bus Power  
Voltage Regulator Select  
Voltage Regulator Control Voltage  
Voltage Regulator Control Output  
Clock Synthesizer Power  
Analog High Voltage Reference  
Analog Low Voltage Reference  
Ground  
2.5 or 3.3 V  
VSSA / VDDA  
3.3–5.0 V  
H13  
B10  
B11  
A12  
B16  
C16  
2
VRCCTL  
VDDSYN  
VRH  
3.3 V  
3.3–5.0 V  
0 V  
VRL  
VSS  
0 V  
A1, A16, D7, G4, G[7:10], H[7:10],  
J[7:10], K[7:10], N13, T1, T16  
VSSA  
Analog Ground  
0 V  
0 V  
C15  
A15  
VSSSYN  
Clock Synthesizer Ground  
1
2
Nominal voltages.  
Base current to external NPN power transistor. Voltage may vary.  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
25  
Electrical characteristics  
4
Electrical characteristics  
This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing  
specifications for the PXN20.  
4.1  
Maximum ratings  
1
Table 5. Absolute maximum ratings  
Spec  
Characteristic  
1.2 V Core Supply Voltage2  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
6
VDD  
VDDSYN  
VDD33  
VRC  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
1.323  
3.6  
V
V
V
V
V
V
3.3 V Clock Synthesizer Voltage2, 4  
3.3 V I/O Buffer Voltage 2, 4  
3.6  
3.3–5.0 V Voltage Regulator Control Voltage 2, 5, 6  
3.3–5.0 V Analog Supply Voltage (reference to VSSA  
3.3–5.0 V External I/O Supply Voltage 2, 5, 7  
5.5  
2, 5  
)
VDDA  
5.5  
8
VDDE1  
VDDE2  
VDDE3  
VDDE4  
–0.3  
–0.3  
–0.3  
–0.3  
5.5  
5.5  
5.5  
5.5  
8
8
8
8
7
9
2.5–3.3 V External I/O Supply Voltage (MLB) 2, 4  
VDDEMLB  
–0.3  
3.6  
V
V
DC Input Voltage9  
VDDE1, VDDE2, VDDE3, VDDE4  
VDDEMLB, VDDENEX  
VIN  
–1.010  
–1.09  
V
V
+
+
0.3 V11  
10  
DDEx  
0.3  
V
DDEx  
10 Analog Reference High Voltage  
VRH  
–0.3  
Minimum of  
5.5  
V
or  
VDDA + 0.3  
11 Analog Reference Low Voltage  
VRL  
–0.3  
–100  
–100  
–2  
5.5  
100  
100  
2
V
12  
V
SS to VSSA Differential Voltage  
VSS – VSSA  
VSS – VSSSYN  
IMAXD  
mV  
mV  
mA  
13 VSS to VSSSYN Differential Voltage  
14 Maximum DC Digital Input Current12 (per pin, applies to all  
digital F, MH, SH, and IH pins)  
15 Maximum DC Analog Input Current13 (per pin, applies to all  
analog AE and A pins)  
IMAXA  
–3  
3
mA  
16 Storage Temperature Range  
17 Maximum Solder Temperature14  
18 Moisture Sensitivity Level15  
TSTG  
TSDR  
MSL  
–55.0  
150.0  
235.0  
3
oC  
oC  
1
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only,  
and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or  
cause permanent damage to the device.  
2
3
4
5
6
7
Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.  
2.0 V for 10 hours cumulative time, 1.2 V +10% for time remaining.  
5.3 V for 10 hours cumulative time, 3.3 V +10% for time remaining.  
6.4 V for 10 hours cumulative time, 5.0 V +10% for time remaining.  
VRC cannot be 100mV higher than VDDA. VDDSYN and VDD33 cannot be 100 mV higher than VRC.  
All functional non-supply I/O pins are clamped to VSS and VDDEx  
.
PXN20 Microcontroller Data Sheet, Rev. 1  
26  
Freescale Semiconductor  
Electrical characteristics  
8
9
VDDEx are separate power segments and may be powered independently with no differential voltage constraints between the  
power segments.  
AC signal over and undershoot of the input voltages of up to ±2.0 V is permitted for a cumulative duration of 60 hours over the  
complete lifetime of the device (injection current does not need to be limited for this duration).  
10 Internal structures will hold the input voltage above –1.0 V if the injection current limit of 2 mA is met.  
11 Internal structures hold the input voltage below this maximum voltage on all pads powered by VDDE supplies, if the maximum  
injection current specification is met (25 mA for all pins) and VDDE is within Operating Voltage specifications.  
12 Total injection current for all pins (including both digital and analog) must not exceed 25 mA.  
13 Total injection current for all analog input pins must not exceed 15 mA.  
14 Solder profile per CDF-AEC-Q100.  
15 Moisture sensitivity per JEDEC test method A112.  
4.2  
Thermal characteristics  
Table 6. Thermal characteristics  
Value  
Spec  
Characteristic  
Junction to Ambient1, 2  
Symbol  
Unit  
208 MAPBGA  
256 MAPBGA  
1
2
RJA  
°C/W  
39  
39  
Natural Convection  
(Single layer board)  
Junction to Ambient1, 3  
Natural Convection  
RJA  
°C/W  
24  
24  
(Four layer board 2s2p)  
3
4
Junction to Ambient1, 3  
RJMA  
RJMA  
°C/W  
°C/W  
31  
20  
31  
20  
(@200 ft./min., Single layer board)  
Junction to Ambient1, 3  
(@200 ft./min., Four layer board 2s2p)  
5
6
7
Junction to Board4  
Junction to Case5  
RJB  
RJC  
JT  
°C/W  
°C/W  
°C/W  
13  
6
13  
6
Junction to Package Top6  
Natural Convection  
2
2
1
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2
3
4
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
5
6
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.  
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2.  
4.2.1  
General notes for specifications at maximum junction temperature  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
P )  
Eqn. 1  
J
A
JA  
D
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
27  
Electrical characteristics  
where:  
o
T = ambient temperature for the package ( C)  
A
o
R
= junction to ambient thermal resistance ( C/W)  
JA  
P = power dissipation in the package (W)  
D
The supplied thermal resistances are provided based on JEDEC JESD51 series of standards to provide consistent values for  
estimations and comparisons. The difference between the values determined on the single-layer (1s) board and on the four-layer  
board with two signal layers and a power and a ground plane (2s2p) clearly demonstrate that the effective thermal resistance of  
the component is not a constant. It depends on the construction of the application board (number of planes), the effective size  
of the board which cools the component, how well the component is thermally and electrically connected to the planes, and the  
power being dissipated by adjacent components.  
Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package  
to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance  
between through vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.  
As a general rule, the value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value  
obtained on the board with the internal planes is usually appropriate if the application board has one oz. (35 micron nominal  
thickness) internal planes, the components are well separated, and the overall power dissipation on the board is less than 0.02  
2
W/cm .  
The thermal performance of any component depends strongly on the power dissipation of surrounding components. In addition,  
the ambient temperature varies widely within the application. For many natural convection and especially closed box  
applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature  
near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description  
of the local ambient conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using the following equation:  
T = T + (R  
P )  
Eqn. 2  
J
B
JB  
D
where:  
T = junction temperature ( C)  
o
J
o
T = board temperature at the package perimeter ( C/W)  
B
o
R
= junction to board thermal resistance ( C/W) per JESD51-8  
JB  
P = power dissipation in the package (W)  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.  
The application board should be similar to the thermal test condition, with the component soldered to a board with internal  
planes.  
Historically, the thermal resistance has frequently been expressed as the sum of a junction to case thermal resistance and a case  
to ambient thermal resistance:  
R
= R  
+ R  
CA  
Eqn. 3  
JA  
JC  
where:  
o
R
R
R
= junction to ambient thermal resistance ( C/W)  
JA  
JC  
CA  
o
= junction to case thermal resistance ( C/W)  
o
= case to ambient thermal resistance ( C/W)  
R
is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to  
JC  
ambient thermal resistance, R  
. For instance, the user can change the air flow around the device, add a heat sink, change the  
CA  
PXN20 Microcontroller Data Sheet, Rev. 1  
28  
Freescale Semiconductor  
Electrical characteristics  
mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the  
device. This description is most useful for packages with heat sinks where some 90% of the heat flow is through the case to the  
heat sink to ambient. For most packages, a better model is required.  
A more accurate two-resistor thermal model can be constructed from the junction to board thermal resistance and the junction  
to case thermal resistance. The junction to case covers the situation where a heat sink will be used or where a substantial amount  
of heat is dissipated from the top of the package. The junction to board thermal resistance describes the thermal performance  
when most of the heat is conducted to the printed circuit board. This model can be used for either hand estimations or for a  
computational fluid dynamics (CFD) thermal model.  
To determine the junction temperature of the device in the application after prototypes are available, the Thermal  
Characterization Parameter () can be used to determine the junction temperature with a measurement of the temperature at  
JT  
the top center of the package case using the following equation:  
T = T + (  P )  
Eqn. 4  
J
T
JT  
D
where:  
o
T = thermocouple temperature on top of the package ( C)  
T
o
= thermal characterization parameter ( C/W)  
JT  
P = power dissipation in the package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied  
to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the  
junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects  
of the thermocouple wire.  
References:  
Semiconductor Equipment and Materials International  
3081 Zanker Road  
San Jose, CA 95134  
(408) 943-6900  
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or  
303-397-7956.  
JEDEC specifications are available on the WEB at http://www.jedec.org.  
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine  
Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.  
2. G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications,” Electronic  
Packaging and Production, pp. 53–58, March 1998.  
3. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application  
in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
29  
Electrical characteristics  
4.3  
ESD characteristics  
1, 2  
Table 7. ESD ratings  
Characteristic  
Symbol  
Value  
Unit  
ESD for Human Body Model (HBM)  
HBM Circuit Description  
2000  
1500  
V
R1  
C
Ohm  
pF  
100  
ESD for Field Induced Charge Model (FDCM)  
750 (corner pins)  
250 (all other pins)  
V
Number of Pulses per pin:  
Positive Pulses (HBM)  
Negative Pulses (HBM)  
1
1
Interval of Pulses  
1
second  
1
2
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.  
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification  
requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room  
temperature followed by hot temperature, unless specified otherwise in the device specification.  
4.4  
VRC electrical specifications  
Table 8. VRC electrical specifications  
Spec  
Characteristic  
Symbol  
Min  
Max  
Units  
Current which can be sourced by VRCCTL  
I_VRCCTL  
1
6.25 µA  
20 mA  
Minimum Required Gain from external circuit:  
IDD / I_VRCCTL (@VDD = 1.32 V)1  
2
–40C  
25C  
150C  
BETA  
50  
50  
50  
500  
1
Assumes “typical usage” currents which will vary with application.  
4.5  
DC electrical specifications  
Table 9. DC electrical specifications  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
3
4
Maximum Operating Temperature Range — Die Junction Temperature  
3.3 V Clock Synthesizer Voltage1  
TJ  
–40.0  
3.0  
150.0  
3.6  
oC  
V
VDDSYN  
VDD33  
VVRC  
3.3 V I/O Buffer Voltage1  
3.0  
3.6  
V
3.3–5.0 V Voltage Regulator Reference Voltage1  
VRCSEL = VSSA  
V
3.0  
4.5  
3.6  
5.5  
VRCSEL = VDDA  
5
3.3–5.0 V Analog Supply Voltage  
VDDA  
maximum of  
3.0 V or  
5.5  
V
VVRC – 0.1  
PXN20 Microcontroller Data Sheet, Rev. 1  
30  
Freescale Semiconductor  
Electrical characteristics  
Table 9. DC electrical specifications  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
6
3.3–5.0 V External I/O Supply Voltage2  
V
VDDE1  
VDDE2  
VDDE3  
VDDE4  
3.0  
3.0  
3.0  
3.0  
5.5  
5.5  
5.5  
5.5  
3
7
9
2.5 V – 3.3 V External I/O Supply Voltage (MLB)  
VDDEMLB  
VIH  
2.375  
3.6  
V
V
Pad Input High Voltage  
VDDE + 0.3  
Hysteresis enabled  
0.65 VDDE  
0.55 VDDE  
0.55 VDDE  
Hysteresis disabled (IHA/SH/SHA/MH/MHA)4, 5  
Hysteresis disabled (F)  
10 Pad Input Low Voltage  
Hysteresis enabled  
VIL  
VSS – 0.3  
V
0.35 VDDE  
0.40 VDDE  
0.40 VDDE  
Hysteresis disabled (IHA/SH/SHA/MH/MHA)4, 5  
Hysteresis disabled (F)  
11 Pad Input Hysteresis  
VHYS  
VINDC  
VOH  
0.1 VDDE  
VSSA – 0.3 VDDA + 0.3  
V
V
12 Analog (IHA) Input Voltage  
13 Pad Output High Voltage6, 7, 8  
0.8 VDDE  
V
14 Pad Output Low Voltage8  
VOL  
0.2 VDDE  
V
15 Input Capacitance (Digital Pins: Pad type F, MH, SH)4  
16 Input Capacitance (Analog Pins: Pad type IHA)4, 5  
17 Input Capacitance (Shared digital/analog pins: MHA, SHA)4  
CIN  
7
pF  
pF  
pF  
A  
CIN_A  
CIN_M  
IACT  
10  
12  
18 I/O Weak Pull Up/Down Absolute Current4, 9  
Pad F: 2.375 V – 3.6 V  
25  
10  
35  
180  
95  
200  
Pad SH/MH/IHA: 3.0 V – 3.6 V  
Pad SH/MH/IHA: 4.5 V – 5.5 V  
19 I/O Input Leakage Current10  
IINACT_D  
IIC  
IINACT_A  
VRH  
–2.5  
–1.0  
2.5  
1.0  
A  
mA  
nA  
20 DC Injection Current (per pin)  
21 Analog Input Current, Channel Off11 (Analog pins IHA)4, 5  
22 Analog Reference High Voltage  
23 Analog Reference Low Voltage  
–150  
150  
VDDA  
VDDA – 500  
VSSA  
mV  
VRL  
VSSA + 500 mV  
24 VSS to VSSA Differential Voltage  
25 VSSSYN to VSS Differential Voltage  
VSS – VSSA  
VSSSYN – VSS  
VRamp  
–100  
100  
100  
100  
mV  
mV  
–100  
26 Slew rate on VDDA, VDDEx, VDDSYN, VDD33, and VRC power supply  
pins  
V/ms  
27 Capacitive Supply Load (VDD  
)
VLoad  
VLoad  
8
1
µF  
µF  
28 Capacitive Supply Load (VDD33, VDDSYN  
)
1
When VRCSEL = VSSA (low), VDDSYN and VDD33 are externally supplied. When VRCSEL = VDDA (high), VDDSYN and VDD33 are  
generated by internal voltage regulators. When VRCSEL = VSSA (low), VDDSYN and VDD33 cannot be 100 mV higher than VRC  
.
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
31  
Electrical characteristics  
2
VDDE1 – VDDE4 are separate power segments and may be powered independently with no differential voltage constraints  
between the power segments. VDDE1 – VDDE3 pad power segments contain ADC analog input channels and thus the input  
analog signal level may be clamped to the VDDE level, resulting in inaccurate ADC results if the VDDE voltage level is less than  
VDDA  
.
3
4
When VRCSEL = VDDA (high), the internally generated VDD33 voltage may be used to power VDDEMLB as long as the PK[0:2]  
pads remain in the disabled default state with their output buffers, input buffers, and pull devices disabled.  
The pad type is indicated by one or more of the following abbreviations: A–analog, F—fast speed, H–high voltage, I—input-only,  
M–medium speed, S–slow speed. For example, pad type SH designates a slow high-voltage pad.  
5
6
The IHA pads are related to VDDA  
.
Characterization Based Capability:  
IOH_F = {12, 20, 30, 40} mA and IOL_F = {24, 40, 50, 65} mA for {00, 01,10, 11} drive mode with VDDE = 3.0 V;  
IOH_F = {7, 13, 18, 25} mA and IOL_F = {18, 30, 35, 50} mA for {00, 01, 10, 11} drive mode with VDDE = 2.25 V;  
IOH_F = {3, 7, 10, 15} mA and IOL_F = {12, 20, 27, 35} mA for {00, 01, 10, 11} drive mode with VDDE = 1.62 V.  
7
Characterization Based Capability:  
IOH_S = {6, 11.6} mA and IOL_S = {9.2, 17.7} mA for {slow, medium} I/O with VDDEH = 4.5 V;  
IOH_S = {2.8, 5.4} mA and IOL_S = {4.2, 8.1} mA for {slow, medium} I/O with VDDEH = 3.0 V  
8
9
All VOL/VOH values 100% tested with ±2 mA load.  
Absolute value of current, measured at VIL and VIH.  
10 Weak pull up/down inactive. Measured at VDDE = 5.25 V. Applies to pad types: SH and MH. Leakage specification guaranteed  
only when power supplies are within specified operating conditions.  
11 Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each  
8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to pad types: pad_a and pad_ae.  
4.6  
Operating current specifications  
Table 10. Operating currents  
Typ1  
25 C  
Max1  
–40–150 C  
Junction  
Spec  
Characteristic  
Symbol  
Unit  
Ambient  
Equations ITOTAL = IDDE + IDDA + IRH + IDD33 + IDDSYN + IRC + IDD  
IDDE = IDDE1 + IDDE2 + IDDE3 + IDDE4 + IDDEMLB  
1
2
VDDE Current  
IDDE  
VDDE(1,2,3,4) @ 3.0 V – 5.5 V  
VDDEMLB @ 2.375 V – 3.6 V  
Static2  
0
30  
25  
A  
mA  
Dynamic3  
Note 3  
VDDA Current  
IDDA  
VDDA @ 3.0 V – 5.5 V  
Run mode  
Sleep mode  
1
20  
+5  
30  
50  
+15  
mA  
A  
A  
– Optional 32 kHz osc enabled  
3
4
VRH Current  
IRH  
VRH @ 3.0 V – 5.5 V  
Run mode  
Sleep mode  
300  
1
700  
30  
A  
A  
VDD33 Current  
VDD33 @ 3.0 V – 3.6 V  
Run mode  
IDD33  
10  
10  
20  
20  
mA  
A  
Sleep mode  
PXN20 Microcontroller Data Sheet, Rev. 1  
32  
Freescale Semiconductor  
Electrical characteristics  
Max1  
Table 10. Operating currents (continued)  
Typ1  
25 C  
Spec  
Characteristic  
Symbol  
–40–150 C  
Unit  
Ambient  
Junction  
5
V
DDSYN Current  
VDD33 @ 3.0 V – 3.6 V  
Run mode  
IDDSYN  
5
1
10  
20  
+350  
+400  
mA  
A  
A  
A  
Sleep mode  
– Optional4 4–40 MHz osc enabled w/ no clock  
– Optional4 4–40 MHz osc enabled w/ clock  
+150  
+300  
5
6
7
VRC Current (excluding IDD, IDD33, IDDSYN  
VRC @ 3.135 V – 5.5 V  
Run mode  
)
IRC  
1
0
+40  
10  
10  
+60  
mA  
A  
A  
Sleep mode  
– Optional4 16MIRC enabled  
VDD Current  
IDD  
VDD @ 1.08 V – 1.32 V  
Run mode (Maximum @ 116 MHz)6  
Sleep mode  
200  
100  
+5  
+200  
+5  
340  
900  
+10  
+220  
+20  
+20  
+200  
+150  
+300  
+600  
mA  
A  
A  
A  
A  
A  
A  
A  
A  
A  
– Optional4 128KIRC enabled  
– Optional4 16MIRC enabled  
– Optional4 32 kHz osc enabled  
– Optional4 4–40 MHz osc enabled w/ no clock  
– Optional4 4–40 MHz osc enabled w/ clock  
– Optional4 32 KB RAM  
+5  
+150  
+10  
+20  
+40  
– Optional4 64 KB RAM  
– Optional4 128 KB RAM  
1
2
Typ – Nominal voltage levels and functional activity. Max – Maximum voltage levels and functional activity.  
Static state of pins is when input pins are disabled or not being toggled and driven to a valid input level, output pins are not  
toggling or driving against any current loads, and internal pull devices are disabled or not pulling against any current loads.  
3
4
Dynamic current from pins is application-specific and depends on active pull devices, switching outputs, output capacitive and  
current loads, and switching inputs. Refer to Table 11 for more information.  
Optional currents are values that should be added to their respective current specifications to obtain the actual value for that  
specification when the optional function is active. The plus sign (+) in the Typ and Max columns indicates these optional  
currents. For example, VDDSYN in Sleep mode draws 1 .A (typ). With the optional 4–40 MHz osc enabled w/ no clock, add  
150 .A for a total of 151 .A (typ).  
5
6
VRC Current excluding the current supply to VDD33, VDDSYN and VDD from VRC  
.
Maximum supply current transition: 50mA per 20S observation window.  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
33  
Electrical characteristics  
4.7  
I/O pad current specifications  
The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption  
is the sum of all output pin currents for a particular segment. The output pin current can be calculated from Table 11 based on  
the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load  
parameters that fall outside the values given in Table 11.  
1
Table 11. I/O pad average I  
specifications  
DDE  
Pad  
Period  
(ns)  
Load3  
(pF)  
VDDE  
(V)  
Drive/Slew  
Rate Select  
IDDE Avg  
(mA)  
IDDE RMS  
(mA)  
Spec  
Symbol  
Type2  
1
2
37  
130  
650  
840  
24  
50  
50  
50  
200  
50  
50  
50  
200  
50  
30  
20  
10  
50  
30  
20  
10  
0.5  
5.5  
5.5  
11  
01  
00  
00  
11  
01  
00  
00  
11  
10  
01  
00  
11  
10  
01  
00  
N/A  
14  
5.3  
1.1  
3
Slow  
IDRV_SSR_HV  
3
5.5  
4
5.5  
6
5.5  
9
7
62  
5.5  
2.5  
0.5  
1.5  
50.4  
14.2  
16.4  
9.8  
22.9  
6.7  
4.5  
3
Medium IDRV_MSR_HV  
8
317  
425  
10  
5.5  
9
5.5  
11  
12  
13  
14  
15  
16  
17  
18  
19  
3.6  
101.6  
57.3  
43.6  
15.9  
45.3  
25.3  
17.3  
9.6  
10  
3.6  
10  
3.6  
10  
3.6  
Fast  
IDRV_FC  
10  
2.75  
2.75  
2.75  
2.75  
5.5  
10  
10  
10  
Input  
IDRV_I_HV  
7
N/A  
N/A  
1
2
3
These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.  
Slow = SH or SHA; Medium = MH or MHA; Fast = F; Input = IHA. See Table 3.  
All loads are lumped.  
PXN20 Microcontroller Data Sheet, Rev. 1  
34  
Freescale Semiconductor  
Electrical characteristics  
4.7.1  
I/O pad VDD33 current specifications  
The power consumption of the V  
supply is dependent on the usage of the pins on all I/O segments. The power consumption  
DD33  
is the sum of all input and output pin V  
currents for all I/O segments. The output pin V  
current can be calculated from  
DD33  
DD33  
Table 12 based on the voltage, frequency, and load on all Pad F pins. The input pin V  
current can be calculated from  
DD33  
Table 12 based on the voltage, frequency, and load on all Pad MH pins. Use linear scaling to calculate pin currents for voltage,  
frequency, and load parameters that fall outside the values given in Table 12.  
1
Table 12. I/O pad average I  
specifications  
DD33  
Pad  
Period  
(ns)  
Load3  
(pF)  
Drive  
Select  
IDD33 Avg  
(µA)  
IDD33 RMS  
(µA)  
Spec  
Symbol  
Type2  
1
2
3
4
5
6
7
8
9
100  
200  
800  
800  
40  
50  
50  
11  
01  
00  
00  
11  
01  
00  
00  
N/A  
0.8  
0.04  
0.06  
0.009  
235.7  
87.4  
47.4  
47  
Slow  
IDRV_SSR_HV  
50  
200  
50  
100  
500  
500  
7
50  
0.11  
0.02  
0.01  
76.5  
56.2  
56.2  
Medium  
Input  
IDRV_MSR_HV  
50  
200  
0.5  
IDRV_I_HV  
1
2
3
These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.  
Slow = SH or SHA; Medium = MH or MHA; Fast = F; Input = IHA. See Table 3.  
All loads are lumped.  
1
Table 13. I  
pad average DC current  
DD33  
Pad  
Period  
(ns)  
Load3  
(pF)  
VDD33  
(V)  
VDDE  
(V)  
Drive  
Select  
IDD33 Avg  
(µA)  
IDD33 RMS  
(µA)  
Spec  
Symbol  
Type2  
1
2
3
4
5
6
7
8
10  
10  
10  
10  
10  
10  
10  
10  
50  
30  
20  
10  
50  
30  
20  
10  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
11  
10  
01  
00  
11  
10  
01  
00  
3.32  
2.28  
1.73  
1.39  
2.3  
11.77  
7.07  
5.75  
4.77  
7.81  
4.96  
4.31  
4.09  
3.6  
3.6  
Fast  
IDRV_FC  
2.75  
2.75  
2.75  
2.75  
1.64  
1.37  
1.06  
1
2
3
These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.  
Slow = SH or SHA; Medium = MH or MHA; Fast = F; Input = IHA. See Table 3.  
All loads are lumped.  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
35  
Electrical characteristics  
4.8  
Low voltage characteristics  
Table 14. Low voltage monitors  
Spec  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
1
2
Power-on-Reset Assert Level1  
VPOR  
1.5  
2.8  
V
V
Low Voltage Monitor 3.3 V2  
Assert Level  
VLVI33A  
VLVI33D  
3.00  
3.04  
3.05  
3.12  
3.10  
3.19  
De-assert Level  
3
4
Low Voltage Monitor Synthesizer3  
Assert Level  
V
V
VLVISYNA  
VLVISYND  
3.00  
3.04  
3.05  
3.12  
3.10  
3.19  
De-assert Level  
Low Voltage Monitor 3.0 V Low Threshold1  
VRCSEL = VSSA  
Assert Level  
De-assert Level  
VLVI_VDDA_LOA  
VLVI_VDDA_LOD  
3.00  
3.04  
3.05  
3.12  
3.10  
3.19  
VRCSEL = VDDA  
Assert Level  
De-assert Level  
VLVI_VDDA_LOA  
VLVI_VDDA_LOD  
3.25  
3.35  
3.35  
3.45  
3.48  
3.55  
5
Low Voltage Monitor 5.0 V1, 4  
Assert Level  
V
V
VLVI_VDDA_A  
VLVI_VDDA_D  
4.35  
4.45  
4.475  
4.575  
4.55  
4.65  
De-assert Level  
6
Low Voltage Monitor 5.0 V High Threshold1, 5  
Assert Level  
VLVI_VDDA_HA  
VLVI_VDDA_HD  
4.50  
4.50  
4.675  
4.675  
4.80  
4.80  
De-assert Level  
1
Monitors VDDA.  
2
3
4
Monitors VDD33.  
Monitors VDDSYN.  
Disabled when VRCSEL = VSSA  
.
4.9  
Oscillators electrical characteristics  
Table 15. 3.3 V high frequency external oscillator  
Spec  
Characteristic  
Frequency Range  
Symbol  
Min  
Max  
Unit  
1
2
3
fref  
tDC  
41  
40  
60  
MHz  
%
Duty Cycle of reference  
40  
EXTAL Input High Voltage  
External crystal mode2  
External clock mode  
VIHEXT  
V
VXTAL + 0.4  
0.65 VDDSYN  
VDDSYN + 0.3  
VDDSYN + 0.3  
4
EXTAL Input Low Voltage  
External crystal mode3  
External clock mode  
VILEXT  
V
VDDSYN – 0.3  
VXTAL – 0.4  
0.35 VDDSYN  
VDDSYN – 0.3  
5
6
7
XTAL Current4  
IXTAL  
1
3
3
3
mA  
pF  
pF  
Total On-chip stray capacitance on XTAL  
Total On-chip stray capacitance on EXTAL  
CS_XTAL  
CS_EXTAL  
PXN20 Microcontroller Data Sheet, Rev. 1  
36  
Freescale Semiconductor  
Electrical characteristics  
Table 15. 3.3 V high frequency external oscillator (continued)  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
8
Crystal manufacturer’s recommended  
capacitive load  
CL  
See crystal  
specification  
See crystal  
specification  
pF  
9
Discrete load capacitance to be connected  
to EXTAL  
CL_EXTAL  
CL_XTAL  
tstartup  
2CL – CS_EXTAL  
pF  
pF  
ms  
5
CPCB_EXTAL  
10  
11  
Discrete load capacitance to be connected  
to XTAL  
2CL – CS_XTAL – C  
5
PCB_XTAL  
Startup Time  
10  
1
2
3
When PLL frequency modulation is active, reference frequencies less than 8 MHz will distort the modulated waveform and the  
effects of this on emissions is not characterized.  
This parameter is meant for those who do not use quartz crystals or resonators, but instead use CAN oscillators in crystal  
mode. In that case, Vextal – Vxtal 400 mV criteria has to be met for oscillator’s comparator to produce output clock.  
This parameter is meant for those who do not use quartz crystals or resonators, but instead use CAN oscillators in crystal  
mode. In that case, Vxtal – Vextal 400 mV criteria has to be met for oscillator’s comparator to produce output clock.  
Ixtal is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded.  
4
5
CPCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively.  
Table 16. 5 V low frequency (32 kHz) external oscillator  
Spec  
Characteristic  
Frequency Range  
Symbol  
Min  
Max  
Unit  
1
2
3
4
fref32  
tdc32  
IXTAL32  
CL32  
32  
40  
40  
60  
3
kHz  
%
Duty Cycle of reference  
XTAL32 Current1  
A  
pF  
Crystal manufacturer’s recommended  
capacitive load  
See crystal  
specification  
See crystal  
specification  
5
Startup Time  
tStartup  
2
s
1
Ixtal32 is the oscillator bias current out of the XTAL32 pin with both EXTAL32 and XTAL32 pins grounded.  
Table 17. 5 V High Frequency (16 MHz) internal RC oscillator  
Spec  
Characteristic  
Frequency before trim1  
Symbol Range  
Min  
Typ  
Max  
Unit  
1
2
3
4
5
fut  
35%  
7%  
10.4  
14.9  
16  
16  
21.6  
17.1  
05  
MHz  
MHz  
%
Frequency after loading factory trim2  
Application trim resolution3  
Application frequency trim step3  
Startup Time  
ft  
ts  
fs  
300  
kHz  
ns  
tStartup  
500  
1
2
3
Across process, voltage, and temperature.  
Across voltage and temperature.  
Fixed voltage and temperature.  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
37  
Electrical characteristics  
Table 18. 5V low frequency (128 kHz) internal RC oscillator  
Spec  
Characteristic  
Symbol Range  
Min  
Typ  
Max  
Unit  
1
2
3
4
5
Frequency before trim1  
Fut128  
Ft128  
Ts128  
Fs128  
St128  
35%  
7%  
83.2  
119.0  
128  
128  
172.8  
137.0  
2  
kHz  
kHz  
%
Frequency after loading factory trim2  
Application trim resolution3  
Application frequency trim step3  
Startup Time  
4
kHz  
s  
100  
1
2
3
Across process, voltage, and temperature.  
Across voltage and temperature.  
Fixed voltage and temperature.  
4.10 FMPLL electrical characteristics  
1
Table 19. FMPLL electrical specifications  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
3
System Frequency2  
fSYS  
fREF  
fPLL  
4
116  
40  
MHz  
MHz  
MHz  
PLL Reference Frequency Range  
PLL Frequency  
fvcomin  
------------------------------  
ERFD + 1  
4
5
6
Loss of Reference Frequency 3  
Self Clocked Mode Frequency  
fLOR  
fSCM  
tLPLL  
100  
16  
2000  
64  
kHz  
MHz  
s  
PLL Lock Time4  
400  
tDC  
fUL  
7
8
9
40  
60  
4.0  
2.0  
%
Duty Cycle of Reference  
Frequency un-LOCK Range  
Frequency LOCK Range  
% fSYS  
% fSYS  
–4.0  
–2.0  
fLCK  
CLKOUT Period Jitter,5 Measured at fSYS Max  
Cycle-to-cycle Jitter  
%
fSYS  
10  
CJitter  
CJitter  
–5  
5
ns  
11  
12  
CLKOUT Jitter at 50 µs period  
–250  
250  
6,7  
Peak-to-Peak Frequency Modulation Range Limit  
(fSYSMax must not be exceeded)  
Cmod  
%fSYS  
0
4
13  
14  
15  
FM Depth Tolerance8  
VCO Frequency9  
Cmod_err  
fVCO  
–0.50  
192  
0.50  
600  
1
%fSYS  
MHz  
Modulation Rate Limits10  
fMOD  
0.400  
MHz  
1
VDDSYN = 3.0 V to 3.6 V, VSS = VSSSYN = 0 V, TA = TL to TH.  
PXN20 Microcontroller Data Sheet, Rev. 1  
38  
Freescale Semiconductor  
Electrical characteristics  
2
The maximum frequency value is with frequency modulation disabled. If frequency modulation is enabled, the maximum  
frequency value should be de-rated by the percentage of modulation enabled so that the maximum frequency is not exceeded.  
3
4
“Loss of Reference Frequency” is the reference frequency detected internally, which transitions the PLL into self clocked mode.  
This specification applies to the period required for the PLL to re-lock after changing the MFD frequency control bits in the  
synthesizer control register (SYNCR). From power up with crystal oscillator reference, lock time will be additive with crystal  
startup time.  
5
6
7
Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter + Cmod  
.
Modulation depth selected must not result in fPLL value greater than the fPLL maximum specified value.  
Maximum and minimum variations from programmed modulation depth are 2%, 3%, and 4% peak-to-peak. Use only these  
settings.  
8
9
Depth tolerance is the programmed modulation depth ±0.25% of fSYS  
.
See the Block Guide for VCO frequency synthesis equations.  
10 Modulation rates less than 400 kHz will result in exceedingly long FM calibration durations. Modulation rates greater than  
1 MHz will result in reduced calibration accuracy.  
4.11 ADC electrical characteristics  
Table 20. ADC conversion specifications (operating)  
Spec  
Characteristic  
Analog High Reference Voltage  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
6
VRH  
VRL  
AVIN  
FS  
VDDA – 0.5  
VDDA  
0.5  
V
V
Analog Low Reference Voltage  
Analog Input Voltage  
0
VRL  
VRH  
1.53  
60  
V
Sampling Frequency  
MHz  
MHz  
ns  
Maximum ADC Clock Frequency  
FMAX  
tS  
Sampling Time  
VDDA = 3.0 V – 3.6 V  
VDDA > 3.6 V – 5.5 V  
250  
125  
7
8
9
Differential Non Linearity  
Integral Non Linearity  
Offset Error  
DNL  
INL  
–1.0  
–1.5  
–1.0  
–2.0  
–2.0  
1.0  
1.5  
1.0  
2.0  
2.0  
LSB  
LSB  
LSB  
LSB  
LSB  
OFS  
GNE  
TUE  
10 Gain Error  
11 Total Unadjusted Error 1  
1
TUE assumes no pin activity on pins adjacent to analog channel or output driver activity on corresponding VDDE segment.  
4.12 Flash memory electrical characteristics  
1
Table 21. Flash program and erase specifications  
Initial  
Max2  
Spec  
Characteristic  
Double Word (64 bits) Program Time4  
Symbol Min  
Max3 Unit  
1
2
3
4
5
tdwprogram  
tpprogram  
500  
500  
s  
s  
Page (128 bits and 256 bits) Program Time4  
16 KB Block Pre-program and Erase Time  
64 KB Block Pre-program and Erase Time  
128 KB Block Pre-program and Erase Time  
160  
t16kpperase  
t64kpperase  
t128kpperase  
1000  
1800  
2600  
5000  
5000  
7500  
ms  
ms  
ms  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
39  
Electrical characteristics  
Table 21. Flash program and erase specifications (continued)  
Characteristic Symbol Min  
1
Initial  
Max2  
Spec  
Max3 Unit  
6
7
256 KB Block Pre-program and Erase Time  
t256kpperase  
trwsc  
5200 15,000 ms  
MHz  
Wait States Relative to System Frequency5  
PFCRPn[RWSC] = PFCRPn[APC] = 0b000; PFCRPn[WWSC] = 0b01  
PFCRPn[RWSC] = PFCRPn[APC] = 0b001; PFCRPn[WWSC] = 0b01  
PFCRPn[RWSC] = PFCRPn[APC] = 0b010; PFCRPn[WWSC] = 0b01  
PFCRPn[RWSC] = PFCRPn[APC] = 0b011 – 0b111; PFCRPn[WWSC] = 0b01  
30  
60  
90  
fSYS max  
8
Recovery Time  
tRecover  
45  
s  
1
2
3
Typical program and erase times assume nominal supply values and operation at 25 oC.  
Initial factory condition: 100program/erase cycles, nominal supply values and operation at 25 oC.  
The maximum time is at worst case conditions after the specified number of program/erase cycles. This maximum value is  
characterized but not guaranteed.  
4
5
Actual hardware programming time. This does not include software overhead.  
Wait state timing is based on the system clock frequency and thus is same for all masters.  
Table 22. Flash EEPROM Module Life (Full Temperature Range)  
Spec  
Characteristic  
Symbol  
Min  
Typical1 Unit  
cycles  
1
Number of Program/Erase cycles per block for 16 KB and 64 KB blocks  
over the operating temperature range (TJ)  
P/E  
100,000  
2
3
Number of Program/Erase cycles per block for 128 KB blocks over the  
operating temperature range (TJ)  
Minimum Data Retention at 85 °C ambient temperature2  
Blocks with 0–1,000 P/E cycles  
P/E  
1,000  
100,000 cycles  
years  
Retention  
20  
10  
Blocks with 1,001–10,000 P/E cycles  
Blocks with 10,001–100,000 P/E cycles  
1 – 5  
1
2
Typical endurance is evaluated at 25 oC. Product qualification is performed to the minimum specification. For additional  
information on the Freescale definition of Typical Endurance, please refer to Engineering Bulletin EB619, Typical Endurance  
for Nonvolatile Memory.  
Ambient temperature averaged over duration of application, not to exceed product operating temperature range.  
4.13 Pad AC specifications  
1
Table 23. Pad AC specifications (5.0 V, 2.5 V)  
Rise/Fall5,6  
(ns)  
Load Drive  
(pF)  
Spec  
Pad Type2  
SRC/DSC3  
Output Delay4,4 (ns)  
318/343  
408/431  
61/67  
155/173  
188/204  
30/34  
50  
200  
50  
00  
01  
11  
Slow7  
1
80/90  
38/44  
200  
50  
18/18  
10/11  
27/28  
15/17  
200  
PXN20 Microcontroller Data Sheet, Rev. 1  
40  
Freescale Semiconductor  
Electrical characteristics  
1
Table 23. Pad AC specifications (5.0 V, 2.5 V) (continued)  
Rise/Fall5,6  
Load Drive  
(pF)  
Spec  
Pad Type2  
SRC/DSC3  
Output Delay4,4 (ns)  
(ns)  
142/186  
195/253  
20/35  
65/89  
91/122  
8.7/16.6  
24/35  
50  
200  
50  
00  
01  
11  
2
Medium  
41/64  
200  
50  
12/11  
5.3/5.9  
21/23  
32/34  
200  
10  
00  
01  
20  
Fast8  
Input  
3
4
2.7  
1.5  
10  
30  
11  
50  
N/A  
1.9/1.9  
1.5/1.5  
0.5  
1
These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at  
FSYS = 116 MHz, VDD = 1.08 – 1.32 V, VDDE = 1.62 – 1.98 V, VDDEH = 4.5 – 5.5 V, VRC33 and VDDPLL = 3.0 – 3.6 V, TA = TL to  
TH.  
2
3
Slow = SH or SHA; Medium = MH or MHA; Fast = F; Input = IHA. See Table 3.  
SRC/DSC are bit fields in the Pad Configuration Registers. SRC—Slew Rate Control (slow and medium pad types only),  
DSC—Drive Strength Control (fast pad type only).  
4
5
6
7
8
This parameter is supplied for reference and is not guaranteed by design and not tested.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Delay and rise/fall are measured to 20% or 80% of the respective signal.  
Add a maximum of one system clock to the output delay for delay with respect to system clock.  
Output delay is shown in. Add a maximum of one system clock to the output delay for delay with respect to system clock.  
1
Table 24. De-rated pad AC specifications (3.3 V, 3.3 V)  
Out Delay4,5  
(ns)  
Rise/Fall6,  
(ns)  
Load Drive  
(pF)  
Spec  
Pad Type2  
SRC/DSC3  
408/431  
533/592  
80/90  
188/204  
250/288  
38/44  
50  
200  
50  
00  
Slow7  
1
01  
11  
00  
01  
11  
146/167  
27/28  
82/96  
200  
50  
15/17  
81/92  
57/67  
200  
50  
184/240  
253/330  
28/47  
79/107  
114/153  
11.8/21.8  
34/49  
200  
50  
2
Medium  
58/88  
200  
50  
18/17  
7.6/8.9  
30/35  
46/51  
200  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
41  
Electrical characteristics  
Table 24. De-rated pad AC specifications (3.3 V, 3.3 V) (continued)  
1
Out Delay4,5  
(ns)  
Rise/Fall6,  
(ns)  
Load Drive  
(pF)  
Spec  
Pad Type2  
SRC/DSC3  
00  
01  
1.2  
1.2  
10  
20  
30  
50  
0.5  
Fast8  
Input  
3
4
2.5  
3/3  
10  
1.2  
11  
1.2  
N/A  
1.5/1.5  
1
These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at  
FSYS = 116 MHz, VDD = 1.08 – 1.32 V, VDDE = 3.0 – 3.6 V, VDDEH = 3.0 – 3.6 V, VRC33 and VDDPLL = 3.0 – 3.6 V, TA = TL to  
TH.  
2
3
Slow = SH or SHA; Medium = MH or MHA; Fast = F; Input = IHA. See Table 3.  
SRC/DSC are bit fields in the Pad Configuration Registers. SRC—Slew Rate Control (slow and medium pad types only),  
DSC—Drive Strength Control (fast pad type only).  
4
5
6
7
8
This parameter is supplied for reference and is not guaranteed by design and not tested.  
Delay and rise/fall are measured to 20% or 80% of the respective signal.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Add a maximum of one system clock to the output delay for delay with respect to system clock.  
Output delay is shown in Figure 6. Add a maximum of one system clock to the output delay for delay with respect to system  
clock.  
VDD/2  
Pad  
Internal Data Input Signal  
Rising  
Edge  
Out  
Falling  
Edge  
Out  
Delay  
Delay  
VOH  
Pad  
Output  
VOL  
Figure 6. Pad output delay  
PXN20 Microcontroller Data Sheet, Rev. 1  
42  
Freescale Semiconductor  
Electrical characteristics  
4.14 AC timing  
4.14.1 Reset and boot configuration pins  
Table 25. Reset and boot configuration timing  
Spec  
Characteristic Symbol  
Min  
Max  
Unit  
1
2
3
RESET Pulse Width  
tRPW  
tRCSU  
tRCH  
150  
0
100  
ns  
s  
s  
BOOTCFG Setup Time after RESET Valid  
BOOTCFG Hold Time from RESET Valid  
RESET  
1
2
BOOTCFG  
3
Figure 7. Reset and boot configuration timing  
4.14.2 External interrupt (IRQ) and non-maskable interrupt (NMI) pins  
Table 26. IRQ/NMI timing  
Spec  
Characteristic  
IRQ/NMI Pulse Width Low  
Symbol  
Min  
Max  
Unit  
1
2
3
tIPWL  
TIPWH  
tICYC  
3
3
6
tSYS  
tSYS  
tSYS  
IRQ/NMI Pulse Width High  
IRQ/NMI Edge to Edge Time1  
1
Applies when IRQ/NMI pins are configured for rising edge or falling edge events, but not both.  
IRQ/NMI  
1,2  
1,2  
3
Figure 8. IRQ and NMI timing  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
43  
Electrical characteristics  
4.14.3 JTAG (IEEE 1149.1) interface  
1
Table 27. JTAG interface timing  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
TCK Cycle Time  
tJCYC  
tJDC  
100  
40  
5
60  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK Clock Pulse Width (Measured at VDDE/2)  
TCK Rise and Fall Times (40% – 70%)  
TMS, TDI Data Setup Time  
3
tTCKRISE  
4
tTMSS, TDIS  
TMSH, tTDIH  
tTDOV  
tTDOI  
t
25  
20  
50  
50  
50  
5
TMS, TDI Data Hold Time  
t
25  
0
6
TCK Low to TDO Data Valid  
7
TCK Low to TDO Data Invalid  
8
TCK Low to TDO High Impedance  
JCOMP Assertion Time  
tTDOHZ  
tJCMPPW  
tJCMPS  
tBSDV  
100  
40  
50  
50  
9
10  
11  
12  
13  
14  
15  
JCOMP Setup Time to TCK Low  
TCK Falling Edge to Output Valid  
TCK Falling Edge to Output Valid out of High Impedance  
TCK Falling Edge to Output High Impedance  
Boundary Scan Input Valid to TCK Rising Edge  
TCK Rising Edge to Boundary Scan Input Invalid  
tBSDVZ  
tBSDHZ  
tBSDST  
tBSDHT  
1
These specifications apply to JTAG boundary scan only. JTAG timing specified at VDDE = 3.0 – 5.5 V, TA = TL to TH, and  
CL = 30 pF with SRC = 0b11.  
TCK  
2
3
2
1
3
Figure 9. JTAG test clock input timing  
PXN20 Microcontroller Data Sheet, Rev. 1  
44  
Freescale Semiconductor  
Electrical characteristics  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 10. JTAG Test Access Port (TAP) timing  
TCK  
10  
JCOMP  
9
Figure 11. JTAG JCOMP timing  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
45  
Electrical characteristics  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 12. JTAG boundary scan timing  
PXN20 Microcontroller Data Sheet, Rev. 1  
46  
Freescale Semiconductor  
Electrical characteristics  
4.14.4 Enhanced Modular I/O Subsystem (eMIOS)  
1
Table 28. eMIOS timing  
Spec  
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
eMIOS Input Pulse Width  
eMIOS Output Pulse Width  
tMIPW  
4
12  
tCYC  
tCYC  
tMOPW  
1
2
eMIOS timing specified at VDDE = 3.0 – 5.5 V, TA = TL to TH, and CL = 30 pF with SRC = 0b11.  
This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise  
and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).  
Figure 13. eMIOS timing  
D_CLKOUT  
2
eMIOS output  
eMIOS input  
1
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
47  
Electrical characteristics  
4.14.5 Deserial Serial Peripheral Interface (DSPI)  
Table 29. DSPI timing  
116 MHz1  
Spec  
Characteristic  
Symbol  
Unit  
Min. Value  
Max. Value  
1
DSPI Cycle Time  
Master (MTFE = 0)  
Slave (MTFE = 0)  
Master (MTFE = 1)  
Slave (MTFE = 1)  
tSCK  
100  
100  
50  
ns  
ns  
ns  
ns  
50  
2
3
4
5
PCS to SCK Delay2  
After SCK Delay3  
SCK Duty Cycle  
tCSC  
tASC  
tSDC  
tA  
7
14  
ns  
ns  
ns  
ns  
0.4 tSCK  
0.6 tSCK  
25  
Slave Access Time  
(SS active to SOUT valid)  
6
Slave SOUT Disable Time  
tDIS  
25  
ns  
(SS inactive to SOUT High-Z or invalid)  
7
8
9
PCSx to PCSS time  
PCSS to PCSx time  
tPCSC  
tPASC  
tSUI  
0
0
ns  
ns  
Data Setup Time for Inputs  
Master (MTFE = 0)  
25  
5
10  
25  
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)4  
Master (MTFE = 1, CPHA = 1)  
10  
11  
12  
Data Hold Time for Inputs  
Master (MTFE = 0)  
tHI  
tSUO  
tHO  
–4  
7
12  
–4  
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)4  
Master (MTFE = 1, CPHA = 1)  
Data Valid (after SCK edge)  
Master (MTFE = 0)  
8
28  
15  
8
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
Data Hold Time for Outputs  
Master (MTFE = 0)  
–7  
2
1
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
–7  
1
2
3
4
116 MHz timing specified at CL = 50 pF with SRC = 0b11.  
The maximum value is programmable in DSPI_CTARn[PSSCK] and DSPI_CTARn[CSSCK].  
The maximum value is programmable in DSPI_CTARn[PASC] and DSPI_CTARn[ASC].  
This number is calculated assuming the SMPL_PT bit field in DSPI_MCR is set to 0b10.  
PXN20 Microcontroller Data Sheet, Rev. 1  
48  
Freescale Semiconductor  
Electrical characteristics  
2
3
PCSx  
1
4
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
10  
9
Last Data  
SIN  
First Data  
Data  
Data  
12  
11  
First Data  
Last Data  
SOUT  
Figure 14. DSPI classic SPI timing — Master, CPHA = 0  
PCSx  
SCK Output  
(CPOL = 0)  
10  
SCK Output  
(CPOL = 1)  
9
SIN  
Data  
Data  
First Data  
Last Data  
12  
11  
SOUT  
Last Data  
First Data  
Figure 15. DSPI classic SPI timing — Master, CPHA = 1  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
49  
Electrical characteristics  
3
2
SS  
1
4
SCK Input  
(CPOL = 0)  
4
SCK Input  
(CPOL = 1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
First Data  
Data  
Last Data  
Figure 16. DSPI classic SPI timing — Slave, CPHA = 0  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Figure 17. DSPI classic SPI timing — Slave, CPHA = 1  
PXN20 Microcontroller Data Sheet, Rev. 1  
50  
Freescale Semiconductor  
Electrical characteristics  
3
PCSx  
4
1
2
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
9
10  
SIN  
First Data  
Last Data  
Last Data  
Data  
12  
11  
SOUT  
First Data  
Data  
Figure 18. DSPI modified transfer format timing — Master, CPHA = 0  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Figure 19. DSPI modified transfer format timing — Master, CPHA = 1  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
51  
Electrical characteristics  
3
2
SS  
1
SCK Input  
(CPOL = 0)  
4
4
SCK Input  
(CPOL = 1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Figure 20. DSPI modified transfer format timing — Slave, CPHA = 0  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Figure 21. DSPI modified transfer format timing — Slave, CPHA = 1  
8
7
PCSS  
PCSx  
Figure 22. DSPI PCS strobe (PCSS) timing  
PXN20 Microcontroller Data Sheet, Rev. 1  
52  
Freescale Semiconductor  
Electrical characteristics  
4.14.6 MLB Interface  
4.14.6.1 Media Local Bus DC Electrical Characteristics  
Table 30 provides the DC electrical characteristics for the Media Local Bus interface.  
Table 30. Media Local Bus DC Electrical Characteristics  
Parameter  
Maximum Input Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
Comments  
VIL  
VIH  
VOL  
VOH  
IL  
3.6  
0.7  
V
V
Low Level Input Threshold  
High Level Input Threshold  
Low Level Output Threshold  
High Level Output Threshold  
Input Leakage Current  
1.81  
V
0.4  
V
IOL = 6 mA  
IOH = –6 mA  
0 < Vin < VDDE4  
2.0  
V
±1  
µA  
1
Higher VIH thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and  
assumed by the customer.  
4.14.6.2 Media Local Bus (MLB) AC electrical characteristics  
Table 31 and Table 32 provide the AC electrical characteristics for the Media Local Bus interface.  
Table 31. MLB timing for MLB speed 256 Fs or 512 Fs  
Spec  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Comments  
1
MLBCLK Operating Frequency1  
fmck  
11.264  
12.288  
24.576  
256 Fs at 44.0 kHz  
256 Fs at 48.0 kHz  
MHz 512 Fs at 48.0 kHz  
512 Fs at 48.1 kHz  
24.6272  
25.600  
512 Fs PLL unlocked  
2
3
4
MLBCLK rise time  
MLBCLK fall time  
MLBCLK cycle time  
tmckr  
tmckf  
tmckc  
3
3
ns VIL to VIH  
ns VIH to VIL  
81  
40  
ns 256 Fs  
512 Fs  
5
MLBCLK low time  
tmckl  
31.5  
30  
37  
35.5  
ns 256 Fs  
256 Fs PLL unlocked  
14.5  
14  
17  
16.5  
ns 512 Fs  
512 Fs PLL unlocked  
6
MLBCLK high time  
tmckh  
31.5  
30  
38  
36.5  
ns 256 Fs  
256 Fs PLL unlocked  
14.5  
14  
17  
16.5  
ns 512 Fs  
512 Fs PLL unlocked  
7
8
MLBCLK pulse width variation2  
tmpwv  
tdsmcf  
1
2
ns p-p  
ns  
MLBSIG/MLBDAT input valid to  
MLBCLK falling  
9
MLBSIG/MLBDAT input hold from  
MLBCLK low  
tdhmcf  
0
ns  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
53  
Electrical characteristics  
Table 31. MLB timing for MLB speed 256 Fs or 512 Fs (continued)  
Spec  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Comments  
10  
MLBSIG/MLBDAT output high  
impedance from MLBCLK low  
tmcfdz  
0
tmckl  
ns  
11  
12  
Bus Hold time3  
tmdzh  
4
8
ns  
ns  
MLBSIG/MLBDAT output valid from tmcrdv  
MLBCLK rising  
• Ground = 0.0V  
• Load Capacitance = 60 pF, SIU_PCR144–SIU_PCR146[DSC] = 0b11.  
• MLB speed of 256 Fs or 512 Fs (Fs = 48 kHz)  
Unless otherwise noted, all timing parameters are specified from the valid voltage threshold in Table 30.  
1
2
The Controller can shut off MLBCLK to place MLB in a low-power state.  
Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other  
edge, measured in ns peak-to-peak (ns p-p).  
3
The board must be designed to insure that the high-impedance bus does not leave the logic state of the final driven bit for this  
time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed.  
Table 32. MLB timing for MLB speed 1024 Fs  
Spec  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Comments  
1
MLBCLK Operating Frequency1  
fmck  
45.056  
49.152  
49.2544  
51.200  
1024 Fs at 44.0 kHz  
1024 Fs at 48.0 kHz  
MHz 1024 Fs at 48.1 kHz  
1024 Fs PLL unlocked  
2
3
4
5
MLBCLK rise time  
MLBCLK fall time  
MLBCLK cycle time  
MLBCLK low time  
tmckr  
tmckf  
tmckc  
tmckl  
1
1
ns VIL to VIH  
ns VIH to VIL  
ns VIL to VIH  
20.3  
6.5  
6.1  
7.7  
7.3  
ns 1024 Fs  
PLL unlocked  
6
MLBCLK high time  
tmckh  
9.7  
9.3  
10.6  
10.2  
ns 1024 Fs  
PLL unclocked  
7
8
MLBCLK pulse width variation2  
tmpwv  
tdsmcf  
1
0.7  
ns p-p  
ns  
MLBSIG/MLBDAT input valid to  
MLBCLK falling  
9
MLBSIG/MLBDAT input hold from  
MLBCLK low  
tdhmcf  
tmcfdz  
tmdzh  
0
0
ns  
ns  
10  
MLBSIG/MLBDAT output high  
impedance from MLBCLK low  
tmckl  
11  
12  
Bus Hold time3  
2
7
ns  
ns  
MLBSIG/MLBDAT output valid from tmcrdv  
MLBCLK rising  
• Ground = 0.0V  
• Load Capacitance = 40 pF, SIU_PCR144–SIU_PCR146[DSC] = 0b00.  
• MLB speed = 1024Fs (Fs = 48 kHz)  
• Unless otherwise noted, timing parameters are specified from the valid voltage threshold in Table 30.  
PXN20 Microcontroller Data Sheet, Rev. 1  
54  
Freescale Semiconductor  
Electrical characteristics  
1
2
The Controller can shut off MLBCLK to place MLB in a low-power state.  
Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other  
edge, measured in ns peak-to-peak (ns p-p).  
3
The board must be designed to insure that the high-impedance bus does not leave the logic state of the final driven bit for this  
time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed.  
MLBSIG/  
MLBDAT  
valid data  
(input)  
9
8
3
6
2
5
MLBCLK  
4
10  
12  
11  
MLBSIG/  
MLBDAT  
(output)  
valid data  
Figure 23. Media Local Bus (MLB) timing  
4.14.7  
Fast Ethernet Controller (FEC) interface  
MII signals use CMOS signal levels compatible with devices operating at either 5.0 V or 3.3 V. Signals are not TTL compatible.  
They follow the CMOS electrical characteristics.  
4.14.7.1 MII receive signal timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)  
The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency  
requirement. In addition, the system clock frequency must exceed four times the RX_CLK frequency.  
Table 33. MII receive signal timing  
Spec  
Characteristic  
Min  
Max  
Unit  
M1  
M2  
M3  
M4  
RXD[3:0], RX_DV, RX_ER to RX_CLK setup  
RX_CLK to RXD[3:0], RX_DV, RX_ER hold  
RX_CLK pulse width high  
5
ns  
5
ns  
35%  
35%  
65%  
65%  
RX_CLK period  
RX_CLK period  
RX_CLK pulse width low  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
55  
Electrical characteristics  
M3  
M4  
RX_CLK (input)  
RXD[3:0] (inputs)  
RX_DV  
RX_ER  
M1  
M2  
Figure 24. MII receive signal timing diagram  
4.14.7.2 MII transmit signal timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)  
The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency  
requirement. In addition, the system clock frequency must exceed four times the TX_CLK frequency.  
The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising or falling edge of  
TX_CLK, and the timing is the same in either case. This options allows the use of non-compliant MII PHYs.  
Refer to the Ethernet chapter for details of this option and how to enable it.  
1
Table 34. MII transmit signal timing  
Spec  
Characteristic  
Min  
Max  
Unit  
M5  
M6  
M7  
M8  
TX_CLK to TXD[3:0], TX_EN, TX_ER invalid  
TX_CLK to TXD[3:0], TX_EN, TX_ER valid  
TX_CLK pulse width high  
5
ns  
25  
ns  
35%  
35%  
65%  
65%  
TX_CLK period  
TX_CLK period  
TX_CLK pulse width low  
1
Output pads configured with SRC = 0b11.  
M7  
TX_CLK (input)  
M5  
M8  
TXD[3:0] (outputs)  
TX_EN  
TX_ER  
M6  
Figure 25. MII transmit signal timing diagram  
4.14.7.3 MII async inputs signal timing (CRS and COL)  
1
Table 35. MII Async Inputs Signal Timing  
Spec  
Characteristic  
CRS, COL minimum pulse width  
Min  
Max  
Unit  
M9  
1.5  
TX_CLK period  
1
Output pads configured with SRC = 0b11.  
PXN20 Microcontroller Data Sheet, Rev. 1  
56  
Freescale Semiconductor  
Electrical characteristics  
CRS, COL  
M9  
Figure 26. MII async inputs timing diagram  
4.14.7.4 MII serial management channel timing (MDIO and MDC)  
The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.  
1
Table 36. MII serial management channel timing  
Spec  
Characteristic  
Min  
Max  
Unit  
M10  
M11  
M12  
M13  
M14  
M15  
MDC falling edge to MDIO output invalid (minimum propagation delay)  
MDC falling edge to MDIO output valid (max prop delay)  
MDIO (input) to MDC rising edge setup  
MDIO (input) to MDC rising edge hold  
MDC pulse width high  
0
25  
ns  
ns  
ns  
10  
0
ns  
40%  
40%  
60%  
60%  
MDC period  
MDC period  
MDC pulse width low  
1
Output pads configured with SRC = 0b11.  
M14  
M15  
MDC (output)  
MDIO (output)  
M10  
M11  
MDIO (input)  
M12  
Figure 27. MII serial management channel timing diagram  
M13  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
57  
Package characteristics  
5
Package characteristics  
5.1  
Package mechanical data  
Figure 28. 208 MAPBGA package mechanical drawing  
PXN20 Microcontroller Data Sheet, Rev. 1  
58  
Freescale Semiconductor  
Package characteristics  
Figure 29. 208 MAPBGA package detail  
PXN20 Microcontroller Data Sheet, Rev. 1  
Freescale Semiconductor  
59  
6
Revision history  
Figure 37 describes the changes made to this document between revisions.  
Table 37. Revision history  
Revision  
Date  
Description of Changes  
1
September 2011 Initial release: Technical Data  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2011. All rights reserved.  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: PXN20  
Rev. 1  
2011  

相关型号:

PXN20PB

32-bit Power Architecture® Dual Core Microcontrollers for Industrial Networking
FREESCALE

PXN20RM

PXN20 Microcontroller
FREESCALE

PXN4R7-30QL

30 V, N-channel Trench MOSFETProduction
NEXPERIA

PXN5R4-30QL

30 V, N-channel Trench MOSFETProduction
NEXPERIA

PXN6R2-25QL

25 V, N-channel Trench MOSFETProduction
NEXPERIA

PXN6R7-30QL

30 V, N-channel Trench MOSFETProduction
NEXPERIA

PXN7R7-25QL

25 V, N-channel Trench MOSFETProduction
NEXPERIA

PXN8R3-30QL

30 V, N-channel Trench MOSFETProduction
NEXPERIA

PXN9R0-30QL

30 V, N-channel Trench MOSFETProduction
NEXPERIA

PXO-P9-25DS-6P

SMD Clock Oscillator LVDS Output frequency up to 320 MHz
QUARTZCOM

PXO-P9-25DSM-6P

LVDS SMD Clock Oscillator Multiplier Output frequency up to 700 MHz
QUARTZCOM

PXO-P9-25H-4P

SMD Clock Oscillator HCMOS / TTL Output frequency up to 200 MHz
QUARTZCOM