MC9S08LG32 [FREESCALE]

; - 12号的铝制车身绘( RAL 7032 )
MC9S08LG32
型号: MC9S08LG32
厂家: Freescale    Freescale
描述:


- 12号的铝制车身绘( RAL 7032 )

文件: 总51页 (文件大小:2553K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MC9S08LG32  
Rev. 7, 8/2009  
MC9S08LG32 Series  
Covers: MC9S08LG32 and  
MC9S08LG16  
MC9S08LG32  
64-LQFP  
80-LQFP  
Case 840F  
10 mm × 10 mm  
Case 917A  
14 mm × 14 mm  
Features  
48-LQFP  
• 8-bit HCS08 Central Processor Unit (CPU)  
– Up to 40 MHz CPU at 5.5 V to 2.7 V across temperature  
range of –40 °C to 85 °C and –40 °C to 105 °C  
– HCS08 instruction set with added BGND instruction  
– Support for up to 32 interrupt/reset sources  
• On-Chip Memory  
Case 932  
7 mm × 7mm  
– On-chip in-circuit emulator (ICE) debug module containing  
three comparators and nine trigger modes; eight deep FIFO  
for storing change-of-flow addresses and event-only data;  
debug module supports both tag and force breakpoints  
• Peripherals  
– 32 KB or 18 KB dual array flash; read/program/erase  
over full operating voltage and temperature  
– 1984 byte random access memory (RAM)  
– Security circuitry to prevent unauthorized access to  
RAM and flash contents  
LCD — Up to 4 × 41 or 8 × 37 LCD driver with internal  
charge pump.  
ADC — Up to 16-channel, 12-bit resolution; 2.5 μs  
conversion time; automatic compare function; temperature  
sensor; internal bandgap reference channel; runs in stop3 and  
can wake up the system; fully functional from 5.5 V to 2.7 V  
SCI — Full duplex non-return to zero (NRZ); LIN master  
extended break generation; LIN slave extended break  
detection; wakeup on active edge  
SPI — Full-duplex or single-wire bidirectional;  
double-buffered transmit and receive; master or slave mode;  
MSB-first or LSB-first shifting  
IIC — With up to 100 kbps with maximum bus loading;  
multi-master operation; programmable slave address;  
interrupt driven byte-by-byte data transfer; supports  
broadcast mode and 10-bit addressing  
TPMx — One 6 channel and one 2 channel; selectable input  
capture, output compare, or buffered edge or center-aligned  
PWM on each channel  
MTIM — 8-bit counter with match register; four clock  
sources with prescaler dividers; can be used for periodic  
wakeup  
RTC — 8-bit modulus counter with binary or decimal based  
prescaler; three clock sources including one external source;  
can be used for time base, calendar, or task scheduling  
functions  
• Power-Saving Modes  
– Two low-power stop modes (stop2 and stop3)  
– Reduced-power wait mode  
– Peripheral clock gating register can disable clocks to  
unused modules, thereby reducing currents  
– Low power on-chip crystal oscillator (XOSC) that can  
be used in low-power modes to provide accurate clock  
source to real time counter and LCD controller  
– 100 μs typical wakeup time from stop3 mode  
• Clock Source Options  
– Oscillator (XOSC) — Loop-control Pierce oscillator;  
crystal or ceramic resonator range of 31.25 kHz to  
38.4 kHz or 1 MHz to 16 MHz  
– Internal Clock Source (ICS) — Internal clock source  
module containing a frequency-locked-loop (FLL)  
controlled by internal or external reference; precision  
trimming of internal reference allows 0.2% resolution  
and 2% deviation over temperature and voltage; supports  
bus frequencies from 1 MHz to 20 MHz.  
• System Protection  
– COP reset with option to run from dedicated 1 kHz  
internal clock or bus clock  
KBI — One keyboard control module capable of supporting  
8 × 8 keyboard matrix  
– Low-voltage warning with interrupt  
– Low-voltage detection with reset  
IRQ — External pin for wakeup from low-power modes  
• Input/Output  
– Illegal opcode detection with reset  
– Illegal address detection with reset  
– 39, 53, or 69 GPIOs  
– Flash and RAM protection  
– 8 KBI and 1 IRQ interrupt with selectable polarity  
– Hysteresis and configurable pullup device on all input pins;  
configurable slew rate and drive strength on all output pins.  
• Package Options  
• Development Support  
– Single-wire background debug interface  
– Breakpoint capability to allow single breakpoint setting  
during in-circuit debugging (plus two more breakpoints  
in on-chip debug module)  
– 48-pin LQFP, 64-pin LQFP, and 80-pin LQFP  
Freescale reserves the right to change the detail specifications as may be required to permit  
improvements in the design of its products.  
© Freescale Semiconductor, Inc., 2009. All rights reserved.  
Table of Contents  
1
2
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Figure 17.Internal Oscillator Deviation from Trimmed Frequency 25  
Figure 18.ADC Input Impedance Equivalency Diagram. . . . . . . 26  
Figure 19.Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 20.IRQ/KBIPx Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 21.Timer External Clock . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 22.Timer Input Capture Pulse. . . . . . . . . . . . . . . . . . . . . 30  
Figure 23.SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . 32  
Figure 24.SPI Master Timing (CPHA =1). . . . . . . . . . . . . . . . . . 32  
Figure 25.SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . 33  
Figure 26.SPI Slave Timing (CPHA = 1) . . . . . . . . . . . . . . . . . . 33  
Figure 27.4 MHz, Positive Polarity Pins 1 – 41 . . . . . . . . . . . . . 36  
Figure 28.4 MHz, Positive Polarity Pins 42 – 80 . . . . . . . . . . . . 36  
Figure 29.4 MHz, Negative Polarity Pins 1 – 41. . . . . . . . . . . . . 37  
Figure 30.4 MHz, Negative Polarity Pins 42 – 80. . . . . . . . . . . . 37  
Figure 31.Device Number Example for Auto Parts. . . . . . . . . . . 39  
Figure 32.Device Number Example for IMM Parts. . . . . . . . . . . 39  
Figure 33.80-pin LQFP Package Drawing (Case 917A, Doc  
#98ASS23237W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.2 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .10  
2.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .10  
2.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .11  
2.5 ESD Protection and Latch-Up Immunity . . . . . . . . . . . .12  
2.6 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
2.7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .17  
2.8 External Oscillator (XOSC) Characteristics . . . . . . . . .22  
2.9 Internal Clock Source (ICS) Characteristics . . . . . . . . .24  
2.10 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
2.11 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
2.11.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . .29  
2.11.2 TPM Module Timing . . . . . . . . . . . . . . . . . . . . .30  
2.11.3 SPI Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
2.12 LCD Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
2.13 Flash Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
2.14 EMC Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
2.14.1 Radiated Emissions. . . . . . . . . . . . . . . . . . . . . .35  
2.14.2 Conducted Transient Susceptibility . . . . . . . . . .35  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
3.1 Device Numbering System . . . . . . . . . . . . . . . . . . . . . .39  
Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
4.1 Mechanical Drawings . . . . . . . . . . . . . . . . . . . . . . . . . .39  
4.1.1 80-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
4.1.2 64-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
4.1.3 48-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Figure 34.64-pin LQFP Package Drawing (Case 840F, Doc  
#98ASS23234W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 35.48-pin LQFP Package Drawing (Case 932, Doc  
#98ASH00962A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3
4
List of Tables  
Table 1. MC9S08LG32 Series Features by MCU and Package . 4  
Table 2. Pin Availability by Package Pin-Count . . . . . . . . . . . . . . 8  
Table 3. Parameter Classifications . . . . . . . . . . . . . . . . . . . . . . 10  
Table 4. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . 11  
Table 5. Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 6. ESD and Latch-Up Test Conditions. . . . . . . . . . . . . . . 12  
Table 7. ESD and Latch-Up Protection Characteristics. . . . . . . 13  
Table 8. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 9. Supply Current Characteristics. . . . . . . . . . . . . . . . . . 17  
Table 10.Oscillator Electrical Specifications (Temperature Range =  
–40 °C to 105 °C Ambient) . . . . . . . . . . . . . . . . . . . . . 22  
5
List of Figures  
Figure 1.MC9S08LG32 Series Block Diagram . . . . . . . . . . . . . . 3  
Figure 2.80-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 3.64-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 4.48-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 5.Typical Low-side Drive (sink) characteristics – High Drive  
(PTxDSn = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 11.ICS Frequency Specifications (Temperature Range  
=
–40 °C to 105 °C Ambient) . . . . . . . . . . . . . . . . . . . . . 24  
Figure 6.Typical Low-side Drive (sink) characteristics – Low Drive  
(PTxDSn = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 7.Typical High-side Drive (source) characteristics – High  
Drive (PTxDSn = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 8.Typical High-side Drive (source) characteristics – Low Drive  
(PTxDSn = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 9.Typical Run IDD for FBE Mode at 1 MHz. . . . . . . . . . . 19  
Figure 10.Typical Run IDD for FBE Mode at 20 MHz . . . . . . . . . 20  
Figure 11.Typical Run IDD for FEE Mode at 1 MHz . . . . . . . . . . 20  
Figure 12.Typical Run IDD for FEE Mode at 20 MHz . . . . . . . . . 21  
Figure 13.Typical Stop2 IDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 14.Typical Stop3 IDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 15.Typical Crystal or Resonator Circuit: High Range and Low  
Range/High Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 12.12-bit ADC Operating Conditions . . . . . . . . . . . . . . . . 25  
Table 13.12-bit ADC Characteristics (VREFH = VDDAD, VREFL  
VSSAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
=
Table 14.Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 15.TPM Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 16.SPI Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 17.LCD Electricals, 3 V Glass . . . . . . . . . . . . . . . . . . . . . 34  
Table 18.Flash Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 19.Radiated Emissions, Electric Field . . . . . . . . . . . . . . . 35  
Table 20.Conducted Susceptibility, EFT/B . . . . . . . . . . . . . . . . . 35  
Table 21.Susceptibility Performance Classification . . . . . . . . . . 38  
Table 22.Device Numbering System . . . . . . . . . . . . . . . . . . . . . 38  
Table 23.Package Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 24.Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 16.Typical Crystal or Resonator Circuit: Low Range/Low  
Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
MC9S08LG32 Series Data Sheet, Rev. 7  
2
Freescale Semiconductor  
HCS08 CORE  
LCD28/ADC5/TPMCLK/PTA7  
LCD27/ADC4/TPM2CH1/KBI7/PTA6  
LCD26/ADC3/TPM2CH0/KBI6/PTA5  
ON-CHIP ICE (ICE) and  
DEBUG MODULE (DBG  
)
CPU  
INT  
LCD25/ADC2/RX2/KBI5/PTA4  
LCD24/ADC1/TX2/KBI4/PTA3  
LCD23/ADC0/SDA/PTA2  
LCD22/SCL/PTA1  
Real Time Counter  
BKGD/MS  
BKGD  
BKP  
(RTC)  
LCD21/PTA0  
TMRCLK  
KBI[7:0]  
Modulo Timer  
MTIM  
HCS08 SYSTEM CONTROL  
LCD[40:37]/PTB[7:4]  
LCD[32:29]/PTB[3:0]  
(
)
RESETS AND INTERRUPTS  
MODES OF OPERATION  
POWER MANAGEMENT  
8-BIT KEYBOARD  
INTERRUPT (KBI  
)
RESET/PTC6  
BKGD/MS/PTC5  
LCD[20:16]/PTC[4:0]  
SS  
SPSCK  
MISO  
RESET  
IRQ  
COP  
SERIAL PERIPHERAL  
INTERFACE (SPI  
)
IRQ  
LVD  
MOSI  
SCL  
SDA  
LCD[7:0]/PTD[7:0]  
LCD[15:8]/PTE[7:0]  
IIC MODULE (IIC  
)
USER FLASH A  
(LG32 = 16K BYTES)  
(LG16 = 2K BYTES)  
TPM2CH[5:0]  
TPMCLK  
6-CHANNEL TIMER/PWM  
TPM2  
(
)
USER FLASH B  
(LG32 = 16K BYTES)  
(LG16 = 16K BYTES)  
TPM1CH[1:0]  
TPMCLK  
EXTAL/PTF7  
XTAL/PTF6  
TPM2CH3/KBI2/MOSI/PTF5  
2-CHANNEL TIMER/PWM  
TPM1  
(
)
TxD1  
RxD1  
TPM2CH4/KBI1/MISO/PTF4  
TPM2CH5/KBI0/SS/PTF3  
ADC14/IRQ/TPM1CH1/SPSCK/PTF2  
ADC13/TPM1CH0/RX1/PTF1  
ADC12/TPM2CH2/KBI3/TX1/PTF0  
SERIAL COMMUNICATIONS  
INTERFACE (SCI1  
USER RAM  
1984 BYTES  
)
TxD2  
RxD2  
SERIAL COMMUNICATIONS  
INTERFACE (SCI2  
)
INTERNAL CLOCK  
LCD[44:41]/PTG[7:4]  
LCD[36:33]/PTG[3:0]  
Source (ICS  
)
XTAL  
EXTAL  
LOW-POWER OSCILLATOR  
TPM2CH4/KBI1/PTH7  
ADC15/KBI0/TPM2CH5/PTH6  
ADC11/TPM1CH0/KBI3/TX1/PTH5  
ADC10/TPM1CH1/KBI2/RX1/PTH4  
ADC[9:6]/KBI[7:4]/PTH[3:0]  
12-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC  
V
LL3_2  
AD[15:0]  
VLL3  
VLL1  
)
LIQUID CRYSTAL  
DISPLAY DRIVER  
VLL2  
VCAP1  
VCAP2  
SS/SCL/TPM2CH0/PTI5  
(LCD)  
SPSCK/SDA/TPM2CH1/PTI4  
MOSI/TPM2CH2/PTI3  
MISO/TPM2CH3/PTI2  
TX2/TMRCLK/PTI1  
RX2/PTI0  
LCD[44:0]  
VDD  
VSS  
VOLTAGE  
REGULATOR  
Available only on 80-pin package  
Available only on 64-pin and 80-pin package  
*/Default function out of reset/*  
VSS2  
VDDA/VREFH  
VSSA/VREFL  
Figure 1. MC9S08LG32 Series Block Diagram  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
3
Pin Assignments  
Table 1. MC9S08LG32 Series Features by MCU and Package  
Feature  
MC9S08LG32  
MC9S08LG16  
Flash size (bytes)  
RAM size (bytes)  
Pin quantity  
ADC  
32,768  
18,432  
1984  
48  
80  
64  
64  
48  
16 ch  
12 ch  
9 ch  
12 ch  
9 ch  
LCD  
8 x 37  
4 x 41  
8 x 29  
4 x 33  
8 x 21  
4 x 25  
8 x 29  
4 x 33  
8 x 21  
4 x 25  
ICE + DBG  
ICS  
yes  
yes  
yes  
IIC  
IRQ  
yes  
KBI  
8 pin  
GPIOs  
RTC  
69  
53  
39  
53  
39  
yes  
yes  
yes  
yes  
yes  
2
MTIM  
SCI1  
SCI2  
SPI  
TPM1 channels  
TPM2 channels  
XOSC  
6
yes  
1
Pin Assignments  
This section shows the pin assignments for the MC9S08LG32 series devices. The priority of functions on a pin is in ascending  
order from left to right and bottom to top. Another view of pinouts and function priority is given in Table 2.  
MC9S08LG32 Series Data Sheet, Rev. 7  
4
Freescale Semiconductor  
Pin Assignments  
PTC4/LCD20  
PTA0/LCD21  
PTG2/LCD35  
PTG3/LCD36  
PTA1/SCL/LCD22  
PTA2/SDA/ADC0/LCD23  
PTA3/KBI4/TX2/ADC1/LCD24  
PTA4/KBI5/RX2/ADC2/LCD25  
PTA5/KBI6/TPM2CH0/ADC3/LCD26  
PTA6/KBI7/TPM2CH1/ADC4/LCD27  
PTA7/TPMCLK/ADC5/LCD28  
PTC5/BKGD/MS  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
PTD7/LCD7  
PTD6/LCD6  
PTD5/LCD5  
PTD4/LCD4  
PTD3/LCD3  
PTD2/LCD2  
PTB3/LCD32  
PTB2/LCD31  
PTB7/LCD40  
PTB6/LCD39  
PTB5/LCD38  
PTB4/LCD37  
PTB1/LCD30  
PTB0/LCD29  
PTD1/LCD1  
PTD0/LCD0  
VCAP1  
1
2
3
4
5
6
7
8
9
80-Pin LQFP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PTC6/RESET  
PTH0/KBI4/ADC6  
PTH1/KBI5/ADC7  
PTH2KBI6/ADC8  
PTH3/KBI7/ADC9  
PTH4/RX1/KBI2/TPM1CH1/ADC10  
PTH5/TX1/KBI3/TPM1CH0/ADC11  
PTF3/SS/KBI0/TPM2CH5  
VCAP2  
VLL1  
VLL2  
Figure 2. 80-Pin LQFP  
NOTE  
V
/V  
are internally connected to V  
/V  
.
REFH REFL  
DDA SSA  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
5
Pin Assignments  
PTC4/LCD20  
PTA0/LCD21  
PTG2/LCD35  
PTG3/LCD36  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PTD7/LCD7  
PTD6/LCD6  
PTD5/LCD5  
PTD4/LCD4  
PTD3/LCD3  
PTD2/LCD2  
PTB3/LCD32  
PTB2/LCD31  
PTB1/LCD30  
PTB0/LCD29  
PTD1/LCD1  
PTD0/LCD0  
VCAP1  
1
2
3
4
5
6
7
8
PTA1/SCL/LCD22  
PTA2/SDA/ADC0/LCD23  
PTA3/KBI4/TX2/ADC1/LCD24  
PTA4/KBI5/RX2/ADC2/LCD25  
PTA5/KBI6/TPM2CH0/ADC3/LCD26  
PTA6/KBI7/TPM2CH1/ADC4/LCD27  
PTA7/TPMCLK/ADC5/LCD28  
PTC5/BKGD/MS  
64-Pin LQFP  
9
10  
11  
12  
13  
14  
15  
16  
PTC6/RESET  
PTH4/RX1/KBI2/TPM1CH1/ADC10  
PTH5/TX1/KBI3/TPM1CH0/ADC11  
PTF3/SS/KBI0/TPM2CH5  
VCAP2  
VLL1  
VLL2  
Figure 3. 64-Pin LQFP  
NOTE  
V
/V  
are internally connected to V  
/V  
.
REFH REFL  
DDA SSA  
MC9S08LG32 Series Data Sheet, Rev. 7  
6
Freescale Semiconductor  
Pin Assignments  
37  
48  
47 46 45 44 43 42 41 40 39 38  
PTD7/LCD7  
PTD6/LCD6  
PTD5/LCD5  
PTC4/LCD20  
PTA0/LCD21  
1
36  
35  
34  
33  
2
3
4
5
6
7
8
9
PTA1/SCL/LCD22  
PTA2/SDA/ADC0/LCD23  
PTD4/LCD4  
PTD3/LCD3  
PTD2/LCD2  
32  
31  
30  
29  
28  
27  
26  
PTA3/KBI4/TX2/ADC1/LCD24  
PTA4/KBI5/RX2/ADC2/LCD25  
48-Pin LQFP  
PTD1/LCD1  
PTD0/LCD0  
VCAP1  
PTA5/KBI6/TPM2CH0/ADC3/LCD26  
PTA6/KBI7/TPM2CH1/ADC4/LCD27  
PTA7/TPMCLK/ADC5/LCD28  
10  
11  
VCAP2  
VLL1  
PTC5/BKGD/MS  
PTC6/RESET  
PTF3/SS/KBI0/TPM2CH5  
25  
VLL2  
12  
19 20 21 22 23  
14 15  
17 18  
16  
24  
13  
Figure 4. 48-Pin LQFP  
NOTE  
V
/V  
are internally connected to V  
/V  
.
REFH REFL  
DDA SSA  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
7
Pin Assignments  
Table 2. Pin Availability by Package Pin-Count  
Packages  
64  
<-- Lowest Priority --> Highest  
80  
48  
Port Pin  
Alt 1  
Alt 2  
Alt 3  
Alt 4  
1
1
1
PTD7  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTB3  
PTB2  
PTB7  
PTB6  
PTB5  
PTB4  
PTB1  
PTB0  
PTD1  
PTD0  
VCAP1  
VCAP2  
VLL1  
LCD7  
LCD6  
LCD5  
LCD4  
LCD3  
LCD2  
LCD32  
LCD31  
LCD40  
LCD39  
LCD38  
LCD37  
LCD30  
LCD29  
LCD1  
LCD0  
ADC14  
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
VLL2  
VLL3  
PTF5  
PTF4  
PTI5  
MOSI  
MISO  
TPM2CH0  
TPM2CH1  
TPM2CH2  
TPM2CH3  
TMRCLK  
RX2  
KBI2  
KBI1  
SCL  
SDA  
MOSI  
MISO  
TX2  
TPM2CH3  
TPM2CH4  
SS  
SPSCK  
PTI4  
PTI3  
PTI2  
PTI1  
PTI0  
PTH7  
VSS  
KBI1  
TPM2CH4  
VDD  
PTF7  
PTF6  
VDDA  
VSSA  
PTH6  
PTF2  
EXTAL  
XTAL  
VREFH  
VREFL  
TPM2CH5  
SPSCK  
KBI0  
TPM1CH1  
ADC15  
IRQ  
MC9S08LG32 Series Data Sheet, Rev. 7  
8
Freescale Semiconductor  
Pin Assignments  
Table 2. Pin Availability by Package Pin-Count (continued)  
Packages  
64  
<-- Lowest Priority --> Highest  
80  
48  
Port Pin  
Alt 1  
Alt 2  
Alt 3  
Alt 4  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
PTF1  
PTF0  
PTF3  
PTH5  
PTH4  
PTH3  
PTH2  
PTH1  
PTH0  
PTC6  
PTC5  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTG3  
PTG2  
PTA0  
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
PTE7  
PTE6  
VSS2  
RX1  
TX1  
TPM1CH0  
KBI3  
KBI0  
KBI3  
KBI2  
ADC9  
ADC8  
ADC7  
ADC6  
ADC13  
ADC12  
TPM2CH2  
SS  
TPM2CH5  
TX1  
TPM1CH0  
ADC11  
ADC10  
RX1  
TPM1CH1  
KBI7  
KBI6  
KBI5  
KBI4  
RESET  
BKGD/MS  
TPMCLK  
KBI7  
ADC5  
TPM2CH1  
TPM2CH0  
RX2  
TX2  
ADC0  
LCD22  
LCD28  
ADC4  
ADC3  
ADC2  
ADC1  
LCD23  
LCD27  
LCD26  
LCD25  
LCD24  
KBI6  
KBI5  
KBI4  
SDA  
SCL  
LCD36  
LCD35  
LCD21  
LCD20  
LCD19  
LCD18  
LCD17  
LCD16  
LCD15  
LCD14  
VLL3_2  
PTG7  
PTG6  
PTG5  
PTG4  
PTG1  
PTG0  
PTE5  
PTE4  
LCD44  
LCD43  
LCD42  
LCD41  
LCD34  
LCD33  
LCD13  
LCD12  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
9
Electrical Characteristics  
Packages  
Table 2. Pin Availability by Package Pin-Count (continued)  
<-- Lowest Priority --> Highest  
80  
64  
48  
Port Pin  
Alt 1  
Alt 2  
Alt 3  
Alt 4  
77  
78  
79  
80  
61  
62  
63  
64  
45  
46  
47  
48  
PTE3  
PTE2  
PTE1  
PTE0  
LCD11  
LCD10  
LCD9  
LCD8  
2
Electrical Characteristics  
2.1  
Introduction  
This section contains electrical and timing specifications for the MC9S08LG32 series of microcontrollers available at the time  
of publication.  
2.2  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:  
Table 3. Parameter Classifications  
Those parameters are guaranteed during production testing on each individual device.  
P
C
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
Those parameters are derived mainly from simulations.  
D
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
2.3  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the  
limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating  
conditions, refer to the remaining tables in this section.  
This device contains circuitry that protects against damage due to high static voltage or electrical fields. However, it is advised  
that normal precautions should be taken to avoid application of any voltages higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for  
instance, either V or V ) or the programmable pull-up resistor associated with the pin is enabled.  
SS  
DD  
MC9S08LG32 Series Data Sheet, Rev. 7  
10  
Freescale Semiconductor  
Electrical Characteristics  
Table 4. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
IDD  
VIn  
ID  
–0.3 to +5.8  
120  
V
mA  
V
Maximum current into VDD  
Digital input voltage  
–0.3 to VDD + 0.3  
Instantaneous maximum current  
±25  
±2  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
°C  
1
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages and use the largest of the two resistance values.  
2
3
All functional non-supply pins are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
IDD, the injection current may flow out of VDD and could result in an external power supply going  
out of regulation. Ensure that the external VDD load will shunt current greater than maximum  
injection current, this will be of greater risk when the MCU is not consuming power. For instance,  
If no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
2.4  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power  
dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and  
it is user-determined rather than being controlled by the MCU design. To take P into account in power calculations, determine  
I/O  
the difference between actual pin voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of  
SS  
DD  
unusually high pin current (heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
Table 5. Thermal Characteristics  
Symbol  
Rating  
Value  
Unit  
Operating temperature range  
(packaged)  
TA  
TL to TH  
–40 to +105  
°C  
Maximum junction temperature  
TJ  
125  
°C  
Thermal resistance  
Single-layer board  
80-pin LQFP  
θJA  
61  
71  
80  
°C/W  
64-pin LQFP  
48-pin LQFP  
Thermal resistance  
Four-layer board  
80-pin LQFP  
θJA  
48  
52  
56  
°C/W  
64-pin LQFP  
48-pin LQFP  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
T = T + (P × θ )  
JA  
Eqn. 1  
J
A
D
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
11  
Electrical Characteristics  
where:  
T = Ambient temperature, °C  
A
θ
= Package thermal resistance, junction-to-ambient, °C/W  
JA  
P = P + P  
D
int  
I/O  
P
P
= I × V , Watts — chip internal power  
DD DD  
= Power dissipation on input and output pins — user determined  
int  
I/O  
For most applications, P << P and can be neglected. An approximate relationship between P and T (if P is neglected)  
I/O  
int  
D
J
I/O  
is:  
P = K ÷ (T + 273 °C)  
Eqn. 2  
D
J
Solving Equation 1 and Equation 2 for K gives:  
K = P × (T + 273 °C) + θ × (P )  
2
Eqn. 3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
2.5  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits,  
normal handling precautions should be taken to avoid exposure to static discharge. Qualification tests are performed to ensure  
that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for automotive grade integrated circuits. During the  
device qualification, ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge  
device model (CDM).  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete  
DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot  
temperature, unless instructed otherwise in the device specification.  
Table 6. ESD and Latch-Up Test Conditions  
Model  
Description  
Symbol  
Value  
Unit  
Human Body Series resistance  
R1  
C
1500  
100  
3
Ω
pF  
V
Model  
Storage capacitance  
Number of pulses per pin  
Latch-up  
Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
MC9S08LG32 Series Data Sheet, Rev. 7  
12  
Freescale Semiconductor  
Electrical Characteristics  
Unit  
Table 7. ESD and Latch-Up Protection Characteristics  
No.  
Rating1  
Symbol  
Min  
Max  
1
2
3
Human body model (HBM)  
Charge device model (CDM)  
Latch-up current at TA = 85 °C  
VHBM  
VCDM  
ILAT  
2500  
750  
V
V
±100  
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
2.6  
DC Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
Table 8. DC Characteristics  
Num C  
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
1
2
— Operating Voltage  
2.7  
5.5  
V
V
P Output high voltage — Low Drive (PTxDSn = 0)  
VOH  
5 V, ILoad = –2 mA  
3 V, ILoad = –0.6 mA  
VDD – 0.8  
VDD – 0.8  
Output high voltage — High Drive (PTxDSn = 1) V  
5 V, ILoad = –10 mA  
3 V, ILoad = –3 mA  
VDD – 0.8  
VDD – 0.8  
3
P Output low voltage — Low Drive (PTxDSn = 0)  
VOL  
V
5 V, ILoad = 2 mA  
3 V, ILoad = 0.6 mA  
0.8  
0.8  
Output low voltage — High Drive (PTxDSn = 1)  
5 V, ILoad = 10 mA  
3 V, ILoad = 3 mA  
0.8  
0.8  
4
5
P Output high current — Max total IOH for all ports  
IOHT  
mA  
mA  
5 V  
3 V  
100  
60  
C Output high current — Max total IOL for all ports  
IOLT  
5 V  
3 V  
100  
60  
6
7
8
9
P Bandgap voltage reference  
VBG  
VIH  
VIL  
0.65 x VDD  
1.225  
V
V
P Input high voltage; all digital inputs  
P Input low voltage; all digital inputs  
P Input hysteresis; all digital inputs  
0.35 x VDD  
V
Vhys  
|IIn|  
0.06 x VDD  
1
mV  
μA  
10 P Input leakage current; input only pins2  
0.1  
VIn = VDD or VSS  
VIn = VDD or VSS  
11 P High impedence (off-state) leakage current  
|IOZ  
|
0.1  
1
μA  
12 P Internal pullup resistors3  
13 P Internal pulldown resistors4  
RPU  
RPD  
20  
20  
45  
45  
65  
65  
kΩ  
kΩ  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
13  
Electrical Characteristics  
Num C  
Table 8. DC Characteristics (continued)  
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
14 D DC injection  
current 5, 6, 7  
VIN < VSS, VIN  
VDD  
Single pin limit  
IIC  
2
mA  
mA  
Total MCU limit, includes sum of  
all stressed pins  
25  
>
15 C Input Capacitance, all non-supply pins  
16 C RAM retention voltage  
CIn  
2
8
pF  
V
VRAM  
VPOR  
tPOR  
2.0  
17 P POR rearm voltage  
0.9  
10  
1.4  
V
18 D POR rearm time  
μs  
V
19 P Low-voltage detection threshold — high range  
VLVD1  
VDD falling  
VDD rising  
3.9  
4.0  
4.0  
4.1  
4.1  
4.2  
20 P Low-voltage detection threshold — low range  
21 P Low-voltage warning threshold — high range 1  
22 P Low-voltage warning threshold — high range 0  
23 P Low-voltage warning threshold — low range 1  
24 P Low-voltage warning threshold — low range 0  
25 P Low-voltage inhibit reset/recover hysteresis  
VLVD0  
VLVW3  
VLVW2  
VLVW1  
VLVW0  
Vhys  
V
V
V
DD falling  
2.48  
2.54  
2.56  
2.62  
2.64  
2.70  
VDD rising  
VDD falling  
4.5  
4.6  
4.6  
4.7  
4.7  
4.8  
VDD rising  
V
VDD falling  
VDD rising  
4.2  
4.3  
4.3  
4.4  
4.4  
4.5  
V
VDD falling  
2.84  
2.90  
2.92  
2.98  
3.00  
3.06  
VDD rising  
V
VDD falling  
2.66  
2.72  
2.74  
2.80  
2.82  
2.88  
VDD rising  
mV  
5 V  
3 V  
100  
60  
1
2
3
4
5
6
Typical values are measured at 25 °C. Characterized, not tested  
Measured with VIn = VDD or VSS.  
Measured with VIn = VSS.  
Measured with VIn = VDD.  
All functional non-supply pins, except for PTC6 are internally clamped to VSS and VDD  
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
7
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If the positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Ensure that external VDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power. For instance, if no system clock is  
present, or if clock rate is very low (which would reduce overall power consumption).  
MC9S08LG32 Series Data Sheet, Rev. 7  
14  
Freescale Semiconductor  
Electrical Characteristics  
Typical VOL vs. IOL AT VDD = 5V  
Typical VOL vs. IOL AT VDD = 3V  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
IOL (mA)  
IOL (mA)  
Figure 5. Typical Low-side Drive (sink) characteristics – High Drive (PTxDSn = 1)  
Typical VOL vs. IOL AT VDD = 5V  
Typical VOL vs. IOL AT VDD = 3V  
0.90  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
Hot (105°C)  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
Room(25°C)  
Cold (-40°C)  
0
1
2
3
0
1
2
3
4
5
IOL (mA)  
IOL (mA)  
Figure 6. Typical Low-side Drive (sink) characteristics – Low Drive (PTxDSn = 0)  
Typical VDD - VOH vs. IOH AT VDD = 5V  
Typical VDD - VOH vs. IOH AT VDD=3V  
1.2  
0.8  
Hot (105°C)  
Hot (105°C)  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Room (25°C)  
Cold (-40°C)  
Room (25°C)  
Cold (-40°C)  
0.6  
0.4  
0.2  
0.0  
0
-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15  
0
-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13  
IOH (mA)  
IOH (mA)  
Figure 7. Typical High-side Drive (source) characteristics – High Drive (PTxDSn = 1)  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
15  
Electrical Characteristics  
Typical VDD - VOH vs. IOH AT VDD=3V  
Typical VDD - VOH vs. IOH AT VDD = 5V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
0
-1  
-2  
-3  
-4  
-5  
0
-1  
-2  
-3  
IOH (mA)  
IOH (mA)  
Figure 8. Typical High-side Drive (source) characteristics – Low Drive (PTxDSn = 0)  
MC9S08LG32 Series Data Sheet, Rev. 7  
16  
Freescale Semiconductor  
Electrical Characteristics  
2.7  
Supply Current Characteristics  
This section includes information about power supply current in various operating modes.  
Table 9. Supply Current Characteristics  
VDD  
(V)  
Bus  
Temp  
Typ1  
Num  
C
Parameter  
Run supply current  
Symbol  
Max  
Unit  
Freq  
(°C)  
1
C
C
C
C
P
P
C
C
T
T
T
T
T
T
T
T
T
T
T
T
P
P
T
T
C
C
P
P
C
C
P
P
RIDD  
20 MHz  
1 MHz  
20 MHz  
1 MHz  
20 MHz  
1 MHz  
20 MHz  
1 MHz  
20 MHz  
1 MHz  
20 MHz  
1 MHz  
n/a  
3
5
3
5
3
5
16.38  
27.85  
28.05  
2.84  
mA  
mA  
mA  
mA  
mA  
mA  
–40 °C to 85 °C  
–40 °C to105 °C  
–40 °C to 85 °C  
–40 °C to105 °C  
–40 °C to 85 °C  
–40 °C to105 °C  
–40 °C to 85 °C  
–40 °C to105 °C  
–40 °C to 85 °C  
–40 °C to105 °C  
–40 °C to 85 °C  
–40 °C to105 °C  
–40 °C to 85 °C  
–40 °C to105 °C  
–40 °C to 85 °C  
–40 °C to105 °C  
–40 °C to 85 °C  
–40 °C to105 °C  
–40 °C to 85 °C  
–40 °C to105 °C  
–40 °C to 85 °C  
–40 °C to105 °C  
–40 °C to 85 °C  
–40 °C to105 °C  
–40 °C to 85 °C  
–40 °C to105 °C  
–40 °C to 85 °C  
–40 °C to105 °C  
–40 °C to 85 °C  
–40 °C to105 °C  
–40 °C to 85 °C  
–40 °C to105 °C  
FEI mode, all modules on  
1.67  
16.55  
1.77  
11.9  
1.16  
12.68  
1.4  
2.87  
28.14  
28.35  
3.01  
3.05  
2
Run supply current  
FEI mode, all modules off  
RIDD  
20.25  
21.72  
1.95  
1.98  
21.56  
23.12  
2.39  
2.41  
3
Wait mode supply current  
FEI mode, all modules off  
WIDD  
7.9  
13.42  
13.59  
1.49  
0.88  
8.13  
1.12  
1.1  
1.51  
13.81  
13.98  
1.91  
1.94  
4
5
Stop2 mode supply current  
S2IDD  
3
5
3
5
16.0  
μA  
μA  
μA  
μA  
39.0  
1.2  
18.7  
46.1  
Stop3 mode supply current  
No clocks active  
S3IDD  
n/a  
1.2  
22.4  
56.2  
1.32  
25.5  
63.9  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
17  
Electrical Characteristics  
Table 9. Supply Current Characteristics (continued)  
VDD  
(V)  
Bus  
Temp  
Typ1  
Num  
C
Parameter  
Stop2 adders: RTC using LPO  
Symbol  
Max  
Unit  
Freq  
(°C)  
6
T
n/a  
3
5
3
5
210  
nA  
–40 °C to 105 °C  
RTC using low  
power crystal  
oscillator  
4.25  
μA  
LCD2 with rbias  
(Low Gain)  
1.23  
184  
LCD2 with rbias  
(High Gain)  
LCD2 with Cpump  
4.053  
210  
–40 °C to 85 °C  
–40 °C to 105 °C  
RTC using LPO  
nA  
RTC using low  
power crystal  
oscillator  
4.22  
μA  
LCD2 with rbias  
(Low Gain)  
1.53  
324  
LCD2 with rbias  
(High Gain)  
LCD2 with Cpump  
7.123  
210  
–40 °C to 85 °C  
–40 °C to 105 °C  
7
T
Stop3 adders:  
RTC using LPO  
n/a  
nA  
RTC using low  
power crystal  
oscillator  
4.75  
μA  
LCD2 with rbias  
(Low Gain)  
1.23  
184  
LCD2 with rbias  
(High Gain)  
LCD2 with Cpump  
4.353  
230  
–40 °C to 85 °C  
–40 °C to 105 °C  
RTC using LPO  
nA  
RTC using low  
power crystal  
oscillator  
4.74  
μA  
LCD2 with rbias  
(Low Gain)  
1.53  
324  
LCD2 with rbias  
(High Gain)  
LCD2 with Cpump  
7.493  
–40 °C to 85 °C  
MC9S08LG32 Series Data Sheet, Rev. 7  
18  
Freescale Semiconductor  
Electrical Characteristics  
Table 9. Supply Current Characteristics (continued)  
VDD  
(V)  
Bus  
Temp  
Typ1  
Num  
C
Parameter  
Stop3 adders: EREFSTEN = 1  
Symbol  
Max  
Unit  
Freq  
(°C)  
8
T
n/a  
3
4.58  
71.7  
μA  
–40 °C to 105 °C  
IREFSTEN = 1  
LVD  
94.35  
4.61  
EREFSTEN = 1  
IREFSTEN = 1  
LVD  
5
μA  
71.69  
107.34  
1
2
3
4
Typical values are measured at 25 °C. Characterized, not tested.  
LCD configured for Charge Pump Enabled VLL3 connected to VDD..  
This does not include current required for 32 kHz oscillator.  
This is the maximum current when all LCD inputs/outputs are used.  
IDD  
VDD  
Figure 9. Typical Run I for FBE Mode at 1 MHz  
DD  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
19  
Electrical Characteristics  
IDD  
VDD  
Figure 10. Typical Run I for FBE Mode at 20 MHz  
DD  
IDD  
VDD  
Figure 11. Typical Run I for FEE Mode at 1 MHz  
DD  
MC9S08LG32 Series Data Sheet, Rev. 7  
20  
Freescale Semiconductor  
Electrical Characteristics  
IDD  
VDD  
Figure 12. Typical Run I for FEE Mode at 20 MHz  
DD  
IDD  
VDD  
Figure 13. Typical Stop2 I  
DD  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
21  
Electrical Characteristics  
IDD  
VDD  
Figure 14. Typical Stop3 I  
DD  
2.8  
External Oscillator (XOSC) Characteristics  
Table 10. Oscillator Electrical Specifications (Temperature Range = –40 °C to 105 °C Ambient)  
Num  
C
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
1
D
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
• Low range (RANGE = 0)  
flo  
fhi  
fhi-hgo  
fhi-lp  
32  
1
1
38.4  
5
16  
8
kHz  
MHz  
MHz  
MHz  
• High range (RANGE = 1) FEE or FBE mode2  
• High range (RANGE = 1, HGO = 1) BLPE mode  
• High range (RANGE = 1, HGO = 0) BLPE mode  
1
2
D
Load capacitors  
C1  
C2  
See crystal or resonator  
manufacturer’s recommendation.  
MC9S08LG32 Series Data Sheet, Rev. 7  
22  
Freescale Semiconductor  
Electrical Characteristics  
Table 10. Oscillator Electrical Specifications (Temperature Range = –40 °C to 105 °C Ambient) (continued)  
Num  
C
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
3
D
Feedback resistor  
RF  
MΩ  
• Low range (32 kHz to 100 kHz)  
• High range (1 MHz to 16 MHz)  
10  
1
4
5
D
D
Series resistor  
• Low range, low gain (RANGE = 0, HGO = 0)  
• Low range, high gain (RANGE = 0, HGO = 1)  
RS  
RS  
kΩ  
kΩ  
0
100  
Series resistor  
• High range, low gain (RANGE = 1, HGO = 0)  
• High range, high gain (RANGE = 1, HGO = 1)  
8 MHz  
4 MHz  
1 MHz  
0
0
0
0
10  
20  
6
7
T
Crystal start-up time3, 4  
• Low range (HGO = 0)  
• Low range (HGO = 1)  
• High range (HG0 = 0)5  
• High range (HG0 = 1)5  
ms  
tCSTL-LP  
tCSTL-HGO  
tCSTH-LP  
500  
3570  
4
tCSTH-HGO  
4
D
Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)  
fextal  
MHz  
• FEE or FBE mode2  
• BLPE mode  
0.03125  
0
5
40  
1
2
Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.  
When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz  
to 39.0625 kHz.  
3
4
5
This parameter is characterized and not tested on each device.  
Proper PC board layout procedures must be followed to achieve specifications.  
4 MHz crystal  
XOSC  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Figure 15. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
23  
Electrical Characteristics  
XOSC  
EXTAL  
XTAL  
Crystal or Resonator  
Figure 16. Typical Crystal or Resonator Circuit: Low Range/Low Power  
2.9  
Internal Clock Source (ICS) Characteristics  
Table 11. ICS Frequency Specifications (Temperature Range = –40 °C to 105 °C Ambient)  
Num  
C
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
1
P
Average internal reference frequency — factory trimmed  
fint_ft  
32.768  
kHz  
at VDD = 5.0 V and temperature = 25 °C  
2
3
4
C
C
P
P
P
P
Average internal reference frequency — user trimmed  
Internal reference start-up time  
fint_t  
tIRST  
fdco_t  
31.25  
60  
39.0625 kHz  
100  
20  
40  
μs  
DCO output frequency range — Low range (DRS = 00)  
16  
MHz  
trimmed2  
Mid range (DRS = 01)  
32  
5
DCO output frequency2  
Reference = 32768 Hz  
and  
Low range (DRS = 00) fdco_DMX32  
Mid range (DRS = 01)  
19.92  
39.85  
MHz  
DMX32 = 1  
6
7
8
9
C
C
C
C
Resolution of trimmed DCO output frequency at fixed  
voltage and temperature (using FTRIM)3  
Δfdco_res_t  
Δfdco_res_t  
Δfdco_t  
±0.1  
±0.2  
±0.2  
±0.4  
±2  
%fdco  
%fdco  
%fdco  
%fdco  
Resolution of trimmed DCO output frequency at fixed  
voltage and temperature (not using FTRIM)3  
Total deviation of trimmed DCO output frequency over  
voltage and temperature3  
–1.0  
to +0.5  
Total deviation of trimmed DCO output frequency over  
Δfdco_t  
±0.5  
±1  
fixed voltage and temperature range of 0 °C to 70 °C3  
10  
11  
C
C
FLL acquisition time3, 4  
tAcquire  
CJitter  
1
mS  
Long term jitter of DCO output clock (averaged over 2 ms  
interval)5  
0.02  
0.2  
%fdco  
1
2
3
4
Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.  
The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.  
This parameter is characterized and not tested on each device.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing  
from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference,  
this specification assumes it is already running.  
5
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in the crystal oscillator frequency increase the CJitter percentage  
for a given interval.  
MC9S08LG32 Series Data Sheet, Rev. 7  
24  
Freescale Semiconductor  
Electrical Characteristics  
65.00  
60.00  
55.00  
50.00  
45.00  
40.00  
35.00  
30.00  
25.00  
20.00  
ICS Trim values  
-40°C  
25°C  
110°C  
Figure 17. Internal Oscillator Deviation from Trimmed Frequency  
2.10 ADC Characteristics  
Table 12. 12-bit ADC Operating Conditions  
Characteristic  
Conditions  
Absolute  
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
Supply voltage  
VDDAD  
2.7  
0
5.5  
V
Delta to VDD  
ΔVDDAD  
–100  
+100  
mV  
2
(VDD – VDDAD  
)
Ground voltage Delta to VSS  
(VSS – VSSAD  
ΔVSSAD  
VREFH  
VREFL  
–100  
0
+100  
mV  
V
2
)
Ref Voltage  
High  
VREFH shorted to  
VDDAD  
Ref Voltage  
Low  
V
VREFLshorted to  
VSSAD  
Input Voltage  
VADIN  
CADIN  
VREFL  
VREFH  
5.5  
V
Input  
4.5  
pF  
Capacitance  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
25  
Electrical Characteristics  
Characteristic  
Table 12. 12-bit ADC Operating Conditions (continued)  
Conditions  
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
Input  
RADIN  
5
7
kΩ  
Resistance  
Analog Source  
Resistance  
12-bit mode  
RAS  
kΩ  
External to MCU  
f
ADCK > 4MHz  
2
5
fADCK < 4MHz  
10-bit mode  
fADCK > 4MHz  
fADCK < 4MHz  
5
10  
8-bit mode (all valid fADCK  
High Speed (ADLPC = 0)  
Low Power (ADLPC = 1)  
)
10  
8.0  
4.0  
ADC  
Conversion  
Clock Freq.  
fADCK  
0.4  
0.4  
MHz  
1
2
Typical values assume VDDAD = 5.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
DC potential difference.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
Z
CIRCUIT  
ADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
Z
AS  
leakage  
due to  
ADC SAR  
ENGINE  
input  
protection  
R
R
AS  
ADIN  
+
V
ADIN  
C
AS  
V
+
AS  
R
R
R
ADIN  
ADIN  
ADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
C
ADIN  
Figure 18. ADC Input Impedance Equivalency Diagram  
MC9S08LG32 Series Data Sheet, Rev. 7  
26  
Freescale Semiconductor  
Electrical Characteristics  
Table 13. 12-bit ADC Characteristics (V  
= V  
, V  
= V  
)
SSAD  
REFH  
DDAD REFL  
Num  
C
Characteristic  
Conditions  
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
1
T
Supply Current  
ADLPC = 1  
ADLSMP = 1  
ADCO = 1  
IDDAD  
IDDAD  
IDDAD  
IDDAD  
195  
1
μA  
2
3
4
T
T
P
Supply Current  
ADLPC = 1  
ADLSMP = 0  
ADCO = 1  
347  
407  
μA  
μA  
Supply Current  
ADLPC = 0  
ADLSMP = 1  
ADCO = 1  
Supply Current  
ADLPC = 0  
ADLSMP = 0  
ADCO = 1  
0.755  
mA  
5
6
P
Supply Current Stop, Reset, Module Off  
IDDAD  
0.011  
3.3  
2
1
5
μA  
ADC  
Asynchronous  
Clock Source  
High Speed (ADLPC=0)  
Low Power (ADLPC=1)  
fADACK  
2
MHz  
tADACK =  
1/fADACK  
1.25  
3.3  
7
8
C
C
Conversion  
Time(Including  
sample time)  
Short sample (ADLSMP=0)  
Long sample (ADLSMP=1)  
tADC  
20  
40  
ADCK  
cycles  
See ADC  
chapter in the  
LG32  
Reference  
Manual for  
conversion  
time variances  
Sample Time  
Short sample (ADLSMP=0)  
Long sample (ADLSMP=1)  
tADS  
3.5  
ADCK  
cycles  
23.5  
9
T
P
T
T
P
T
T
P
T
T
P
T
Total  
Unadjusted  
Error  
12-bit mode  
10-bit mode  
8-bit mode  
12-bit mode  
10-bit mode3  
8-bit mode3  
12-bit mode  
10-bit mode  
8-bit mode  
12-bit mode  
10-bit mode  
8-bit mode  
ETUE  
DNL  
INL  
±3.0  
±1  
±2.5  
±1  
LSB2  
LSB2  
LSB2  
LSB2  
Includes  
quantization  
±0.5  
±1.75  
±0.5  
±0.3  
±1.5  
±0.5  
±0.3  
±1.5  
±0.5  
±0.5  
10  
11  
12  
Differential  
Non-Linearity  
±1.0  
±0.5  
Integral  
Non-Linearity  
±1  
±0.5  
Zero-Scale  
Error  
EZS  
VADIN = VSSAD  
±1.5  
±0.5  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
27  
Electrical Characteristics  
Table 13. 12-bit ADC Characteristics (V  
= V  
, V  
= V  
) (continued)  
SSAD  
REFH  
DDAD REFL  
Num  
C
Characteristic  
Conditions  
12-bit mode  
Symb  
EFS  
Min  
Typ1  
Max  
Unit  
Comment  
13  
T
P
T
D
Full-Scale  
Error  
±1  
±1  
LSB2  
VADIN = VDDAD  
10-bit mode  
8-bit mode  
12-bit mode  
10-bit mode  
8-bit mode  
12-bit mode  
10-bit mode  
8-bit mode  
–40 °C to 25 °C  
25 °C to 125°C  
25 °C  
±0.5  
±0.5  
±0.5  
14  
15  
Quantization  
Error  
EQ  
–1 to 0  
LSB2  
LSB2  
±0.5  
±0.5  
D
Input Leakage  
Error  
EIL  
±1  
Padleakage4 *  
RAS  
±0.2  
±0.1  
1.646  
1.769  
701.2  
±2.5  
±1  
16  
17  
C
C
Temp Sensor  
Slope  
m
mV/°C  
Temp Sensor  
Voltage  
VTEMP25  
mV  
1
Typical values assume VDDAD = 5.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only  
and are not tested in production.  
2
3
4
1 LSB = (VREFH – VREFL)/2N  
Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes  
Based on input pad leakage current. Refer to pad electricals.  
MC9S08LG32 Series Data Sheet, Rev. 7  
28  
Freescale Semiconductor  
Electrical Characteristics  
2.11 AC Characteristics  
This section describes timing characteristics for each peripheral system.  
2.11.1 Control Timing  
Table 14. Control Timing  
Num  
C
Rating  
Symbol  
Min  
Typ1  
Max  
Unit  
1
2
3
4
5
D
D
D
D
D
Bus frequency (tcyc = 1/fBus  
)
Internal low power oscillator period  
External reset pulse width2  
Reset low drive  
fBus  
tLPO  
dc  
700  
20  
1300  
MHz  
μs  
textrst  
trstdrv  
tMSSU  
100  
ns  
66 x tcyc  
500  
ns  
BKGD/MS setup time after issuing background debug  
force reset to enter user or BDM modes  
ns  
6
7
D
D
BKGD/MS hold time after issuing background debug  
force reset to enter user or BDM modes 3  
tMSH  
100  
μs  
IRQ pulse width  
ns  
Asynchronous path2  
Synchronous path4  
tILIH  
tIHIL  
100  
1.5 x tcyc  
8
9
D
C
Keyboard interrupt pulse width  
Asynchronous path2  
ns  
ns  
tILIH  
tIHIL  
100  
1.5 x tcyc  
Synchronous path4  
Port rise and fall time — (load = 50 pF)5, 6  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise  
tFall  
3
30  
1
2
3
Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset pin request.  
To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of tMSH after VDD  
rises above VLVD  
.
4
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.  
5
6
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40 °C to 105 °C.  
Except for LCD pins in Open Drain mode.  
textrst  
RESET PIN  
Figure 19. Reset Timing  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
29  
Electrical Characteristics  
tIHIL  
IRQ/KBIPx  
IRQ/KBIPx  
tILIH  
Figure 20. IRQ/KBIPx Timing  
2.11.2 TPM Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the  
optional external source to the timer counter. These synchronizers operate from the current bus rate clock.  
Table 15. TPM Input Timing  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
D
D
D
D
D
External clock frequency  
External clock period  
fTCLK  
tTCLK  
tclkh  
0
fBus/4  
Hz  
tcyc  
tcyc  
tcyc  
tcyc  
4
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
tclkl  
tICPW  
tTCLK  
tclkh  
TPMCLK  
tclkl  
Figure 21. Timer External Clock  
t
ICPW  
TPMCHn  
TPMCHn  
t
ICPW  
Figure 22. Timer Input Capture Pulse  
MC9S08LG32 Series Data Sheet, Rev. 7  
30  
Freescale Semiconductor  
Electrical Characteristics  
2.11.3 SPI Timing  
Table 16 and Figure 23 through Figure 26 describe the timing requirements for the SPI system.  
Table 16. SPI Timing  
No.  
C
Function  
Operating frequency  
Symbol  
Min  
Max  
Unit  
D
fop  
Hz  
Master  
Slave  
fBus/2048  
0
fBus/2  
fBus/4  
D
D
D
D
D
D
SPSCK period  
Master  
Slave  
tSPSCK  
tLead  
tLag  
1
2
3
4
5
6
2
4
2048  
tcyc  
tcyc  
Enable lead time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Enable lag time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Clock (SPSCK) high or low time  
Master  
Slave  
tWSPSCK  
tcyc – 30  
tcyc – 30  
1024 tcyc  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU  
15  
15  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tHI  
0
25  
ns  
ns  
D
D
D
Slave access time  
ta  
tdis  
tv  
1
tcyc  
7
8
9
Slave MISO disable time  
1
tcyc  
Data valid (after SPSCK edge)  
Master  
Slave  
25  
25  
ns  
ns  
D
D
D
Data hold time (outputs)  
Master  
Slave  
tHO  
10  
11  
12  
0
0
ns  
ns  
Rise time  
Input  
Output  
tRI  
tRO  
tcyc – 25  
25  
ns  
ns  
Fall time  
Input  
Output  
tFI  
tFO  
tcyc – 25  
25  
ns  
ns  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
31  
Electrical Characteristics  
SS1  
(OUTPUT)  
1
2
11  
12  
3
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MS BIN2  
LSB IN  
BIT 6 . . . 1  
9
9
10  
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 23. SPI Master Timing (CPHA = 0)  
SS1  
(OUTPUT)  
1
2
11  
12  
3
12  
11  
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN2  
BIT 6 . . . 1  
10  
BIT 6 . . . 1  
LSB IN  
9
MOSI  
(OUTPUT)  
MASTER MSB OUT2  
PORT DATA  
MASTER LSB OUT  
PORT DATA  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 24. SPI Master Timing (CPHA =1)  
MC9S08LG32 Series Data Sheet, Rev. 7  
32  
Freescale Semiconductor  
Electrical Characteristics  
SS  
(INPUT)  
11  
12  
3
1
12  
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
2
4
4
SPSCK  
(CPOL = 1)  
(INPUT)  
8
7
10  
9
10  
MISO  
(OUTPUT)  
SEE  
NOTE 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
SLAVE  
6
5
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
NOTE:  
1. Not defined but normally MSB of character just received.  
Figure 25. SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
1
3
12  
2
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
4
4
11  
12  
SPSCK  
(CPOL = 1)  
(INPUT)  
9
10  
c
MISO  
(OUTPUT)  
SEE  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
SLAVE MSB OUT  
NOTE 1  
o
6
7
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
NOTE:  
1. Not defined but normally LSB of character just received  
Figure 26. SPI Slave Timing (CPHA = 1)  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
33  
Electrical Characteristics  
2.12 LCD Specifications  
Table 17. LCD Electricals, 3 V Glass  
C
Characteristic  
VLL3 Supply Voltage  
Symbol  
Min  
Typ  
Max  
Units  
D
D
D
D
D
VLL3  
fFrame  
CLCD  
2.7  
28  
30  
5.5  
64  
V
LCD Frame Frequency  
Hz  
pF  
LCD Charge Pump Capacitance  
LCD Bypass Capacitance  
LCD Glass Capacitance  
100  
100  
2000  
100  
100  
8000  
CBYLCD  
Cglass  
2.13 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the flash memory.  
Program and erase operations do not require any special power sources other than the normal V supply. For more detailed  
DD  
information about program/erase operations, see the Memory section.  
Table 18. Flash Characteristics  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Supply voltage for program/erase  
–40 °C to 85 °C  
D
Vprog/erase  
VRead  
fFCLK  
2.7  
2.7  
150  
5
5.5  
5.5  
V
D
D
D
C
C
C
C
D
D
Supply voltage for read operation  
Internal FCLK frequency1  
Internal FCLK period (1/FCLK)  
Byte program time (random location)2  
Byte program time (burst mode)2  
Page erase time2  
Mass erase time2  
Byte program current3  
Page erase current3  
V
200  
6.67  
kHz  
μs  
tFcyc  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
mA  
mA  
tBurst  
4
4000  
20,000  
4
tPage  
tMass  
RIDDBP  
RIDDPE  
6
Program/erase endurance4  
TL to TH = –40 °C to + 85 °C  
T = 25 °C  
C
10,000  
15  
100,000  
cycles  
years  
C
Data retention5  
tD_ret  
100  
1
2
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied  
for calculating approximate time to program and erase.  
3
4
The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures  
with VDD = 5.0 V, bus frequency = 4.0 MHz.  
Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how  
Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile  
Memory.  
5
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and  
de-rated to 25 °C using the Arrhenius equation. For additional information on how Freescale defines typical data retention,  
please refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.  
MC9S08LG32 Series Data Sheet, Rev. 7  
34  
Freescale Semiconductor  
Electrical Characteristics  
2.14 EMC Performance  
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board  
design and layout, circuit topology choices, location and characteristics of external components as well as MCU software  
operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such  
as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC  
performance.  
2.14.1 Radiated Emissions  
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM cell method in accordance  
with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a  
custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller  
are measured in a TEM cell in two package orientations (North and East).  
The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported  
emissions levels.  
Table 19. Radiated Emissions, Electric Field  
Level1  
Parameter  
Symbol  
Conditions  
Frequency  
fOSC/fBUS  
Unit  
(Max)  
Radiated emissions,  
electric field  
VRE_TEM  
VDD = 5.5  
TA = +25 oC  
Package type =  
80 LQFP  
0.15 – 50 MHz  
50 – 150 MHz  
150 – 500 MHz  
500 – 1000 MHz  
IEC Level  
4 MHz crystal  
16 MHz bus  
10  
14  
8
dBμV  
5
L
SAE Level  
2
1
Data based on qualification test results.  
2.14.2 Conducted Transient Susceptibility  
Microcontroller transient conducted susceptibility is measured in accordance with an internal Freescale test method. The  
measurement is performed with the microcontroller installed on a custom EMC evaluation board and running specialized EMC  
test software designed in compliance with the test method. The conducted susceptibility is determined by injecting the transient  
susceptibility signal on each pin of the microcontroller. The transient waveform and injection methodology is based on IEC  
61000-4-4 (EFT/B). The transient voltage required to cause performance degradation on any pin in the tested configuration is  
greater than or equal to the reported levels unless otherwise indicated by footnotes below Table 20.  
Table 20. Conducted Susceptibility, EFT/B  
Amplitude1  
Parameter  
Symbol  
Conditions  
fOSC/fBUS Result  
Unit  
(Min)  
Conducted susceptibility, electrical VCS_EFT  
fast transient/burst (EFT/B)  
VDD = 5.5  
TA = +25 oC  
Package type = 80-pin LQFP  
4 kHz crystal  
4 MHz bus  
A
B
C
D
>4.02  
>4.03  
>4.04  
>4.0  
kV  
1
Data based on qualification test results. Not tested in production.  
Exceptions as covered in footnotes 3 and 4.  
2
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
35  
Electrical Characteristics  
3
Except pins PHT1, PTH2, PTH3, PTH4, PTH5. See figures below for values.  
4
Except pins PTF3, PTH5, PTH4, PHT0, Reset, and BKGD. See figures below for values.  
Individual performance of each pin is shown in Figure 27, Figure 28, Figure 29, and Figure 30.  
Figure 27. 4 MHz, Positive Polarity Pins 1 – 41  
Note:  
RESET retested with 0.1 μF capacitor from pin to ground is Class A compliant as shown by 48*.  
Figure 28. 4 MHz, Positive Polarity Pins 42 – 80  
MC9S08LG32 Series Data Sheet, Rev. 7  
36  
Freescale Semiconductor  
Electrical Characteristics  
Figure 29. 4 MHz, Negative Polarity Pins 1 – 41  
Note:  
RESET retested with 0.1 μF capacitor from pin to ground is Class A compliant as shown by 48*.  
Figure 30. 4 MHz, Negative Polarity Pins 42 – 80  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
37  
Ordering Information  
The susceptibility performance classification is described in Table 21.  
Table 21. Susceptibility Performance Classification  
Result  
Performance Criteria  
A
B
No failure  
The MCU performs as designed during and after exposure.  
Self-recovering The MCU does not perform as designed during exposure. The MCU returns  
failure  
automatically to normal operation after exposure is removed.  
C
D
E
Soft failure  
The MCU does not perform as designed during exposure. The MCU does not return to  
normal operation until exposure is removed and the RESET pin is asserted.  
Hard failure  
Damage  
The MCU does not perform as designed during exposure. The MCU does not return to  
normal operation until exposure is removed and the power to the MCU is cycled.  
The MCU does not perform as designed during and after exposure. The MCU cannot  
be returned to proper operation due to physical damage or other permanent  
performance degradation.  
3
Ordering Information  
This section contains ordering information for MC9S08LG32 and MC9S08LG16 devices.  
Table 22. Device Numbering System  
Memory  
LCD Mode  
Operation  
Device Number1  
Temperature Range (°C)  
Available Packages2  
FLASH  
RAM  
Auto  
S9S08LG32J0CLK  
S9S08LG32J0CLH  
S9S08LG32J0CLF  
S9S08LG32J0VLK  
S9S08LG32J0VLH  
S9S08LG32J0VLF  
S9S08LG16J0VLH  
S9S08LG16J0VLF  
32 KB  
1984  
-40 °C to +85 °C  
Charge Pump  
Register Bias  
80-pin LQFP  
64-pin LQFP  
48-pin LQFP  
80-pin LQFP  
64-pin LQFP  
48-pin LQFP  
64-pin LQFP  
48-pin LQFP  
32 KB  
18 KB  
1984  
1984  
-40 °C to +105 °C  
IMM  
MC9S08LG32CLK  
MC9S08LG32CLH  
MC9S08LG32CLF  
MC9S08LG16CLH  
MC9S08LG16CLF  
32 KB  
18 KB  
1984  
1984  
-40 °C to + 85 °C  
Charge Pump  
80-pin LQFP  
64-pin LQFP  
48-pin LQFP  
64-pin LQFP  
48-pin LQFP  
1
2
See the MC9S08LG32 Reference Manual (document MC9S08LG32RM), for a complete description of modules included on  
each device.  
See Table 23 for package information.  
MC9S08LG32 Series Data Sheet, Rev. 7  
38  
Freescale Semiconductor  
Package Information  
3.1  
Device Numbering System  
Example of the device numbering system:  
32 J0  
S
9 S08 LG  
X
XX  
Package designator (see Table 23)  
Temperature range  
(C = –40 °C to 85 °C)  
(V = –40 °C to 105 °C)  
Maskset Identifier Suffix  
(First digit usually references wafer fab  
Second digit usually differentiates mask rev)  
Status/Partnumber Type  
(S = Maskset specific partnumber)  
Memory  
(9 = FLASH-based)  
Core  
Family  
Approximate Flash size in KB  
Figure 31. Device Number Example for Auto Parts  
32  
C
XX  
9
MC S08 LG  
Status  
(MC = Fully Qualified)  
Package designator (see Table 23)  
Temperature range  
(C = –40 °C to 85 °C)  
Memory  
(9 = FLASH-based)  
Core  
Approximate Flash size in KB  
Family  
Figure 32. Device Number Example for IMM Parts  
4
Package Information  
Table 23. Package Descriptions  
Pin Count  
Package Type  
Abbreviation  
Designator  
Case No.  
Document No.  
80  
64  
48  
Low Quad Flat Package  
Low Quad Flat Package  
Low Quad Flat Package  
LQFP  
LQFP  
LQFP  
LK  
LH  
LF  
917A  
840F  
932  
98ASS23237W  
98ASS23234W  
98ASH00962A  
4.1  
Mechanical Drawings  
The following pages are mechanical drawings for the packages described in Table 23. For the latest  
available drawings please visit our web site (http://www.freescale.com) and enter the package’s document  
number into the keyword search box.  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
39  
Package Information  
4.1.1  
80-pin LQFP  
MC9S08LG32 Series Data Sheet, Rev. 7  
40  
Freescale Semiconductor  
Package Information  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
41  
Package Information  
Figure 33. 80-pin LQFP Package Drawing (Case 917A, Doc #98ASS23237W)  
MC9S08LG32 Series Data Sheet, Rev. 7  
42  
Freescale Semiconductor  
Package Information  
4.1.2  
64-pin LQFP  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
43  
Package Information  
MC9S08LG32 Series Data Sheet, Rev. 7  
44  
Freescale Semiconductor  
Package Information  
Figure 34. 64-pin LQFP Package Drawing (Case 840F, Doc #98ASS23234W)  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
45  
Package Information  
4.1.3  
48-pin LQFP  
MC9S08LG32 Series Data Sheet, Rev. 7  
46  
Freescale Semiconductor  
Package Information  
Figure 35. 48-pin LQFP Package Drawing (Case 932, Doc #98ASH00962A)  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
47  
Revision History  
5
Revision History  
To provide the most up-to-date information, the revision of our documents on the World Wide Web are the most current. Your  
printed copy may be an earlier revision. To verify you have the latest information available, refer to:  
http://www.freescale.com  
The following revision history table summarizes changes contained in this document.  
Table 24. Revision History  
Revision  
Date  
Description of Changes  
1
2
3
4
5
6
7
8/2008  
9/2008  
11/2008  
2/2009  
4/2009  
4/2009  
8/2009  
First Initial release.  
Second Initial Release.  
Alpha Customer Release.  
Launch Release.  
Added EMC Radiated Emission and Transient Susceptibility data in Table 19 and Table 20.  
Updated EMC performance data.  
Updated auto part numbers, changed TCLK, T0CH0, T0CH1, T1CH0, T1CH1, T1CH2, T1CH3,  
T1CH3, T1CH4, and T1CH5 to TPMCLK, TPM0CH0, TPM0CH1,TPM1CH0, TPM1CH1,  
TPM1CH2, TPM1CH3, TPM1CH4, and TPM1CH5, and changed the maximum LCD frame  
frequency to 64 Hz.  
MC9S08LG32 Series Data Sheet, Rev. 7  
48  
Freescale Semiconductor  
THIS PAGE INTENTIONALLY BLANK  
MC9S08LG32 Series Data Sheet, Rev. 7  
Freescale Semiconductor  
49  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
© Freescale Semiconductor, Inc. 2009. All rights reserved.  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MC9S08LG32  
Rev. 7  
8/2009  
This datasheet has been downloaded from:  
www.EEworld.com.cn  
Free Download  
Daily Updated Database  
100% Free Datasheet Search Site  
100% Free IC Replacement Search Site  
Convenient Electronic Dictionary  
Fast Search System  
www.EEworld.com.cn  
All Datasheets Cannot Be Modified Without Permission  
Copyright © Each Manufacturing Company  

相关型号:

MC9S08LG32CLF

8-bit HCS08 Central Processor Unit (CPU)
FREESCALE

MC9S08LG32CLH

8-bit HCS08 Central Processor Unit (CPU)
FREESCALE

MC9S08LG32CLK

8-bit HCS08 Central Processor Unit (CPU)
FREESCALE

MC9S08LG32_09

8-bit HCS08 Central Processor Unit (CPU)
FREESCALE

MC9S08LH36

Advanced Information
FREESCALE

MC9S08LH36CLH

Advanced Information
FREESCALE

MC9S08LH36CLK

Advanced Information
FREESCALE

MC9S08LH64

Advanced Information
FREESCALE

MC9S08LH64CLH

Advanced Information
FREESCALE

MC9S08LH64CLK

Advanced Information
FREESCALE

MC9S08LL16

MC9S08LL16 Series
FREESCALE

MC9S08LL16CGT

MC9S08LL16 Series
FREESCALE