DSP56855BU120 [FREESCALE]

16-bit Digital Signal Controllers; 16位数字信号控制器
DSP56855BU120
型号: DSP56855BU120
厂家: Freescale    Freescale
描述:

16-bit Digital Signal Controllers
16位数字信号控制器

外围集成电路 控制器 时钟
文件: 总52页 (文件大小:851K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
56855  
Data Sheet  
Technical Data  
56800E  
16-bit Digital Signal Controllers  
DSP56855  
Rev. 6  
01/2007  
freescale.com  
56855 General Description  
• 120 MIPS at 120MHz  
• Two (2) Serial Communication Interfaces (SCI)  
• 24K x 16-bit Program SRAM  
• 24K x 16-bit Data SRAM  
• 1K x 16-bit Boot ROM  
• General Purpose 16-bit Quad Timer with 1 external pin  
• JTAG/Enhanced On-Chip Emulation (OnCE™) for  
unobtrusive, real-time debugging  
• Computer Operating Properly (COP)/Watchdog Timer  
• Time-of-Day (TOD)  
• Access up to 2M words of program memory or 8M  
words of data memory  
• Chip Select Logic for glueless interface to ROM and  
SRAM  
• 100 LQFP package  
• Up to 18 GPIO  
• Six (6) independent channels of DMA  
• Enhanced Synchronous Serial Interface (ESSI)  
V
V
4
V
V
SSA  
V
V
SSIO  
SS  
DDA  
DDIO  
DD  
6
10  
10  
4
JTAG/  
Enhanced  
OnCE  
16-Bit  
DSP56800E Core  
Program Controller  
Address  
Data ALU  
Bit  
and  
Generation Unit  
16 x 16 + 36 36-Bit MAC  
Three 16-bit Input Registers  
Manipulation  
Unit  
Hardware Looping Unit  
Four 36-bit Accumulators  
PAB  
PDB  
CDBR  
CDBW  
Memory  
XDB2  
XAB1  
XAB2  
Program Memory  
24,576 x 16 SRAM  
System  
Bus  
Control  
DMA  
6 channel  
Boot ROM  
1024 x 16 ROM  
PAB  
PDB  
Data Memory  
24,576 x 16 SRAM  
CDBR  
CDBW  
Core CLK  
IPBus Bridge (IPBB)  
Decoding  
Peripherals  
CLKO  
POR  
IPBus CLK  
3
MODEA-C or  
(GPIOH0-H2)  
System  
Integration  
Module  
COP/TOD CLK  
RSTO  
External Address  
Bus Switch  
A0-20 [20:0]  
RESET  
External Data  
Bus Switch  
External Bus  
Interface Unit  
D0-D15 [15:0]  
Quad  
Timer  
or  
Clock  
Generator  
EXTAL  
XTAL  
ESSI0  
or  
GPIOC  
2 SCI  
or  
GPIOE  
Interrupt  
Controller  
COP/  
Watch-  
dog  
Time  
of  
Day  
RD Enable  
WR Enable  
Bus Control  
GPIOG  
OSC PLL  
CS0-CS3[3:0] or  
GPIOA0-GPIOA3[3:0]  
6
4
IRQA  
IRQB  
56855 Block Diagram  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
3
Part 1 Overview  
1.1 56855 Features  
1.1.1  
Core  
Efficient 16-bit engine with dual Harvard architecture  
120 Million Instructions Per Second (MIPS) at 120MHz core frequency  
Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)  
Four (4) 36-bit accumulators including extension bits  
16-bit bidirectional shifter  
Parallel instruction set with unique DSP addressing modes  
Hardware DO and REP loops  
Three (3) internal address buses and one (1) external address bus  
Four (4) internal data buses and one (1) external data bus  
Instruction set supports both DSP and controller functions  
Four (4) hardware interrupt levels  
Five (5) software interrupt levels  
Controller-style addressing modes and instructions for compact code  
Efficient C Compiler and local variable support  
Software subroutine and interrupt stack with depth limited only by memory  
JTAG/Enhanced OnCE debug programming interface  
1.1.2  
Memory  
Harvard architecture permits up to three (3) simultaneous accesses to program and data memory  
On-Chip Memory  
— 24K × 16-bit Program SRAM  
— 24K × 16-bit Data SRAM  
— 1K × 16-bit Boot ROM  
Off-Chip Memory Expansion (EMI)  
— Access up to 2M words of program memory or 8M words of data memory  
— Chip Select Logic for glue-less interface to ROM and SRAM  
1.1.3  
Peripheral Circuits for 56855  
General Purpose 16-bit Quad Timer with 1 external pin*  
Two (2) Serial Communication Interfaces (SCI)*  
Enhanced Synchronous Serial Interface (ESSI) module*  
Computer Operating Properly (COP)/Watchdog Timer  
JTAG/Enhanced On-Chip Emulation (EOnCE) for unobtrusive, real-time debugging  
56855 Technical Data, Rev. 6  
4
Freescale Semiconductor  
56855 Description  
Six (6) independent channels of DMA  
Time-of-Day (TOD)  
Up to 18 GPIO  
* Each peripheral I/O can be used alternately as a General Purpose I/O if not needed  
1.1.4  
Energy Information  
Fabricated in high-density CMOS with 3.3V, TTL-compatible digital inputs  
Wait and Stop modes available  
1.2 56855 Description  
The 56855 is a member of the 56800E core-based family of controllers. It combines, on a single chip, the  
processing power of a Digital Signal Processor (DSP) and the functionality of a microcontroller with a  
flexible set of peripherals, creating an extremely cost-effective solution. Because of its low cost,  
configuration flexibility, and compact program code, the 56855 is well-suited for many applications. The  
56855 includes many peripherals that are especially useful for low-end Internet appliance applications  
and low-end client applications such as telephony; portable devices; Internet audio; and point-of-sale  
systems, such as noise suppression; ID tag readers; sonic/subsonic detectors; security access devices;  
remote metering; sonic alarms.  
The 56800E core is based on a Harvard-style architecture consisting of three execution units operating in  
parallel, allowing as many as six operations per instruction cycle. The microprocessor-style programming  
model and optimized instruction set allow straightforward generation of efficient, compact code for both  
DSP and MCU applications. The instruction set is also highly efficient for C Compilers, enabling rapid  
development of optimized control applications.  
The 56855 supports program execution from either internal or external memories. Two data operands can  
be accessed from the on-chip Data RAM per instruction cycle. The 56855 also provides two external  
dedicated interrupt lines, and up to 18 General Purpose Input/Output (GPIO) lines, depending on  
peripheral configuration.  
The 56855 controller includes 24K words of Program RAM, 24K words of Data RAM and 1K of Boot  
ROM. It also supports program execution from external memory.  
This controller also provides a full set of standard programmable peripherals that include one Enhanced  
Synchronous Serial Interface (ESSI), two Serial Communications Interfaces (SCI), and one Quad Timer.  
The ESSI, SCIs, four chip selects and Quad Timer external output can be used as General Purpose  
Input/Outputs when its primary function is not required.  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
5
1.3 State of the Art Development Environment  
Processor ExpertTM (PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use  
component-based software application creation with an expert knowledge system.  
The Code Warrior Integrated Development Environment is a sophisticated tool for code navigation,  
compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards  
will support concurrent engineering. Together, PE, Code Warrior and EVMs create a complete, scalable  
tools solution for easy, fast, and efficient development.  
1.4 Product Documentation  
The four documents listed in Table 1-1 are required for a complete description of and proper design with  
the 56855. Documentation is available from local Freescale distributors, Freescale Semiconductor sales  
offices, Freescale Literature Distribution Centers, or online at www.freescale.com.  
Table 1-1 56855 Chip Documentation  
Topic  
Description  
Order Number  
56800ERM  
56800E  
Detailed description of the 56800E architecture, and  
16-bit core processor and the instruction set  
Reference Manual  
DSP56855  
User’s Manual  
Detailed description of memory, peripherals, and  
interfaces of the 56855  
DSP5685xUM  
56855  
56855  
Technical Data Sheet  
Electrical and timing specifications, pin descriptions,  
and package descriptions (this document)  
DSP56855  
Errata  
Details any chip issues that might be present  
DSP56855E  
56855 Technical Data, Rev. 6  
6
Freescale Semiconductor  
Data Sheet Conventions  
1.5 Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
This is used to indicate a signal that is active when pulled low. For example, the RESET pin is  
active when low.  
“asserted”  
“deasserted”  
Examples:  
A high true (active high) signal is high or a low true (active low) signal is low.  
A high true (active high) signal is low or a low true (active low) signal is high.  
Voltage1  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
PIN  
PIN  
PIN  
PIN  
VIL/VOL  
False  
Deasserted  
Asserted  
VIH/VOH  
VIH/VOH  
VIL/VOL  
True  
False  
Deasserted  
1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
7
Part 2 Signal/Connection Descriptions  
2.1 Introduction  
The input and output signals of the 56855 are organized into functional groups, as shown in Table 2-1 and  
as illustrated in Figure 2-1. In Table 3-1 each table row describes the package pin and the signal or signals  
present.  
Table 2-1 56855 Functional Group Pin Allocations  
Functional Group  
Number of Pins  
(4, 10, 1)1  
Power (VDD, VDDIO, or VDDA  
)
(4, 10, 1)1  
Ground (VSS, VSSIO,or VSSA  
)
PLL and Clock  
3
39  
4
External Bus Signals  
External Chip Select*  
72  
6
Interrupt and Program Control  
Enhanced Synchronous Serial Interface (ESSI0) Port*  
Serial Communications Interface (SCI0) Ports*  
Serial Communications Interface (SCI1) Ports*  
Quad Timer Module Port*  
2
2
1
JTAG/Enhanced On-Chip Emulation (EOnCE)  
*Alternately, GPIO pins  
6
1. VDD = VDD CORE, VSS = VSS CORE, VDDIO= VDD IO, VSSIO = VSS IO, VDDA = VDD ANA, VSSA = VSS ANA  
2. MODA, MODB and MODC can be used as GPIO after the bootstrap process has completed.  
56855 Technical Data, Rev. 6  
8
Freescale Semiconductor  
Introduction  
RXDO (GPIOE0)  
TXDO (GPIOE1)  
VDD  
VSS  
1
1
SCI 0  
SCI 2  
Logic  
Power  
4
4
RXD1 (GPIOE2)  
TXD1 (GPIOE3)  
1
1
VDDIO  
VSSIO  
I/O  
Power  
10  
10  
STD0 (GPIOC0)  
1
SRD0 (GPIOC1)  
SCK0 (GPIOC2)  
Analog  
Power1  
VDDA  
VSSA  
1
1
1
1
ESSI 0  
SC00 (GPIOC3)  
SC01 (GPIOC4)  
SC02 (GPIOC5)  
1
1
1
56855  
A0 - A20  
D0 - D15  
RD  
21  
16  
1
External  
Bus  
WR  
1
Chip  
Select  
CS0 - CS3 (GPIOA0 - A3)  
4
XTAL  
1
1
1
EXTAL  
PLL/Clock  
Timer  
Module  
TIO0 (GPIOG0)  
CLKO  
TCK  
1
IRQA  
IRQB  
1
1
1
TDI  
1
1
1
1
JTAG /  
Enhanced  
OnCE  
TDO  
TMS  
MODA, MODB, MODC  
(GPIOH0 - H2)  
Interrupt/  
Program  
Control  
3
RESET  
RSTO  
TRST  
DE  
1
1
1
2
Figure 2-1 56855 Signals Identified by Functional Group  
1. Specifically for PLL, OSC, and POR.  
2. Alternate pin functions are shown in parentheses.  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
9
Part 3 Signals and Package Information  
All digital inputs have a weak internal pull-up circuit associated with them. These pull-up circuits are  
enabled by default. Exceptions:  
1. When a pin has GPIO functionality, the pull-up may be disabled under software control.  
2. MODE A, MODE B and MODE C pins have no pull-up.  
3. TCK has a weak pull-down circuit always active.  
4. Bidirectional I/O pullups automatically disable when the output is enabled.  
This table is presented consistently with the Signals Identified by Functional Group figure.  
1. BOLD entries in the Type column represents the state of the pin just out of reset.  
2. Output(Z) means an output in a High-Z condition.  
Table 3-1. 56855 Signal and Package Information for the 100-pin LQFP  
Pin No.  
9
Signal Name  
VDD  
Type  
Description  
VDD  
Power (VDD)—These pins provide power to the internal structures of the  
chip, and should all be attached to VDD.  
35  
VDD  
65  
VDD  
84  
VDD  
10  
VSS  
VSS  
Ground (VSS)—These pins provide grounding for the internal structures of  
the chip and should all be attached to VSS.  
36  
VSS  
66  
VSS  
85  
VSS  
56855 Technical Data, Rev. 6  
10  
Freescale Semiconductor  
Introduction  
Table 3-1. 56855 Signal and Package Information for the 100-pin LQFP (Continued)  
Pin No.  
1
Signal Name  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VDDA  
Type  
Description  
VDDIO  
Power (VDDIO)—These pins provide power for all I/O and ESD structures of  
the chip, and should all be attached to VDDIO (3.3V).  
14  
29  
43  
49  
58  
72  
76  
86  
96  
2
VSSIO  
Ground (VSSIO)—These pins provide grounding for all I/O and ESD  
structures of the chip and should all be attached to VSS.  
15  
30  
44  
50  
60  
73  
78  
87  
97  
2
18  
19  
VDDA  
VSSA  
Analog Power (VDDA)—These pins supply an analog power source.  
Analog Ground (VSSA)—This pin supplies an analog ground.  
VSSA  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
11  
Table 3-1. 56855 Signal and Package Information for the 100-pin LQFP (Continued)  
Pin No.  
Signal Name  
Type  
Description  
5
A0  
A1  
Output(Z)  
Address Bus (A0-A20)—These signals specify a word address for external  
program or data memory access.  
6
7
A2  
8
A3  
22  
23  
24  
25  
31  
32  
33  
34  
45  
46  
47  
48  
53  
54  
55  
56  
57  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
56855 Technical Data, Rev. 6  
12  
Freescale Semiconductor  
Introduction  
Table 3-1. 56855 Signal and Package Information for the 100-pin LQFP (Continued)  
Pin No.  
Signal Name  
Type  
Description  
59  
67  
68  
69  
70  
71  
79  
80  
81  
82  
83  
94  
95  
98  
99  
3
D0  
D1  
Input/Output(Z) Data Bus (D0-D15)—These pins provide the bidirectional data for external  
program or data memory accesses.  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
RD  
Output  
Output  
Read Enable (RD)— is asserted during external memory read cycles.  
This signal is pulled high during reset.  
4
WR  
Write Enable (WR) — is asserted during external memory write cycles.  
This signal is pulled high during reset.  
61  
CS0  
Output  
External Chip Select (CS0)—This pin is used as a dedicated GPIO.  
GPIOA0  
Input/Output  
Port A GPIO (0) —This pin is a General Purpose I/O (GPIO) pin when not  
configured for host port usage.  
62  
63  
CS1  
Output  
External Chip Select (CS1)—This pin is used as a dedicated GPIO.  
GPIOA1  
Input/Output  
Port A GPIO (1) —This pin is a General Purpose I/O (GPIO) pin when not  
configured for host port usage.  
CS2  
Output  
External Chip Select (CS2)—This pin is used as a dedicated GPIO.  
GPIOA2  
Input/Output  
Port A GPIO (2) —This pin is a General Purpose I/O (GPIO) pin when not  
configured for host port usage.  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
13  
Table 3-1. 56855 Signal and Package Information for the 100-pin LQFP (Continued)  
Pin No.  
Signal Name  
CS3  
Type  
Output  
Description  
64  
External Chip Select (CS3)—This pin is used as a dedicated GPIO.  
GPIOA3  
Input/Output  
Port A GPIO (3)—This pin is a General Purpose I/O (GPIO) pin when not  
configured for host port usage.  
77  
TIO0  
Input/Output  
Input/Output  
Input  
Timer Input/Output (TIO0)—This pin can be independently configured to  
be either timer input source or output flag.  
GPIOG0  
Port G GPIO (0)—This pin is a General Purpose I/O (GPIO) pin that can  
individually be programmed as input or output pin.  
16  
17  
IRQA  
IRQB  
External Interrupt Request A and B—The IRQA and IRQB inputs are  
asynchronized external interrupt requests that indicate that an external  
device is requesting service. A Schmitt trigger input is used for noise  
immunity. They can be programmed to be level-sensitive or negative-edge-  
triggered. If level-sensitive triggering is selected, an external pull-up resistor  
is required for Wired-OR operation.  
11  
12  
13  
28  
MODA  
GPIOH0  
MODB  
Input  
Input/Output  
Input  
Mode Select (MODA)—During the bootstrap process MODA selects one of  
the eight bootstrap modes.  
Port H GPIO (0)—This pin is a General Purpose I/O (GPIO) pin after the  
bootstrap process has completed.  
Mode Select (MODB)—During the bootstrap process MODB selects one of  
the eight bootstrap modes.  
GPIOH1  
MODC  
Input/Output  
Input  
Port H GPIO (1)—This pin is a General Purpose I/O (GPIO) pin after the  
bootstrap process has completed.  
Mode Select (MODC)—During the bootstrap process MODC selects one of  
the eight bootstrap modes.  
GPIOH2  
RESET  
Input/Output  
Input  
Port H GPIO (2)—This pin is a General Purpose I/O (GPIO) pin after the  
bootstrap process has completed.  
Reset (RESET)—This input is a direct hardware reset on the processor.  
When RESET is asserted low, the device is initialized and placed in the  
Reset state. A Schmitt trigger input is used for noise immunity. When the  
RESET pin is deasserted, the initial chip operating mode is latched from the  
MODA, MODB, and MODC pins.  
To ensure complete hardware reset, RESET and TRST should be asserted  
together. The only exception occurs in a debugging environment when a  
hardware reset is required and it is necessary not to reset the  
JTAG/Enhanced OnCE module. In this case, assert RESET, but do not  
assert TRST.  
27  
RSTO  
Output  
Reset Output (RSTO)—This output is asserted on any reset condition  
(external reset, low voltage, software or COP).  
56855 Technical Data, Rev. 6  
14  
Freescale Semiconductor  
Introduction  
Table 3-1. 56855 Signal and Package Information for the 100-pin LQFP (Continued)  
Pin No.  
Signal Name  
Type  
Input  
Description  
51  
RXD0  
Serial Receive Data 0 (RXD0)—This input receives byte-oriented serial  
data and transfers it to the SCI 0 receive shift register.  
GPIOE0  
TXD0  
Input/Output  
Output(Z)  
Input/Output  
Input  
Port E GPIO (0)—This pin is a General Purpose I/O (GPIO) pin that can  
individually be programmed as input or output pin.  
52  
74  
75  
88  
89  
90  
Serial Transmit Data 0 (TXD0)—This signal transmits data from the SCI 0  
transmit data register.  
GPIOE1  
RXD1  
Port E GPIO (1)—This pin is a General Purpose I/O (GPIO) pin that can  
individually be programmed as input or output pin.  
Serial Receive Data 1 (RXD1)—This input receives byte-oriented serial  
data and transfers it to the SCI 1 receive shift register.  
GPIOE2  
TXD1  
Input/Output  
Output(Z)  
Input/Output  
Output  
Port E GPIO (2)—This pin is a General Purpose I/O (GPIO) pin that can  
individually be programmed as input or output pin.  
Serial Transmit Data 1 (TXD1)—This signal transmits data from the SCI 1  
transmit data register.  
GPIOE3  
STD0  
Port E GPIO (3)—This pin is a General Purpose I/O (GPIO) pin that can  
individually be programmed as input or output pin.  
ESSI Transmit Data (STD0)—This output pin transmits serial data from the  
ESSI Transmitter Shift Register.  
GPIOC0  
SRD0  
Input/Output  
Input  
Port C GPIO (0)—This pin is a General Purpose I/O (GPIO) pin when the  
ESSI is not in use.  
ESSI Receive Data (SRD0)—This input pin receives serial data and  
transfers the data to the ESSI Receive Shift Register.  
GPIOC1  
SCK0  
Input/Output  
Input/Output  
Port C GPIO (1)—This pin is a General Purpose I/O (GPIO) pin when the  
ESSI is not in use.  
ESSI Serial Clock (SCK0)—This bidirectional pin provides the serial bit  
rate clock for the transmit section of the ESSI. The clock signal can be  
continuous or gated and can be used by both the transmitter and receiver in  
synchronous mode.  
GPIOC2  
Input/Output  
Port C GPIO (2)—This pin is a General Purpose I/O (GPIO) pin when the  
ESSI is not in use.  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
15  
Table 3-1. 56855 Signal and Package Information for the 100-pin LQFP (Continued)  
Pin No.  
Signal Name  
Type  
Description  
91  
SC00  
Input/Output  
ESSI Serial Control Pin 0 (SC00)—The function of this pin is determined  
by the selection of either synchronous or asynchronous mode. For  
asynchronous mode, this pin will be used for the receive clock I/O. For  
synchronous mode, this pin is used either for transmitter1 output or for  
serial I/O flag 0.  
GPIOC3  
SC01  
Input/Output  
Port C GPIO (3)—This pin is a General Purpose I/O (GPIO) pin when the  
ESSI is not in use.  
92  
Input/Output  
ESSI Serial Control Pin 1 (SC01)—The function of this pin is determined  
by the selection of either synchronous or asynchronous mode. For  
asynchronous mode, this pin is the receiver frame sync I/O. For  
synchronous mode, this pin is used either for transmitter2 output or for  
serial I/O flag 1.  
GPIOC4  
SC02  
Input/Output  
Port C GPIO (4)—This pin is a General Purpose I/O (GPIO) pin when the  
ESSI is not in use.  
93  
Input/Output  
ESSI Serial Control Pin 2 (SC02)—This pin is used for frame sync I/O.  
SC02 is the frame sync for both the transmitter and receiver in synchronous  
mode and for the transmitter only in asynchronous mode. When configured  
as an output, this pin is the internally generated frame sync signal. When  
configured as an input, this pin receives an external frame sync signal for  
the transmitter (and the receiver in synchronous operation).  
GPIOC5  
XTAL  
Input or Output  
Port C GPIO (5)—This pin is a General Purpose I/O (GPIO) pin when the  
ESSI is not in use.  
20  
21  
Input/Output  
Crystal Oscillator Output (XTAL)—This output connects the internal  
crystal oscillator output to an external crystal. If an external clock source  
other than a crystal oscillator is used, XTAL must be used as the input.  
EXTAL  
Input  
External Crystal Oscillator Input (EXTAL)—This input should be  
connected to an external crystal. If an external clock source other than a  
crystal oscillator is used, EXTAL must be tied off. See Section 4.5.2  
26  
42  
CLKO  
TCK  
Output  
Input  
Clock Output (CLKO)—This pin outputs a buffered clock signal. When  
enabled, this signal is the system clock divided by four.  
Test Clock Input (TCK)—This input pin provides a gated clock to  
synchronize the test logic and to shift serial data to the JTAG/Enhanced  
OnCE port. The pin is connected internally to a pull-down resistor.  
40  
39  
TDI  
Input  
Test Data Input (TDI)—This input pin provides a serial input data stream to  
the JTAG/Enhanced OnCE port. It is sampled on the rising edge of TCK  
and has an on-chip pull-up resistor.  
TDO  
Output (Z)  
Test Data Output (TDO)—This tri-statable output pin provides a serial  
output data stream from the JTAG/Enhanced OnCE port. It is driven in the  
Shift-IR and Shift-DR controller states, and changes on the falling edge of  
TCK.  
56855 Technical Data, Rev. 6  
16  
Freescale Semiconductor  
General Characteristics  
Table 3-1. 56855 Signal and Package Information for the 100-pin LQFP (Continued)  
Pin No.  
Signal Name  
Type  
Description  
41  
TMS  
Input  
Test Mode Select Input (TMS)—This input pin is used to sequence the  
JTAG TAP controller’s state machine. It is sampled on the rising edge of  
TCK and has an on-chip pull-up resistor.  
Note: Always tie the TMS pin to VDD through a 2.2K resistor.  
38  
TRST  
Input  
Test Reset (TRST)—As an input, a low signal on this pin provides a reset  
signal to the JTAG TAP controller. To ensure complete hardware reset,  
TRST should be asserted whenever RESET is asserted. The only  
exception occurs in a debugging environment, since the Enhanced  
OnCE/JTAG module is under the control of the debugger. In this case it is  
not necessary to assert TRST when asserting RESET. Outside of a  
debugging environment RESET should be permanently asserted by  
grounding the signal, thus disabling the Enhanced OnCE/JTAG module on  
the device.  
Note: For normal operation, connect TRST directly to VSS. If the design is to be  
used in a debugging environment, TRST may be tied to VSS through a 1K resistor.  
37  
DE  
Input/Output  
Debug Event (DE)—This is an open-drain, bidirectional, active low signal.  
As an input, it is a means of entering debug mode of operation from an  
external command controller. As an output, it is a means of acknowledging  
that the chip has entered debug mode.  
This pin is connected internally to a weak pull-up resistor.  
Part 4 Specifications  
4.1 General Characteristics  
The 56855 is fabricated in high-density CMOS with 5-volt tolerant TTL-compatible digital inputs. The  
term “5-volt tolerant” refers to the capability of an I/O pin, built on a 3.3V compatible process  
technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a  
mixture of devices designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V  
and 5V- compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of  
3.3V ± 10% during normal operation without causing damage). This 5V tolerant capability therefore  
offers the power savings of 3.3V I/O levels while being able to receive 5V levels without being damaged.  
Absolute maximum ratings given in Table 4-1 are stress ratings only, and functional operation at the  
maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent  
damage to the device.  
The 56855 DC/AC electrical specifications are preliminary and are from design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
17  
specifications will be published after complete characterization and device qualifications have been  
completed.  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or  
electrical fields. However, normal precautions are  
advised to avoid application of any voltages higher  
than maximum rated voltages to this high-impedance  
circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate voltage level.  
Table 4-1 Absolute Maximum Ratings  
Characteristic  
Supply voltage, core  
Symbol  
Min  
Max  
Unit  
1
VSS – 0.3  
VSS + 2.0  
V
VDD  
2
V
VDDIO  
VSSIO – 0.3  
VSSA – 0.3  
V
SSIO + 4.0  
Supply voltage, IO  
Supply voltage, analog  
2
VDDA + 4.0  
VDDIO  
Digital input voltages  
Analog input voltages (XTAL, EXTAL)  
VIN  
VSSIO – 0.3  
VSSA – 0.3  
VSSIO + 5.5  
V
VINA  
VDDA + 0.3  
Current drain per pin excluding VDD, GND  
Junction temperature  
I
8
mA  
°C  
TJ  
-40  
-55  
120  
150  
Storage temperature range  
TSTG  
°C  
1. VDD must not exceed VDDIO  
2. VDDIO and VDDA must not differ by more that 0.5V  
Table 4-2 Recommended Operating Conditions  
Characteristic  
Supply voltage for Logic Power  
Symbol  
VDD  
Min  
1.62  
3.0  
Max  
1.98  
3.6  
Unit  
V
Supply voltage for I/O Power  
VDDIO  
VDDA  
V
Supply voltage for Analog Power  
3.0  
3.6  
V
56855 Technical Data, Rev. 6  
18  
Freescale Semiconductor  
General Characteristics  
Table 4-2 Recommended Operating Conditions  
Characteristic  
Ambient operating temperature  
Symbol  
TA  
Min  
-40  
2
Max  
Unit  
°C  
85  
240  
120  
60  
PLL clock frequency1  
fpll  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Operating Frequency2  
fop  
Frequency of peripheral bus  
fipb  
Frequency of external clock  
Frequency of oscillator  
fclk  
240  
4
fosc  
fxtal  
fextal  
Frequency of clock via XTAL  
Frequency of clock via EXTAL  
2
240  
4
1. Assumes clock source is direct clock to EXTAL or crystal oscillator running 2-4MHz. PLL must be enabled, locked, and  
selected. The actual frequency depends on the source clock frequency and programming of the CGM module.  
2. Master clock is derived from on of the following four sources:  
fclk = fxtal when the source clock is the direct clock to EXTAL  
fclk = fpll when PLL is selected  
fclk = fosc when the source clock is the crystal oscillator and PLL is not selected  
fclk = fextal when the source clock is the direct clock to EXTAL and PLL is not selected  
1
Table 4-3 Thermal Characteristics  
100-pin LQFP  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance junction-to-ambient  
(estimated)  
θJA  
41.2  
°C/W  
I/O pin power dissipation  
Power dissipation  
PI/O  
PD  
User Determined  
W
W
°C  
PD = (IDD × VDD) + PI/O  
2
Maximum allowed PD  
PDMAX  
(TJ – TA) / RθJA  
1. See Section 6.1 for more detail.  
2. TJ = Junction Temperature  
TA = Ambient Temperature  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
19  
4.2 DC Electrical Characteristics  
Table 4-4 DC Electrical Characteristics  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Characteristic  
Input high voltage (XTAL/EXTAL)  
Input low voltage (XTAL/EXTAL)  
Input high voltage  
Symbol  
VIHC  
VILC  
VIH  
Min  
Typ  
VDDA  
Max  
Unit  
V
VDDA – 0.8  
VDDA + 0.3  
-0.3  
0.5  
5.5  
0.8  
1
V
2.0  
V
Input low voltage  
VIL  
-0.3  
V
Input current low (pullups disabled)  
Input current high (pullups disabled)  
Output tri-state current low  
Output tri-state current high  
Output High Voltage  
IIL  
-1  
μA  
μA  
μA  
μA  
V
IIH  
-1  
1
IOZL  
IOZH  
VOH  
VOL  
IOH  
-10  
10  
10  
0.4  
16  
16  
-10  
VDDIO – 0.7  
Output Low Voltage  
8
V
Output High Current  
mA  
mA  
pF  
pF  
Output Low Current  
IOL  
8
Input capacitance  
CIN  
8
Output capacitance  
COUT  
12  
4
VDD supply current (Core logic, memories, peripherals)  
IDD  
Run 1  
70  
0.05  
5
110  
10  
14  
mA  
mA  
mA  
Deep Stop2  
Light Stop3  
VDDIO supply current (I/O circuity)  
IDDIO  
Run5  
Deep Stop2  
40  
0
50  
1.5  
mA  
mA  
VDDA supply current (analog circuity)  
Deep Stop2  
IDDA  
60  
2.5  
50  
120  
2.85  
μA  
V
Low Voltage Interrupt6  
VEI  
Low Voltage Interrupt Recovery Hysteresis  
VEIH  
POR  
mV  
V
Power on Reset7  
1.5  
2.0  
Note:  
Run (operating) IDD measured using external square wave clock source (fosc = 4MHz) into XTAL. All inputs 0.2V from rail;  
no DC loads; outputs unloaded. All ports configured as inputs; measured with all modules enabled. PLL set to 240MHz out.  
1. Running Core, performing 50% NOP and 50% FIR. Clock at 120 MHz.  
2. Deep Stop Mode - Operation frequency = 4 MHz, PLL set to 4 MHz, crystal oscillator and time of day module operating.  
3. Light Stop Mode - Operation frequency = 120 MHz, PLL set to 240 MHz, crystal oscillator and time of day module operating.  
4. IDD includes current for core logic, internal memories, and all internal peripheral logic circuitry.  
56855 Technical Data, Rev. 6  
20  
Freescale Semiconductor  
Supply Voltage Sequencing and Separation Cautions  
5. Running core and performing external memory access. Clock at 120 MHz.  
6. When VDD drops below VEI max value, an interrupt is generated.  
7. Power-on reset occurs whenever the digital supply drops below 1.8V. While power is ramping up, this signal remains active  
for as long as the internal 2.5V is below 1.8V no matter how long the ramp up rate is. The internally regulated voltage is typically  
100 mV less than VDD during ramp up until 2.5V is reached, at which time it self-regulates.  
150  
MAC Mode1  
EMI Mode5  
120  
90  
60  
30  
0
20  
40  
120  
100  
60  
80  
Figure 4-1 Maximum Run I  
vs. Frequency (see Notes 1. and 5. in Table 4-4)  
DDTOTAL  
4.3 Supply Voltage Sequencing and Separation Cautions  
Figure 4-2 shows two situations to avoid in sequencing the V and V  
V
supplies.  
DD  
DDIO, DDA  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
21  
3.3V  
1.8V  
VDDIO, VDDA  
2
Supplies Stable  
VDD  
1
0
Time  
Notes: 1. VDD rising before VDDIO, VDDA  
2. VDDIO, VDDA rising much faster than VDD  
Figure 4-2 Supply Voltage Sequencing and Separation Cautions  
V
should not be allowed to rise early (1). This is usually avoided by running the regulator for the V  
DD  
DD  
supply (1.8V) from the voltage generated by the 3.3V V  
supply, see Figure 4-3. This keeps V from  
DDIO  
DD  
rising faster than V  
.
DDIO  
V
should not rise so late that a large voltage difference is allowed between the two supplies (2).  
DD  
Typically this situation is avoided by using external discrete diodes in series between supplies, as shown  
in Figure 4-3. The series diodes forward bias when the difference between V and V reaches  
DDIO  
DD  
approximately 2.1, causing V to rise as V  
ramps up. When the V regulator begins proper  
DD  
DDIO  
DD  
operation, the difference between supplies will typically be 0.8V and conduction through the diode chain  
reduces to essentially leakage current. During supply sequencing, the following general relationship  
should be adhered to:  
V
> V > (V  
- 2.1V)  
DDIO  
DD  
DDIO  
In practice, V  
is typically connected directly to V  
with some filtering.  
DDA  
DDIO  
56855 Technical Data, Rev. 6  
22  
Freescale Semiconductor  
AC Electrical Characteristics  
VDDIO, VDDA  
3.3V  
Regulator  
Supply  
VDD  
1.8V  
Regulator  
Figure 4-3 Example Circuit to Control Supply Sequencing  
4.4 AC Electrical Characteristics  
Timing waveforms in Section 4.2 are tested with a VIL maximum of 0.8 V and a VIH minimum of 2.0 V  
for all pins except XTAL, which is tested using the input levels in Section 4.2. In Figure 4-4 the levels of  
VIH and VIL for an input signal are shown.  
Low  
VIL  
High  
VIH  
90%  
50%  
10%  
Input Signal  
Midpoint1  
Fall Time  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Rise Time  
Figure 4-4 Input Signal Measurement References  
Figure 4-5 shows the definitions of the following signal states:  
Active state, when a bus or signal is driven, and enters a low impedance state.  
Tri-stated, when a bus or signal is placed in a high impedance state.  
Data Valid state, when a signal level has reached VOL or VOH.  
Data Invalid state, when a signal level is in transition between VOL and VOH.  
Data2 Valid  
Data2  
Data1 Valid  
Data1  
Data3 Valid  
Data3  
Data  
Tri-stated  
Data Invalid State  
Data Active  
Data Active  
Figure 4-5 Signal State  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
23  
4.5 External Clock Operation  
The 56855 system clock can be derived from a crystal or an external system clock signal. To generate a  
reference frequency using the internal oscillator, a reference crystal must be connected between the  
EXTAL and XTAL pins.  
4.5.1  
Crystal Oscillator  
The internal oscillator is designed to interface with a parallel-resonant crystal resonator in the frequency  
range specified for the external crystal in Table 4-5. In Figure 4-6 a typical crystal oscillator circuit is  
shown. Follow the crystal supplier’s recommendations when selecting a crystal, because crystal  
parameters determine the component values required to provide maximum stability and reliable start-up.  
The crystal and associated components should be mounted as close as possible to the EXTAL and XTAL  
pins to minimize output distortion and start-up stabilization time.  
Crystal Frequency = 2–4 MHz (optimized for 4MHz)  
Sample External Crystal Parameters:  
EXTAL XTAL  
Rz = 10MΩ  
TOD_SEL bit in CGM must be set to 0  
Rz  
Figure 4-6 Crystal Oscillator  
4.5.2  
High Speed External Clock Source (> 4MHz)  
The recommended method of connecting an external clock is given in Figure 4-7. The external clock  
source is connected to XTAL and the EXTAL pin is held at ground, V  
bit in CGM must be set to 0.  
, or V  
/2. The TOD_SEL  
DDA  
DDA  
56855  
XTAL  
EXTAL  
GND,VDDA  
or VDDA/2  
,
External  
Clock  
(up to 240MHz)  
Figure 4-7 Connecting a High Speed External Clock Signal using XTAL  
56855 Technical Data, Rev. 6  
24  
Freescale Semiconductor  
External Clock Operation  
4.5.3  
Low Speed External Clock Source (2-4MHz)  
The recommended method of connecting an external clock is given in Figure 4-8. The external clock  
source is connected to XTAL and the EXTAL pin is held at V  
set to 0.  
/2. The TOD_SEL bit in CGM must be  
DDA  
56855  
XTAL  
EXTAL  
External  
Clock  
VDDA/2  
(2-4MHz)  
Figure 4-8 Connecting a Low Speed External Clock Signal using XTAL  
4
Table 4-5 External Clock Operation Timing Requirements  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Characteristic  
Symbol  
fosc  
Min  
0
Typ  
Max  
240  
Unit  
MHz  
ns  
Frequency of operation (external clock driver)1  
Clock Pulse Width4  
tPW  
6.25  
External clock input rise time2, 4  
External clock input fall time3, 4  
trise  
TBD  
TBD  
ns  
tfall  
ns  
1. See Figure 4-7 for details on using the recommended connection of an external clock driver.  
2. External clock input rise time is measured from 10% to 90%.  
3. External clock input fall time is measured from 90% to 10%.  
4. Parameters listed are guaranteed by design.  
VIH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
tPW  
tPW  
VIL  
trise  
tfall  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Figure 4-9 External Clock Timing  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
25  
Table 4-6 PLL Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Characteristic  
Symbol  
fosc  
Min  
2
Typ  
4
Max  
4
Unit  
MHz  
MHz  
ms  
External reference crystal frequency for the PLL1  
PLL output frequency  
fclk  
40  
1
240  
10  
PLL stabilization time 2  
tplls  
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly.  
The PLL is optimized for 4MHz input crystal.  
2. This is the minimum time required after the PLL setup is changed to ensure reliable operation.  
4.6 External Memory Interface Timing  
The External Memory Interface is designed to access static memory and peripheral devices. Figure 4-10  
shows sample timing and parameters that are detailed in Table 4-7.  
The timing of each parameter consists of both a fixed delay portion and a clock related portion; as well as user  
controlled wait states. The equation:  
t = D + P * (M + W)  
should be used to determine the actual time of each parameter. The terms in the above equation are defined as:  
t
parameter delay time  
D fixed portion of the delay, due to on-chip path delays.  
P
the period of the system clock, which determines the execution rate of the part (i.e. when the device is  
operating at 120 MHz, P = 8.33 ns).  
M Fixed portion of a clock period inherent in the design. This number is adjusted to account for possible  
clock duty cycle derating.  
W the sum of the applicable wait state controls. See the “Wait State Controls” column of Table 4-7 for  
the applicable controls for each parameter. See the EMI chapter of the 83x Peripheral Manual for  
details of what each wait state field controls.  
Some of the parameters contain two sets of numbers. These parameters have two different paths and clock edges  
that must be considered. Check both sets of numbers and use the smaller result. The appropriate entry may change  
if the operating frequency of the part changes.  
The timing of write cycles is different when WWS = 0 than when WWS > 0. Therefore, some parameters contain  
two sets of numbers to account for this difference. The “Wait States Configuration” column of Table 4-7 should be  
used to make the appropriate selection.  
56855 Technical Data, Rev. 6  
26  
Freescale Semiconductor  
External Memory Interface Timing  
A0-Axx,CS  
tRD  
tARDD  
tRDA  
tARDA  
tRDRD  
RD  
tWAC  
tWRRD  
tAWR  
tWRWR  
tWR  
tRDWR  
WR  
tDWR  
tDOH  
tRDD  
tDOS  
Data Out  
tAD  
tDRD  
Data In  
D0-D15  
Note: During read-modify-write instructions and internal instructions, the address lines do not change state.  
Figure 4-10 External Memory Interface Timing  
Table 4-7 External Memory Interface Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98 V, V  
= V  
= 3.0–3.6V, T = –40× to +120×C, C £ 50pF, P = 8.333ns  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA  
A
L
Wait States  
Configuration  
Wait States  
Controls  
Characteristic  
Symbol  
tAWR  
D
M
Unit  
ns  
WWS=0  
WWS>0  
WWS=0  
WWS>0  
WWS=0  
WWS=0  
WWS>0  
WWS>0  
-0.79  
-1.98  
-0.86  
-0.01  
-1.52  
- 5.69  
-2.10  
-4.66  
0.50  
0.69  
0.19  
0.00  
0.00  
0.25  
0.19  
0.50  
Address Valid to WR Asserted  
WWSS  
WWS  
WR Width Asserted to WR  
Deasserted  
tWR  
ns  
Data Out Valid to WR Asserted  
tDWR  
WWSS  
ns  
Valid Data Out Hold Time after WR  
Deasserted  
tDOH  
-1.47  
0.25  
WWSH  
ns  
ns  
-2.36  
-4.67  
0.19  
0.50  
Valid Data Out Set Up Time to WR  
Deasserted  
tDOS  
tWAC  
WWS,WWSS  
Valid Address after WR  
Deasserted  
-1.60  
0.25  
0.00  
WWSH  
RWSH  
tRDA  
- 0.44  
ns  
RD Deasserted to Address Invalid  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
27  
Table 4-7 External Memory Interface Timing (Continued)  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98 V, V  
= V  
= 3.0–3.6V, T = –40× to +120×C, C £ 50pF, P = 8.333ns  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA  
A
L
Wait States  
Configuration  
Wait States  
Controls  
Characteristic  
Symbol  
tARDD  
tDRD  
D
M
Unit  
ns  
-2.07  
0.00  
-1.34  
1.00  
RWSS,RWS  
Address Valid to RD Deasserted  
Valid Input Data Hold after RD  
Deasserted  
N/A1  
1.00  
ns  
tRD  
RWS  
ns  
RD Assertion Width  
-10.27  
-13.5  
1.00  
1.19  
Address Valid to Input Data Valid  
tAD  
ns  
RWSS,RWS  
RWSS  
tARDA  
tRDD  
tWRRD  
tRDRD  
tWRWR  
- 0.94  
0.00  
ns  
Address Valid to RD Asserted  
-9.53  
1.00  
1.19  
RD Asserted to Input Data Valid  
ns  
RWSS,RWS  
WWSH,RWSS  
RWSS,RWSH  
-12.64  
-0.75  
0.25  
0.00  
ns  
ns  
WR Deasserted to RD Asserted  
RD Deasserted to RD Asserted  
WR Deasserted to WR Asserted  
-0.162  
-0.44  
-0.11  
0.14  
WWS=0  
WWS>0  
0.75  
1.00  
0.50  
0.69  
WWSS, WWSH  
ns  
ns  
MDAR, BMDAR,  
RWSH, WWSS  
RD Deasserted to WR Asserted  
tRDWR  
-0.57  
1. N/A since device captures data before it deasserts RD  
2. If RWSS = RWSH = 0, RD does not deassert during back-to-back reads and D=0.00 should be used.  
4.7 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
1, 2  
Table 1. Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40  
°
to +120  
°
C, C ≤  
50pF, f = 120MHz  
op  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA  
A
L
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
4-11  
RESET Assertion to Address, Data and Control  
Signals High Impedance  
tRAZ  
11  
ns  
Minimum RESET Assertion Duration3  
tRA  
tRDA  
tIRW  
30  
120T  
ns  
ns  
ns  
4-11  
4-11  
4-12  
RESET Deassertion to First External Address Output  
Edge-sensitive Interrupt Request Width  
1T + 3  
56855 Technical Data, Rev. 6  
28  
Freescale Semiconductor  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
1, 2 (Continued)  
Table 1. Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40  
°
to +120  
°
C, C ≤  
50pF, f = 120MHz  
op  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA  
A
L
Characteristic  
Symbol  
tIDM  
Min  
18T  
14T  
18T  
14T  
22T  
18T  
Max  
Unit  
See Figure  
4-13  
IRQA, IRQB Assertion to External Data Memory  
Access Out Valid, caused by first instruction execution  
in the interrupt service routine  
ns  
tIDM -FAST  
tIG  
tIG -FAST  
tIRI  
tIRI -FAST  
tIW  
IRQA, IRQB Assertion to General Purpose Output  
Valid, caused by first instruction execution in the  
interrupt service routine  
ns  
ns  
4-13  
4-14  
IRQA Low to First Valid Interrupt Vector Address Out  
recovery from Wait State4  
Delay from IRQA Assertion (exiting Stop) to External  
Data Memory5  
4-15  
4-15  
1.5T  
ns  
Delay from IRQA Assertion (exiting Wait) to External  
Data Memory  
tIF  
Fast6  
Normal7  
18T  
22ET  
ns  
ns  
RSTO pulse width8  
normal operation  
internal reset mode  
tRSTO  
4-16  
128ET  
8ET  
1. In the formulas, T = clock cycle. For fop = 120MHz operation and fipb = 60MHz, T = 8.33ns.  
2. Parameters listed are guaranteed by design.  
3. At reset, the PLL is disabled and bypassed. The part is then put into Run mode and tclk assumes the period of the source clock,  
xtal, textal or tosc  
t
.
4. The minimum is specified for the duration of an edge-sensitive IRQA interrupt required to recover from the Stop state. This is not  
the minimum required so that the IRQA interrupt is accepted.  
5. The interrupt instruction fetch is visible on the pins only in Mode 3.  
6. Fast stop mode:  
Fast stop recovery applies when external clocking is in use (direct clocking to XTAL) or when fast stop mode recovery is re-  
quested (OMR bit 6 is set to 1). In both cases the PLL and the master clock are unaffected by stop mode entry. Recovery takes one  
less cycle and tclk will continue same value it had before stop mode was entered.  
7. Normal stop mode:  
As a power saving feature, normal stop mode disables and bypasses the PLL. Stop mode will then shut down the master clock,  
recovery will take an extra cycle (to restart the clock), and tclk will resume at the input clock source rate.  
8. ET = External Clock period, For an external crystal frequency of 8MHz, ET=125 ns.  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
29  
RESET  
tRA  
tRAZ  
tRDA  
A0–A20,  
D0–D15  
First Fetch  
First Fetch  
CS,  
RD, WR  
Figure 4-11 Asynchronous Reset Timing  
IRQA  
IRQB  
tIRW  
Figure 4-12 External Interrupt Timing (Negative-Edge-Sensitive)  
A0–A20,  
CS,  
RD, WR  
First Interrupt Instruction Execution  
tIDM  
IRQA,  
IRQB  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O Pin  
tIG  
IRQA,  
IRQB  
b) General Purpose I/O  
Figure 4-13 External Level-Sensitive Interrupt Timing  
56855 Technical Data, Rev. 6  
30  
Freescale Semiconductor  
Host Interface Port  
IRQA,  
IRQB  
tIRI  
A0–A20,  
CS,  
RD, WR  
First Interrupt Vector  
Instruction Fetch  
Figure 4-14 Interrupt from Wait State Timing  
tIW  
IRQA  
tIF  
A0–A20,  
CS,  
RD, WR  
First Instruction Fetch  
Not IRQA Interrupt Vector  
Figure 4-15 Recovery from Stop State Using Asynchronous Interrupt Timing  
RESET  
tRSTO  
Figure 4-16 Reset Output Timing  
4.8 Host Interface Port  
1
Table 4-8 Host Interface Port Timing  
Operating Conditions: VSS = VSSIO = VSSA = 0 V, VDD = 1.62-1.98V, VDDIO = VDDA = 3.0–3.6V, TA = –40° to +120°C, CL 50pF, fop = 120MHz  
Characteristic  
Symbol  
Min  
Max  
Unit See Figure  
TACKDV  
TACKDZ  
Access time  
Disable time  
3
13  
ns  
ns  
4-17  
4-17  
4-17  
4-20  
TACKREQH  
TREQACKL  
Time to disassert  
Lead time  
3.5  
0
9
ns  
ns  
4-17  
4-20  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
31  
1
Table 4-8 Host Interface Port Timing (Continued)  
Operating Conditions: VSS = VSSIO = VSSA = 0 V, VDD = 1.62-1.98V, VDDIO = VDDA = 3.0–3.6V, TA = –40° to +120°C, CL 50pF, fop = 120MHz  
Characteristic  
Symbol  
Min  
Max  
Unit See Figure  
ns  
ns  
ns  
4-18  
4-19  
TRADV  
Access time  
13  
4-18  
4-19  
TRADX  
TRADZ  
Disable time  
Disable time  
5
3
4-18  
4-19  
TDACKS  
TACKDH  
Setup time  
Hold time  
3
1
ns  
ns  
4-20  
4-20  
4-21  
4-23  
TADSS  
TDSAH  
TWDS  
Setup time  
Hold time  
3
1
5
ns  
ns  
ns  
4-21  
4-22  
4-21  
4-22  
Pulse width  
Time to re-assert  
TACKREQL  
1. After second write in 16-bit mode  
2. After first write in 16-bit mode  
or after write in 8-bit mode  
ns  
ns  
4-17  
4-20  
4T + 5  
5
5T + 9  
13  
1. The formulas: T = clock cycle. f ipb = 60MHz, T = 16.7ns.  
HACK  
TACKDZ  
TACKDV  
HD  
TACKREQL  
TREQACKL  
TACKREQH  
HREQ  
Figure 4-17 Controller-to-Host DMA Read Mode  
56855 Technical Data, Rev. 6  
32  
Freescale Semiconductor  
Host Interface Port  
HA  
TRADX  
HCS  
HDS  
HRW  
TRADV  
TRADZ  
HD  
Figure 4-18 Single Strobe Read Mode  
HA  
TRADX  
HCS  
HWR  
HRD  
HD  
TRADZ  
TRADV  
Figure 4-19 Dual Strobe Read Mode  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
33  
HACK  
HD  
TACKDH  
TDACKS  
TACKREQL  
TREQACKL  
TACKREQH  
HREQ  
Figure 4-20 Host-to-Controller DMA Write Mode  
HA  
TDSAH  
HCS  
HDS  
TWDS  
TDSAH  
HRW  
HD  
TADSS  
TADSS  
TDSAH  
Figure 4-21 Single Strobe Write Mode  
HA  
HCS  
TWDS  
HWR  
TDSAH  
TADSS  
HRD  
HD  
TADSS  
Figure 4-22 Dual Strobe Write Mode  
56855 Technical Data, Rev. 6  
34  
Freescale Semiconductor  
Quad Timer Timing  
4.9 Quad Timer Timing  
1, 2  
Table 4-9 Quad Timer Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Characteristic  
Symbol  
PIN  
Min  
Max  
Unit  
ns  
Timer input period  
2T + 3  
1T + 3  
2T - 3  
1T - 3  
Timer input high/low period  
Timer output period  
PINHL  
ns  
POUT  
ns  
Timer output high/low period  
POUTHL  
ns  
1. In the formulas listed, T = clock cycle. For fop = 120MHz operation and fipb = 60MHz, T = 8.33ns.  
2. Parameters listed are guaranteed by design.  
Timer Inputs  
PIN  
PINHL  
PINHL  
Timer Outputs  
POUT  
POUTHL  
POUTHL  
Figure 4-23 Timer Timing  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
35  
4.10 Enhanced Synchronous Serial Interface (ESSI) Timing  
1
Table 4-10 ESSI Master Mode Switching Characteristics  
Operating Conditions: V = V  
SS  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
152  
SCK frequency  
fs  
MHz  
SCK period3  
tSCKW  
tSCKH  
tSCKL  
66.7  
ns  
ns  
ns  
33.44  
SCK high time  
33.44  
SCK low time  
Output clock rise/fall time  
4
ns  
ns  
Delay from SCK high to SC2 (bl) high - Master5  
Delay from SCK high to SC2 (wl) high - Master5  
Delay from SC0 high to SC1 (bl) high - Master5  
Delay from SC0 high to SC1 (wl) high - Master5  
Delay from SCK high to SC2 (bl) low - Master5  
Delay from SCK high to SC2 (wl) low - Master5  
Delay from SC0 high to SC1 (bl) low - Master5  
tTFSBHM  
-1.0  
1.0  
tTFSWHM  
tRFSBHM  
tRFSWHM  
tTFSBLM  
tTFSWLM  
tRFSBLM  
tRFSWLM  
tTXEM  
-1.0  
-1.0  
-1.0  
-1.0  
-1.0  
-1.0  
-1.0  
-0.1  
-0.1  
-0.1  
-4  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Delay from SC0 high to SC1 (wl) low - Master5  
SCK high to STD enable from high impedance - Master  
SCK high to STD valid - Master  
tTXVM  
2
SCK high to STD not valid - Master  
SCK high to STD high impedance - Master  
SRD Setup time before SC0 low - Master  
SRD Hold time after SC0 low - Master  
tTXNVM  
tTXHIM  
tSM  
0
4
tHM  
4
Synchronous Operation (in addition to standard internal clock parameters)  
SRD Setup time before SCK low - Master  
SRD Hold time after SCK low - Master  
tTSM  
tTHM  
4
4
ns  
ns  
1. Master mode is internally generated clocks and frame syncs  
2. Max clock frequency is IP_clk/4 = 60MHz / 4 = 15MHz for an 120MHz part.  
56855 Technical Data, Rev. 6  
36  
Freescale Semiconductor  
Enhanced Synchronous Serial Interface (ESSI) Timing  
3. All the timings for the ESSI are given for a non-inverted serial clock polarity (TSCKP=0 in SCR2 and RSCKP=0 in SCSR)  
and a non-inverted frame sync (TFSI=0 in SCR2 and RFSI=0 in SCSR). If the polarity of the clock and/or the frame sync have  
been inverted, all the timings remain valid by inverting the clock signal SCK/SC0 and/or the frame sync SC2/SC1 in the tables  
and in the figures.  
4. 50 percent duty cycle  
5. bl = bit length; wl = word length  
tSCKW  
tSCKH  
tSCKL  
SCK output  
tTFSBHM  
tTFSBLM  
SC2 (bl) output  
SC2 (wl) output  
tTFSWHM  
tTFSWLM  
tTXVM  
tTXEM  
tTXNVM  
tTXHIM  
First Bit  
Last Bit  
STD  
SC0 output  
tRFSBHM  
tRFBLM  
SC1 (bl) output  
SC1 (wl) output  
tRFSWHM  
tRFSWLM  
tTSM  
tSM  
tHM  
tTHM  
SRD  
Figure 4-24 Master Mode Timing Diagram  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
37  
1
Table 4-11 ESSI Slave Mode Switching Characteristics  
Operating Conditions: V = V  
SS  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Parameter  
Symbol  
fs  
Min  
Typ  
Max  
Units  
MHz  
ns  
152  
SCK frequency  
SCK period3  
tSCKW  
tSCKH  
tSCKL  
66.7  
33.44  
SCK high time  
ns  
33.44  
SCK low time  
ns  
Output clock rise/fall time  
4
ns  
ns  
Delay from SCK high to SC2 (bl) high - Slave5  
Delay from SCK high to SC2 (wl) high - Slave5  
Delay from SC0 high to SC1 (bl) high - Slave5  
Delay from SC0 high to SC1 (wl) high - Slave5  
Delay from SCK high to SC2 (bl) low - Slave5  
Delay from SCK high to SC2 (wl) low - Slave5  
Delay from SC0 high to SC1 (bl) low - Slave5  
tTFSBHS  
-1  
29  
tTFSWHS  
tRFSBHS  
tRFSWHS  
tTFSBLS  
tTFSWLS  
tRFSBLS  
tRFSWLS  
tTXES  
-1  
-1  
-1  
-29  
-29  
-29  
-29  
4
29  
29  
29  
29  
29  
29  
29  
15  
15  
15  
15  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Delay from SC0 high to SC1 (wl) low - Slave5  
SCK high to STD enable from high impedance - Slave  
SCK high to STD valid - Slave  
tTXVS  
SC2 high to STD enable from high impedance (first bit) - Slave  
SC2 high to STD valid (first bit) - Slave  
SCK high to STD not valid - Slave  
tFTXES  
tFTXVS  
tTXNVS  
tTXHIS  
4
4
4
SCK high to STD high impedance - Slave  
SRD Setup time before SC0 low - Slave  
SRD Hold time after SC0 low - Slave  
4
tSS  
4
tHS  
4
Synchronous Operation (in addition to standard external clock parameters)  
SRD Setup time before SCK low - Slave  
SRD Hold time after SCK low - Slave  
tTSS  
tTHS  
4
4
ns  
ns  
1. Slave mode is externally generated clocks and frame syncs  
2. Max clock frequency is IP_clk/4 = 60MHz / 4 = 15MHz for a 120MHz part.  
56855 Technical Data, Rev. 6  
38  
Freescale Semiconductor  
Enhanced Synchronous Serial Interface (ESSI) Timing  
3. All the timings for the ESSI are given for a non-inverted serial clock polarity (TSCKP=0 in SCR2 and RSCKP=0 in SCSR)  
and a non-inverted frame sync (TFSI=0 in SCR2 and RFSI=0 in SCSR). If the polarity of the clock and/or the frame sync have  
been inverted, all the timings remain valid by inverting the clock signal SCK/SC0 and/or the frame sync SC2/SC1 in the tables  
and in the figures.  
4. 50 percent duty cycle  
5. bl = bit length; wl = word length  
tSCKW  
tSCKH  
tSCKL  
SCK input  
SC2 (bl) input  
SC2 (wl) input  
tTFSBLS  
tTFSBHS  
tTFSWHS  
tTFSWLS  
tFTXVS  
tFTXES  
tTXVS  
tTXNVS  
tTXES  
tTXHIS  
First Bit  
Last Bit  
STD  
SC0 input  
tRFBLS  
tRFSBHS  
SC1 (bl) input  
SC1 (wl) input  
tRFSWHS  
tRFSWLS  
tTSS  
tSS  
tHS  
tTHS  
SRD  
Figure 4-25 Slave Mode Clock Timing  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
39  
4.11 Serial Communication Interface (SCI) Timing  
4
Table 4-12 SCI Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
DD  
= V  
= 3.0–3.6V, T = –40  
°
to +120  
°
C, C ≤  
50pF, f = 120MHz  
op  
SS  
SSIO  
SSA  
DDIO  
DDA  
A
L
Characteristic  
Symbol  
Min  
Max  
Unit  
Baud Rate1  
BR  
(fMAX)/(32)  
1.04/BR  
Mbps  
RXD2 Pulse Width  
TXD3 Pulse Width  
RXDPW  
TXDPW  
0.965/BR  
0.965/BR  
ns  
ns  
1.04/BR  
1. fMAX is the frequency of operation of the system clock in MHz.  
2. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.  
3. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.  
4. Parameters listed are guaranteed by design.  
RXD  
SCI receive  
data pin  
RXDPW  
(Input)  
Figure 4-26 RXD Pulse Width  
TXD  
SCI receive  
data pin  
TXDPW  
(Input)  
Figure 4-27 TXD Pulse Width  
56855 Technical Data, Rev. 6  
40  
Freescale Semiconductor  
JTAG Timing  
4.12 JTAG Timing  
1, 3  
Table 4-13 JTAG Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Characteristic  
TCK frequency of operation2  
Symbol  
fOP  
Min  
Max  
30  
Unit  
MHz  
ns  
DC  
33.3  
16.6  
3
TCK cycle time  
tCY  
TCK clock pulse width  
TMS, TDI data setup time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
TRST assertion time  
DE assertion time  
tPW  
ns  
tDS  
ns  
tDH  
3
ns  
tDV  
12  
10  
ns  
tTS  
ns  
tTRST  
tDE  
35  
4T  
ns  
ns  
1. Timing is both wait state and frequency dependent. For the values listed, T = clock cycle. For 120MHz operation,  
T = 8.33ns.  
2. TCK frequency of operation must be less than 1/4 the processor rate.  
3. Parameters listed are guaranteed by design.  
tCY  
tPW  
tPW  
VIH  
VM  
VIL  
VM  
TCK  
(Input)  
VM = VIL + (VIH – VIL)/2  
Figure 4-28 Test Clock Input Timing Diagram  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
41  
TCK  
(Input)  
tDS  
tDH  
TDI  
TMS  
Input Data Valid  
(Input)  
tDV  
TDO  
(Output)  
Output Data Valid  
tTS  
TDO  
(Output)  
Figure 4-29 Test Access Port Timing Diagram  
TRST  
(Input)  
tTRST  
Figure 4-30 TRST Timing Diagram  
DE  
tDE  
Figure 4-31 Enhanced OnCE—Debug Event  
56855 Technical Data, Rev. 6  
42  
Freescale Semiconductor  
GPIO Timing  
4.13 GPIO Timing  
1, 2  
Table 4-14 GPIO Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Characteristic  
Symbol  
PIN  
Min  
Max  
Unit  
ns  
GPIO input period  
2T + 3  
1T + 3  
2T - 3  
1T - 3  
GPIO input high/low period  
GPIO output period  
PINHL  
ns  
POUT  
ns  
GPIO output high/low period  
POUTHL  
ns  
1. In the formulas listed, T = clock cycle. For fop = 120MHz operation and fipb = 60MHz, T = 8.33ns  
2. Parameters listed are guaranteed by design.  
GPIO Inputs  
PIN  
PINHL  
PINHL  
GPIO Outputs  
POUT  
POUTHL  
POUTHL  
Figure 4-32 GPIO Timing  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
43  
Part 5 Packaging  
5.1 Package and Pin-Out Information 56855  
This section contains package and pin-out information for the 100-pin LQFP configuration of the 56855.  
TXD1  
RXD1  
VSSIO  
VDDIO  
VDDIO  
VSSIO  
PIN 76  
ORIENTATION  
MARK  
RD  
WR  
A0  
A1  
A2  
PIN 1  
D5  
D4  
D3  
D2  
A3  
VDD  
D1  
VSS  
VSS  
VDD  
MODA  
MODB  
MODC  
VDDIO  
CS3  
CS2  
CS1  
CS0  
VSSIO  
D0  
VSSIO  
IRQA  
IRQB  
VDDA  
VDDIO  
A20  
A19  
VSSA  
XTAL  
A18  
A17  
A16  
TXDO  
RXD0  
EXTAL  
A4  
PIN 51  
A5  
A6  
A7  
PIN 26  
Figure 5-1 Top View, 56855 100-pin LQFP Package  
56855 Technical Data, Rev. 6  
44  
Freescale Semiconductor  
Package and Pin-Out Information 56855  
Table 5-1 56855 Pin Identification By Pin Number  
Pin No.  
Signal Name  
VDDIO  
VSSIO  
RD  
Pin No.  
26  
Signal Name  
CLKO  
Pin No.  
51  
Signal Name  
RXD0  
TXD0  
A16  
Pin No.  
76  
Signal Name  
VDDIO  
TIO0  
1
2
3
4
5
27  
RSTO  
52  
77  
28  
RESET  
VDDIO  
53  
78  
VSSIO  
D6  
WR  
29  
54  
A17  
79  
A0  
30  
VSSIO  
55  
A18  
80  
D7  
6
7
8
A1  
A2  
A3  
31  
32  
33  
A8  
A9  
56  
57  
58  
A19  
A20  
81  
82  
83  
D8  
D9  
A10  
VDDIO  
D10  
9
VDD  
VSS  
34  
35  
36  
37  
A11  
VDD  
VSS  
DE  
59  
60  
61  
62  
D0  
VSSIO  
CS0  
CS1  
84  
85  
86  
87  
VDD  
VSS  
10  
11  
12  
MODA  
MODB  
VDDIO  
VSSIO  
13  
14  
MODC  
VDDIO  
38  
39  
TRST  
TDO  
63  
64  
CS2  
CS3  
88  
89  
STD0  
SRD0  
15  
16  
VSSIO  
IRQA  
40  
41  
TDI  
65  
66  
VDD  
VSS  
90  
91  
SCK0  
SC00  
TMS  
17  
18  
IRQB  
VDDA  
42  
43  
TCK  
67  
68  
D1  
D2  
92  
93  
SC01  
SC02  
VDDIO  
19  
VSSA  
44  
VSSIO  
69  
D3  
94  
D11  
20  
21  
XTAL  
45  
46  
A12  
A13  
70  
71  
D4  
D5  
95  
96  
D12  
EXTAL  
VDDIO  
22  
23  
24  
25  
A4  
A5  
A6  
A7  
47  
48  
49  
50  
A14  
A15  
72  
73  
74  
75  
VDDIO  
VSSIO  
RXD1  
TXD1  
97  
98  
VSSIO  
D13  
VDDIO  
VSSIO  
99  
D14  
100  
D15  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
45  
S
S
S
S
0.15 (0.006) AC T-U  
Z
-T-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE -AB- IS LOCATED AT BOTTOM  
OF LEAD AND IS COINCIDENT WITH THE  
LEAD WHERE THE LEAD EXITS THE PLASTIC  
BODY AT THE BOTTOM OF THE PARTING  
LINE.  
4. DATUMS-T-, -U-, AND-Z-TOBEDETERMINED  
AT DATUM PLANE -AB-.  
5. DIMENSIONS S AND V TO BE DETERMINED  
AT SEATING PLANE -AC-.  
-Z-  
6. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.250 (0.010) PER SIDE.  
DIMENSIONS A AND B DO INCLUDE MOLD  
MISMATCH AND ARE DETERMINED AT  
DATUM PLANE -AB-.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION.DAMBARPROTRUSIONSHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.350 (0.014). DAMBAR CAN NOTBELOCATED  
ON THE LOWER RADIUS OR THE FOOT.  
MINIMUM SPACE BETWEEN PROTRUSION  
AND AN ADJACENT LEAD IS 0.070 (0.003).  
8. MINIMUM SOLDER PLATE THICKNESS  
SHALL BE 0.0076 (0.003).  
-U-  
9. EXACT SHAPE OF EACH CORNER MAY VARY  
FROM DEPICTION.  
A
9
MILLIMETERS INCHES  
DIM MIN MAX MIN MAX  
S
S
S
0.15 (0.006) AB T-U  
Z
A
B
C
D
E
F
13.950 14.050 0.549 0.553  
13.950 14.050 0.549 0.553  
1.400 1.600 0.055 0.063  
0.170 0.270 0.007 0.011  
1.350 1.450 0.053 0.057  
0.170 0.230 0.007 0.009  
AE  
AD  
G
H
J
K
M
N
Q
R
S
0.500 BSC  
0.020 BSC  
-AB-  
0.050 0.150 0.002 0.006  
0.090 0.200 0.004 0.008  
0.500 0.700 0.020 0.028  
-AC-  
SEATING  
PLANE  
G
96X  
12 REF  
12 REF  
°
°
(24X PER SIDE)  
0.090 0.160 0.004 0.006  
1
5
1
°
5
°
°
°
AE  
0.150 0.250 0.006 0.010  
15.950 16.050 0.628 0.632  
15.950 16.050 0.628 0.632  
0.100 (0.004) AC  
V
W
X
0.200 REF  
1.000 REF  
0.008 REF  
0.039 REF  
°
M
R
D
F
0.25 (0.010)  
E
C
GAUGE PLANE  
J
N
W
°
Q
H
K
M
S
S
0.20 (0.008) AC T-U  
Z
X
SECTION AE-AE  
DETAIL AD  
Figure 5-2 100-pin LQPF Mechanical Information  
Please see www.freescale.com for the most current case outline.  
56855 Technical Data, Rev. 6  
46  
Freescale Semiconductor  
Thermal Design Considerations  
Part 6 Design Considerations  
6.1 Thermal Design Considerations  
An estimation of the chip junction temperature, T , in °C can be obtained from the equation:  
J
Equation 1: TJ = TA + (PD x RθJA  
)
Where:  
TA = ambient temperature °C  
RθJA = package junction-to-ambient thermal resistance °C/W  
PD = power dissipation in package  
Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and  
a case-to-ambient thermal resistance:  
Equation 2: RθJA = RθJC + RθCA  
Where:  
RθJA = package junction-to-ambient thermal resistance °C/W  
RθJC = package junction-to-case thermal resistance °C/W  
RθCA = package case-to-ambient thermal resistance °C/W  
R
is device-related and cannot be influenced by the user. The user controls the thermal environment to  
θJC  
change the case-to-ambient thermal resistance, R  
. For example, the user can change the air flow around  
θCA  
the device, add a heat sink, change the mounting arrangement on the Printed Circuit Board (PCB), or  
otherwise change the thermal dissipation capability of the area surrounding the device on the PCB. This  
model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through  
the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where  
the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the  
device thermal performance may need the additional modeling capability of a system level thermal  
simulation tool.  
The thermal performance of plastic packages is more dependent on the temperature of the PCB to which  
the package is mounted. Again, if the estimations obtained from R  
the thermal performance is adequate, a system level model may be appropriate.  
do not satisfactorily answer whether  
θJA  
A complicating factor is the existence of three common definitions for determining the junction-to-case  
thermal resistance in plastic packages:  
Measure the thermal resistance from the junction to the outside surface of the package (case) closest to the  
chip mounting area when that surface has a proper heat sink. This is done to minimize temperature variation  
across the surface.  
Measure the thermal resistance from the junction to where the leads are attached to the case. This definition  
is approximately equal to a junction to board thermal resistance.  
Use the value obtained by the equation (TJ – TT)/PD where TT is the temperature of the package case  
determined by a thermocouple.  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
47  
As noted above, the junction-to-case thermal resistances quoted in this data sheet are determined using the  
first definition. From a practical standpoint, that value is also suitable for determining the junction  
temperature from a case thermocouple reading in forced convection environments. In natural convection,  
using the junction-to-case thermal resistance to estimate junction temperature from a thermocouple  
reading on the case of the package will estimate a junction temperature slightly hotter than actual. Hence,  
the new thermal metric, Thermal Characterization Parameter, or Ψ , has been defined to be (T – T )/P .  
JT  
J
T
D
This value gives a better estimate of the junction temperature in natural convection when using the surface  
temperature of the package. Remember that surface temperature readings of packages are subject to  
significant errors caused by inadequate attachment of the sensor to the surface and to errors caused by heat  
loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple wire and bead to the  
top center of the package with thermally conductive epoxy.  
6.2 Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields.  
However, normal precautions are advised to avoid  
application of any voltages higher than maximum rated  
voltages to this high-impedance circuit. Reliability of  
operation is enhanced if unused inputs are tied to an  
appropriate voltage level.  
Use the following list of considerations to assure correct operation:  
Provide a low-impedance path from the board power supply to each VDD pin on the controller, and from the  
board ground to each VSS (GND) pin.  
The minimum bypass requirement is to place six 0.01–0.1 μF capacitors positioned as close as possible to  
the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each  
of the ten VDD/VSS pairs, including VDDA/VSSA.  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip VDD and VSS (GND)  
pins are less than 0.5 inch per capacitor lead.  
Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for VDD and GND.  
Bypass the VDD and GND layers of the PCB with approximately 100 μF, preferably with a high-grade  
capacitor such as a tantalum capacitor.  
Because the device’s output signals have fast rise and fall times, PCB trace lengths should be minimal.  
56855 Technical Data, Rev. 6  
48  
Freescale Semiconductor  
Electrical Design Considerations  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance.  
This is especially critical in systems with higher capacitive loads that could create higher transient currents  
in the VDD and GND circuits.  
All inputs must be terminated (i.e., not allowed to float) using CMOS levels.  
Take special care to minimize noise levels on the VDDA and VSSA pins.  
When using Wired-OR mode on the SPI or the IRQx pins, the user must provide an external pull-up device.  
Designs that utilize the TRST pin for JTAG port or Enhance OnCE module functionality (such as  
development or debugging systems) should allow a means to assert TRST whenever RESET is asserted, as  
well as a means to assert TRST independently of RESET. Designs that do not require debugging  
functionality, such as consumer products, should tie these pins together.  
The internal POR (Power on Reset) will reset the part at power on with reset asserted or pulled high but  
requires that TRST be asserted at power on.  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
49  
Part 7 Ordering Information  
Table 7-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor  
sales office or authorized distributor to determine availability and to order parts.  
Table 7-1 56855 Ordering Information  
Supply  
Voltage  
Pin  
Count  
Frequency  
(MHz)  
Part  
Package Type  
Order Number  
DSP56855  
1.8V, 3.3V  
1.8V, 3.3V  
Low-Profile Quad Flat Pack (LQFP)  
100  
100  
120  
120  
DSP56855BU120  
DSP56855  
Low-Profile Quad Flat Pack (LQFP)  
DSP56855BUE *  
*This package is RoHS compliant.  
56855 Technical Data, Rev. 6  
50  
Freescale Semiconductor  
Electrical Design Considerations  
56855 Technical Data, Rev. 6  
Freescale Semiconductor  
51  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,  
Inc. All other product or service names are the property of their respective owners.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
DSP56855  
Rev. 6  
01/2007  

相关型号:

DSP56855BUE

16-bit Digital Signal Controllers
FREESCALE

DSP56855E

16-bit Digital Signal Controllers
FREESCALE

DSP56855PB

56855 Digital Signal Processor Product Brief
ETC

DSP56856

Digitial Signal Controller
FREESCALE

DSP56857

120 MIPS Hybrid Processor
MOTOROLA

DSP56857

16-bit Digital Signal Controllers
FREESCALE

DSP56857BU120

120 MIPS Hybrid Processor
MOTOROLA

DSP56857BU120

16-bit Digital Signal Controllers
FREESCALE

DSP56857BUE

16-bit Digital Signal Controllers
FREESCALE

DSP56857E

16-bit Digital Signal Controllers
FREESCALE

DSP56857PB

120 MIPS Hybrid Processor
MOTOROLA

DSP56858

16-bit Digital Signal Controllers
FREESCALE