FS511 [FORTUNE]

18-bit ADC with 1 low noise OPAMP;
FS511
型号: FS511
厂家: Fortune Semiconductor    Fortune Semiconductor
描述:

18-bit ADC with 1 low noise OPAMP

文件: 总18页 (文件大小:948K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
REV. 1.7 FS511-DS-17_EN  
MAY 2014  
Datasheet  
FS511  
18-bit ADC with 1 low noise OPAMP  
Fortune Semiconductor Corporation  
富晶電子股份有限公司  
23F., No.29-5, Sec. 2, Zhongzheng E. Rd.,  
Danshui Town, Taipei County 251, Taiwan  
Tel.886-2-28094742  
Fax886-2-28094874  
www.ic-fortune.com  
This manual continnew product information. Fortune Semiconductor Corporation reserves the rights to  
modify the product specification without further notice. No liability is assumed by Fortune Semiconductor  
Corporation as a result of the use of this product. No rights under any patent accompany the sale of the  
product.  
Contents  
1. GENERAL DESCRIPTION.........................................................................................................................4  
2. FEATURES.................................................................................................................................................4  
3. APPLICATIONS .........................................................................................................................................4  
4. ORDERING INFORMATION.......................................................................................................................4  
5. PIN CONFIGURATION..............................................................................................................................4  
6. PIN DESCRIPTION .................................................................................................................................5  
7. FUNCTIONAL BLOCK DIAGRAM..........................................................................................................5  
8. TYPICAL APPLICATION CIRCUIT ........................................................................................................6  
9. ABSOLUTE MAXIMUM RATINGS.......................................................................................6  
10. ELECTRICAL CHARACTERISTICS ............................................................................7  
11. FUNCTION DESCRIPTION...................................................................................................................8  
11.1 Microprocessor Inteface ....................................................................................................8  
11.2 Power Sy.......................................................................................................................8  
11.2.1 power (VDD, VSSA) and Digital power (VCC, VSS) ..........................................8  
11.2.2 Sh-able Power Output......................................................................................8  
11AGND Generator ...........................................................................................................9  
dgap Voltage Refernd Temperature sensr.................................................9  
Current Source Ge......................................................................................9  
1.3 Clock Generator .....................................................................................................10  
1.4 Function Network.........................................................................................................10  
11.4.1 Analog Multipex: ........................................................................................................... 11  
11.4.2 OPA.............................................................................................................. 11  
11.4.3 The ation of the Delta-Sigma (Modulator ADC............................................... 11  
12. APPLICATION SAMPLE.........................................................................................................................15  
13. PACKAGE INFORMATION .............................................................................................................17  
13.1 Package Outline, DIP20 ....................................................................................................17  
13.2 Package Outline, SOP2.......................................................................................................17  
14. REVISION HISTORY...............................................................................................................................18  
1. General Description  
The FS511 is a high-resolution analog-to-digital converter (ADC) chip. The core of this chip is an 18-bit  
resolution ADC. Besides the ADC, FS511 consists of switching circuits, operational amplifier, digital filter,  
crystal oscillation circuits, digital control logic, and microprocessor interface. Under 5V working voltage, this  
chip consumes 1.2mA power.  
2. Features  
Delta-Sigma ADC, 18-bit high-resolution 10Hz output rate (Programmable).  
Linearity Error: 0.005%FS  
Voltage operation ranges from 4.5V to 6V.  
4MHz crystal oscillator.  
Operation current is less than 1.2mA; sleep mde curenis about 1A.  
SPI Interface to Micro-Processor  
Package: 20-pin DIP, 20-pin SOP.  
3. Applications  
Electronics Weigh Scale  
Sensor or Transducer mesuremnt applcation  
Others  
4. Ordering Infotion  
Product Number  
FS511-PI  
cription  
Package Type  
P20 Pb free package parmbe
SOP20 Pb free package part number.  
SOP20 ROHSpacknumber.  
DIP20 Pb free package)  
SOP20 (Pb free package)  
SOP20 (ROHSpackage)  
FS511-PHB  
FS511-GH
5. Pin Conation  
1
2
FTB  
FTC  
CS  
K  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
3
OPO  
PN  
OPP  
DI  
DO/IRQO  
XTALI  
FS511  
6
RL  
SGND  
VRH  
AGND  
VS  
XTALO  
VCC  
7
8
VSS  
9
VDD  
10  
VSSA  
6. Pin Description  
Name  
FTB  
FTC  
OPO  
OPN  
OPP  
VRL  
SGND  
VRH  
AGND  
VS  
VSSA  
VDD  
Attribute  
Pin No Description  
AIO  
AIO  
AIO  
AIO  
AIO  
AIO  
AI  
1
2
3
ADC Pre-Filter Capacitor Connection and input high  
ADC Pre-Filter Capacitor Connection and input low  
OPAMP Output  
4
OPAMP Negative Input  
5
OPAMP PositivInput  
6
7
Input Reference Voltage low of the ADC  
Signal Gound  
AI  
8
9
Input Reerence Voltage high of the ADC  
Analg Grond  
APIO  
APO  
API  
PI  
API  
DPO  
DO  
DI  
10  
11  
12  
13  
14  
15  
16  
17  
8  
19  
20  
Voltage source  
nalog Netive Power Supply  
Positive Power Supply  
Digital Negative Power Supply  
Power Supply for Digitanal  
4MHz Oscillator Outpu
4MHz Oscillator Input  
SPI Data Outpor interrupt request output  
SPI Data Inpt  
SPI Clock Inut  
Chip select of Digital Interface  
VSS  
VCC  
XTALO  
XTALI  
SDO/IRQO  
SDI  
SCLK  
/CS  
DO  
DI  
Notations: D stands for Dgital. A stands for Analog. stands for Power. O stands for Output. I stands for Input.  
For example: ns “Dgital Input/Output”
7. Functional Block Diagram  
VRL  
VS  
FTB FTC  
VRH  
VDD  
OPN OPO  
VSSA  
AGND  
VCC  
VSS  
Power system  
OPP  
OPAMP  
& Network  
Δ Σ Modulator  
SGND  
Digital  
Filter  
Digital Interface  
and Control Registors  
Clock or  
___  
CS  
XTALI XTALO  
DI  
SK  
DO/IRQO  
8. Typical Application Circuit  
VS  
1
2
FTB  
FTC  
CS  
SK  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
27nF  
Micro-  
Processor  
2.5k  
250k  
Bridge  
sensor  
3
OPO  
OPN  
OPP  
DI  
4
DO/IRQO  
XTALI  
5
1M  
4MHz  
FS511  
2.5k  
250k  
6
VRL  
SGN
VRH  
AGND  
VS  
XTALO  
VCC  
10uF  
40k  
10k  
10k  
8
VSS  
40
9
Re
5
Battery  
10uF  
10uF  
0.1uF  
10  
VA  
uF  
9. Absoluaximum Ratings  
Parameter  
Rating  
-0.3 to 10  
Unit  
Supply Voltagnd Potential  
Apped Input/Output Voltage  
Ambiet Operating Temperature Range  
Storage Temperature Ran
Soldering Temperature
V
V
-0.3 to VDD3  
-40 to +5  
-55 +150  
2
Human body Model (HBM): 2KV  
Machine Model (MM): 200V  
ESD Tolerance  
10. Electrical Characteristics  
DC Characteristics (VDD=5V, TA=25, unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Analog-to-Digital Converter  
μ V  
μ V  
Zero Input Reading  
VIN=0V, Vref=500mV , CYS=01  
-15  
-25  
15  
25  
VIN= ± 0.9 Vref, Vref=500mV  
CYS=01  
,
Linearity (Max. deviation from best  
straight line fit)  
VCM=AGND  
Vref=500mV  
± 1V, VIN=0.25V,  
μ V/V  
μ V  
Input Common-Mode Rejection Ratio  
150  
10  
Noise (p-p Value not Exceeding 95%  
of Time)  
VIN=0V, 500mV Scale  
5
Rollover Error (Difference in reading  
for equal positive and negative inputs -VIN=+VIN=500.0mV  
near Full Scale)  
μ V  
0
10  
50  
VIN=00.00mV, -10<TA<+50℃  
/℃  
Scale Factor Temperature Coefficient  
Current Consumption  
10  
0.7  
A  
Instrumentation Amplifier  
Input Offset Voltage without chopper Rs<100Ω  
Input Offset Voltage pper Rs<100Ω  
Input Referred Ne withut chopper Rs=100Ω, 0.1z~1Hz  
30  
1
mV  
μ V  
μ Vpp  
μ Vpp  
pA  
Input Referrh chopper  
Input Bias Current  
Rs=1Hz~1Hz  
0.3  
100  
300  
3
Input Cmmon-Mode Voltage Rane  
Current Consumption  
2
V
μ A  
200  
300  
General Electrical Characteristics  
VDD Operating Current  
Sleep Current  
Enable ADPAMP  
1
2
5
mA  
μ A  
Ω
OSC, AGND  
1
VS switch resister  
Digital Output High  
Digital Output Low  
Digital Input High  
Digital Input Low  
20  
4.7  
0.3  
IOUT=-1mA  
IOUT=1mA  
V
V
3.5  
V
1.5  
V
[1] These parameters are guaranteed by design and are tested only by sampling while mass production.  
[2] While a voltage source with large output impedance is measured by an instrumentation amplifier having  
input bias current, an additional input offset voltage will be introduced. However, this offset voltage could  
be cancelled by mirrored offset cancellation technique.  
11. Function Description  
Microprocessor Interface  
FS511 can be directly connected to any microprocessor by pins of CS_, SK, DI, DO/IRQO. It can access  
the read/write of the control registers, handle interrupts, and access the measure registers.  
Writing Mode  
CS_  
DI  
SK  
DO  
……  
……  
……  
0
A<2>  
A<1>  
A<0>  
A<0>  
0
D<7>  
D<6>  
D<5>  
D<4>  
D<3>  
D<2>  
D<1>  
D<0>  
QO  
ReadiMode  
CS_  
DI  
A<1>  
………  
SK  
DO  
IRQ
D<7>  
D<6>  
>  
D>  
D<3>  
D<2>  
D<
D<0>  
IRQO  
Reading ADC  
CS_  
DI  
……………  
…………
…  
SK  
DO  
IRQO  
D<23>  
D<22>  
D<21>  
D<2>  
D<1>  
D<0>  
IRQO  
If ADC Data converse complete, IRQill be high to Low
Power System  
11..1  
Analog power (VD, VSSA) and Digital power VCC, VSS)  
ADC, OPAMP and analog circuit used Analpowr (VDD, VSSA). VDD typically is 5V.  
Digital Interface and Digital circuit uDigitapower (VCC, VSS).  
11..2  
Switch-able Power Output  
VDD  
VS  
ENVS  
Terminals of VS is the witch-able power output of VDD. The PMOS switch is controlled by ENVS control signal.  
When ENVS = 1, the switch is short.  
11..3  
AGND Generator  
VDD  
600K  
AGND  
10uF  
ENGNDB  
600K  
VSSA  
VSSA  
AGND is analog common voltage. Wen ENGNB=0, analog commvoltge generator will ac
11..4  
Bandgap Voltage Reference and Temperature sesor  
REFI  
K  
50K  
Voltage Reference  
and  
Temperature Sen
TEMPH  
TEMPL  
AGND  
E
.
REFO ilow temperature coefficiet bandp voltage reference utput. When ENBAND=1, the circuit will  
active. Thoutput voltage tGND is about 1.2V. Typical temperature coefficient is 100ppm/.  
{TEMPH, TEMPL} is prto ambient temperaure. Ycan elect them to ADC input and transfer to  
digital code. (Typical 500u50uV/)  
11..5  
Bias Current Source Genera
3uA  
400K  
REFO  
(1.2V)  
ENGNDB  
AGND  
VSS  
The bias current for all the og circuits of FS511. If the embedded op amp works, REFO will be pulled to  
AGND by the fedbac; there are 1.2V in resistor 400K, and 3uA bias current can be obtained.  
Clock Generator  
1M  
4MHz  
4MHz Crystal  
Ocillator Circuit  
CLK Divider  
FS  
ENXTB  
We connect a 4MHz crystal oscillatr to the clock generator to generate a 4MHz clocy. A  
frequency divider is used to divide the clock sinal to generate a signal FS, and the ADC uses l to  
do data conversion.  
ENXTB  
ENAD  
FS  
L
H
H
L
83.33 kHz  
0, (L)  
Function Networ
Adress  
ame  
7
6
5
4
3
2
1
0
NET[7:0]  
ETB[70]  
TC[7:0]  
TD[7:0]  
R/W  
SINL[1:0]  
SIN[1:0]  
ENREF  
SFTA[1
PL[1:0]  
R/W OPEN  
R/W ENAD  
C[1:0]  
SVR1  
SVR0  
SVRL  
SVRH  
ADG:0]  
ENGNDB  
R/W ENXTB 
CYS[1:0]  
TPS[2:0]  
4
ADCO[23:0]  
R
27nF  
OPP  
OPN  
OPO  
FTB  
F
VRL  
SGND  
VRH  
VDD  
ENVS  
SVR0  
SVR1  
5K  
SVR0  
5K  
SVR0  
45K  
0K  
45K  
_
VS  
OP  
+
SFTA[0]  
S1]  
ADO[23:0]  
IN+  
IN+  
OPC[1:0]  
OPEN  
FTIN  
FTB  
SINH[1:0]  
SINL[1:0]  
TPS[2:0]  
ENAD  
ADC  
TEMPH  
ND  
TEMPL  
SGND  
VRH  
ADG[5:0]  
FTIN  
IN-  
IN-  
OPH  
OPO  
VRL  
VR+  
VR-  
*(REFI, AGND)= 0.5V  
SVRH  
REFI  
VR+  
Voltage Reference  
and  
Temperature Sensor  
VRH  
TEMPH  
TEMPL  
SVRL  
AGND  
VRL  
VR-  
ENREF  
11..1  
Analog Multiplex:  
1. Low Pass Filter Input:  
SINH[1:0]  
Select  
00  
OPO  
01  
OPH  
10  
SGND  
11  
TEMPH  
2. ADC Negative Input:  
SINL[1:0]  
Select  
00  
VRL  
01  
VRH  
10  
SGND  
11  
TEMPL  
3. Low Pass Filter Output, ADC Positive Input:  
SFTA[0]  
Select  
0
FTB  
1
FTIN  
4. External Filter Control: SFTA[1]=1, FTIN and FTB hort; SFTA[1]=0, FTIN and FTB open.  
5. Internal Reference Voltage Control: SVR0=1, (VRH,VRL) = 1V (at VDD=5V). SVR1=1,  
SGND=1/2(VRH,VRL).  
6. ADC Reference Voltage Negative Inpu:  
SVRL  
Select  
0
VRL  
1
AGND  
7. ADC Reference Voltage Positive Input:  
SVRH  
Select  
0
VRH  
1
REFI  
8. OPAMP Refeltage Input:  
SOPL[1:0]  
Select  
0  
VRL  
01  
VRH  
10  
SGND  
11  
AGND  
11..2  
OP
OPEN is the OPAMP enable coal.  
OC [1:0] can set OPAMP input oon mode as follow00: +Offset, 01: -Offset, 10: 2KHz chopper  
frequency, 11: 1KHz Choppefrequency.  
1.  
2.  
11..3  
The Operation othe Delta-Sigma () Modulator ADC  
This high resolution ADC is designed by tchnology of delta-sigma () modulator. The continuous  
analog signals are sampled by a very high samg rae that is much higher than the bandwidth of the input  
signal. The delta-sigma modulator conthe input signal to a series of 1-bit codes. These 1-bit codes are  
then fed to the digital filter to filter high frequency quantization noise to find high resolution digital  
outputs. This kind of ADC quantizes in the analog part, therefore, it has very good linearity. Because it is  
in a fully differential configuration, the cmmon mode rejection ratio (CMRR) is very high and can reduce the  
common mode signals effectively.  
ANALO  
INTEGRGATO  
R
Vin  
DIGITAL LOW PASS  
DECIMATION  
FILTER  
Dout  
ANALO  
INGPU  
T
COMPARATOR  
Vref, -Vref, -Vref, Vref, Vref, Vref,...  
1, -1, -1, 1, 1, 1,....  
DA  
C
The Symbolic Diagram of the Delta-Sigma Analog-to-Digital Converter  
The symbolic diagram of the delta-sigma ADC is shown as above. It consists of an analog subtractor, an  
integrator, a comparator, a 1-bit digital-to-analog converter (DAC), and a low-pass digital filter. The analog  
signals are continuously sampled and are subtracted by the expected voltage. The difference of the signals is  
fed into the integrator, and then the signal is compared with a reference voltage to find a digital output. This  
digital output is converted by the 1-bit DAC to become an analog signal (+Vref or -Vref) and then negatively fed  
back into the integrator. Due to the infinitive DC gain of the integrator, if the change of the input signal is much  
slower than the sampling speed, the average voltage obtained by the delta-sigma modulator will be very close  
to the input signal. In some resolution they can be treated to be the same, therefore, the 1-bit output data from  
the comparator are equivalent to the Vref analog signal values. The digital filter then decimates the 1-bit data  
to get a very high resolution digital code.  
ENAD(ADG<7>) is the enable control signal for the ADC. It is 1 to enable the ADC; it is 0 to turn off the ADC  
and can save power.  
11..3.1.  
Gain Stage Setting  
There are four different gain paths to the input of the FS511 ADC, and they are controlled by cotrol  
register ADG[3:0]. Two different gain pahs control the input reference voltageand they are ed b
control register ADG[5:4]. The gains shown here are not accurate. The accurate gains can be feful  
calibration.  
0.5  
ADG[0]  
0.5  
1.0  
To ADC  
signal  
input  
To ADC  
reference  
input  
Vin  
(IN+, IN-)  
ADG[1]  
AD3]  
ref (VRVR-)  
ADG[
ADG[5]  
0.25  
0.1  
0.25  
Diagram of FSSetting  
By proper selection of the gain phis ADC can be appliethe ptimum dynamic range for all the  
mesuring applications. Table shows ADG[5:0] for threfreqently used applications.  
Table: FS511 ADC Typical Gain Setting  
First Scale  
01_001  
1.0  
Second Scale  
11_0111  
1.25  
Third Scale  
11_1000  
1.25  
ADG<5:0>  
Reference Voltage GainEFi  
Input Voltage GainGSIGi  
1.0  
1.25  
0.1  
The transfer function for each scale is as llows,  
vx  
i
G
Equation 1  
Dx
F v  
E
ir e  
The gains for the reference voltages and input voltages shown in Table are approximate values. The  
accurate gains for the reference oltages and input voltages can be found by careful calibration.  
11..3.2.  
Digital Filter  
In Symbolic Diagram of the Delta-Sigma Analog-to-Digital Converter, the 1-bit output of the comparator  
should be fed to the digital low pass filter to do decimation to find the high resolution multiple-bit digital output.  
The transfer function of the FS511 digital filter is:  
2  
s i  
Nnf fS  
1
H
f   
Equation 2  
N 2  
s i  
nf fS  
Where N is TAP of the digital filter.  
Suppose the sampling rate of the ADC is 83.3KH, the TAP of the digital filter is 8192. We can find the  
frequency response diagram of the digital filter as shown in Fig . The first zero is at:  
fS  
N
8333Hz  
8192  
Equation 3  
fZ1  
10Hz  
The Frequency Response Diagram of FS51 Digital Filter  
0
-
-100  
-150  
-200  
0
20  
0  
60  
80  
100  
Hz  
The zell at multiples of 10Hzigital filter will filter out all he signals near the zero points.  
From bove fige can find that thises 50Hz and 60Hz uppressed very well. If the sampling  
rate s 83KHz and the TAP of the filter , the irst zero-frequeis at 5Hz.  
The outut rate is selected by TP[2:0].  
TPS [
TAP (N)  
ADutput Rate and First Zero FrequencyHz)  
1
101  
100  
011  
010  
001  
000  
16384  
8192  
4096  
2048  
1024  
512  
5
10  
20  
40  
80  
160  
320  
640  
6  
28  
 
11..3.3.  
Reading and Calculating of Digital-to-Analog Converter  
Due to the manufacture process drift, there is an offset voltage in the FS511 ADC such that an offset  
value is existed in the ADC output. In order to eliminate the offset value, FS511 provides three operation modes,  
which can be set by CYS <1:0> of control register NETD. The ADO output and calculation are different in  
different operation modes, and they are described in the following subsection.  
ADC Output ADO  
Set CYS<1:0>=00, the ADC inputs are short circuited, and we can find the negative offset voltage of the ADC  
from ADO[23:0].  
Set CYS<1:0>=11, we can find the equivalent voltage of he input signal from ADO[23:0].  
Set CYS<1:0>=01, and the ADO[23:0] output is the value of an ideal ADC. This mode is suitable for high  
resolution measurement.  
When CYS<1:0>01, the output rate of ADO[23:0] s the fist zero frequency,  
Equation 3. When CYS<1:0> =01, the outpurate equafZ1  
f
Z1 , of COMB as described in  
2
.
11..3.4.  
The Conversion of the Digital Coes and Equivalent Voltage  
The output of the FS511 ADC is ADO[23:0], whh is a 24-bit 2’s coment number. ADO[23] bit;  
0 represents a positive number, and repreents a negative nuber. he decimal point lies tween  
ADO[22] and ADO[21].  
If ADO[23:0]=0010_1000_0000_000_0000_0000, the equivalent floating point numbe
ADO _1000_ 0000_ 0000_ 0000_ 0000  
21 022 123 24 025 ...... 0222  
0.5 0.125 0.625  
Equation 4  
If ADO[23:0_1111_1111_1111_1quivalent floating point number is:  
A11.01_1111_1111_11_1111_1111  
 (00.10_ 0000_ 0000_ 0000_ 001)  
 (121 022 023 024 ...... 1222  
 002384  
Equation 5  
G'  
Vref  
From Equation 1, if gain  
equals 1 and reference voltage  
=1.00000V, the value of ADO,  
0010_1000_0000_0000_0000_0000, can be uscalculate the measured voltage as:  
Vref  
G'  
1.00000V  
1
vx   
Dx   
0.0.62500V  
If ADO=1101_1111_1111_1111_1111_1111, he measured voltage can be calculated:  
Vref  
G'  
1.00000V  
1
vx   
Dx   
0.5000002384 0.50000V  
G'  
1%  
However, due to he manufe process drift  
is not exactly equal to 1, and there will be around  
V
offset. Similarly te reference voltage source and resistors may affect the reference voltage ref , and make  
Vref  
not to be exact 100000V. Therefore, we have to calibrate the ADC.  
11..3.5.  
Other Control Setting  
CPVR is the enhancement mode for resistance measuring. It is set to 1 to improve the linearity when  
measuring resistance.  
12. Application sample  
Example Network setting:  
Mode  
NETA  
NETB  
00h  
NETC  
93h  
NETD  
57h  
ADC  
88h  
88h  
OPAMP+ADC  
E0h  
93h  
57h  
Demo Assembly code for Digital Interface:  
endm  
sk_1 m
bFS511_PT,2  
; 3.2us  
;===========================  
; FS511_RW.ASM  
; FS511 Read/Write use FS9822  
; Edit by Jong 2003/6/27  
version 0.0  
dly  
endm  
di_0 macro  
;=======================  
Addr_bf EQU E
bcf FS511_PT,1  
dly  
endm  
RW_bf  
EQU AL  
Rd_cnt1 EQunter0  
Rd_cnt2 ter1  
di_1 macro  
bsf FS511_PT,1  
CS_  
SK_  
DI_  
DO_  
E
EQU 1  
EQU 0  
Port3 bit 3  
; Port3 bit 2  
; Port3 bit 1  
; Port3 bit 0  
dly  
en
sk_pls  
maro  
sk_
sk_0  
endm  
FS511_T  
FS511_PTEN EQU PTN  
FS511_PTPU EQU 
EQU PT3  
Status  
Work  
C
EQU 4  
EQU 5  
EQU 1  
Wr511 macro d1,d2  
movlfd1,Addr_bf  
movlfd2,RW_bf  
call _511W  
endm  
;-------------------------------------------  
; user define macro  
;-------------------------------------------  
dly macro  
nop  
Rd511 macro d1  
movlfd1,Addr_bf  
call _511R  
endm  
endm  
cs_0 macro  
bcf FS511_PT,3  
dly  
;-------------------------------------------  
; Initial of port  
;-------------------------------------------  
511_ini:  
endm  
cs_1 macro  
bsf FS511_PT,3  
dly  
bsf FS511_PTEN,CS_  
bsf FS511_PTEN,SK_  
bsf FS511_PTEN,DI_  
bcf FS511_PTEN,DO_  
bsf FS511_PTPU,DO_  
bsf FS511_PT,CS_  
return  
endm  
sk_0 macro  
bcf FS511_PT,2  
dly  
;-------------------------------------------  
; FS511 Register Write sub function  
; use Addr_bf as address Buffer  
; use RW_bf as Write Data buffer  
;-------------------------------------------  
_511W:  
di_0  
return  
Get_data:  
clrf work  
bsf rd_cnt1,3  
GetLoop:  
clrf Status,C  
rlf work,1  
; rd_tmp  
cs_0  
di_0  
sk_pls  
di_0  
; 0  
;
btfsc FS511_PT,0  
bsf work,0  
sk_pls  
btfsc addr_bf,1 ;A<1>  
di_1  
;
sk_pls  
di_0  
btfsc addr_bf,0 ;A<0>  
decfsz  
goto GetLoop  
return  
rd_Cnt1,1  
;
di_1  
sk_pls  
di_0  
;
Get_adc:  
movwf  
call Get_data  
;WR  
RW_bf+2  
sk_pls  
Send_data:  
movwf  
RW_bf+1  
bsf RD_cnt1,3  
clrf Status,C  
SendLoop:  
rlf RW_bf,1  
di_0  
call Get_dat
return  
;
btfsc Status,C ;D<x>  
di_1  
sk_pls  
;
SendLoopDec:  
decfsz  
rd_1,1  
goto SendLoop  
di_0  
cs_1  
return  
;------------------------------------------  
; FS511 Register Read function  
; use Adr_bf as address Buffe
; use RW_bf, ~+1, ~+2 as Read Data buffer  
;----------------------------------  
_511R:  
cs_0  
di_0  
;
btfsc addr_bf,2 ;A<2>  
di_1  
sk_pls  
di_0  
;
;
btfsc addr_bf,1 ;A<1>  
di_1  
;
sk_pls  
di_0  
;
btfsc addr_bf,0 ;A<0>  
di_1  
;
sk_pls  
di_1  
;RD  
sk_pls  
call Get_daa  
btfsc addr_bf,2  
call Get_adc  
movwf  
cs_1  
RW_bf  
13. Package Information  
Package Outline, DIP20  
DIP20  
Package OutlinP20  
14. Revision History  
Ver.  
0.3  
Date  
unknown  
Page  
Description  
Initial version of document.  
-
1.0  
2003/12/08  
1
Revise "Electrical Characteristics, Micro-process  
Interface, Power System, Clock Generator, Function  
Network, Application Note”  
2
18-bit  
high-resolution  
10Hz  
output  
rate  
(Programmable).  
3-4  
8
Revise Specification Table.  
Delete  
Temperature sensor”  
Deleted andgap Voltage  
“Bandgap  
Voltage  
Reference  
Reference  
and  
and  
9-10  
Temperature ssor Nework setting.  
15-16  
Add “Example Newok setting” and “ Demo code for  
Digital interface”  
1.1  
2004/09/13  
All  
7
10  
Refmat and crrect the contents  
Add Asolute Maximum Rating.  
AdbacBandgap Voltage Refeence and  
Temprature sensor”  
12  
Add ack Bandgap ge Reference and  
Temperature sensornetwo.  
9  
4
20  
21  
6
13  
15  
All  
4
Add Package Information”  
Add SOP20 Pb free packagpart number.  
Add Package Ouline, SOP20  
1.2  
1.3  
2005/07/31  
2006/02
Add Revision Hisory  
Correct Typal Appication Circuit”  
Complete ng of OPAMP input operaon mehod  
Correct deriptioof the sign bit  
Revisatasheet format  
1.4  
1.5  
1.6  
2006/05/19  
2
Ad-GHBin Ordering Infrmation”  
1.7  
2
2
Revismpany address  

相关型号:

FS511-GHB

18-bit ADC with 1 low noise OPAMP
FORTUNE

FS511-PHB

18-bit ADC with 1 low noise OPAMP
FORTUNE

FS511-PI

18-bit ADC with 1 low noise OPAMP
FORTUNE
INFINEON

FS56-020

Split Bobbin Power Transformer, 1.1VA, ROHS COMPLIANT
TRIAD

FS56-020-C2

Split Bobbin Power Transformer, 1.1VA, ROHS COMPLIANT
TRIAD

FS56-020-C2-B

Split Bobbin Power Transformer, 1.1VA, ROHS COMPLIANT
TRIAD

FS56-045-C2

Split Bobbin Power Transformer, 2.5VA, ROHS COMPLIANT
TRIAD

FS56-045-C2-B

Split Bobbin Power Transformer, 2.5VA, ROHS COMPLIANT
TRIAD

FS56-110

Split Bobbin Power Transformer, 6VA, ROHS COMPLIANT
TRIAD

FS56-110-C2

CLASS 3 TRANSFORMER
TRIAD

FS56-110-C2-B

Split Bobbin Power Transformer, 6VA, ROHS COMPLIANT
TRIAD