KA3120 [FAIRCHILD]

SPINDLE & VOICE COIL MOTOR ONE CHIP DRIVER; 主轴和音圈电机ONE芯片驱动
KA3120
型号: KA3120
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

SPINDLE & VOICE COIL MOTOR ONE CHIP DRIVER
主轴和音圈电机ONE芯片驱动

电机 驱动
文件: 总43页 (文件大小:778K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
HDD PRODUCTS  
KA3120  
SPINDLE & VOICE COIL MOTOR ONE CHIP DRIVER  
48-QFPH-1414  
The KA3120 is an ASIC combination chip, which was  
designed for the HDD, includes the following functions:  
spindle motor drive, voice coil motor drive, retract and  
power management.  
To drive and control the spindle, the digital ASIC provides  
the appropriate control signals (Start up, commutation,  
speed control) to the KA3120. The spindle motor condition  
is monitored by the FG output and the motor speed control  
is accomplished via the PWMSP input. The ASIC controls  
the voice coil motor current via PWMH and PWML inputs  
and the power management circuit always monitors the  
power supply voltages.  
FEATURES  
ORDERING INFORMATION  
Device  
Package  
Operating Temperature  
SPINDLE MOTOR DRIVE PART  
KA3120  
48-QFPH-1414  
0 ~ 70°C  
Soft switching  
Spindle brake after retract  
Adjustable brake delay time  
2.0A max. current power driver  
Low output saturation voltage: 1V typical @1.6A  
PWM decoder & filter for soft switching  
The digital circuit (ASIC) based start-up, commutation and motor speed control  
VOICE COIL MOTOR DRIVE PART  
Trimmed low offset current  
1.2A max. current power driver  
Gain selection and adjustable gain  
Automatic power down retract function  
Class AB linear amplifier with no dead zone  
Low output saturation voltage: 0.8V typical @1.0A  
Internal full bridge with VPNP (Vertical PNP) & NPN  
VCM offset monitoring  
Rev. B  
MIC-99D001  
January 1999  
1
Ó 1999 Fairchild Semiconductor Corporation  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
POWER MONITORING  
Power on reset with delay  
Hysteresis on both power comparators  
Over temperature & over current shut down  
5V and 12V power monitor threshold accuracy ±2%  
PACKAGE  
48QFPH (48 pin quad flat package heat-sink)  
APPLICATION  
Hard disk drive (HDD) products  
MIC-99D001  
January 1999  
2
PRELIMINARY  
HDD PRODUCTS  
KA3120  
BLOCK DIAGRAM  
POR  
Vreg  
Power-on  
Reset  
Interface  
FG  
U
MCLK  
V
3-Phase  
BLDC  
Spindle Motor  
Driver  
W
PWMSF  
PWMSP  
Motor  
Custom  
N
Digital  
ASIC  
VCM+  
Voice  
Coil  
Motor  
VCMOFFSET  
Gainsel  
VCM-  
Voice Coil Motor  
Driver  
PWMH  
PWML  
Retract  
Brake  
MIC-99D001  
January 1999  
3
PRELIMINARY  
KA3120  
HDD PRODUCTS  
PIN CONFIGURATION  
TAB  
48 47  
46 45 44 43  
42 41  
40 39 38 37  
PWMSF  
CFSF  
ADJ  
1
2
3
4
5
6
N
36  
35  
34  
33  
32  
31  
SUBGND  
V
SENSE5  
VDD  
PCS  
W
FG  
SUBGND  
KA3120  
TAB  
TAB  
7
8
VREF  
MCLK  
30  
29  
28  
27  
26  
25  
ERROUT  
VDD  
VCMOFF  
9
ERRIN  
10  
11  
12  
POR  
VCM+  
PGND  
CDLY  
GAINSEL  
SENSEOUT  
13 14  
15 16 17 18  
19 20  
21 22 23 24  
TAB  
MIC-99D001  
January 1999  
4
PRELIMINARY  
HDD PRODUCTS  
KA3120  
PIN DESCRIPTION  
Pin No.  
1
Symbol  
PWMSF  
CFSF  
I/O  
I
Description  
PWM input for spindle soft switching  
2
-
Capacitor for spindle PWM soft switching filter  
Reference voltage adjustable  
Adjustable threshold voltage to 5V  
5V power supply  
3
ADJ  
-
4
SENSE5  
VDD  
I
5
-
6
FG  
O
O
I
Frequency generation to spindle speed  
Voltage reference output for ASIC power  
Clock from ASIC for switching  
VCM output offset monitoring pin  
Power On Reset  
7
VREF  
8
MCLK  
VCMOFF  
POR  
9
O
O
-
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
CDLY  
Delay capacitor for power on reset  
VCM Amplifier gain selection  
PWM signal input (MSB)  
PWM signal input (LSB)  
Filter capacitor for VCM PWM control  
Delay capacitor for retract  
12V power line  
GAINSEL  
PWMH  
PWML  
CFVCM  
CRET  
I
I
I
-
-
V
-
CC  
FILOUT  
SENSE  
CRET2  
PVCC  
O
I
VCM PWM output  
VCM current sense input  
Power for VCM retract  
-
-
12V power line for VCM output  
VCM negative output  
VCM(- )  
SUBGND  
RRET  
-
-
Ground  
I
Adjustable maximum retract current  
VCM current sense Amplifier output  
Ground  
SENSEOUT  
PGND  
O
-
VCM(+)  
ERRIN  
-
VCM positive output  
I
VCM error Amplifier negative input  
5V power supply  
V
-
DD  
ERROUT  
SUBGND  
W
O
-
VCM error Amplifier output  
Ground  
O
Spindle motor W phase output  
MIC-99D001  
January 1999  
5
PRELIMINARY  
KA3120  
HDD PRODUCTS  
PIN DESCRIPTION (Continued)  
Pin No.  
33  
Symbol  
PCS  
I/O  
O
O
-
Description  
Spindle soutput current sensing  
Spindle motor V phase output  
Ground  
34  
V
35  
SUBGND  
N
36  
I
Spindle motor neutral point  
Spindle motor U phase output  
37  
U
O
-
38  
CCOMP  
BRAKE  
CBRAKE  
PVCC  
SENSE12  
GND  
Spindle output control compensation  
Dynamic brake  
39  
O
-
40  
Back-EMF charging capacitor for brake power  
12V power line for spindle  
41  
-
42  
I
Adjustable for threshold voltage to 12V  
Ground  
43  
-
44  
CNTL1  
CNTL2  
CNTL3  
PWMSP  
CFSP  
I
Control input for spindle and brake  
Control input for start-up clock and soft switching  
Control input for VCM Amplifier & retract  
PWM input for spindle speed control  
Filter capacitor for spindle PWM control  
45  
I
46  
I
47  
I
48  
-
MIC-99D001  
January 1999  
6
PRELIMINARY  
HDD PRODUCTS  
KA3120  
EQUIVALENT CIRCUITS  
PWM decoder filter input  
PWM decoder filter Capacitor  
VDD  
VDD  
+
-
22W  
#1, #47  
+
#2, #48  
-
100m  
Internal 2.5V  
Internal switch  
Regulator part  
SENSE input  
VDD  
VDD  
Internal 1.3V  
27W  
+
#3  
#7  
-
VDD  
27W  
#4  
FG output  
MCLK input  
VDD  
VDD  
50k  
27W  
50k  
27W  
#6  
#8  
50k  
MIC-99D001  
January 1999  
7
PRELIMINARY  
KA3120  
HDD PRODUCTS  
EQUIVALENT CIRCUITS (Continued)  
VCM offset compensation output  
Power on reset part  
VDD  
VDD  
27W  
VDD  
#11  
#10  
20k  
27W  
VDD  
15m  
#9  
50k  
27W  
+
Internal  
Switch  
-
Internal  
2.5V  
VCM gain selection input  
VCM PWM high input  
VDD  
VDD  
27W  
10k  
27W  
#12  
#13  
10k  
500m  
10k  
Internal switch  
VCM PWM low input  
VCM PWM filter Capacitor  
VDD  
+
-
VCC, 12V  
+
27W  
#14  
-
+
#15  
-
15.6m  
4k  
Internal switch  
Internal 4V  
MIC-99D001  
January 1999  
8
PRELIMINARY  
HDD PRODUCTS  
KA3120  
EQUIVALENT CIRCUITS (Continued)  
Filtered VCM PWM command output  
VCM current sense input  
VDD  
VCC  
+
Internal  
DEC OUT  
#18  
-
#19  
Capacitor for retract power  
Max. retract current set input  
U
V
W
VCC  
30W  
VCC  
27W  
20k  
#20  
#24  
Retract  
Block  
Spindle motor output compensation Capacitor  
Spindle motor output and Back EMP sensing part  
VCC  
VDD  
VCC  
#32, 34, 37  
VCC  
60W  
#38  
#33  
Retract  
Block  
VCC  
60W  
-
#36  
+
+
-
Internal 4.2V  
MIC-99D001  
January 1999  
9
PRELIMINARY  
KA3120  
HDD PRODUCTS  
EQUIVALENT CIRCUITS (Continued)  
Dynamic break part  
CNTL1, 2, 3 input  
VCC  
VCC  
VDD  
U
40W  
2k  
VDD  
#40  
27W  
#44, #45, #46  
27W  
#39  
VCM output and control part  
Sense12 input  
Internal  
1/2 VCC  
VCC  
#27  
-
VCC  
+
#30  
Internal  
4V  
VCC  
+
+
60W  
-
60W  
#42  
-
#22  
#19  
#28  
VCC  
-
#25  
+
Internal  
4V  
MIC-99D001  
January 1999  
10  
PRELIMINARY  
HDD PRODUCTS  
KA3120  
ABSOLUTE MAXIMUM RATING (Ta=25°C)  
Characteristics  
Maximum signal block supply voltage for 5V line  
Maximum signal block supply voltage for 12V line  
Maximum power block supply voltage for 12V line  
Maximum output current  
Symbol  
Value  
6
Unit  
V
V
V
DDMAX  
CCMAX  
15  
15  
2
V
PV  
V
CCMAX  
OMAX  
I
A
note  
Power dissipation  
P
3.0  
W
°C  
°C  
°C  
D
Storage temperature  
T
- 55 ~ 125  
150  
STG  
Maximum junction temperature  
Operating ambient temperature  
T
JMAX  
T
0 ~ 70  
A
NOTE:  
1. When mounted on 50mm ´ 50mm ´ 1mm PCB (Phenolic resin material)  
2. Power dissipation is reduced 16mV / °C for using above Ta=25°C.  
3. Do not exceed Pd and SOA.  
Pd[mW]  
3,000  
2,000  
1,000  
0
0
25  
50  
75  
100  
125  
150  
175  
Ambient temperature, Ta [°C]  
RECOMMENDED OPERATING CONDITIONS  
Characteristics  
Supply voltage  
Supply voltage in logic part  
Symbol  
, PV  
Min.  
10.8  
4.5  
Typ.  
12.0  
5.0  
Max.  
Unit  
V
V
13.2  
5.5  
CC  
CC2  
V
V
DD  
MIC-99D001  
January 1999  
11  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
ELECTRICAL CHARACTERISTICS  
(Ta=25°C, unless otherwise specified)  
Characteristic  
SUPPLY CURRENT  
Symbol  
Test conditions  
Min. Typ. Max.  
Unit  
5V line supply current 1  
I
I
I
I
I
I
I
I
CNTL1=0V  
40  
15  
15  
15  
4
50  
20  
20  
20  
7
60  
25  
25  
25  
15  
15  
50  
15  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD3  
DD4  
CC1  
CC2  
CC3  
CC4  
5V line supply current 2  
-
CNTL1=CNTL3=5V  
CNTL3=0V  
5V line supply current 3  
5V line supply current 4  
12V line supply current 1  
CNTL1=0V  
12V line supply current 2  
-
4
7
12V line supply current 3  
CNTL1=CNTL3=5V  
CNTL3=0V  
10  
4
30  
7
12V line supply current 4  
POWER MONITOR  
Threshold voltage1 level for 12V  
Threshold voltage2 level for 12V  
Hysteresis on 12V comparator  
Adjustable pin voltage for 12V  
Threshold voltage level1 for 5V  
Threshold voltage level2 for 5V  
Hysteresis on 5V comparator  
Adjustable pin voltage for 5V  
POWER ON RESET GENERATOR  
Charging current for POR Capacitor  
V
V
V
V
V
V
V
V
V
=Sweep, V =5V  
9.1  
8.9  
100  
3.0  
3.9  
3.8  
50  
9.4  
9.2  
200  
3.2  
4.1  
4.0  
100  
3.0  
9.8  
9.6  
V
V
TH12  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
DD  
V
=Sweep, V =5V  
DD  
TH12b  
V
=Sweep, V =5V  
300  
3.4  
mV  
V
HYS12  
DD  
V12  
=12V, V =5V  
DD  
V
=12V, V =Sweep  
4.4  
V
TH5  
DD  
V
=12V, V =Sweep  
4.3  
V
TH5b  
DD  
V
=12V, V =Sweep  
150  
3.25  
mV  
V
HYS5  
DD  
V5  
=12V, V =5V  
2.85  
DD  
I
V
=12V, V =5V  
- 17.0 - 14.0 - 10.0  
mA  
V
CPOR  
CC  
DD  
POR threshold voltage  
V
CDLY=Sweep  
2.3  
4.5  
0
2.5  
-
2.7  
THPOR  
Output high voltage  
V
V
V
=12V, V =5V  
V
DD  
V
POH  
CC  
CC  
DD  
Output low voltage  
V
=12V, V =5V  
-
0.5  
V
POL  
DD  
Power on reset delay  
Td  
C
=220nF  
DLY  
-
40  
-
ms  
POR  
CONTROL INPUT  
Logic control input 1 MED voltage  
Logic control input 1 MED current  
Logic control input 1 HIGH voltage  
Logic control input 1 HIGH current  
Logic control input 1 LOW voltage  
Logic control input 1 LOW current  
V
I
CNTL1=2.5V  
CNTL1=2.5V  
CNTL1=Sweep  
CNTL=5V  
2.3  
- 5  
2.5  
0
2.7  
5
V
mA  
V
CTL10  
CTL1  
V
3.8  
60  
4.2  
80  
4.6  
100  
1.2  
-60  
CTL1H  
CTL1H  
I
mA  
V
V
CNTL1=Sweep  
CNTL1=0V  
0.5  
-100  
0.8  
-80  
CTL1L  
CTL1L  
I
mA  
LOGIC CONTROL INPUT2 & 3 SPEC’S ARE EQUAL TO LOGIC CONTROL INPUT1  
MIC-99D001  
January 1999  
12  
PRELIMINARY  
HDD PRODUCTS  
KA3120  
ELECTRICAL CHARACTERISTICS (Continued)  
(Ta=25°C, unless otherwise specified)  
Characteristic  
START-UP HOLD CHECK  
Start-up hold check1  
Symbol  
Test conditions  
Min. Typ. Max.  
Unit  
SHM1  
SHM2  
-
-
0
0
0.2  
0.2  
0.5  
0.5  
V
V
Start-up hold check2  
START-UP MODE CHECK  
Start-up mode check1  
Start-up mode check2  
RUNNING MODE CHECK  
BEMF threshold voltage  
FG output high voltage  
FG output low voltage  
Running mode check1  
Running mode check2  
SPINDLE FG GENERATION  
FG frequency  
STM1  
STM2  
-
-
0
0
0.2  
0.2  
0.5  
0.5  
V
V
V
V
-
65  
4.5  
0
80  
4.8  
0.2  
100  
100  
95  
5.0  
0.5  
110  
110  
mV  
V
BTH  
-
-
FGH  
V
V
FGL  
RM1  
RM2  
U=V=W=5V, N=100Hz  
U=V=W=5V, N=100Hz  
90  
90  
Hz  
Hz  
FG  
U,V,W=120° shift pulse(1KHz)  
U,V,W=120° shift pulse(1KHz)  
2.9  
45  
3
3.1  
55  
kHz  
%
FG duty  
D
50  
TFG  
SPINDLE PWM CONTROL  
PWM high level input voltage  
PWM low level input voltage  
High input current at PWMSP  
CFSP voltage2(100% duty of PWMSP)  
V
-
-
3.0  
-
-
-
V
V
SPMH  
V
-
2.0  
125  
1.9  
- 85  
3.5  
1.8  
2.6  
SPML  
PSP1  
I
PWMSP=100% duty  
PWMSP=100% duty  
PWMSP=0% duty  
PWMSP=0% duty  
-
85  
1.4  
105  
1.7  
mA  
V
V
SP2  
Low input current at PWMSP  
I
- 125 - 105  
mA  
V
PSP2  
CFSP voltage1(0% duty of PWMSP)  
V
3.1  
1.5  
2.4  
3.3  
1.6  
2.5  
SP1  
CFSP voltage amplitude  
CFSP voltage3 (50% of PWMSP)  
CFSP charging current  
V
V
SPD  
V
PWMSP=50% duty  
PWMSP=0%, CFSP=2.5V  
SPMSP=100%, CFSP=2.5V  
V
SP3  
I
I
- 180 - 150 - 130  
130 150 180  
mA  
mA  
CFSP1  
CFSP2  
CFSP discharge current  
MIC-99D001  
January 1999  
13  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
ELECTRICAL CHARACTERISTICS (Continued)  
(Ta=25°C, unless otherwise specified)  
Characteristic  
Symbol  
Test conditions  
Min. Typ. Max.  
Unit  
SPINDLE PWM SOFT SWITCHING  
PWM high level input voltage  
PWM low level input voltage  
High input current at PWMSF  
CFSF voltage2(100% duty of PWMSF)  
V
-
-
3.0  
-
-
-
V
V
SFMH  
V
-
2.0  
SFML  
PFP1  
I
PWMSF=100% duty  
PWMSF=100% duty  
PWMSF=0% duty  
PWMSF=0% duty  
-
85  
100  
2.75  
125  
2.85  
- 85  
2.35  
550  
2.6  
mA  
V
V
2.65  
SF2  
Low input current at PWMSF  
CFSF voltage1(0% duty of PWMSF)  
CFSF voltage amplitude  
CFSF voltage3 (50% of PWMSF)  
CFSF charging current  
CFSF discharge current  
BRAKE  
I
- 125 - 100  
mA  
V
PSF2  
V
2.15  
450  
2.4  
2.25  
500  
2.5  
SF1  
V
mV  
V
SFD  
V
PWMSF=50% duty  
PWMSF=0%, CFSP=2.5V  
SPMSF=100%, CFSP=2.5V  
SF3  
I
I
- 110  
90  
- 90  
110  
- 70  
130  
mA  
mA  
CFSF1  
CFSF2  
CBrake output voltage  
V
V
-
11.0  
11.3  
11.5  
-
V
V
V
BC  
BH  
Brake output high voltage  
Brake output low voltage  
SPINDLE OUTPUT  
(Test only)  
-
V
DD  
V
-
0
0.2  
0.5  
BL  
U saturation voltage_upper5  
V
V
R ,R ,R =5W  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
V
V
V
V
V
V
SU5U  
SU5V  
SU5W  
U
V
W
V saturation voltage_upper5  
W saturation voltage_upper5  
U saturation voltage_lower5  
V saturation voltage_lower5  
W saturation voltage_lower5  
R ,R ,R =5W  
U V W  
V
R ,R ,R =5W  
U V W  
V
R ,R ,R =5W  
U V W  
SV5L  
SU5L  
SU5L  
V
R ,R ,R =5W  
U V W  
V
R ,R ,R =5W  
U V W  
U output frequency  
V output frequency  
W output frequency  
F
F
CNTL2=12KHz  
CNTL2=12KHz  
CNTL2=12KHz  
0.9  
0.9  
0.9  
1
1
1
1.1  
1.1  
1.1  
KHz  
KHz  
KHz  
U
V
F
W
MIC-99D001  
January 1999  
14  
PRELIMINARY  
HDD PRODUCTS  
KA3120  
ELECTRICAL CHARACTERISTICS (Continued)  
(Ta=25°C, unless otherwise specified)  
Characteristic  
SPINDLE OUTPUT  
Symbol  
Test conditions  
Min. Typ. Max.  
Unit  
U phase high duration time  
U phase middle duration time  
V phase high duration time  
V phase middle duration time  
W phase high duration time  
W phase middle duration time  
Leakage current U upper  
Leakage current V upper  
Leakage current W upper  
Leakage current U lower  
Leakage current V lower  
Leakage current W lower  
U sourcing current 0.2V  
T
CNTL2=12KHz  
300  
600  
300  
600  
300  
600  
- 1  
333  
666  
333  
666  
333  
666  
0
360  
720  
360  
720  
360  
720  
1
ms  
ms  
UH  
T
CNTL2=12KHz  
CNTL2=12KHz  
CNTL2=12KHz  
CNTL2=12KHz  
CNTL2=12KHz  
UM  
T
T
ms  
VH  
VM  
WH  
WM  
ms  
T
ms  
T
ms  
I
I
-
-
-
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
A/V  
ULQU  
VLQU  
- 1  
0
1
I
- 1  
0
1
WLQU  
I
- 1  
0
1
ULQL  
VLQL  
WLQL  
I
- 1  
0
1
I
- 1  
0
1
I
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
0.9  
5.0  
5.0  
5.0  
1.0  
OU02  
OV02  
OW02  
V sourcing current 0.2V  
I
W sourcing current 0.2V  
Transconductance gain U upper  
I
GM  
GM  
GM  
PWMSP=sweep, R ,R ,R =5W 0.8  
U V W  
UH  
UL  
VH  
Transconductance gain U lower  
Transconductance gain V upper  
Transconductance gain V lower  
Transconductance gain W upper  
Transconductance gain W lower  
PWMSP=sweep, R ,R ,R =5W 0.8  
0.9  
0.9  
0.9  
0.9  
0.9  
0
1.0  
1.0  
1.0  
1.0  
1.0  
20  
A/V  
A/V  
A/V  
A/V  
A/V  
U
V
W
PWMSP=sweep, R ,R ,R =5W 0.8  
U
V
W
GM  
PWMSP=sweep, R ,R ,R =5W 0.8  
U V W  
VL  
WH  
WL  
GM  
GM  
PWMSP=sweep, R ,R ,R =5W 0.8  
U V W  
PWMSP=sweep, R ,R ,R =5W 0.8  
U
V
W
CCOMP charging current1  
CCOMP charging current2  
CCOMP charging current3  
I
I
I
PWMSP=0%  
PWMSP=50%  
PWMSP=100%  
- 20  
mA  
mA  
mA  
COMP1  
COMP2  
COMP3  
- 200 - 250 - 300  
- 400 - 500 - 600  
MIC-99D001  
January 1999  
15  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
ELECTRICAL CHARACTERISTICS (Continued)  
(Ta=25°C, unless otherwise specified)  
Characteristic  
COMUTATION CONTROL  
U stair high  
Symbol  
Test conditions  
Min. Typ. Max.  
Unit  
V
V
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2.85  
2.35  
1.85  
0.9  
3.0  
2.5  
2.0  
1.0  
3.0  
2.5  
2.0  
1.0  
3.0  
2.5  
2.0  
1.0  
2.75  
2.25  
3.0  
3.15  
2.65  
2.15  
1.1  
V
V
USTH  
U stair middle  
USTM  
U stair low  
V
V
USTL  
U stair frequency  
V stair high  
F
KHz  
V
UST  
V
2.85  
2.35  
1.85  
0.9  
3.15  
2.65  
2.15  
1.1  
VSTH  
VSTM  
V stair middle  
V
V
V stair low  
V
V
VSTL  
V stair frequency  
W stair high  
F
KHz  
V
VST  
V
V
2.85  
2.35  
1.85  
0.9  
3.15  
2.65  
2.15  
1.1  
WSTH  
WSTM  
W stair middle  
V
W stair low  
V
V
WSTL  
W stair frequency  
Com high  
F
KHz  
V
WST  
V
2.6  
2.9  
COMH  
Com low  
V
2.1  
2.4  
V
COML  
Com frequency  
F
2.8  
3.2  
KHz  
COM  
COMUTATION CONTROL SOFT  
U stair frequency_soft  
V stair frequency_soft  
W stair frequency_soft  
Com frequency_soft  
Com high voltage_soft1  
Com low voltage_soft1  
Com high voltage_soft2  
Com low voltage_soft2  
REGULATOR  
F
F
-
-
-
-
-
-
-
-
0.9  
0.9  
1.0  
1.0  
1.1  
1.1  
KHz  
KHz  
KHz  
KHz  
V
USTSF  
VSTSF  
WSTSF  
F
0.9  
1.0  
1.1  
F
2.9  
3
3.1  
CSF  
V
2.65  
2.15  
2.65  
2.15  
2.75  
2.25  
2.75  
2.25  
2.85  
2.35  
2.85  
2.35  
CHSF1  
V
V
CLSF1  
CHSF1  
V
V
V
V
CLSF1  
VDD=5V,R3a=15KW,R3b=10KW  
VDD=5V,R3a=15KW,R3b=10KW  
VDD=sweep  
Adjustable PIN voltage  
Regulator output voltage  
Regulator line regulation  
Regulator load regulation  
V
1.2  
3.1  
0
1.3  
3.3  
0.5  
0.5  
1.4  
3.5  
1.0  
1.0  
V
V
ADJ  
REG  
LINE  
V
R
%
%
R
VDD=5V  
0
LOAD  
MIC-99D001  
January 1999  
16  
PRELIMINARY  
HDD PRODUCTS  
KA3120  
ELECTRICAL CHARACTERISTICS (Continued)  
(Ta=25°C, unless otherwise specified)  
Characteristic  
SPINDLE MCLOCK  
Symbol  
Test conditions  
Min. Typ. Max.  
Unit  
High threshold voltage  
Low threshold voltage  
High input current  
V
-
-
-
-
2.0  
-
1.4  
1.4  
25  
0
-
V
V
MH  
V
0.8  
35  
10  
ML  
I
15  
- 10  
mA  
mA  
MH  
High input current  
I
ML  
VCM PWM CONTROL  
High PWMH input current  
Low PWMH input current  
High PWML input current  
Low PWML input current  
PWMH high level input voltage  
PWMH low level input voltage  
PWML high level input voltage  
PWML low level input voltage  
CFVCM voltage1  
I
I
PWMH=100%  
100  
113  
130  
mA  
mA  
mA  
mA  
V
PWMH1  
PWMH=0%  
PWML=100%  
PWML=0%  
- 130 - 113 - 100  
100 113 130  
- 130 - 113 - 100  
PWMH2  
I
PWML1  
I
PWM2  
V
V
-
3.0  
-
-
-
-
-
2.0  
-
PWMH1  
PWMH2  
-
-
-
V
V
3.0  
V
PWML1  
V
- 130 - 113 - 100  
V
PWM2  
CFVC1  
CFVC2  
CFVC3  
CFVC4  
CFVC5  
CFVC6  
CFVC7  
CFVC8  
CFVC9  
V
V
V
V
V
V
V
V
V
PWMH=100%,PWML=100% 5.90  
6.06  
6.00  
5.94  
4.06  
4.00  
3.94  
2.06  
2.00  
1.94  
32  
6.30  
6.20  
6.10  
4.30  
4.20  
4.10  
2.40  
2.30  
2.20  
34  
V
CFVCM voltage2  
PWMH=100%,PWML=50%  
PWMH=100%,PWML=0%  
PWMH=50%,PWML=100%  
PWMH=50%,PWML=50%  
PWMH=50%,PWML=0%  
PWMH=0%,PWML=100%  
PWMH=0%,PWML=50%  
PWMH=0%,PWML=0%  
-
5.80  
5.70  
3.90  
3.80  
3.70  
1.90  
1.80  
1.70  
30  
V
CFVCM voltage3  
V
CFVCM voltage4  
V
CFVCM voltage5  
V
CFVCM voltage6  
V
CFVCM voltage7  
V
CFVCM voltage8  
V
CFVCM voltage9  
V
PWM current ratio (VCM)  
PWMH current variation  
PWML current variation  
VCM PWM FILTER  
R
PWM  
VPWM  
VPWM  
I
I
-
0.8  
1.0  
1.2  
mA  
-
27  
32.3  
36  
mA  
Measure at 500HZ,  
CFVCM=10nF  
Maximum phase shift  
DF  
-
-
2
deg  
Filter cut-off frequency  
F
-
-
-
-
100  
70  
-
-
mA  
CO  
Filter attenuation at 1MHz  
a
dB  
FILTER  
MIC-99D001  
January 1999  
17  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
ELECTRICAL CHARACTERISTICS (Continued)  
(Ta=25°C, unless otherwise specified)  
Characteristic  
VCM REFERENCE VOLTAGE  
VCM reference voltage  
Symbol  
Test conditions  
Min. Typ. Max.  
Unit  
V
CNTL3=5V  
3.8  
4.0  
4.2  
V
REF  
VCM ERROR AMPLIFIER  
Amplifier output high  
V
-
-
-
-
-
-
10.8  
0.5  
10  
- 15  
-
11.2  
0.8  
-
11.5  
V
V
EOH  
Amplifier output low  
V
1.2  
EOL  
ESC  
Short circuit current  
I
-
15  
-
mA  
mV  
dB  
Input offset voltage  
V
0
OSE  
Errot amplifier open loop gain  
Unit gain bandwidth  
A
80  
2.3  
VE  
BG  
-
-
MHz  
E
VCM SENSE AMPLIFIER  
Amplifier output high  
V
-
10.8  
0.5  
10  
- 15  
-
11.2  
0.8  
-
11.5  
V
V
SOH  
Amplifier output low  
V
-
1.2  
SOL  
SSC  
Short circuit current  
I
-
-
15  
-
mA  
mV  
MHz  
dB  
Input offset voltage  
V
-
0
OSE  
Unit gain bandwidth  
BG  
-
3.4  
24  
6
S
Sense amplifier voltage gain1  
Sense amplifier voltage gain2  
VCM POWER AMPLIFIER  
Power Amplifier gain1  
A
Gainsel=5V  
Gainsel=5V  
-
-
VS1  
A
-
-
dB  
VS2  
A
A
-
-
-
-
-
-
-
-
-
24  
24  
11.5  
11.5  
0
24.6  
24.6  
11.8  
11.8  
0.2  
0.2  
0
25  
25  
dB  
dB  
V
PO1  
Power Amplifier gain2  
PO2  
Power Amplifier output high voltage1  
Power Amplifier output high voltage2  
Power Amplifier output low voltage1  
Power Amplifier output low voltage2  
Input offset voltage  
V
V
12.0  
12.0  
0.5  
0.5  
15  
POH1  
POH2  
V
V
V
V
POL1  
POL2  
0
V
V
- 15  
-
mV  
MHz  
MHz  
OSE  
Unit gain bandwidth1  
BG  
BG  
2
-
P1  
P2  
Unit gain bandwidth2  
-
2
-
VCM OFFSET COMPARATOR  
Offset comparator high voltage  
Offset comparator low voltage  
Offset comparator offset voltage  
Offset comparator hysteresis  
V
-
-
-
-
4.5  
0
4.8  
0.2  
0
5.0  
0.5  
-
V
OCH  
V
V
OCL  
V
-
mV  
mV  
OCOS  
V
5
10  
15  
OCHYS  
MIC-99D001  
January 1999  
18  
PRELIMINARY  
HDD PRODUCTS  
KA3120  
ELECTRICAL CHARACTERISTICS (Continued)  
(Ta=25°C, unless otherwise specified)  
Characteristic  
VCM AMPLIFIER TOTAL  
VCM offset current  
Symbol  
Test conditions  
Min. Typ. Max.  
Unit  
I
PWMH=PWML=50% duty  
Gainsel=0V  
Gainsel=5V  
Rvcm=15W  
Rvcm=15W  
Rvcm=15W  
Rvcm=15W  
Rvcm=15W  
Rvcm=15W  
Rvcm=15W  
Rvcm=15W  
-
–15  
0
15  
mA  
A/V  
A/V  
V
OSVCM  
VCM transconductance gain high  
VCM transconductance gain low  
VCM+ saturation voltage lower  
VCM- saturation voltage upper  
VCM+ saturation voltage upper  
VCM- saturation voltage lower  
VCM+ saturation voltage lower  
VCM- saturation voltage upper  
VCM+ saturation voltage upper  
VCM- saturation voltage lower  
Leakage current power Amplifier1  
Leakage current power Amplifier2  
RETRACT  
GM  
0.47  
0.50  
0.53  
VH  
GM  
0.1  
0.125 0.15  
VL  
VMS1  
VMS2  
VMS3  
VMS4  
VMS5  
VMS6  
VMS7  
VMS8  
V
V
V
V
V
V
V
V
-
-
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
-
-
V
-
-
V
-
-
V
-
-
V
-
-
-
V
-
V
-
-
V
I
I
- 10  
- 10  
0
0
mA  
mA  
VCML1  
VCML2  
-
10  
Min. operating voltage of CRET2  
Source voltage  
V
CRET2=Sweep  
CRET2=5V  
CRET2=5V  
Rret=8.0KW  
Rret=4.2KW  
Rret=2.7KW  
-
3.0  
1.0  
-
-
V
V
CRET2  
V
0.8  
-
1.2  
0.5  
60  
100  
155  
110  
1
SRC  
RTSAT  
RCT1  
RCT2  
RCT3  
CRET  
Sinking saturation voltage  
Retract sinking current1  
V
I
V
40  
80  
130  
90  
–1  
–1  
48.2  
91.8  
143  
100  
0
mV  
mV  
mV  
mA  
mA  
mA  
Retract sinking current2  
I
Retract sinking current3  
I
Cret charging current1  
I
Retract power Tr. leakage upper  
Retract power Tr. leakage lower  
THERMAL SHUT DOWN  
Operating temperature  
I
I
LRET1  
LRET1  
0
1
TSD  
-
-
135  
20  
150  
30  
165  
40  
°C  
°C  
Thermal hysteresis  
T
HYS  
MIC-99D001  
January 1999  
19  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
APPLICATION INFORMATION  
SPINDLE MOTOR DRIVE PART  
The KA3120 is a combination chip consisting of spindle motor and voice coil motor designed for HDD system.  
According to the spindle conditions, the digital ASIC circuit provides optimum control signals (Start-up,  
commutation, speed control, and switching mode) to the KA3120.  
Detection of the back-EMF (BEMF) of the spindle motor has to be output to an external digital circuit via FG. The  
MCLK and PWM signals are used to determine the commutation timing and to control the spindle speed,  
respectively.  
SPINDLE DRIVER  
The spindle includes both low and high side drivers (H- bridge) for a three-phase sensorless brushless DC motor.  
To reduce the saturation voltage, the vertical PNP Tr is used as the high side driver.  
FREQUENCY GENERATION (FG)  
FG stands for Frequency Generation. It is the out signal toward the digital ASIC.  
Representing the current spindle speed frequency, it contains important information about the motor speed and  
motor spin.  
According to the FG frequency, the digital ASIC provides different motor clock signals to the motor drive IC via  
MCLK and checks the motor speed to send the VCM enable signal via CNTL3.  
FG frequency (Hz), motor speed (rpm) and pole number are directly related as shown below in the three phase  
motor.  
FG frequency = motor speed ´ pole number ´ 3 / 120  
In a typical application,(8 pole motor)  
FG frequency = 5400 ´ 8 ´ 3 / 120 = 1080Hz  
FG frequency = Output frequency ´ 3  
MIC-99D001  
January 1999  
20  
PRELIMINARY  
HDD PRODUCTS  
MCLK & MASK  
KA3120  
The MCLK is a motor clock used as the standard clock signal for the proper commutation timing of the spindle  
motor. It is supplied by the ASIC.  
As shown in table 1, it has different delay times depending on the mode of the spindle speed. Table 1. MCLK &  
MASK Delay Time to the Spindle Speed.  
Table 1. MCLK & MASK delay time to the spindle speed  
MCLK (Td)  
External ASIC  
FG(n-1) / 2  
MASK  
1ms  
Switching  
Start-up mode  
Hard switching  
Hard switching  
Soft switching  
Acceleration mode  
Running mode  
FG(n-1) / 4  
344.45ms  
FG(n-1) / 32  
After the FG_Edge signal, the MCLK occurs after a half FG_Edge delay time in the acceleration mode and 1/ 32  
FG_Edge delay time in the soft switching mode.  
MASK  
When the coil current is abruptly changed in a short time interval, a spark voltage occurs. This spark voltage mixes  
with the FG output to give the wrong spindle information to the ASIC. To eliminate the spark voltage from the FG  
output, the masking block is needed.  
di  
dt  
----  
Vcoil = –L  
W_BEMF  
V_BEMF  
U_ BEMF  
U_Comp  
V_Comp  
120°  
W_Comp  
FG  
60°  
FG_Edge  
Electrically 30° Delay  
MCLK  
Figure 1. BEM, FG, and MCLK in the acceleration mote  
MIC-99D001  
January 1999  
21  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
Switching noise, false zero cross  
FG ³ 8msec  
FG  
MCLK  
MASK  
2msec  
2msec  
1msec  
1msec  
Figure 2. MCLK vs MASK in the start-up mode  
Switching noise, false zero cross  
T2  
FG £ 8msec, T1  
FG  
T1/2  
T2/2  
MSLK  
T1/4  
T2/4  
MASK  
Figure 3. MCLK vs MASK in the acceleration mode  
MIC-99D001  
January 1999  
22  
PRELIMINARY  
HDD PRODUCTS  
KA3120  
PWMDEC AND SPEED CONTROL  
Motor speed is measured by the ASIC via the FG output. The digital ASIC compares FG frequency with the target  
motor speed and sends the speed compensation signal to the PWMSP input of the KA3120. This PWM signal is  
internally filtered and is converted into DC voltage through the built-in PWM Decoder Filter. The analog output of  
the filter depends on the duty of the PWM signal. The filter is a 3rd order, low-pass filter. The first pole location of  
the filter is determined by the external capacitor connected to pin(48) CFSP.  
0.625  
R33(= 0.25 )  
-------------------------------  
Ispindle = (D – 0.1 ) ×  
Figure 4. Spindle current vs PWMSP duty variation  
START-UP MODE  
The BEMF is used in the sensorless BLDC motor driver to determine the rotor position. The detected rotor position  
is a very important information to control the motor speed and the commutation timing.  
At standstill condition, there is no BEMF voltage and no FG output. There is no information about the motor  
position. However the spindle motor must be started up at standstill.  
To drive the spindle at the start-up mode, the digital ASIC sends the spindle enable signal via CNTL1 and supplies  
the HIGH or OPEN signal in turns via CNTL2 to be used as commutation signal of the spindle motor.  
MIC-99D001  
January 1999  
23  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
The digital ASIC continuously provides HIGH or OPEN signal until the BEMF generated is enough large to produce  
the FG signal i.e. the spindle motor can be driven by the self commutation. During a fixed time, if the BEMF  
generated is too small and the spindle motor is not driven by the self commutation, the ASIC resets all signals sent  
and retries the spindle.  
Table 2. Pin setup truth table  
(1)  
(2)  
(3)  
CNTL1  
SPM driver  
CNTL2  
CNTL3  
VCM driver  
GAINSEL  
Brake  
S/W  
Retract  
SPM driver  
VCM gain  
High (5V)  
Open (Floating)  
Low (0V)  
1
0
0
0
0
1
Hard S/W  
Hard S/W  
Soft S/W  
1
0
0
0
0
1
Normal  
x
0.125  
x
(4)  
Start up  
Hold  
0.5  
NOTES:  
1. CNTL1: Spindle motor control  
2. CNTL2: Switching mode control  
3. CNTL3; VCM motor control  
4. Test only  
5. “1”: Enable; “0”: disable; “S/W”: switching  
ACCELERATION MODE  
When the BEMF detected is enough to be used as the information of motor position, the mode is changed from  
start-up to acceleration. The ASIC sends the optimum commutation timing signal via MCLK according to the FG  
input.  
By using the BEMF, the spindle is self-commuted at acceleration and running modes. During the motor drive, the  
spindle motor is commuted at that point which is electrically 30° delayed after the FG_Edge generates.  
RUNNING MODE  
It is called to the running mode when the spindle motor speed arrives within ± 1% of the target speed. The  
switching mode, commutation delay time, MCLK delay time (Td) and masking time are changed at the running  
mode.  
The spindle motor speed is controlled by PWM signal within ± 0.01%.  
The soft switching using the current slope of the motor may reduce noise, EMI (Electromagnetic Interference) and  
spark voltage which is generated on the motor coil at the switching.  
MIC-99D001  
January 1999  
24  
PRELIMINARY  
HDD PRODUCTS  
KA3120  
CNTL1  
High  
SPIN ON  
Open  
High  
Open  
Low  
CNTL2  
FG  
+1%  
Target RPM  
- 1%  
Rotation  
Speed  
Start-Up  
Hard-Switching  
Soft-Switching  
Internal  
Ready  
10msec  
Internal  
Switching Mode  
Change  
VCM Enable  
100msec  
CNTL3  
High  
Open  
VCM ON  
High, 5V  
Low, 0V  
CASE1  
: High gain  
High, 5V  
Low, 0V  
CASE1  
: Low gain  
Figure 5. Motor start-up sequence  
Duty (%)  
100%  
D%  
FG  
Frequency  
F trarget  
0
Figure 6. FG vs PWMSP duty variation  
MIC-99D001  
January 1999  
25  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
(1) Acceleration Mode: Hard-Switching Mode  
+
0
U_BEMF  
V_BEMF  
-
+
0
-
+
0
W_BEMF  
-
SOURCE  
Iu  
SINK  
SOURCE  
SINK  
Iv  
SOURCE  
SINK  
Iw  
(2) Running Mode: Soft-Switching Mode  
SOURCE  
Iu  
SINK  
SOURCE  
SINK  
Iv  
SOURCE  
SINK  
Iw  
Figure 7. Acceleration and running the spindle motor  
MIC-99D001  
January 1999  
26  
PRELIMINARY  
HDD PRODUCTS  
KA3120  
Start  
High frequency  
Noise  
Elimination  
Using filtered FG  
Generate start  
Counter  
Counting  
the FG duration  
NO  
Hard  
Switching  
NO  
Saturation  
= ?  
MCLK = FG(n-1)/32  
MASK = 344.45usec  
YES  
Running  
Waiting 2msec  
MCLK generation  
MCLK = FG(n-1)/2  
MASK = 344.45usec  
Acceleration  
MASK = 1msec  
FG polarity  
Check = SAME?  
Retry  
YES  
Start up  
Keep going  
Waiting for FG edge  
Store count  
Value of the FG  
Figure 8. MCLK generation flow chart  
MIC-99D001  
January 1999  
27  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
VOICE COIL MOTOR  
VCM driver  
The voice coil motor driver is linear, class AB, H- bridge type driver, and it includes all power transistors. After the  
VCM is enabled via CNTL3, the VCM current level is controlled by two PWM signals. The input voltage level at pin  
PWMH weighs, at a maximum, 32 times more than the input voltage at pin PWML. These PWM signals are filtered  
by an internal second- order low-pass filter and converted into PWMOUT (DC Voltage). The filter PWMOUT  
depends only on the duty factor and not on the logic level. The PWM Filter's pole is adjustable by pin CFVCM  
connected to the external capacitor.  
R1  
Vin  
VREF(4V)  
-
PWMH input  
PWML input  
13  
14  
R2  
R2  
Gm  
Gm  
C1  
+
1/2 VDD  
R1  
+
R1  
R1  
A
-
Vin  
-
-
PWMOUT  
C1  
+
1/2 VDD  
+
1/2 VDD  
15  
CFVCM  
Figure 9. PWM decoder & filter schematic 2  
R7  
-
1/2VCC  
VCM+  
Sense  
4V  
vx  
R5  
R5  
27  
v+  
L
+
+
motor  
RL  
Vin  
+
va  
(PWMDEC OUT)  
R5  
-
+
-
R5  
19  
22  
-
Imotor  
Rsense  
v-  
R4  
R6  
VCM-  
R3  
-
vb  
+
-
vs  
+
R3  
Filtout  
18  
Errin  
Senseout  
Errout  
28  
30 25  
R18  
Rexif  
Cexif  
R25  
Figure 10. VCM driver schematic  
MIC-99D001  
January 1999  
28  
PRELIMINARY  
HDD PRODUCTS  
KA3120  
The transconductance of VCM AMPLIFIER gain, Gm, is:  
Imotor  
2 ×Aerror ×Apower × R25  
Gm = ----------------- = -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
Vin 2 ×R18 ×Rsense ×As ×Aerror × Apower + (R18 + R25 )(Zmotor + Rsense )  
Aloop R25  
1 + Aloop R18 Rsense As  
1
1
ö
æ
------------------------ --------------------------------  
Gm =  
è
ø
2 ×R18 ×As ×Aerror × Apower  
Aloop = --------------------------------------------------------------------------------  
(R18 + R25 )(Zmotor + Rsense )  
Therefore Aloop >>1,  
R25  
1
1
Gm @ --------- ×------------------ × -----  
R18 Rsense As  
The transconductance (Gm) can be adjusted by selecting the external components R18, R25 and sense resister  
Rsense.  
if R18 = 15k, R25 = 15k, Rsense = 1  
GAINSEL = 0(0V), 1 / AS = 0.5  
Gm = 0.5  
GAINSEL = 1(5V), 1 / AS = 0.125  
Gm = 0.125  
VCM current (Imotor) is:  
GAINSEL = 0(0V)  
1
32  
R25  
R18 Rsense  
1
Imotor = 4 ´ (PWMH – 0.5 ) + -----(PWML – 0.5 ) ´ --------- ´ ------------------ ´ 0.43  
GAINSEL = 1(5V)  
1
32  
R25  
R18 Rsense  
1
Imotor = 4 ´ (PWMH – 0.5 ) + -----(PWML – 0.5 ) ´ --------- ´ ------------------ ´ 0.11  
Recommended value PWMH(100%) = 1  
R18 = R25 = 15k  
Rsense = 1  
PWMH(50%) = 0.5  
PWMH(0%) = 0  
MIC-99D001  
January 1999  
29  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
RETRACT CIRCUIT  
The retract function is the operation where the VCM moves from the data zone to the parking zone when off normal  
state power and abnormal power interrupt cause the spindle to stop.  
Cret2  
From  
20  
27  
Spindle  
+
Bandgap  
Reference  
´ 320  
VA  
_
Iref  
Iretdly  
Motor  
Iret  
Retract  
Enable  
19  
2K  
Low side  
Control  
16  
24  
Cret  
Rret  
Figure 11. Retract block schematic  
VA = 2.0V  
VA  
Iref = -----------------------  
Rext + 2k  
Iret = Iref ´ 320  
Cret ´ 2.0V  
Tretdly = ------------------------------------------  
Iretdly(= 100m)  
MIC-99D001  
January 1999  
30  
PRELIMINARY  
HDD PRODUCTS  
KA3120  
POWER MANAGEMENT FEATURES  
LOW POWER INTERRUPT:  
The low power interrupt operation occurs when the power supply voltage (5V,12V) level drops below each  
threshold voltage. The threshold voltage (Vth) and time delay (Tdly) may be adjustable by the external component  
value.  
Vth  
I
--------  
Tdly = CDLY  
,(Vth = 2.5V, I = 14mA)  
VDD  
11  
12  
VDD  
VCC  
CDLY  
I = 14mA  
R7  
R4  
+
_
5V SENSE  
4
POR  
+
12V SENSE  
Q15  
+
_
42  
R8  
R5  
2.5V  
Figure 12. Power on reset block schematic  
MIC-99D001  
January 1999  
31  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
POWER ON RESET  
The power-on reset circuit monitors the voltage level of both +5V and +12V power supplies. The power- on reset  
circuit disables the spindle out block, the whole VCM block, and the digital ASIC when the power supply voltage  
level drops below the reference voltage.  
VDD, VCC  
Vth  
Vhys  
T
POR  
Tdly  
Vbe  
T
Figure 13. Power on reset function  
Vhys = 4.2mV  
R4 + R5  
--------------------  
VDD;Vhys(5V) =  
´ Vhys  
R5  
R7 + R8  
--------------------  
VDD;Vhys(12V) =  
´ Vhys  
R8  
Default (pin4, pin42 : not connected)  
VDD, th @ 4.1V  
VCC,th @ 9.4V  
MIC-99D001  
January 1999  
32  
PRELIMINARY  
HDD PRODUCTS  
REGULATOR  
KA3120  
The KA3120 includes the regulator block which supplies power of the digital ASIC. It consists of the bias block, the  
band gap reference, the error amp and the external NPN power Tr. The regulator voltage can be adjusted by the  
external resistor, R3a, R3b.  
R3a  
R3b  
æ
è
ö
ø
Vreg = Vref 1 + ---------- , Vref = 1.3V  
VDD  
Vref  
Bias  
Block  
Bandgap  
Reference  
+
VREF  
7
3
-
VREG  
R3a  
Vadjust  
R3b  
Figure 14. low drop regulator schematic  
if R3a = 15k, R3b = 10k  
R3a  
R3b  
15k  
ö
æ
è
ö
ø
æ
è
Vreg = Vref 1 + ---------- = 1.3 ´ 1 + -------- = 3.25V  
ø
10k  
MIC-99D001  
January 1999  
33  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
STR_CLK  
BEMF  
DETECTION  
STR_MASK  
U_OUT  
FG  
Figure 15. Start-up mode  
MCLK*2  
U_OUT  
FG  
Figure 16. Acceleration mode 1  
MIC-99D001  
January 1999  
34  
PRELIMINARY  
HDD PRODUCTS  
KA3120  
T1/4  
2msec  
T1/2  
MCLK*2  
T1  
U_OUT  
FG  
Figure 17. Acceleration mode 2  
U_OUT  
V_OUT  
W_OUT  
Figure 18. Output in hard-switching mode  
MIC-99D001  
January 1999  
35  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
Switching Mode Conterting  
FG  
COM  
Output  
Figure 19. Switching mode converting  
U_OUT  
V_OUT  
W_OUT  
Figure 20. Soft-switching mode  
MIC-99D001  
January 1999  
36  
PRELIMINARY  
HDD PRODUCTS  
KA3120  
CNTL3  
Filout  
Ivcm  
CNTL3  
Filout  
Ivcm  
PW MH  
Filout  
Ivcm  
Figure 21. VCM recalibration flow  
MIC-99D001  
January 1999  
37  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
POR  
CBREAK  
Vout  
Iret  
Figure 22. Retract & break at power off  
MIC-99D001  
January 1999  
38  
PRELIMINARY  
HDD PRODUCTS  
KA3120  
TYPICAL APPLICATION CIRCUIT  
5V  
R3a  
3
R3b  
Q1  
7
GND  
C11  
4
42  
11  
43  
ADJ  
CDLY  
VREF  
SENSE15  
SENSE12  
Power  
Bandgap  
Reference  
& Bias  
POR  
FG  
N
10  
6
On  
36  
39  
Reset  
U
V
Brake  
AMP  
W
V
M39a  
W
M39b  
Zero  
Cross  
Detector  
Brake  
Cbrake  
FG  
Generator  
C39  
C40  
Brake  
40  
41  
MCLK  
PVCC  
8
CNTL1  
CNTL2  
CNTL3  
U
44  
45  
37  
34  
32  
33  
3 State  
Input  
Control  
Commutation  
&
V
Spindle Motor  
Control  
3-phase  
46  
38  
Output  
Driver  
C38  
W
CCOMP  
R33  
PCS  
PWM  
Decoder  
Filter  
PWMSP  
C48  
47  
48  
1
AMP  
Vlimit  
12V  
D20  
SUBGND  
31  
20  
PWMSF  
PWM  
Decoder  
Filter  
Thermal  
Shutdown  
U
V
W
C2  
CRET2  
R24  
2
Retract  
C20  
24  
Retract  
VCM enable  
FILOUT  
RRET  
PWMH  
PWML  
C15  
13  
14  
PWM  
Decoder  
Filter  
VCM+  
VCM-  
16  
21  
22  
VCMREF4V  
CRET  
PVCC  
C16  
15  
12  
ERR_Amplifier  
AMP  
VCM-  
AMP  
AMP  
GAINSEL  
SENSE  
Amplifier  
Rsense  
VCM-  
19  
AMP  
SENSE  
VCM+  
29  
9
VDD  
VCM  
SENSE  
Amplifier  
27  
26  
SENSE  
VCMOFF  
PGND  
ERROUT  
30  
ERRIN  
28  
SENSEOUT  
25  
23, 35  
GND  
18  
R25  
17  
5
VCC  
VDD  
R18  
C30  
R30  
MIC-99D001  
January 1999  
39  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
APPLICATION CIRCUIT  
R42a  
R42b  
R4b  
12V  
5V  
5V  
5V  
C11  
R4a  
5, 29  
17  
11  
CDLY  
4
42  
VREG  
R3b  
7
3
VCC  
VDD  
10  
6
POR  
R3a  
VREF  
FG  
8
MCLK  
CNTL1  
CNTL2  
CNTL3  
ADJ  
44  
45  
46  
v
U
2003  
12V  
39  
40  
BRAKE  
M39b  
PWMSP  
PWMSOFT  
PWMH  
PWML  
M39a  
47  
1
C39  
C40  
CBRAKE  
13  
41  
36  
PVCC1  
14  
N
U
C48  
48  
CFSP  
CFSF  
37  
34  
2
C2  
Digital  
Custom  
ASIC  
KA3120  
C15  
15  
U
CFVCM  
V
V
W
VCMOFF  
9
GAINSEL 12  
32  
38  
33  
W
C38  
VCM-  
CCOMP  
22  
Rsense  
PCS  
12V  
R33  
SENSE  
21  
19  
PVCC2  
R22  
D20  
C20  
C27  
VCM  
20  
24  
CRET2  
RRET  
GND  
27  
18  
VCM+  
R24  
FILOUT  
ERRIN  
28  
25  
30  
23, 26, 31, 35  
R25  
R18  
: option  
R30  
C30  
MIC-99D001  
January 1999  
40  
PRELIMINARY  
HDD PRODUCTS  
KA3120  
COMPONENT VALUE  
Part No.  
R18  
Value  
15k  
Type  
1/4W  
1/4W  
1/4W  
1/4W  
Part No.  
C2  
Value  
10n  
47n  
10n  
1m  
Type  
Part No.  
Q1  
Value  
Type  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
KSH29  
D-PAK  
R24  
2.2k  
C11  
M39a  
M39b  
D20  
SSD2003  
RB4110  
8SOP  
R22  
Option  
15k  
C15  
R25  
C16  
Schottky  
Diode  
R30  
Rsense  
R33  
1k  
1/4W  
1W  
C20  
C27  
C30  
C38  
C40  
C48  
C39  
224n  
1m  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
0.25  
1W  
1.2n  
150n  
220n  
10n  
R4A  
Option  
Option  
Option  
Option  
1/4W  
1/4W  
1/4W  
1/4W  
R4B  
R42A  
R42B  
Option  
MIC-99D001  
January 1999  
41  
PRELIMINARY  
KA3120  
HDD PRODUCTS  
PACKAGE DIMENSION  
MIC-99D001  
January 1999  
42  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
ACEx™  
CoolFET™  
ISOPLANAR™  
MICROWIRE™  
POP™  
PowerTrench™  
QS™  
CROSSVOLT™  
E2CMOSTM  
FACT™  
FACT Quiet Series™  
Quiet Series™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
TinyLogic™  
FAST®  
FASTr™  
GTO™  
HiSeC™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  

相关型号:

KA3162

Single IGBT Gate Driver
FAIRCHILD

KA317

Adjustable Voltage Regulator (Positive)
FAIRCHILD

KA317AHV

3-Terminal Positive Adjustable Regulator
FAIRCHILD

KA317HV

3-Terminal Positive Adjustable Regulator
FAIRCHILD

KA317HVTU

暂无描述
FAIRCHILD

KA317L

3-Terminal 0.1A Positive Adjustable Regulator
FAIRCHILD

KA317LD

Adjustable Positive Standard Regulator, 1.2V Min, 37V Max, PDSO8, SOP-8
FAIRCHILD

KA317LZ

3-Terminal 0.1A Positive Adjustable Regulator
FAIRCHILD

KA317LZBU

Adjustable Positive Standard Regulator, 1.2V Min, 37V Max, BIPolar, PBCY3, TO-92, 3 PIN
FAIRCHILD

KA317LZTA

3-Terminal 0.1A Positive Adjustable Regulator
FAIRCHILD

KA317LZTF

Adjustable Positive Standard Regulator, 1.2V Min, 37V Max, BIPolar, PBCY3, TO-92, 3 PIN
FAIRCHILD

KA317L_12

3-Terminal 0.1A Positive Adjustable Regulator
FAIRCHILD