HUFA75345S3S [FAIRCHILD]

75A, 55V, 0.007 Ohm, N-Channel UltraFET Power MOSFETs; 75A , 55V , 0.007 Ohm的N通道UltraFET功率MOSFET
HUFA75345S3S
型号: HUFA75345S3S
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

75A, 55V, 0.007 Ohm, N-Channel UltraFET Power MOSFETs
75A , 55V , 0.007 Ohm的N通道UltraFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关
文件: 总10页 (文件大小:572K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HUFA75345G3, HUFA75345P3, HUFA75345S3S  
Data Sheet  
June 2003  
75A, 55V, 0.007 Ohm, N-Channel UltraFET  
Power MOSFETs  
Features  
• 75A, 55V  
These N-Channel power MOSFETs  
are manufactured using the  
innovative UltraFET® process. This  
• Simulation Models  
- Temperature Compensated PSPICE® and SABER™  
Models  
advanced process technology  
- Thermal Impedance SPICE and SABER Models  
Available on the WEB at: www.fairchildsemi.com  
achieves the lowest possible on-resistance per silicon area,  
resulting in outstanding performance. This device is capable  
of withstanding high energy in the avalanche mode and the  
diode exhibits very low reverse recovery time and stored  
charge. It was designed for use in applications where power  
efficiency is important, such as switching regulators,  
switching converters, motor drivers, relay drivers, low-  
voltage bus switches, and power management in portable  
and battery-operated products.  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
• Related Literature  
- TB334, “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Symbol  
Formerly developmental type TA75345.  
D
Ordering Information  
PART NUMBER  
HUFA75345G3  
HUFA75345P3  
HUFA75345S3S  
PACKAGE  
BRAND  
75345G  
G
TO-247  
TO-220AB  
TO-263AB  
75345P  
75345S  
S
NOTE: When ordering, use the entire part number. Add the suffix T to  
obtain the TO-263AB variant in tape and reel, e.g., HUFA75345S3ST.  
Packaging  
JEDEC STYLE TO-247  
JEDEC TO-220AB  
SOURCE  
DRAIN  
GATE  
SOURCE  
DRAIN  
GATE  
DRAIN  
(FLANGE)  
DRAIN  
(TAB)  
JEDEC TO-263AB  
DRAIN  
GATE  
(FLANGE)  
SOURCE  
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy  
of the requirements, see AEC Q101 at: http://www.aecouncil.com/  
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.  
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.  
©2003 Fairchild Semiconductor Corporation  
HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B1  
HUFA75345G3, HUFA75345P3, HUFA75345S3S  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
55  
55  
20  
V
V
V
DSS  
Drain to Gate Voltage (R  
= 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
GS  
DGR  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Drain Current  
GS  
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
75  
A
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
Figure 4  
DM  
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
Figure 6  
AS  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
o
325  
2.17  
W
W/ C  
D
o
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 175  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
o
300  
260  
C
C
L
pkg  
CAUTION: Stresses above those listed in Absolute Maximum Ratingsmay cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 150 C.  
J
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
BV  
I
= 250µA, V  
= 0V (Figure 11)  
55  
-
-
-
-
-
-
V
DSS  
D
GS  
GS  
GS  
I
V
V
V
= 50V, V  
= 45V, V  
= 20V  
= 0V  
= 0V, T = 150 C  
1
µA  
µA  
nA  
DSS  
DS  
DS  
GS  
o
-
250  
100  
C
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
THERMAL SPECIFICATIONS  
I
-
GSS  
V
V
= V , I = 250µA (Figure 10)  
2
-
-
4
V
GS(TH)  
GS  
DS  
D
r
I
= 75A, V  
= 10V (Figure 9)  
0.006  
0.007  
DS(ON)  
D
GS  
o
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient  
R
R
(Figure 3)  
TO-247  
-
-
-
-
-
-
0.46  
30  
C/W  
θJC  
o
C/W  
θJA  
o
TO-220, TO-263  
62  
C/W  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 10V)  
GS  
t
V
R
R
= 30V, I 75A,  
-
-
-
-
-
-
-
145  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
L
GS  
D
= 0.4, V  
= 10V,  
GS  
Turn-On Delay Time  
Rise Time  
t
20  
75  
45  
30  
-
-
d(ON)  
= 2.5Ω  
t
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
115  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0V to 20V  
= 0V to 10V  
= 0V to 2V  
V
= 30V,  
-
-
-
-
-
220  
125  
6.8  
14  
275  
165  
10  
-
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
DD  
75A,  
L
I
D
Gate Charge at 10V  
Q
g(10)  
g(TH)  
R = 0.4Ω  
Threshold Gate Charge  
Q
I
= 1.0mA  
g(REF)  
(Figure 13)  
Gate to Source Gate Charge  
Gate to Drain MillerCharge  
Q
gs  
gd  
Q
58  
-
©2003 Fairchild Semiconductor Corporation  
HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B1  
HUFA75345G3, HUFA75345P3, HUFA75345S3S  
o
Electrical Specifications  
T
= 25 C, Unless Otherwise Specified (Continued)  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
C
V
= 25V, V  
DS GS  
= 0V,  
-
-
-
4000  
1450  
450  
-
-
-
pF  
pF  
pF  
ISS  
f = 1MHz  
(Figure 12)  
Output Capacitance  
C
OSS  
RSS  
Reverse Transfer Capacitance  
C
Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
110  
UNITS  
V
V
I
I
I
= 75A  
-
-
-
-
-
-
SD  
SD  
SD  
SD  
t
= 75A, dI /dt = 100A/µs  
SD  
ns  
rr  
Reverse Recovered Charge  
Q
= 75A, dI /dt = 100A/µs  
225  
nC  
RR  
SD  
Typical Performance Curves  
1.2  
1.0  
0.8  
80  
60  
40  
20  
0.6  
0.4  
0.2  
0
0
25  
50  
75  
100  
125  
150  
175  
0
25  
50  
75  
100  
125  
o
150  
175  
o
T
, CASE TEMPERATURE ( C)  
T , CASE TEMPERATURE ( C)  
C
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
1
0.2  
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
x Z  
x R  
+ T  
θJC C  
J
DM  
θJC  
SINGLE PULSE  
0.01  
10  
-5  
-4  
-3  
10  
-2  
10  
-1  
0
1
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
©2003 Fairchild Semiconductor Corporation  
HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B1  
HUFA75345G3, HUFA75345P3, HUFA75345S3S  
Typical Performance Curves (Continued)  
2000  
1000  
o
T
= 25 C  
FOR TEMPERATURES  
ABOVE 25 C DERATE PEAK  
C
o
CURRENT AS FOLLOWS:  
175 - T  
150  
C
I = I  
25  
V
= 20V  
GS  
V
= 10V  
GS  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
100  
50  
-5  
10  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
FIGURE 4. PEAK CURRENT CAPABILITY  
1000  
1000  
If R = 0  
T
T
= MAX RATED  
= 25 C  
J
t
= (L)(I )/(1.3*RATED BV  
- V  
)
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS  
DSS  
DD  
o
C
t
AV  
- V ) +1]  
DD  
AS  
DSS  
100µs  
100  
100  
o
STARTING T = 25 C  
J
1ms  
10  
1
OPERATION IN THIS  
AREA MAY BE  
10ms  
o
STARTING T = 150 C  
J
LIMITED BY r  
DS(ON)  
= 55V  
V
DSS(MAX)  
10  
0.01  
0.1  
1
10  
100  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
200  
t
, TIME IN AVALANCHE (ms)  
AV  
V
DS  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY  
150  
120  
150  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 20V  
= 10V  
= 7V  
GS  
V
GS  
120  
V
V
= 5V  
GS  
GS  
V
= 6V  
GS  
90  
90  
60  
60  
30  
o
25 C  
30  
PULSE DURATION = 80µs  
o
175 C  
DUTY CYCLE = 0.5% MAX  
o
o
-55 C  
T
= 25 C  
V
= 15V  
C
DD  
6.0  
, GATE TO SOURCE VOLTAGE (V)  
0
0
0
1
2
3
4
0
1.5  
3.0  
4.5  
7.5  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
V
GS  
FIGURE 7. SATURATION CHARACTERISTICS  
FIGURE 8. TRANSFER CHARACTERISTICS  
©2003 Fairchild Semiconductor Corporation  
HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B1  
HUFA75345G3, HUFA75345P3, HUFA75345S3S  
Typical Performance Curves (Continued)  
2.5  
2.0  
1.5  
1.0  
0.5  
1.2  
1.0  
PULSE DURATION = 80µs, V  
DUTY CYCLE = 0.5% MAX  
= 10V, I = 75A  
V
= V , I = 250µA  
DS  
GS  
D
GS  
D
0.8  
0.6  
0.4  
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
7000  
1.3  
V
= 0V, f = 1MHz  
GS  
I
= 250µA  
D
C
C
C
= C  
+ C  
ISS  
GS  
= C  
GD  
6000  
5000  
RSS  
OSS  
GD  
1.2  
1.1  
C
+ C  
DS  
GD  
C
ISS  
4000  
3000  
1.0  
0.9  
0.8  
2000  
1000  
0
C
C
OSS  
RSS  
0
10  
20  
30  
40  
50  
60  
-80  
-40  
0
40  
80  
120  
160  
200  
o
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
T , JUNCTION TEMPERATURE ( C)  
J
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
10  
V
= 30V  
DD  
8
6
4
2
0
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
I
I
= 75A  
= 55A  
= 35A  
= 20A  
D
D
D
D
0
25  
50  
75  
100  
125  
Q , GATE CHARGE (nC)  
g
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT  
©2003 Fairchild Semiconductor Corporation  
HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B1  
HUFA75345G3, HUFA75345P3, HUFA75345S3S  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
AS  
0V  
0
0.01Ω  
t
AV  
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS  
V
DS  
V
Q
DD  
R
g(TOT)  
L
V
DS  
V
= 20V  
GS  
V
Q
GS  
g(10)  
+
V
DD  
V
= 10V  
V
GS  
GS  
-
DUT  
V
= 2V  
GS  
I
0
G(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
FIGURE 16. GATE CHARGE TEST CIRCUIT  
FIGURE 17. GATE CHARGE WAVEFORM  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT  
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS  
©2003 Fairchild Semiconductor Corporation  
HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B1  
HUFA75345G3, HUFA75345P3, HUFA75345S3S  
PSPICE Electrical Model  
.SUBCKT HUFA75345 2 1 3 ;  
rev 3 Feb 99  
CA 12 8 5.55e-9  
CB 15 14 5.55e-9  
CIN 6 8 3.45e-9  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
RLDRAIN  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
51  
ESLC  
11  
EBREAK 11 7 17 18 56.7  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
-
50  
+
-
17  
DBODY  
RDRAIN  
6
8
EBREAK 18  
ESG  
-
EVTHRES  
+
16  
EVTEMP 20 6 18 22 1  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
6
+
-
18  
22  
IT 8 17 1  
MMED  
9
20  
MSTRO  
8
RLGATE  
LDRAIN 2 5 1e-9  
LGATE 1 9 2.6e-9  
LSOURCE 3 7 1.1e-9  
KGATE LSOURCE LGATE 0.0085  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
S1A  
S2A  
S2B  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 1e-4  
RGATE 9 20 0.36  
RLDRAIN 2 5 10  
RLGATE 1 9 26  
RLSOURCE 3 7 11  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RVTEMP  
19  
S1B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RSOURCE 8 7 RSOURCEMOD 3.15e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RVTHRES  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),3.5))}  
.MODEL DBODYMOD D (IS = 6e-12 RS = 1.4e-3 IKF = 20 XTI = 5 TRS1 = 2.75e-3 TRS2 = 5.0e-6 CJO = 5.5e-9 TT = 5.9e-8 M = 0.5 VJ = 0.75)  
.MODEL DBREAKMOD D (RS = 2.8e-2 IKF = 30 TRS1 = -4.0e-3 TRS2 = 1.0e-6)  
.MODEL DPLCAPMOD D (CJO = 6.75e-9 IS = 1e-30 M = 0.88 VJ = 1.45 FC = 0.5)  
.MODEL MMEDMOD NMOS (VTO = 2.93 KP = 13.75 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.36)  
.MODEL MSTROMOD NMOS (VTO = 3.23 KP = 96 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u Lambda = 0.06)  
.MODEL MWEAKMOD NMOS (VTO = 2.35 KP =0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.6)  
.MODEL RBREAKMOD RES (TC1 = 8.0e-4 TC2 = 4.0e-6)  
.MODEL RDRAINMOD RES (TC1 = 1.5e-1 TC2 = 6.5e-4)  
.MODEL RSLCMOD RES (TC1 = 1.0e-4 TC2 = 1.05e-6)  
.MODEL RSOURCEMOD RES (TC1 = 1.0e-3 TC2 = 0)  
.MODEL RVTHRESMOD RES (TC1 = -1.5e-3 TC2 = -2.6e-5)  
.MODEL RVTEMPMOD RES (TC1 = -2.75e-3 TC2 = 1.45e-6)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -9.00 VOFF= -4.00)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.00 VOFF= -9.00)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.00 VOFF= 0.50)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.50 VOFF= 0.00)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
©2003 Fairchild Semiconductor Corporation  
HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B1  
HUFA75345G3, HUFA75345P3, HUFA75345S3S  
SABER Electrical Model  
REV 3 February 1999  
template HUFA75345 n2, n1, n3  
electrical n2, n1, n3  
{
var i iscl  
d..model dbodymod = (is = 6e-12, xti = 5, cjo = 5.5e-9, tt = 5.9e-8, m=0.5, vj=0.75)  
d..model dbreakmod = ()  
d..model dplcapmod = (cjo = 6.75e-9, is = 1e-30, m = 0.88, vj = 1.45,fc=0.5)  
m..model mmedmod = (type=_n, vto = 2.93, kp = 13.75, is = 1e-30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 3.23, kp = 96, is=1e-30,tox=1,  
lambda = 0.06)  
LDRAIN  
RLDRAIN  
RDBODY  
DPLCAP  
DRAIN  
2
5
m..model mweakmod = (type=_n, vto = 2.35, kp = 0.02, is = 1e-30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -9, voff = -4)  
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -4, voff = -9)  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0, voff = 0.5)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = 0)  
10  
RSLC1  
51  
RDBREAK  
72  
DBREAK  
11  
RSLC2  
ISCL  
c.ca n12 n8 = 5.55e-9  
c.cb n15 n14 = 5.55e-9  
c.cin n6 n8 = 3.45e-9  
50  
-
71  
RDRAIN  
6
8
ESG  
d.dbody n7 n71 = model=dbodymod  
d.dbreak n72 n11 = model=dbreakmod  
EVTHRES  
+
+
16  
21  
-
19  
8
d.dplcap n10 n5 = model=dplcapmod  
MWEAK  
LGATE  
EVTEMP  
+
DBODY  
RGATE  
GATE  
1
6
-
18  
22  
i.it n8 n17 = 1  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
17  
18  
-
l.ldrain n2 n5 = 1e-9  
l.lgate n1 n9 = 2.6e-9  
l.lsource n3 n7 = 1.1e-9  
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
k.k1 i(l.lgate) i(l.lsource) = l(l.lgate), l(l.lsource), 0.0085  
RSOURCE  
RLSOURCE  
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u  
S1A  
S2A  
14  
RBREAK  
12  
15  
13  
8
17  
18  
13  
res.rbreak n17 n18 = 1, tc1 = 8e-4, tc2 = 4e-6  
res.rdbody n71 n5 = 1.4e-3, tc1 = 2.75e-3, tc2 = 5e-6  
res.rdbreak n72 n5 = 2.8e-2, tc1 = -4e-3, tc2 = 1e-6  
res.rdrain n50 n16 = 1e-4, tc1 = 1.5e-1, tc2 = 6.5e-4  
res.rgate n9 n20 = 0.36  
res.rldrain n2 n5 = 10  
res.rlgate n1 n9 = 26  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
res.rlsource n3 n7 = 11  
res.rslc1 n5 n51 = 1e-6, tc1 = 1e-4, tc2 = 1.05e-6  
RVTHRES  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 3.15e-3, tc1 = 1e-3, tc2 = 0  
res.rvtemp n18 n19 = 1, tc1 = -2.75e-3, tc2 = 1.45e-6  
res.rvthres n22 n8 = 1, tc1 = -1.5e-3, tc2 = -2.6e-5  
spe.ebreak n11 n7 n17 n18 = 56.7  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc = 1  
equations {  
i (n51->n50) + = iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 3.5))  
}
}
©2003 Fairchild Semiconductor Corporation  
HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B1  
HUFA75345G3, HUFA75345P3, HUFA75345S3S  
SPICE Thermal Model  
JUNCTION  
th  
REV 5 February 1999  
HUFA75345  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
CTHERM1 th 6 6.3e-3  
CTHERM2 6 5 1.5e-2  
CTHERM3 5 4 2.0e-2  
CTHERM4 4 3 3.0e-2  
CTHERM5 3 2 8.0e-2  
CTHERM6 2 tl 1.5e-1  
6
RTHERM1 th 6 5.0e-3  
RTHERM2 6 5 1.8e-2  
RTHERM3 5 4 5.0e-2  
RTHERM4 4 3 8.5e-2  
RTHERM5 3 2 1.0e-1  
RTHERM6 2 tl 1.1e-1  
5
SABER Thermal Model  
SABER thermal model HUFA75345  
4
3
2
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 6.3e-3  
ctherm.ctherm2 6 5 = 1.5e-2  
ctherm.ctherm3 5 4 = 2.0e-2  
ctherm.ctherm4 4 3 = 3.0e-2  
ctherm.ctherm5 3 2 = 8.0e-2  
ctherm.ctherm6 2 tl = 1.5e-1  
rtherm.rtherm1 th 6 = 5.0e-3  
rtherm.rtherm2 6 5 = 1.8e-2  
rtherm.rtherm3 5 4 = 5.0e-2  
rtherm.rtherm4 4 3 = 8.5e-2  
rtherm.rtherm5 3 2 = 1.0e-1  
rtherm.rtherm6 2 tl = 1.1e-1  
}
tl  
CASE  
©2003 Fairchild Semiconductor Corporation  
HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B1  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not  
intended to be an exhaustive list of all such trademarks.  
ACEx™  
FACT™  
ImpliedDisconnectPACMAN™  
SPM™  
ActiveArray™  
Bottomless™  
CoolFET™  
FACT Quiet SeriesISOPLANAR™  
POP™  
Stealth™  
®
FAST  
LittleFET™  
MicroFET™  
MicroPak™  
Power247™  
PowerTrench  
QFET™  
SuperSOT-3  
SuperSOT-6  
SuperSOT-8  
®
FASTr™  
CROSSVOLTFRFET™  
DOME™  
GlobalOptoisolatorMICROWIRE™  
QS™  
SyncFET™  
®
EcoSPARK™  
GTO™  
MSX™  
QT OptoelectronicsTinyLogic  
Quiet Series™  
RapidConfigure™  
RapidConnect™  
SILENT SWITCHER VCX™  
SMART START™  
2
E CMOS™  
HiSeC™  
I C™  
MSXPro™  
OCX™  
TruTranslation™  
2
EnSigna™  
UHC™  
UltraFET  
®
Across the board. Around the world.OCXPro™  
The Power Franchise™  
Programmable Active Droop™  
®
®
OPTOLOGIC  
OPTOPLANAR™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILDS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR  
CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, or (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or In  
Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild Semiconductor.  
The datasheet is printed for reference information only.  
Rev. I2  

相关型号:

HUFA75345S3ST

75A, 55V, 0.007ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS

HUFA75429D3S

N-Channel UltraFET MOSFETs 60V, 20A, 25mз
FAIRCHILD

HUFA75429D3ST

N-Channel UltraFET MOSFETs 60V, 20A, 25mз
FAIRCHILD

HUFA75433S3S

N-Channel UltraFET MOSFETs 60V, 64A, 16mз
FAIRCHILD

HUFA75433S3ST

N-Channel UltraFET MOSFETs 60V, 64A, 16mз
FAIRCHILD

HUFA75531SK8

6A, 80V, 0.030 Ohm, N-Channel, UltraFET Power MOSFET
FAIRCHILD

HUFA75542P3

75A, 80V, 0.014 Ohm, N-Channel, UltraFET Power MOSFETs
FAIRCHILD

HUFA75542P3

75A, 80V, 0.014ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
RENESAS

HUFA75542S3S

75A, 80V, 0.014 Ohm, N-Channel, UltraFET Power MOSFETs
FAIRCHILD

HUFA75542S3ST

75A, 80V, 0.014ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS

HUFA75545P3

75A, 80V, 0.010 Ohm, N-Channel, UltraFET Power MOSFET
FAIRCHILD

HUFA75545S3S

75A, 80V, 0.010 Ohm, N-Channel, UltraFET Power MOSFET
FAIRCHILD